1
|
Budde MD, Skinner NP, Muftuler LT, Schmit BD, Kurpad SN. Optimizing Filter-Probe Diffusion Weighting in the Rat Spinal Cord for Human Translation. Front Neurosci 2017; 11:706. [PMID: 29311786 PMCID: PMC5742102 DOI: 10.3389/fnins.2017.00706] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/01/2017] [Indexed: 12/15/2022] Open
Abstract
Diffusion tensor imaging (DTI) is a promising biomarker of spinal cord injury (SCI). In the acute aftermath, DTI in SCI animal models consistently demonstrates high sensitivity and prognostic performance, yet translation of DTI to acute human SCI has been limited. In addition to technical challenges, interpretation of the resulting metrics is ambiguous, with contributions in the acute setting from both axonal injury and edema. Novel diffusion MRI acquisition strategies such as double diffusion encoding (DDE) have recently enabled detection of features not available with DTI or similar methods. In this work, we perform a systematic optimization of DDE using simulations and an in vivo rat model of SCI and subsequently implement the protocol to the healthy human spinal cord. First, two complementary DDE approaches were evaluated using an orientationally invariant or a filter-probe diffusion encoding approach. While the two methods were similar in their ability to detect acute SCI, the filter-probe DDE approach had greater predictive power for functional outcomes. Next, the filter-probe DDE was compared to an analogous single diffusion encoding (SDE) approach, with the results indicating that in the spinal cord, SDE provides similar contrast with improved signal to noise. In the SCI rat model, the filter-probe SDE scheme was coupled with a reduced field of view (rFOV) excitation, and the results demonstrate high quality maps of the spinal cord without contamination from edema and cerebrospinal fluid, thereby providing high sensitivity to injury severity. The optimized protocol was demonstrated in the healthy human spinal cord using the commercially-available diffusion MRI sequence with modifications only to the diffusion encoding directions. Maps of axial diffusivity devoid of CSF partial volume effects were obtained in a clinically feasible imaging time with a straightforward analysis and variability comparable to axial diffusivity derived from DTI. Overall, the results and optimizations describe a protocol that mitigates several difficulties with DTI of the spinal cord. Detection of acute axonal damage in the injured or diseased spinal cord will benefit the optimized filter-probe diffusion MRI protocol outlined here.
Collapse
Affiliation(s)
- Matthew D. Budde
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Nathan P. Skinner
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
- Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, WI, United States
| | - L. Tugan Muftuler
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brian D. Schmit
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI, United States
| | - Shekar N. Kurpad
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
2
|
Longitudinal study on diffusion tensor imaging and diffusion tensor tractography following spinal cord contusion injury in rats. Neuroradiology 2016; 58:607-614. [PMID: 26931783 DOI: 10.1007/s00234-016-1660-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/02/2016] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Diffusion tensor imaging (DTI) as a potential technology has been used in spinal cord injury (SCI) studies, but the longitudinal evaluation of DTI parameters after SCI, and the correlation between DTI parameters and locomotor outcomes need to be defined. METHODS Adult Wistar rats (n = 6) underwent traumatic thoracic cord contusion by an NYU impactor. DTI and Basso-Beattie-Bresnahan datasets were collected pre-SCI and 1, 3, 7, 14, and 84 days post-SCI. Diffusion tensor tractography (DTT) of the spinal cord was also generated. Fractional anisotropy (FA) and connection rate of fibers at the injury epicenter and at 5 mm rostral/caudal to the epicenter were calculated. The variations of these parameters after SCI were observed by one-way analysis of variance and the correlations between these parameters and motor function were explored by Pearson's correlation. RESULTS FA at the epicenter decreased most remarkably on day 1 post-SCI (from 0.780 ± 0.012 to 0.330 ± 0.015), and continued to decrease slightly by day 3 post-SCI (0.313 ± 0.015), while other parameters decreased significantly over the first 3 days after SCI. DTT showed residual fibers concentrated on ventral and ventrolateral sides of the cord. Moreover, FA at the epicenter exhibited the strongest correlation (r = 0.887, p = 0.000) with the locomotion performance. CONCLUSION FA was sensitive to degeneration in white matter and DTT could directly reflect the distribution of the residual white matter. Moreover, days 1 to 3 post-SCI may be the optimal time window for SCI examination and therapy.
Collapse
|
3
|
Bhatnagar T, Liu J, Yung A, Cripton P, Kozlowski P, Tetzlaff W, Oxland T. Quantifying the internal deformation of the rodent spinal cord during acute spinal cord injury – the validation of a method. Comput Methods Biomech Biomed Engin 2015; 19:386-95. [DOI: 10.1080/10255842.2015.1032944] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Noristani HN, Lonjon N, Cardoso M, Le Corre M, Chan-Seng E, Captier G, Privat A, Coillot C, Goze-Bac C, Perrin FE. Correlation of in vivo and ex vivo (1)H-MRI with histology in two severities of mouse spinal cord injury. Front Neuroanat 2015; 9:24. [PMID: 25798092 PMCID: PMC4350395 DOI: 10.3389/fnana.2015.00024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/18/2015] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) is a debilitating neuropathology with no effective treatment. Magnetic resonance imaging (MRI) technology is the only method used to assess the impact of an injury on the structure and function of the human spinal cord. Moreover, in pre-clinical SCI research, MRI is a non-invasive method with great translational potential since it provides relevant longitudinal assessment of anatomical and structural alterations induced by an injury. It is only recently that MRI techniques have been effectively used for the follow-up of SCI in rodents. However, the vast majority of these studies have been carried out on rats and when conducted in mice, the contusion injury model was predominantly chosen. Due to the remarkable potential of transgenic mice for studying the pathophysiology of SCI, we examined the use of both in and ex vivo1H-MRI (9.4 T) in two severities of the mouse SCI (hemisection and over-hemisection) and documented their correlation with histological assessments. We demonstrated that a clear distinction between the two injury severities is possible using in and ex vivo1H-MRI and that ex vivo MR images closely correlate with histology. Moreover, tissue modifications at a remote location from the lesion epicenter were identified by conventional ex vivo MRI analysis. Therefore, in vivo MRI has the potential to accurately identify in mice the progression of tissue alterations induced by SCI and is successfully implemented by ex vivo MRI examination. This combination of in and ex vivo MRI follow-up associated with histopathological assessment provides a valuable approach for further studies intended to evaluate therapeutic strategies on SCI.
Collapse
Affiliation(s)
- Harun N Noristani
- Institute for Neurosciences of Montpellier, INSERM U1051 Montpellier, France
| | - Nicolas Lonjon
- Institute for Neurosciences of Montpellier, INSERM U1051 Montpellier, France ; Centre Hospitalier Régional Universitaire Montpellier, Gui de Chauliac Hospital Montpellier, France
| | - Maïda Cardoso
- Institute for Neurosciences of Montpellier, INSERM U1051 Montpellier, France
| | - Marine Le Corre
- Institute for Neurosciences of Montpellier, INSERM U1051 Montpellier, France ; Centre Hospitalier Régional Universitaire Montpellier, Gui de Chauliac Hospital Montpellier, France
| | - Emilie Chan-Seng
- Institute for Neurosciences of Montpellier, INSERM U1051 Montpellier, France ; Centre Hospitalier Régional Universitaire Montpellier, Gui de Chauliac Hospital Montpellier, France
| | - Guillaume Captier
- Centre Hospitalier Régional Universitaire Montpellier, Lapeyronie Hospital, Chirurgie Orthopédique et Plastique Pédiatrique Montpellier, France
| | - Alain Privat
- Institute for Neurosciences of Montpellier, INSERM U1051 Montpellier, France
| | - Christophe Coillot
- Charles Coulomb Laboratory (L2C-BioNanoNMRI team), UMR 5221 Centre National de la Recherche Scientifique -University Montpellier, France
| | - Christophe Goze-Bac
- Charles Coulomb Laboratory (L2C-BioNanoNMRI team), UMR 5221 Centre National de la Recherche Scientifique -University Montpellier, France
| | - Florence E Perrin
- Institute for Neurosciences of Montpellier, INSERM U1051 Montpellier, France ; Department "Biologie-Mécanismes du Vivant," Faculty of Science, University of Montpellier Montpellier, France
| |
Collapse
|
5
|
Kelley BJ, Harel NY, Kim CY, Papademetris X, Coman D, Wang X, Hasan O, Kaufman A, Globinsky R, Staib LH, Cafferty WBJ, Hyder F, Strittmatter SM. Diffusion tensor imaging as a predictor of locomotor function after experimental spinal cord injury and recovery. J Neurotrauma 2014; 31:1362-73. [PMID: 24779685 DOI: 10.1089/neu.2013.3238] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Traumatic spinal cord injury (SCI) causes long-term disability with limited functional recovery linked to the extent of axonal connectivity. Quantitative diffusion tensor imaging (DTI) of axonal integrity has been suggested as a potential biomarker for prognostic and therapeutic evaluation after trauma, but its correlation with functional outcomes has not been clearly defined. To examine this application, female Sprague-Dawley rats underwent midthoracic laminectomy followed by traumatic spinal cord contusion of differing severities or laminectomy without contusion. Locomotor scores and hindlimb kinematic data were collected for 4 weeks post-injury. Ex vivo DTI was then performed to assess axonal integrity using tractography and fractional anisotropy (FA), a numerical measure of relative white matter integrity, at the injury epicenter and at specific intervals rostral and caudal to the injury site. Immunohistochemistry for tissue sparing was also performed. Statistical correlation between imaging data and functional performance was assessed as the primary outcome. All injured animals showed some recovery of locomotor function, while hindlimb kinematics revealed graded deficits consistent with injury severity. Standard T2 magnetic resonance sequences illustrated conventional spinal cord morphology adjacent to contusions while corresponding FA maps indicated graded white matter pathology within these adjacent regions. Positive correlations between locomotor (Basso, Beattie, and Bresnahan score and gait kinematics) and imaging (FA values) parameters were also observed within these adjacent regions, most strongly within caudal segments beyond the lesion. Evaluation of axonal injury by DTI provides a mechanism for functional recovery assessment in a rodent SCI model. These findings suggest that focused DTI analysis of caudal spinal cord should be studied in human cases in relationship to motor outcome to augment outcome biomarkers for clinical cases.
Collapse
Affiliation(s)
- Brian J Kelley
- 1 Department of Neurosurgery, Yale University School of Medicine , New Haven, Connecticut
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kim JH, Song SK. Diffusion tensor imaging of the mouse brainstem and cervical spinal cord. Nat Protoc 2013; 8:409-17. [PMID: 23424749 DOI: 10.1038/nprot.2013.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Concurrent and/or progressive degeneration of upper and lower motor neurons (LMNs) causes neurological symptoms and dysfunctions in motor neuron diseases (MNDs) such as amyotrophic lateral sclerosis (ALS). Although brain lesions are readily detected, magnetic resonance imaging of the brainstem and cervical spinal cord lesions resulting from damage to LMNs has proven to be difficult. With the development of mouse models of MNDs, a noninvasive neuroimaging modality capable of detecting lesions resulting from axonal and neuronal injury in mouse brainstem and cervical spinal cord could improve our understanding of the underlying mechanism of MNDs and aid in the development of effective treatments. Here we present a protocol that allows the concomitant acquisition of high-quality in vivo full-diffusion tensor magnetic resonance images from the mouse brainstem and cervical spinal cord using the actively decoupled, anatomically shaped pair of coils--the surface-receive coil and the minimized volume-transmit coil. To improve the data quality, we used a custom-made nose cone to monitor respiratory motion for synchronizing data acquisition and assuring physiological stability of mice under examination. The protocol allows the acquisition of in vivo diffusion tensor imaging of the mouse brainstem and cervical spinal cord at 117 μm × 117 μm in-plane resolution with a 500-μm slice thickness in 1 h on a 4.7-T horizontal small animal imaging scanner equipped with an actively shielded gradient coil capable of pulsed gradient strengths up to 18 G cm(−1) with a gradient rise time of ≤295 μs.
Collapse
Affiliation(s)
- Joong Hee Kim
- Department of Radiology, Washington University, St. Louis, Missouri, USA
| | | |
Collapse
|
7
|
Blomster LV, Cowin GJ, Kurniawan ND, Ruitenberg MJ. Detection of endogenous iron deposits in the injured mouse spinal cord through high-resolution ex vivo and in vivo MRI. NMR IN BIOMEDICINE 2013; 26:141-150. [PMID: 22730180 DOI: 10.1002/nbm.2829] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 05/07/2012] [Accepted: 05/25/2012] [Indexed: 06/01/2023]
Abstract
The main aim of this study was to employ high-resolution MRI to investigate the spatiotemporal development of pathological features associated with contusive spinal cord injury (SCI) in mice. Experimental mice were subjected to either sham surgery or moderate contusive SCI. A 16.4-T small-animal MR system was employed for nondestructive imaging of post-mortem, fixed spinal cord specimens at the subacute (7 days) and more chronic (28-35 days) stages post-injury. Routine histological techniques were used for subsequent investigation of the observed neuropathology at the microscopic level. The central core of the lesion appeared as a dark hypo-intense area on MR images at all time points investigated. Small focal hypo-intense spots were also observed spreading through the dorsal funiculi proximal and distal to the site of impact, an area that is known to undergo gliosis and Wallerian degeneration in response to injury. Histological examination revealed these hypo-intense spots to be high in iron content as determined by Prussian blue staining. Quantitative image analysis confirmed the increased presence of iron deposits at all post-injury time points investigated (p<0.05). Distant iron deposits were also detectable through live imaging without the use of contrast-enhancing agents, enabling the longitudinal investigation of this pathology in individual animals. Further immunohistochemical evaluation showed that intracellular iron deposits localised to macrophages/microglia, astrocytes and oligodendrocytes in the subacute phase of SCI, but predominantly to glial fibrillary acidic protein-positive, CC-1-positive astrocytes at later stages of recovery. Progressive, widespread intracellular iron accumulation is thus a normal feature of SCI in mice, and high-resolution MRI can be effectively used to detect and monitor these neuropathological changes with time.
Collapse
Affiliation(s)
- Linda V Blomster
- University of Queensland, School of Biomedical Sciences, St Lucia, Qld, Australia
| | | | | | | |
Collapse
|
8
|
Bauchet L, Lonjon N, Perrin FE, Gilbert C, Privat A, Fattal C. Strategies for spinal cord repair after injury: a review of the literature and information. Ann Phys Rehabil Med 2011; 52:330-51. [PMID: 19886026 DOI: 10.1016/j.annrmp.2008.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Thanks to the Internet, we can now have access to more information about spinal cord repair. Spinal cord injured (SCI) patients request more information and hospitals offer specific spinal cord repair medical consultations. OBJECTIVE Provide practical and relevant elements to physicians and other healthcare professionals involved in the care of SCI patients in order to provide adequate answers to their questions. METHOD Our literature review was based on English and French publications indexed in PubMed and the main Internet websites dedicated to spinal cord repair. RESULTS A wide array of research possibilities including notions of anatomy, physiology, biology, anatomopathology and spinal cord imaging is available for the global care of the SCI patient. Prevention and repair strategies (regeneration, transplant, stem cells, gene therapy, biomaterials, using sublesional uninjured spinal tissue, electrical stimulation, brain/computer interface, etc.) for the injured spinal cord are under development. It is necessary to detail the studies conducted and define the limits of these new strategies and benchmark them to the realistic medical and rehabilitation care available to these patients. CONCLUSION Research is quickly progressing and clinical trials will be developed in the near future. They will have to answer to strict methodological and ethical guidelines. They will first be designed for a small number of patients. The results will probably be fragmented and progress will be made through different successive steps.
Collapse
Affiliation(s)
- L Bauchet
- Centre mutualiste neurologique Propara, 34195 Montpellier, France.
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Different MR techniques, such as relaxation times, diffusion, perfusion, and spectroscopy have been employed to study rodent spinal cord. In this chapter, a description of these methods is given, along with examples of normal metrics that can be derived from the MR acquisitions, as well as examples of applications to pathology.
Collapse
Affiliation(s)
- Virginie Callot
- Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 6612, CNRS, Université de la Méditerranée, 13385 Marseille Cedex 05, France.
| | | | | |
Collapse
|
10
|
Callot V, Duhamel G, Le Fur Y, Decherchi P, Marqueste T, Kober F, Cozzone PJ. Echo planar diffusion tensor imaging of the mouse spinal cord at thoracic and lumbar levels: A feasibility study. Magn Reson Med 2010; 63:1125-34. [PMID: 20373416 DOI: 10.1002/mrm.22301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Diffusion tensor imaging is increasingly used for probing spinal cord (SC) pathologies, especially in mouse models of human diseases. However, diffusion tensor imaging series requires a long acquisition time and mouse experiments rarely use rapid imaging techniques such as echo planar imaging. A recent preliminary study demonstrated the feasibility and robustness of the echo planar imaging sequence for mouse cervical SC diffusion tensor imaging investigations. The feasibility of echo planar imaging at thoracic and lumbar levels, however, remained unknown due to bulk motion, field inhomogeneities, and off-centering of the SC in the axial plane. In the present study, the feasibility and the robustness of an echo planar imaging-based diffusion tensor imaging sequence for mouse thoracic and lumbar SC investigations is demonstrated. Quantitative and accurate diffusion tensor imaging metrics, as well as high spatially resolved images, have been obtained. This successful demonstration may open new perspectives in the field of mouse SC imaging. Echo planar imaging is used in several imaging modalities, such as relaxometry or perfusion, and may prove to be very attractive for multimodal MR investigations to acquire a more detailed characterization of the SC tissue.
Collapse
Affiliation(s)
- Virginie Callot
- Centre de Résonance Magnétique Biologique et Médicale, Faculté de Médecine de Marseille, Université de la Méditerranée (Aix-Marseille II), Marseille, France.
| | | | | | | | | | | | | |
Collapse
|
11
|
Kim JH, Loy DN, Wang Q, Budde MD, Schmidt RE, Trinkaus K, Song SK. Diffusion tensor imaging at 3 hours after traumatic spinal cord injury predicts long-term locomotor recovery. J Neurotrauma 2010; 27:587-98. [PMID: 20001686 DOI: 10.1089/neu.2009.1063] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Accurate diagnosis of spinal cord injury (SCI) severity must be achieved before highly aggressive experimental therapies can be tested responsibly in the early phases after trauma. These studies demonstrate for the first time that axial diffusivity (lambda||), derived from diffusion tensor imaging (DTI) within 3 h after SCI, accurately predicts long-term locomotor behavioral recovery in mice. Female C57BL/6 mice underwent sham laminectomy or graded contusive spinal cord injuries at the T9 vertebral level (5 groups, n = 8 for each group). In-vivo DTI examinations were performed immediately after SCI. Longitudinal measurements of hindlimb locomotor recovery were obtained using the Basso mouse scale (BMS). Injured and spared regions of ventrolateral white matter (VLWM) were reliably separated in the hyperacute phase by threshold segmentation. Measurements of lambda|| were compared with histology in the hyperacute phase and 14 days after injury. The spared normal VLWM determined by hyperacute lambda|| and 14-day histology correlated well (r = 0.95). A strong correlation between hindlimb locomotor function recovery and lambda||-determined spared normal VLWM was also observed. The odds of significant locomotor recovery increased by 18% with each 1% increase in normal VLWM measured in the hyperacute phase (odds ratio = 1.18, p = 0.037). The capability of measuring subclinical changes in spinal cord physiology and murine genetic advantages offer an early window into the basic mechanisms of SCI that was not previously possible. Although significant obstacles must still be overcome to derive similar data in human patients, the path to clinical translation is foreseeable and achievable.
Collapse
Affiliation(s)
- Joong H Kim
- Department of Radiology, Washington University, St. Louis, Missouri, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Development of a simplified spinal cord ischemia model in mice. J Neurosci Methods 2010; 189:246-51. [PMID: 20394775 DOI: 10.1016/j.jneumeth.2010.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Revised: 04/04/2010] [Accepted: 04/05/2010] [Indexed: 11/24/2022]
Abstract
Use of genetically manipulated mice facilitates understanding pathological mechanisms in many diseases and contributes to therapy development. However, there is no practical and clinically relevant mouse model available for spinal cord ischemia. This report introduces a simplified long-term outcome mouse model of spinal cord ischemia. Male C57Bl/6J mice were anesthetized with isoflurane and endotracheally intubated. The middle segment of the thoracic aorta was clamped for 0, 8, 10 or 12 min via left lateral thoracotomy. Rectal temperature was maintained at 37.0+/-0.5 degrees C. A laser Doppler probe was used to measure lumbar spinal cord blood flow during thoracic aorta cross-clamping. Open field locomotor function and rotarod performance were evaluated at 1h and 1, 3, 5, and 7 days post-injury. Surviving neurons in the lumbar ventral horn were counted at 7 days post-injury. Cross-clamping the middle segment of the thoracic aorta resulted in approximately 90% blood flow reduction in the lumbar spinal cord. Neurological deficit and neuronal cell death were associated with ischemia duration. Another set of mice were subjected to 10 min aortic clamping or sham surgery and neurological function was examined at 1h and 1, 3, 5, 7, 14, and 28 days. Four of 5 mice (80%) in the injured group survived 28 days and had significant neurological deficit. This study indicates that cross-clamping of the aorta via left thoracotomy is a simple and reliable method to induce spinal cord ischemia in mice allowing definition of long-term outcome.
Collapse
|
13
|
Lonjon N, Kouyoumdjian P, Prieto M, Bauchet L, Haton H, Gaviria M, Privat A, Perrin FE. Early functional outcomes and histological analysis after spinal cord compression injury in rats. J Neurosurg Spine 2010; 12:106-13. [DOI: 10.3171/2009.7.spine0989] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Neuroprotective and repair strategies in spinal cord injuries (SCIs) have been so far largely unsuccessful. One of the prerequisites is the use of appropriate preclinical models to decipher pathophysiological mechanisms; another is the identification of optimal time windows for therapeutic interventions. The authors undertook this study to characterize early motor, sensory, autonomic, and histological outcomes after balloon compression of the spinal cord at the T8–9 level in adult rats.
Methods
A total of 91 rats were used in this study. Spinal cord balloon compression was performed at T8–9 in adult rats by inflation of a 2 Fr Fogarty catheter into the epidural space. The authors first characterized early motor, sensory, and autonomic outcomes of 2 volumes of compression (10 and 15 μl) using behavioral tests and then examined histological outcomes in the spinal cord using Luxol fast blue staining. To further substantiate the characterization of the epidural balloon-compression model, they used a noncompetitive N-methyl-d-aspartate antagonist, GK11, and demonstrated the involvement of excitotoxicity in this model.
Results
Proportional and reproducible functional impairment resulted from compression caused by balloon inflation with either 10 or 15 μl of water and corresponded to the extent of the lesion. Indeed, during the early phase following SCI (1 week postinjury), recovery of locomotor function and bladder control correlated with the volume of inflation, whereas outcomes with respect to sensory function and reflexes were independent of compression severity. Treatment with GK11 significantly improved motor function in all groups of rats 1 week after injury and bladder voiding in the 10-μl injured rats compared to the 15-μl injured rats.
Conclusions
The results of this study demonstrate that spinal balloon-compression injury in the rat is a well-characterized, reproducible, and predictable model to analyze early events following SCI.
Collapse
Affiliation(s)
- Nicolas Lonjon
- 1Institut National de la Santé et de la Recherche Médicale U583, Institute for Neurosciences of Montpellier and
- 2Department of Neurosurgery, Gui de Chauliac Hospital
| | - Pascal Kouyoumdjian
- 1Institut National de la Santé et de la Recherche Médicale U583, Institute for Neurosciences of Montpellier and
- 3Orthopedic Department, Centre Hospitalier Universitaire de Nîmes, France; and
| | | | - Luc Bauchet
- 1Institut National de la Santé et de la Recherche Médicale U583, Institute for Neurosciences of Montpellier and
- 2Department of Neurosurgery, Gui de Chauliac Hospital
- 5Centre Mutualiste Neurologique Propara, Montpellier
| | - Henri Haton
- 1Institut National de la Santé et de la Recherche Médicale U583, Institute for Neurosciences of Montpellier and
| | | | - Alain Privat
- 1Institut National de la Santé et de la Recherche Médicale U583, Institute for Neurosciences of Montpellier and
| | - Florence E. Perrin
- 1Institut National de la Santé et de la Recherche Médicale U583, Institute for Neurosciences of Montpellier and
- 6Neuroscience Department, University of the Basque Country, Ikerbasque, Bilbao, Spain
| |
Collapse
|
14
|
Kouyoumdjian P, Lonjon N, Prieto M, Haton H, Privat A, Asencio G, Perrin FE, Gaviria M. A remotely controlled model of spinal cord compression injury in mice: toward real-time analysis. J Neurosurg Spine 2009; 11:461-70. [PMID: 19929343 DOI: 10.3171/2009.4.spine0979] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT To date, there has been no efficient therapeutic approach to spinal cord injuries (SCIs). This may be attributable, at least in part, to difficulties in forming predictive and accurate experimental animal models. The authors' previous studies have identified 2 relevant conditions of such a model. The first condition is the ability to compare data derived from rat models of SCI by developing mouse models of SCI that permit access to a large range of transgenic models. The second condition is that the exploration of the consequences of each mechanism of spinal trauma requires modeling the different etiologic aspects of the injury. METHODS To fulfill these 2 conditions a new model of mouse spinal cord compression injury was devised using a thread-driven olive-shaped compressive device. The authors characterized early motor, sensory, and histological outcomes using 3 olive diameters and different compression durations. RESULTS A gradual and reproducible functional severity that correlated with lesion extension was demonstrated in 76 mice. To further substantiate the characterization of this model, a noncompetitive N-methyl-d-aspartate antagonist was administered in 30 mice, which demonstrated the involvement of excitotoxicity in this model. CONCLUSIONS The study demonstrated that spinal olive-compression injury in the mouse is a reproducible, well-characterized, and predictable model for analyzing early events after SCI. The nonmagnetic and remotely controlled design of this model will allow completion of the lesion while the animal is in the MR imaging apparatus, thus permitting further real-time MR imaging studies that will provide insights into the characterization of early events in the spatial and temporal evolution of SCI. Moreover, this model lays the foundation for future in vivo studies of functional and histological outcomes following SCI in genetically engineered animals.
Collapse
Affiliation(s)
- Pascal Kouyoumdjian
- Pathophysiology and Therapy of Sensory and Motor Deficits, Institute for Neurosciences of Montpellier, INSERM U583, Saint Eloi Hospital, Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Feng S, Hong Y, Zhou Z, Jinsong Z, Xiaofeng D, Zaizhong W, Yali G, Ying L, Yingjuan C, Yi H. Monitoring of acute axonal injury in the swine spinal cord with EAE by diffusion tensor imaging. J Magn Reson Imaging 2009; 30:277-85. [PMID: 19629996 DOI: 10.1002/jmri.21825] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To evaluate the ability of diffusion tensor imaging (DTI) to detect and monitor acute axonal injury in swine spinal cord with acute experimental allergic encephalomyelitis (EAE). MATERIALS AND METHODS Magnetic resonance imaging of the cervical spinal cord was performed in vivo at different time points through the onset and progression of EAE using a 3 Tesla clinical scanner. The DTI parameters were calculated in four separate regions of interest at the C2/C3 level. The quantitative DTI-pathology and DTI-clinical correlations were verified. RESULTS In the monophasic acute course of EAE onset and progression, axial diffusivity (AD) decrease correlates with acute axonal injury (r = -0.84; P < 0.001). By contrast, radial diffusivity does not change and no demyelination in histopathology was detected. Moreover, a clear correlation between clinical disease and axial diffusivity was found in two swine EAE models (r = -0.86; P < 0.001 and r = -0.92; P < 0.001). CONCLUSION AD corresponds with axonal injury in the absence of demyelination and may be a useful noninvasive tool to investigate the underlying pathogenic processes of multiple sclerosis and to monitor the effects of experimental treatments for axonal injury.
Collapse
Affiliation(s)
- Song Feng
- Department of Medical Imaging, The First Military Hospital OF PLA, LanZhou, GanShu, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Duhamel G, Callot V, Decherchi P, Le Fur Y, Marqueste T, Cozzone PJ, Kober F. Mouse lumbar and cervical spinal cord blood flow measurements by arterial spin labeling: Sensitivity optimization and first application. Magn Reson Med 2009; 62:430-9. [DOI: 10.1002/mrm.22015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Tatar I, Chou PCT, Desouki MM, El Sayed H, Bilgen M. Evaluating regional blood spinal cord barrier dysfunction following spinal cord injury using longitudinal dynamic contrast-enhanced MRI. BMC Med Imaging 2009; 9:10. [PMID: 19519898 PMCID: PMC2714086 DOI: 10.1186/1471-2342-9-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2008] [Accepted: 06/11/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In vivo preclinical imaging of spinal cord injury (SCI) in rodent models provides clinically relevant information in translational research. This paper uses multimodal magnetic resonance imaging (MRI) to investigate neurovascular pathology and changes in blood spinal cord barrier (BSCB) permeability following SCI in a mouse model of SCI. METHODS C57BL/6 female mice (n = 5) were subjected to contusive injury at the thoracic T11 level and scanned on post injury days 1 and 3 using anatomical, dynamic contrast-enhanced (DCE-MRI) and diffusion tensor imaging (DTI). The injured cords were evaluated postmortem with histopathological stains specific to neurovascular changes. A computational model was implemented to map local changes in barrier function from the contrast enhancement. The area and volume of spinal cord tissue with dysfunctional barrier were determined using semi-automatic segmentation. RESULTS Quantitative maps derived from the acquired DCE-MRI data depicted the degree of BSCB permeability variations in injured spinal cords. At the injury sites, the damaged barriers occupied about 70% of the total cross section and 48% of the total volume on day 1, but the corresponding measurements were reduced to 55% and 25%, respectively on day 3. These changes implied spatio-temporal remodeling of microvasculature and its architecture in injured SC. Diffusion computations included longitudinal and transverse diffusivities and fractional anisotropy index. Comparison of permeability and diffusion measurements indicated regions of injured cords with dysfunctional barriers had structural changes in the form of greater axonal loss and demyelination, as supported by histopathologic assessments. CONCLUSION The results from this study collectively demonstrated the feasibility of quantitatively mapping regional BSCB dysfunction in injured cord in mouse and obtaining complementary information about its structural integrity using in vivo DCE-MRI and DTI protocols. This capability is expected to play an important role in characterizing the neurovascular changes and reorganization following SCI in longitudinal preclinical experiments, but with potential clinical implications.
Collapse
Affiliation(s)
- Ilkan Tatar
- Preclinical Imaging in Translational Research Laboratory, Radiology and Radiological Science, Medical University of South Carolina, 169 Ashley Avenue, Charleston, SC 29425, USA.
| | | | | | | | | |
Collapse
|
18
|
Mitchell CS, Lee RH. Pathology dynamics predict spinal cord injury therapeutic success. J Neurotrauma 2009; 25:1483-97. [PMID: 19125684 DOI: 10.1089/neu.2008.0658] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Secondary injury, the complex cascade of cellular events following spinal cord injury (SCI), is a major source of post-insult neuron death. Experimental work has focused on the details of individual factors or mechanisms that contribute to secondary injury, but little is known about the interactions among factors leading to the overall pathology dynamics that underlie its propagation. Prior hypotheses suggest that the pathology is dominated by interactions, with therapeutic success lying in combinations of neuroprotective treatments. In this study, we provide the first comprehensive, system-level characterization of the entire secondary injury process using a novel relational model methodology that aggregates the findings of approximately 250 experimental studies. Our quantitative examination of the overall pathology dynamics suggests that, while the pathology is initially dominated by "fire-like", rate-dependent interactions, it quickly switches to a "flood-like", accumulation-dependent process with contributing factors being largely independent. Our evaluation of approximately 20,000 potential single and combinatorial treatments indicates this flood-like pathology results in few highly influential factors at clinically realistic treatment time frames, with multi-factor treatments being merely additive rather than synergistic in reducing neuron death. Our findings give new fundamental insight into the understanding of the secondary injury pathology as a whole, provide direction for alternative therapeutic strategies, and suggest that ultimate success in treating SCI lies in the pursuit of pathology dynamics in addition to individually involved factors.
Collapse
Affiliation(s)
- Cassie S Mitchell
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | | |
Collapse
|
19
|
Callot V, Duhamel G, Cozzone PJ, Kober F. Short-scan-time multi-slice diffusion MRI of the mouse cervical spinal cord using echo planar imaging. NMR IN BIOMEDICINE 2008; 21:868-877. [PMID: 18574855 DOI: 10.1002/nbm.1274] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Mouse spinal cord (SC) diffusion-weighted imaging (DWI) provides important information on tissue morphology and structural changes that may occur during pathologies such as multiple sclerosis or SC injury. The acquisition scheme of the commonly used DWI techniques is based on conventional spin-echo encoding, which is time-consuming. The purpose of this work was to investigate whether the use of echo planar imaging (EPI) would provide good-quality diffusion MR images of mouse SC, as well as accurate measurements of diffusion-derived metrics, and thus enable diffusion tensor imaging (DTI) and highly resolved DWI within reasonable scan times. A four-shot diffusion-weighted spin-echo EPI (SE-EPI) sequence was evaluated at 11.75 T on a group of healthy mice (n = 10). SE-EPI-derived apparent diffusion coefficients of gray and white matter were compared with those obtained using a conventional spin-echo sequence (c-SE) to validate the accuracy of the method. To take advantage of the reduction in acquisition time offered by the EPI sequence, multi-slice DTI acquisitions were performed covering the cervical segments (six slices, six diffusion-encoding directions, three b values) within 30 min (vs 2 h for c-SE). From these measurements, fractional anisotropy and mean diffusivities were calculated, and fiber tracking along the C1 to C6 cervical segments was performed. In addition, high-resolution images (74 x 94 microm(2)) were acquired within 5 min per direction. Clear delineation of gray and white matter and identical apparent diffusion coefficient values were obtained, with a threefold reduction in acquisition time compared with c-SE. While overcoming the difficulties associated with high spatially and temporally resolved DTI measurements, the present SE-EPI approach permitted identification of reliable quantitative parameters with a reproducibility compatible with the detection of pathologies. The SE-EPI method may be particularly valuable when multiple sets of images from the SC are needed, in cases of rapidly evolving conditions, to decrease the duration of anesthesia or to improve MR exploration by including additional MR measurements.
Collapse
Affiliation(s)
- Virginie Callot
- Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR CNRS No. 6612, Faculté de Médecine de Marseille, Université de la Méditerranée, Marseille, France.
| | | | | | | |
Collapse
|
20
|
Duhamel G, Callot V, Cozzone PJ, Kober F. Spinal cord blood flow measurement by arterial spin labeling. Magn Reson Med 2008; 59:846-54. [PMID: 18383283 DOI: 10.1002/mrm.21567] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The assessment of spinal cord (SC) hemodynamics, and especially SC blood flow (SCBF), plays a key role in the pathophysiological description and understanding of many SC diseases such as ischemia, or spinal cord injury. SCBF has been previously measured in animals with invasive techniques such as autoradiography or labeled microspheres; no MR technique, however, has been proposed so far. The possibility of quantitatively measuring SCBF in mice using MRI was investigated using a presaturated FAIR (flow-sensitive alternating inversion recovery) arterial spin labeling (ASL) technique. SCBF measurements were performed at the cervical level of the mouse as well as on the brain so as to use cerebral blood flow (CBF) values as internal references. With a spatial resolution of 133 x 133 microm(2) for the SCBF maps, absolute regional perfusion values could be measured within the different structures of the SC (gray matter, white matter, and cerebrospinal fluid area). Similar perfusion values were found in SC gray matter (330+/-90 mL/100g/min) and in brain (295+/-22 mL/100g/min for thalamus). This result, in agreement with SCBF/CBF measurements performed with non-MR techniques, opens new perspectives for noninvasive longitudinal and in vivo animal studies. Application to human experiments may also be possible.
Collapse
Affiliation(s)
- Guillaume Duhamel
- Centre de Résonance Magnétique Biologique et Médicale, Faculté de Médecine de Marseille, Université de la Méditerranée, Marseille, France.
| | | | | | | |
Collapse
|
21
|
Bonny JM, Mailly P, Renou JP, Orsal D, Benmoussa A, Stettler O. Analysis of laminar activity in normal and injured rat spinal cord by manganese enhanced MRI. Neuroimage 2008; 40:1542-51. [PMID: 18339560 DOI: 10.1016/j.neuroimage.2008.01.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 01/25/2008] [Accepted: 01/25/2008] [Indexed: 11/16/2022] Open
Abstract
The present study provides an account of a sensitive and rapid experimental approach for MRI visualization and analysis of spinal cord (SC) laminar activity in normal and injured animals. This approach is based upon neuronal activity-dependant manganese (Mn) uptake after focal SC injection of MnCl(2), and subsequent ex-vivo magnetic resonance imaging (MRI) of activated SC pathways. The method was designed as an alternative to time-intensive histochemical and behavioral approaches typically used for analysis of spinal cord injury (SCI) and our results provide both anatomical and functional insights. We show that ex vivo imaging can determine layer-specific activity over an extended region of the rat SC. In addition, we demonstrate that the Mn concentration profile along the SC axis accurately reflects the type of SC injury. The approach is flexible since MRI analysis can be done immediately after animal sacrifice, or alternatively several days later, without a loss of sensitivity. Moreover, the integrity and functional state of SC circuitry can be analyzed in less than 1 h whereas several days and weeks are necessary to perform classical histochemical and behavioral analysis. Thus our method can be used for precise assessment of the extent of dysfunction or change in SC disorders and may facilitate the screening of molecules with therapeutic potential after SC injury.
Collapse
|
22
|
Callot V, Duhamel G, Cozzone PJ. In vivo mouse spinal cord imaging using echo-planar imaging at 11.75 T. ACTA ACUST UNITED AC 2007; 20:169-73. [PMID: 17661098 PMCID: PMC4271416 DOI: 10.1007/s10334-007-0079-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 05/31/2007] [Accepted: 06/29/2007] [Indexed: 12/27/2022]
Abstract
Object To evaluate the feasibility of mouse spinal cord MR imaging using echo-planar imaging (EPI). Materials and methods Optimized multi-shot spin-echo-EPI sequences were compared to conventional spin-echo (c-SE) at 11.75 T and used for high-spatially resolved acquisitions and relaxation-time measurements. Results Good quality images were obtained, with clear delineation of gray and white matter. Acquisition-time gain factor was up to 6 (vs. c-SE) and resolution up to 74 × 94 μm2 was achieved. T1 and T2 relaxation times were reliably measured. Conclusion High-temporally and spatially resolved mouse spinal cord EPI imaging is feasible. This technique should greatly benefit to long acquisition-time experiments (diffusion imaging) and imaging of rapidly-evolving pathologies.
Collapse
Affiliation(s)
- Virginie Callot
- Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR CNRS, Faculté de Médecine de Marseille, Université de la Méditerranée, 27 Bd Jean Moulin, 13385, Marseille Cedex 5, France.
| | | | | |
Collapse
|
23
|
Levene HB, Zhang M, Erb CJ, Jallo JI, Loftus CM, Tuma RF. Method to perform IV injections on mice using the facial vein. J Neurosci Methods 2007; 164:304-7. [PMID: 17574682 DOI: 10.1016/j.jneumeth.2007.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2007] [Accepted: 05/02/2007] [Indexed: 11/21/2022]
Abstract
A novel technique for gaining IV access in a mouse model is presented. Using a cut-down approach, the facial vein is identified through an incision from anterior to the external auditory meatus to posterior to the lateral ispilateral canthus. A small gage needle (30gauge) may be inserted to inject medications. A high success rate (93%) as determined by direct visualization is achieved. The technique would prove especially useful for animals slated for kinematic testing as the incision does not interfere with the animal's ventral surface.
Collapse
Affiliation(s)
- H B Levene
- Department of Neurosurgery, Temple University School of Medicine, United States
| | | | | | | | | | | |
Collapse
|
24
|
Mac Donald CL, Dikranian K, Song SK, Bayly PV, Holtzman DM, Brody DL. Detection of traumatic axonal injury with diffusion tensor imaging in a mouse model of traumatic brain injury. Exp Neurol 2007; 205:116-31. [PMID: 17368446 PMCID: PMC1995439 DOI: 10.1016/j.expneurol.2007.01.035] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 01/22/2007] [Accepted: 01/23/2007] [Indexed: 12/31/2022]
Abstract
Traumatic axonal injury (TAI) is thought to be a major contributor to cognitive dysfunction following traumatic brain injury (TBI), however TAI is difficult to diagnose or characterize non-invasively. Diffusion tensor imaging (DTI) has shown promise in detecting TAI, but direct comparison to histologically-confirmed axonal injury has not been performed. In the current study, mice were imaged with DTI, subjected to a moderate cortical controlled impact injury, and re-imaged 4-6 h and 24 h post-injury. Axonal injury was detected by amyloid beta precursor protein (APP) and neurofilament immunohistochemistry in pericontusional white matter tracts. The severity of axonal injury was quantified using stereological methods from APP stained histological sections. Two DTI parameters--axial diffusivity and relative anisotropy--were significantly reduced in the injured, pericontusional corpus callosum and external capsule, while no significant changes were seen with conventional MRI in these regions. The contusion was easily detectable on all MRI sequences. Significant correlations were found between changes in relative anisotropy and the density of APP stained axons across mice and across subregions spanning the spatial gradient of injury. The predictive value of DTI was tested using a region with DTI changes (hippocampal commissure) and a region without DTI changes (anterior commissure). Consistent with DTI predictions, there was histological detection of axonal injury in the hippocampal commissure and none in the anterior commissure. These results demonstrate that DTI is able to detect axonal injury, and support the hypothesis that DTI may be more sensitive than conventional imaging methods for this purpose.
Collapse
Affiliation(s)
- C L Mac Donald
- Department of Biomedical Engineering, Washington University, One Brookings Drive, Campus Box 1097, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|