1
|
Sberna S, Filipuzzi M, Bianchi N, Croci O, Fardella F, Soriani C, Rohban S, Carnevali S, Albertini AA, Crosetto N, Rodighiero S, Chiesa A, Curti L, Campaner S. Senataxin prevents replicative stress induced by the Myc oncogene. Cell Death Dis 2025; 16:187. [PMID: 40108134 PMCID: PMC11923212 DOI: 10.1038/s41419-025-07485-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/14/2025] [Accepted: 02/26/2025] [Indexed: 03/22/2025]
Abstract
Replicative stress (RS) is emerging as a promising therapeutic target in oncology, yet full exploitation of its potential requires a detailed understanding of the mechanisms and genes involved. Here, we investigated the RNA helicase Senataxin (SETX), an enzyme that resolves RNA-DNA hybrids and R-loops, to address its role in preventing RS by oncogenic Myc. Upon Myc activation, silencing of SETX led to selective engagement of the DNA damage response (DDR) and robust cytotoxicity. Pharmacological dissection of the upstream kinases regulating the DDR uncovered a protective role of the ATR pathway, that once inhibited, boosted SETX driven-DDR. While SETX loss did not lead to a genome-wide increase of R-loops, mechanistic analyses revealed enhanced R-loops localized at DDR-foci and newly replicated genomic loci, compatible with a selective role of SETX in resolving RNA-DNA hybrids to alleviate Myc-induced RS. Genome-wide mapping of DNA double-strand breaks confirmed that SETX silencing exacerbated DNA damage at transcription-replication conflict (TRC) regions at early replicated sites. We propose that SETX prevents Myc-induced TRCs by resolving transcription-associated R-loops that encounter the replisome. The identification of SETX as a genetic liability of oncogenic Myc opens up new therapeutic options against aggressive Myc-driven tumors.
Collapse
Affiliation(s)
- Silvia Sberna
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Marco Filipuzzi
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Nicola Bianchi
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Ottavio Croci
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Federica Fardella
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Chiara Soriani
- Imaging Unit, Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Sara Rohban
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Sara Carnevali
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | | | - Nicola Crosetto
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, SE, 17165, Sweden
- Science for Life Laboratory, Tomtebodavägen 23A, Solna, SE, 17165, Sweden
| | - Simona Rodighiero
- Imaging Unit, Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Arianna Chiesa
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Laura Curti
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Stefano Campaner
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy.
- Department of Molecular Medicine, University of Padua, Padua, Italy.
| |
Collapse
|
2
|
Kannan A, Gangadharan Leela S, Branzei D, Gangwani L. Role of senataxin in R-loop-mediated neurodegeneration. Brain Commun 2024; 6:fcae239. [PMID: 39070547 PMCID: PMC11277865 DOI: 10.1093/braincomms/fcae239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/14/2024] [Accepted: 07/13/2024] [Indexed: 07/30/2024] Open
Abstract
Senataxin is an RNA:DNA helicase that plays an important role in the resolution of RNA:DNA hybrids (R-loops) formed during transcription. R-loops are involved in the regulation of biological processes such as immunoglobulin class switching, gene expression and DNA repair. Excessive accumulation of R-loops results in DNA damage and loss of genomic integrity. Senataxin is critical for maintaining optimal levels of R-loops to prevent DNA damage and acts as a genome guardian. Within the nucleus, senataxin interacts with various RNA processing factors and DNA damage response and repair proteins. Senataxin interactors include survival motor neuron and zinc finger protein 1, with whom it co-localizes in sub-nuclear bodies. Despite its ubiquitous expression, mutations in senataxin specifically affect neurons and result in distinct neurodegenerative diseases such as amyotrophic lateral sclerosis type 4 and ataxia with oculomotor apraxia type 2, which are attributed to the gain-of-function and the loss-of-function mutations in senataxin, respectively. In addition, low levels of senataxin (loss-of-function) in spinal muscular atrophy result in the accumulation of R-loops causing DNA damage and motor neuron degeneration. Senataxin may play multiple functions in diverse cellular processes; however, its emerging role in R-loop resolution and maintenance of genomic integrity is gaining attention in the field of neurodegenerative diseases. In this review, we highlight the role of senataxin in R-loop resolution and its potential as a therapeutic target to treat neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Shyni Gangadharan Leela
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Dana Branzei
- The AIRC Institute of Molecular Oncology Foundation, IFOM ETS, Milan 20139, Italy
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Pavia 27100, Italy
| | - Laxman Gangwani
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
3
|
Wen X, Xu H, Woolley PR, Conway OM, Yao J, Matouschek A, Lambowitz AM, Paull TT. Senataxin deficiency disrupts proteostasis through nucleolar ncRNA-driven protein aggregation. J Cell Biol 2024; 223:e202309036. [PMID: 38717338 PMCID: PMC11080644 DOI: 10.1083/jcb.202309036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/19/2024] [Accepted: 03/13/2024] [Indexed: 05/12/2024] Open
Abstract
Senataxin is an evolutionarily conserved RNA-DNA helicase involved in DNA repair and transcription termination that is associated with human neurodegenerative disorders. Here, we investigated whether Senataxin loss affects protein homeostasis based on previous work showing R-loop-driven accumulation of DNA damage and protein aggregates in human cells. We find that Senataxin loss results in the accumulation of insoluble proteins, including many factors known to be prone to aggregation in neurodegenerative disorders. These aggregates are located primarily in the nucleolus and are promoted by upregulation of non-coding RNAs expressed from the intergenic spacer region of ribosomal DNA. We also map sites of R-loop accumulation in human cells lacking Senataxin and find higher RNA-DNA hybrids within the ribosomal DNA, peri-centromeric regions, and other intergenic sites but not at annotated protein-coding genes. These findings indicate that Senataxin loss affects the solubility of the proteome through the regulation of transcription-dependent lesions in the nucleus and the nucleolus.
Collapse
Affiliation(s)
- Xuemei Wen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Hengyi Xu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Phillip R. Woolley
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Olivia M. Conway
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jun Yao
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Andreas Matouschek
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Alan M. Lambowitz
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Tanya T. Paull
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
4
|
Giannini M, Porrua O. Senataxin: A key actor in RNA metabolism, genome integrity and neurodegeneration. Biochimie 2024; 217:10-19. [PMID: 37558082 DOI: 10.1016/j.biochi.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
The RNA/DNA helicase senataxin (SETX) has been involved in multiple crucial processes related to genome expression and integrity such us transcription termination, the regulation of transcription-replication conflicts and the resolution of R-loops. SETX has been the focus of numerous studies since the discovery that mutations in its coding gene are the root cause of two different neurodegenerative diseases: Ataxia with Oculomotor Apraxia type 2 (AOA2) and a juvenile form of Amyotrophic Lateral Sclerosis (ALS4). A plethora of cellular phenotypes have been described as the result of SETX deficiency, yet the precise molecular function of SETX as well as the molecular pathways leading from SETX mutations to AOA2 and ALS4 pathologies have remained unclear. However, recent data have shed light onto the biochemical activities and biological roles of SETX, thus providing new clues to understand the molecular consequences of SETX mutation. In this review we summarize near two decades of scientific effort to elucidate SETX function, we discuss strengths and limitations of the approaches and models used thus far to investigate SETX-associated diseases and suggest new possible research avenues for the study of AOA2 and ALS4 pathogenesis.
Collapse
Affiliation(s)
- Marta Giannini
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Odil Porrua
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
5
|
Dhavale RK, Surana KR, Ahire ED, Sonawane VN, Mahajan SK, Patil DM, Sonawane DD, Keservani RK. Ataxia and motor neuron disease. A REVIEW ON DIVERSE NEUROLOGICAL DISORDERS 2024:249-259. [DOI: 10.1016/b978-0-323-95735-9.00044-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Kanduc D. Molecular Mimicry between Meningococcal B Factor H-Binding Protein and Human Proteins. Glob Med Genet 2023; 10:311-314. [PMID: 38025196 PMCID: PMC10653992 DOI: 10.1055/s-0043-1776985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
This study calls attention on molecular mimicry and the consequent autoimmune cross reactivity as the molecular mechanism that can cause adverse events following meningococcal B vaccination and warns against active immunizations based on entire antigen.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| |
Collapse
|
7
|
Bennett CL, Dastidar S, Arnold FJ, McKinstry SU, Stockford C, Freibaum BD, Sopher BL, Wu M, Seidner G, Joiner W, Taylor JP, West RJH, La Spada AR. Senataxin helicase, the causal gene defect in ALS4, is a significant modifier of C9orf72 ALS G4C2 and arginine-containing dipeptide repeat toxicity. Acta Neuropathol Commun 2023; 11:164. [PMID: 37845749 PMCID: PMC10580588 DOI: 10.1186/s40478-023-01665-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023] Open
Abstract
Identifying genetic modifiers of familial amyotrophic lateral sclerosis (ALS) may reveal targets for therapeutic modulation with potential application to sporadic ALS. GGGGCC (G4C2) repeat expansions in the C9orf72 gene underlie the most common form of familial ALS, and generate toxic arginine-containing dipeptide repeats (DPRs), which interfere with membraneless organelles, such as the nucleolus. Here we considered senataxin (SETX), the genetic cause of ALS4, as a modifier of C9orf72 ALS, because SETX is a nuclear helicase that may regulate RNA-protein interactions involved in ALS dysfunction. After documenting that decreased SETX expression enhances arginine-containing DPR toxicity and C9orf72 repeat expansion toxicity in HEK293 cells and primary neurons, we generated SETX fly lines and evaluated the effect of SETX in flies expressing either (G4C2)58 repeats or glycine-arginine-50 [GR(50)] DPRs. We observed dramatic suppression of disease phenotypes in (G4C2)58 and GR(50) Drosophila models, and detected a striking relocalization of GR(50) out of the nucleolus in flies co-expressing SETX. Next-generation GR(1000) fly models, that show age-related motor deficits in climbing and movement assays, were similarly rescued with SETX co-expression. We noted that the physical interaction between SETX and arginine-containing DPRs is partially RNA-dependent. Finally, we directly assessed the nucleolus in cells expressing GR-DPRs, confirmed reduced mobility of proteins trafficking to the nucleolus upon GR-DPR expression, and found that SETX dosage modulated nucleolus liquidity in GR-DPR-expressing cells and motor neurons. These findings reveal a hitherto unknown connection between SETX function and cellular processes contributing to neuron demise in the most common form of familial ALS.
Collapse
Affiliation(s)
- Craig L Bennett
- Departments of Pathology, Laboratory Medicine, Neurology, and Biological Chemistry, UCI Center for Neurotherapeutics, University of California Irvine School of Medicine, Irvine, CA, 92697, USA
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Somasish Dastidar
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
- Center for Molecular Neurosciences, Kasturba Medical College, Manipal, 576104, India
| | - Frederick J Arnold
- Departments of Pathology, Laboratory Medicine, Neurology, and Biological Chemistry, UCI Center for Neurotherapeutics, University of California Irvine School of Medicine, Irvine, CA, 92697, USA
| | - Spencer U McKinstry
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Cameron Stockford
- Departments of Pathology, Laboratory Medicine, Neurology, and Biological Chemistry, UCI Center for Neurotherapeutics, University of California Irvine School of Medicine, Irvine, CA, 92697, USA
| | - Brian D Freibaum
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Bryce L Sopher
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA, 98195, USA
| | - Meilin Wu
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Glen Seidner
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - William Joiner
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA, 98195, USA
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Ryan J H West
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK.
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK.
| | - Albert R La Spada
- Departments of Pathology, Laboratory Medicine, Neurology, and Biological Chemistry, UCI Center for Neurotherapeutics, University of California Irvine School of Medicine, Irvine, CA, 92697, USA.
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Neurobiology and Behavior, University of California Irvine School of Biosciences, Irvine, CA, 92697, USA.
- UCI Center for Neurotherapeutics, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
8
|
Bohnsack KE, Yi S, Venus S, Jankowsky E, Bohnsack MT. Cellular functions of eukaryotic RNA helicases and their links to human diseases. Nat Rev Mol Cell Biol 2023; 24:749-769. [PMID: 37474727 DOI: 10.1038/s41580-023-00628-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/22/2023]
Abstract
RNA helicases are highly conserved proteins that use nucleoside triphosphates to bind or remodel RNA, RNA-protein complexes or both. RNA helicases are classified into the DEAD-box, DEAH/RHA, Ski2-like, Upf1-like and RIG-I families, and are the largest class of enzymes active in eukaryotic RNA metabolism - virtually all aspects of gene expression and its regulation involve RNA helicases. Mutation and dysregulation of these enzymes have been linked to a multitude of diseases, including cancer and neurological disorders. In this Review, we discuss the regulation and functional mechanisms of RNA helicases and their roles in eukaryotic RNA metabolism, including in transcription regulation, pre-mRNA splicing, ribosome assembly, translation and RNA decay. We highlight intriguing models that link helicase structure, mechanisms of function (such as local strand unwinding, translocation, winching, RNA clamping and displacing RNA-binding proteins) and biological roles, including emerging connections between RNA helicases and cellular condensates formed through liquid-liquid phase separation. We also discuss associations of RNA helicases with human diseases and recent efforts towards the design of small-molecule inhibitors of these pivotal regulators of eukaryotic gene expression.
Collapse
Affiliation(s)
- Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany.
| | - Soon Yi
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Sarah Venus
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Eckhard Jankowsky
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Moderna, Cambridge, MA, USA.
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany.
- Göttingen Centre for Molecular Biosciences, University of Göttingen, Göttingen, Germany.
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
9
|
Bagyinszky E, Hulme J, An SSA. Studies of Genetic and Proteomic Risk Factors of Amyotrophic Lateral Sclerosis Inspire Biomarker Development and Gene Therapy. Cells 2023; 12:1948. [PMID: 37566027 PMCID: PMC10417729 DOI: 10.3390/cells12151948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease affecting the upper and lower motor neurons, leading to muscle weakness, motor impairments, disabilities and death. Approximately 5-10% of ALS cases are associated with positive family history (familial ALS or fALS), whilst the remainder are sporadic (sporadic ALS, sALS). At least 50 genes have been identified as causative or risk factors for ALS. Established pathogenic variants include superoxide dismutase type 1 (SOD1), chromosome 9 open reading frame 72 (c9orf72), TAR DNA Binding Protein (TARDBP), and Fused In Sarcoma (FUS); additional ALS-related genes including Charged Multivesicular Body Protein 2B (CHMP2B), Senataxin (SETX), Sequestosome 1 (SQSTM1), TANK Binding Kinase 1 (TBK1) and NIMA Related Kinase 1 (NEK1), have been identified. Mutations in these genes could impair different mechanisms, including vesicle transport, autophagy, and cytoskeletal or mitochondrial functions. So far, there is no effective therapy against ALS. Thus, early diagnosis and disease risk predictions remain one of the best options against ALS symptomologies. Proteomic biomarkers, microRNAs, and extracellular vehicles (EVs) serve as promising tools for disease diagnosis or progression assessment. These markers are relatively easy to obtain from blood or cerebrospinal fluids and can be used to identify potential genetic causative and risk factors even in the preclinical stage before symptoms appear. In addition, antisense oligonucleotides and RNA gene therapies have successfully been employed against other diseases, such as childhood-onset spinal muscular atrophy (SMA), which could also give hope to ALS patients. Therefore, an effective gene and biomarker panel should be generated for potentially "at risk" individuals to provide timely interventions and better treatment outcomes for ALS patients as soon as possible.
Collapse
Affiliation(s)
- Eva Bagyinszky
- Graduate School of Environment Department of Industrial and Environmental Engineering, Gachon University, Seongnam-si 13120, Republic of Korea;
| | - John Hulme
- Graduate School of Environment Department of Industrial and Environmental Engineering, Gachon University, Seongnam-si 13120, Republic of Korea;
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon University, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
10
|
Gatti V, De Domenico S, Melino G, Peschiaroli A. Senataxin and R-loops homeostasis: multifaced implications in carcinogenesis. Cell Death Discov 2023; 9:145. [PMID: 37147318 PMCID: PMC10163015 DOI: 10.1038/s41420-023-01441-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/06/2023] [Accepted: 04/20/2023] [Indexed: 05/07/2023] Open
Abstract
R-loops are inherent byproducts of transcription consisting of an RNA:DNA hybrid and a displaced single-stranded DNA. These structures are of key importance in controlling numerous physiological processes and their homeostasis is tightly controlled by the activities of several enzymes deputed to process R-loops and prevent their unproper accumulation. Senataxin (SETX) is an RNA/DNA helicase which catalyzes the unwinding of RNA:DNA hybrid portion of the R-loops, promoting thus their resolution. The key importance of SETX in R-loops homeostasis and its relevance with pathophysiological events is highlighted by the evidence that gain or loss of function SETX mutations underlie the pathogenesis of two distinct neurological disorders. Here, we aim to describe the potential impact of SETX on tumor onset and progression, trying to emphasize how dysregulation of this enzyme observed in human tumors might impact tumorigenesis. To this aim, we will describe the functional relevance of SETX in regulating gene expression, genome integrity, and inflammation response and discuss how cancer-associated SETX mutations might affect these pathways, contributing thus to tumor development.
Collapse
Affiliation(s)
- Veronica Gatti
- National Research Council of Italy, Institute of Translational Pharmacology, Rome, Italy
| | - Sara De Domenico
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Angelo Peschiaroli
- National Research Council of Italy, Institute of Translational Pharmacology, Rome, Italy.
| |
Collapse
|
11
|
Sensory Involvement in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2022; 23:ijms232415521. [PMID: 36555161 PMCID: PMC9779879 DOI: 10.3390/ijms232415521] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/19/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Although amyotrophic lateral sclerosis (ALS) is pre-eminently a motor disease, the existence of non-motor manifestations, including sensory involvement, has been described in the last few years. Although from a clinical perspective, sensory symptoms are overshadowed by their motor manifestations, this does not mean that their pathological significance is not relevant. In this review, we have made an extensive description of the involvement of sensory and autonomic systems described to date in ALS, from clinical, neurophysiological, neuroimaging, neuropathological, functional, and molecular perspectives.
Collapse
|
12
|
Konopka A, Atkin JD. DNA Damage, Defective DNA Repair, and Neurodegeneration in Amyotrophic Lateral Sclerosis. Front Aging Neurosci 2022; 14:786420. [PMID: 35572138 PMCID: PMC9093740 DOI: 10.3389/fnagi.2022.786420] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/07/2022] [Indexed: 12/16/2022] Open
Abstract
DNA is under constant attack from both endogenous and exogenous sources, and when damaged, specific cellular signalling pathways respond, collectively termed the “DNA damage response.” Efficient DNA repair processes are essential for cellular viability, although they decline significantly during aging. Not surprisingly, DNA damage and defective DNA repair are now increasingly implicated in age-related neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). ALS affects both upper and lower motor neurons in the brain, brainstem and spinal cord, leading to muscle wasting due to denervation. DNA damage is increasingly implicated in the pathophysiology of ALS, and interestingly, the number of DNA damage or repair proteins linked to ALS is steadily growing. This includes TAR DNA binding protein 43 (TDP-43), a DNA/RNA binding protein that is present in a pathological form in almost all (97%) cases of ALS. Hence TDP-43 pathology is central to neurodegeneration in this condition. Fused in Sarcoma (FUS) bears structural and functional similarities to TDP-43 and it also functions in DNA repair. Chromosome 9 open reading frame 72 (C9orf72) is also fundamental to ALS because mutations in C9orf72 are the most frequent genetic cause of both ALS and related condition frontotemporal dementia, in European and North American populations. Genetic variants encoding other proteins involved in the DNA damage response (DDR) have also been described in ALS, including FUS, SOD1, SETX, VCP, CCNF, and NEK1. Here we review recent evidence highlighting DNA damage and defective DNA repair as an important mechanism linked to neurodegeneration in ALS.
Collapse
Affiliation(s)
- Anna Konopka
- Centre for Motor Neuron Disease Research, Faculty of Medicine, Macquarie Medical School, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- *Correspondence: Anna Konopka,
| | - Julie D. Atkin
- Centre for Motor Neuron Disease Research, Faculty of Medicine, Macquarie Medical School, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- Julie D. Atkin,
| |
Collapse
|
13
|
Molecular Characterization of Portuguese Patients with Hereditary Cerebellar Ataxia. Cells 2022; 11:cells11060981. [PMID: 35326432 PMCID: PMC8946949 DOI: 10.3390/cells11060981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 01/02/2023] Open
Abstract
Hereditary cerebellar ataxia (HCA) comprises a clinical and genetic heterogeneous group of neurodegenerative disorders characterized by incoordination of movement, speech, and unsteady gait. In this study, we performed whole-exome sequencing (WES) in 19 families with HCA and presumed autosomal recessive (AR) inheritance, to identify the causal genes. A phenotypic classification was performed, considering the main clinical syndromes: spastic ataxia, ataxia and neuropathy, ataxia and oculomotor apraxia (AOA), ataxia and dystonia, and ataxia with cognitive impairment. The most frequent causal genes were associated with spastic ataxia (SACS and KIF1C) and with ataxia and neuropathy or AOA (PNKP). We also identified three families with autosomal dominant (AD) forms arising from de novo variants in KIF1A, CACNA1A, or ATP1A3, reinforcing the importance of differential diagnosis (AR vs. AD forms) in families with only one affected member. Moreover, 10 novel causal-variants were identified, and the detrimental effect of two splice-site variants confirmed through functional assays. Finally, by reviewing the molecular mechanisms, we speculated that regulation of cytoskeleton function might be impaired in spastic ataxia, whereas DNA repair is clearly associated with AOA. In conclusion, our study provided a genetic diagnosis for HCA families and proposed common molecular pathways underlying cerebellar neurodegeneration.
Collapse
|
14
|
Jurga M, Abugable AA, Goldman ASH, El-Khamisy SF. USP11 controls R-loops by regulating senataxin proteostasis. Nat Commun 2021; 12:5156. [PMID: 34526504 PMCID: PMC8443744 DOI: 10.1038/s41467-021-25459-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
R-loops are by-products of transcription that must be tightly regulated to maintain genomic stability and gene expression. Here, we describe a mechanism for the regulation of the R-loop-specific helicase, senataxin (SETX), and identify the ubiquitin specific peptidase 11 (USP11) as an R-loop regulator. USP11 de-ubiquitinates SETX and its depletion increases SETX K48-ubiquitination and protein turnover. Loss of USP11 decreases SETX steady-state levels and reduces R-loop dissolution. Ageing of USP11 knockout cells restores SETX levels via compensatory transcriptional downregulation of the E3 ubiquitin ligase, KEAP1. Loss of USP11 reduces SETX enrichment at KEAP1 promoter, leading to R-loop accumulation, enrichment of the endonuclease XPF and formation of double-strand breaks. Overexpression of KEAP1 increases SETX K48-ubiquitination, promotes its degradation and R-loop accumulation. These data define a ubiquitination-dependent mechanism for SETX regulation, which is controlled by the opposing activities of USP11 and KEAP1 with broad applications for cancer and neurological disease.
Collapse
Affiliation(s)
- Mateusz Jurga
- School of Bioscience, Department of Molecular Biology and Biotechnology, The Healthy Lifespan Institute and the Institute of Neuroscience, University of Sheffield, Sheffield, UK
- The Institute of Cancer Therapeutics, University of Bradford, Bradford, UK
| | - Arwa A Abugable
- School of Bioscience, Department of Molecular Biology and Biotechnology, The Healthy Lifespan Institute and the Institute of Neuroscience, University of Sheffield, Sheffield, UK
| | | | - Sherif F El-Khamisy
- School of Bioscience, Department of Molecular Biology and Biotechnology, The Healthy Lifespan Institute and the Institute of Neuroscience, University of Sheffield, Sheffield, UK.
- The Institute of Cancer Therapeutics, University of Bradford, Bradford, UK.
| |
Collapse
|
15
|
Bennett CL, La Spada AR. SUMOylated Senataxin functions in genome stability, RNA degradation, and stress granule disassembly, and is linked with inherited ataxia and motor neuron disease. Mol Genet Genomic Med 2021; 9:e1745. [PMID: 34263556 PMCID: PMC8683630 DOI: 10.1002/mgg3.1745] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/16/2021] [Accepted: 07/01/2021] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Senataxin (SETX) is a DNA/RNA helicase critical for neuron survival. SETX mutations underlie two inherited neurodegenerative diseases: Ataxia with Oculomotor Apraxia type 2 (AOA2) and Amyotrophic Lateral Sclerosis type 4 (ALS4). METHODS This review examines SETX key cellular processes and we hypothesize that SETX requires SUMO posttranslational modification to function properly. RESULTS SETX is localized to distinct foci during S-phase of the cell cycle, and these foci represent sites of DNA polymerase/RNA polymerase II (RNAP) collision, as they co-localize with DNA damage markers 53BP1 and H2AX. At such sites, SETX directs incomplete RNA transcripts to the nuclear exosome for degradation via interaction with exosome component 9 (Exosc9), a key component of the nuclear exosome. These processes require SETX SUMOylation. SETX was also recently localized within stress granules (SGs), and found to regulate SG disassembly, a process that similarly requires SUMOylation. CONCLUSION SETX undergoes SUMO modification to function at S-phase foci in cycling cells to facilitate RNA degradation. SETX may regulate similar processes in non-dividing neurons at sites of RNAP II bidirectional self-collision. Finally, SUMOylation of SETX appears to be required for SG disassembly. This SETX function may be crucial for neuron survival, as altered SG dynamics are linked to ALS disease pathogenesis. In addition, AOA2 point mutations have been shown to block SETX SUMOylation. Such mutations induce an ataxia phenotype indistinguishable from those with SETX null mutation, underscoring the importance of this modification.
Collapse
Affiliation(s)
| | - Albert R La Spada
- Departments of Pathology & Laboratory Medicine, Neurology, and Biological Chemistry, and UCI Institute for Neurotherapeutics, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
16
|
Volkening K, Farhan SMK, Kao J, Leystra-Lantz C, Ang LC, McIntyre A, Wang J, Hegele RA, Strong MJ. Evidence of synergism among three genetic variants in a patient with LMNA-related lipodystrophy and amyotrophic lateral sclerosis leading to a remarkable nuclear phenotype. Mol Cell Biochem 2021; 476:2633-2650. [PMID: 33661429 PMCID: PMC8192393 DOI: 10.1007/s11010-021-04103-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 02/06/2021] [Indexed: 11/25/2022]
Abstract
Neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), can be clinically heterogeneous which may be explained by the co-inheritance of multiple genetic variants that modify the clinical course. In this study we examine variants in three genes in a family with one individual presenting with ALS and lipodystrophy. Sequencing revealed a p.Gly602Ser variant in LMNA, and two additional variants, one each in SETX (g.intron10-13delCTT) and FUS (p.Gly167_Gly168del). These latter genes have been linked to ALS. All family members were genotyped and each variant, and each combination of variants detected, were functionally evaluated in vitro regarding effects on cell survival, expression patterns and cellular phenotype. Muscle biopsy retrieved from the individual with ALS showed leakage of chromatin from the nucleus, a phenotype that was recapitulated in vitro with expression of all three variants simultaneously. Individually expressed variants gave cellular phenotypes there were unremarkable. Interestingly the FUS variant appears to be protective against the effects of the SETX and the LMNA variants on cell viability and may indicate loss of interaction of FUS with SETX and/or R-loops. We conclude that these findings support genetic modifications as an explanation of the clinical heterogeneity observed in human disease.
Collapse
Affiliation(s)
- Kathryn Volkening
- Molecular Medicine, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Sali M K Farhan
- Analytic and Translational Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Jessica Kao
- Molecular Medicine, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Cheryl Leystra-Lantz
- Molecular Medicine, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Lee Cyn Ang
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Pathology and Laboratory Medicine, London Health Sciences Centre-University Hospital, London, ON, Canada
| | - Adam McIntyre
- Blackburn Cardiovascular Genetics Lab, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Jian Wang
- Blackburn Cardiovascular Genetics Lab, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Robert A Hegele
- Department of Pathology and Laboratory Medicine, London Health Sciences Centre-University Hospital, London, ON, Canada
- Blackburn Cardiovascular Genetics Lab, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Biochemistry, Western University, London, ON, Canada
| | - Michael J Strong
- Molecular Medicine, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| |
Collapse
|
17
|
Lei L, Chen H, Lu Y, Zhu W, Ouyang Y, Duo J, Chen Z, Da Y. Unusual electrophysiological findings in a Chinese ALS 4 family with SETX-L389S mutation: a three-year follow-up. J Neurol 2020; 268:1050-1058. [PMID: 32997296 DOI: 10.1007/s00415-020-10246-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis type 4 (ALS4) is a familial form of ALS caused by mutations in the SETX gene. To date, there are seven unrelated ALS4 families with four missense mutations (L389S, T31I, R2136H, and M386T) in SETX. ALS4 is characterized by early onset, distal muscle weakness and atrophy, pyramidal signs, and the absence of sensory deficits. Motor conduction studies often present normality or reduced amplitudes of compound muscle action potential (CMAP). The conduction blocks (CBs) are rare and only observed in one male of an Italian ALS4 family. Our study showed that seven symptomatic patients presented the classical ALS4 phenotype with two asymptomatic females in a Chinese family spanning three generations. Sequencing analysis revealed a heterozygous c.1166T > C/p.L389S mutation in SETX that co-segregated with disease phenotype in the family. The same mutation has been identified previously in three ALS4 families from the United States and Italy, respectively. Specifically, three young males presented multiple CBs and abnormal temporal dispersions (TD) in the median, ulnar and tibial nerves over the three-year follow-up period. Moreover, for the first time, we found that senataxin was also expressed in the myelin sheath of peripheral nerves besides axons. The study indicates that CBs and abnormal TD are the characteristics in the ALS4 family, providing pivotal familial evidence of CBs and TD of motor nerves in ALS4. The unusual electrophysiological features may be associated with the expression of senataxin in peripheral nerves.
Collapse
Affiliation(s)
- Lin Lei
- Department of NEUROLOGY, Xuanwu Hospital, Capital Medical University, Changchun Street, Beijing, 100053, China
| | - Hai Chen
- Department of NEUROLOGY, Xuanwu Hospital, Capital Medical University, Changchun Street, Beijing, 100053, China
| | - Yan Lu
- Department of NEUROLOGY, Xuanwu Hospital, Capital Medical University, Changchun Street, Beijing, 100053, China
| | - Wenjia Zhu
- Department of NEUROLOGY, Xuanwu Hospital, Capital Medical University, Changchun Street, Beijing, 100053, China
| | - Yasheng Ouyang
- Department of NEUROLOGY, Xuanwu Hospital, Capital Medical University, Changchun Street, Beijing, 100053, China
| | - Jianying Duo
- Department of NEUROLOGY, Xuanwu Hospital, Capital Medical University, Changchun Street, Beijing, 100053, China
| | - Zhiguo Chen
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Cell Therapy Center, National Clinical Research Center for Geriatric Diseases, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China. .,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China. .,Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China.
| | - Yuwei Da
- Department of NEUROLOGY, Xuanwu Hospital, Capital Medical University, Changchun Street, Beijing, 100053, China.
| |
Collapse
|
18
|
Perego MGL, Galli N, Nizzardo M, Govoni A, Taiana M, Bresolin N, Comi GP, Corti S. Current understanding of and emerging treatment options for spinal muscular atrophy with respiratory distress type 1 (SMARD1). Cell Mol Life Sci 2020; 77:3351-3367. [PMID: 32123965 PMCID: PMC11104977 DOI: 10.1007/s00018-020-03492-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 02/08/2020] [Accepted: 02/20/2020] [Indexed: 12/11/2022]
Abstract
Spinal muscular atrophy (SMA) with respiratory distress type 1 (SMARD1) is an autosomal recessive motor neuron disease that is characterized by distal and proximal muscle weakness and diaphragmatic palsy that leads to respiratory distress. Without intervention, infants with the severe form of the disease die before 2 years of age. SMARD1 is caused by mutations in the IGHMBP2 gene that determine a deficiency in the encoded IGHMBP2 protein, which plays a critical role in motor neuron survival because of its functions in mRNA processing and maturation. Although it is rare, SMARD1 is the second most common motor neuron disease of infancy, and currently, treatment is primarily supportive. No effective therapy is available for this devastating disease, although multidisciplinary care has been an essential element of the improved quality of life and life span extension in these patients in recent years. The objectives of this review are to discuss the current understanding of SMARD1 through a summary of the presently known information regarding its clinical presentation and pathogenesis and to discuss emerging therapeutic approaches. Advances in clinical care management have significantly extended the lives of individuals affected by SMARD1 and research into the molecular mechanisms that lead to the disease has identified potential strategies for intervention that target the underlying causes of SMARD1. Gene therapy via gene replacement or gene correction provides the potential for transformative therapies to halt or possibly prevent neurodegenerative disease in SMARD1 patients. The recent approval of the first gene therapy approach for SMA associated with mutations in the SMN1 gene may be a turning point for the application of this strategy for SMARD1 and other genetic neurological diseases.
Collapse
Affiliation(s)
- Martina G L Perego
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Noemi Galli
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Monica Nizzardo
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Alessandra Govoni
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Michela Taiana
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Nereo Bresolin
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Giacomo P Comi
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
- Neuromuscular and Rare Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Stefania Corti
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy.
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy.
| |
Collapse
|
19
|
Bennett CL, Sopher BL, La Spada AR. Tight expression regulation of senataxin, linked to motor neuron disease and ataxia, is required to avert cell-cycle block and nucleolus disassembly. Heliyon 2020; 6:e04165. [PMID: 32577562 PMCID: PMC7301172 DOI: 10.1016/j.heliyon.2020.e04165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/07/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022] Open
Abstract
The Senataxin (SETX) protein exhibits strong sequence conservation with the helicase domain of the yeast protein Sen1p, and recessive SETX mutations cause a severe ataxia, known as Ataxia with Oculomotor Apraxia type 2, while dominant SETX mutations cause Amyotrophic Lateral Sclerosis type 4. SETX is a very low abundance protein, and its expression is tightly regulated, such that large increases in mRNA levels fail to significantly increase protein levels. Despite this, transient transfection in cell culture can boost SETX protein levels on an individual cell basis. Here we found that over-expression of normal SETX, but not enzymatically-dead SETX, is associated with S-phase cell-cycle arrest in HEK293A cells. As SETX interacts with the nuclear exosome to ensure degradation of incomplete RNA transcripts, and SETX localizes to sites of collision between the DNA replication machinery and the RNAP II complex, altered dosage or aberrant function of SETX may impede this process to promote S-phase cell-cycle arrest. Because neurons are enriched for long transcripts with additional antisense regulatory transcription, collisions of RNAP II complexes may occur in such post-mitotic cells, underscoring a role for SETX in maintaining neuron homeostasis.
Collapse
Affiliation(s)
- Craig L Bennett
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Bryce L Sopher
- Department of Neurology, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Albert R La Spada
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA.,Duke Center for Neurodegeneration & Neurotherapeutics, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
20
|
Vydzhak O, Luke B, Schindler N. Non-coding RNAs at the Eukaryotic rDNA Locus: RNA-DNA Hybrids and Beyond. J Mol Biol 2020; 432:4287-4304. [PMID: 32446803 DOI: 10.1016/j.jmb.2020.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022]
Abstract
The human ribosomal DNA (rDNA) locus encodes a variety of long non-coding RNAs (lncRNAs). Among them, the canonical ribosomal RNAs that are the catalytic components of the ribosomes, as well as regulatory lncRNAs including promoter-associated RNAs (pRNA), stress-induced promoter and pre-rRNA antisense RNAs (PAPAS), and different intergenic spacer derived lncRNA species (IGSRNA). In addition, externally encoded lncRNAs are imported into the nucleolus, which orchestrate the complex regulation of the nucleolar state in normal and stress conditions via a plethora of molecular mechanisms. This review focuses on the triplex and R-loop formation aspects of lncRNAs at the rDNA locus in yeast and human cells. We discuss the protein players that regulate R-loops at rDNA and how their misregulation contributes to DNA damage and disease. Furthermore, we speculate how DNA lesions such as rNMPs or 8-oxo-dG might affect RNA-DNA hybrid formation. The transcription of lncRNA from rDNA has been observed in yeast, plants, flies, worms, mouse and human cells. This evolutionary conservation highlights the importance of lncRNAs in rDNA function and maintenance.
Collapse
Affiliation(s)
- Olga Vydzhak
- Institute of Molecular Biology (IMB), Johannes Gutenberg-University Mainz, Ackermannweg 4, 55128 Mainz, Germany
| | - Brian Luke
- Institute of Molecular Biology (IMB), Johannes Gutenberg-University Mainz, Ackermannweg 4, 55128 Mainz, Germany; Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Natalie Schindler
- Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg-University Mainz, 55128 Mainz, Germany.
| |
Collapse
|
21
|
Apicco DJ, Zhang C, Maziuk B, Jiang L, Ballance HI, Boudeau S, Ung C, Li H, Wolozin B. Dysregulation of RNA Splicing in Tauopathies. Cell Rep 2019; 29:4377-4388.e4. [PMID: 31875547 PMCID: PMC6941411 DOI: 10.1016/j.celrep.2019.11.093] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/28/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022] Open
Abstract
Pathological aggregation of RNA binding proteins (RBPs) is associated with dysregulation of RNA splicing in PS19 P301S tau transgenic mice and in Alzheimer's disease brain tissues. The dysregulated splicing particularly affects genes involved in synaptic transmission. The effects of neuroprotective TIA1 reduction on PS19 mice are also examined. TIA1 reduction reduces disease-linked alternative splicing events for the major synaptic mRNA transcripts examined, suggesting that normalization of RBP functions is associated with the neuroprotection. Use of the NetDecoder informatics algorithm identifies key upstream biological targets, including MYC and EGFR, underlying the transcriptional and splicing changes in the protected compared to tauopathy mice. Pharmacological inhibition of MYC and EGFR activity in neuronal cultures tau recapitulates the neuroprotective effects of TIA1 reduction. These results demonstrate that dysfunction of RBPs and RNA splicing processes are major elements of the pathophysiology of tauopathies, as well as potential therapeutic targets for tauopathies.
Collapse
Affiliation(s)
- Daniel J Apicco
- Boston University School of Medicine, Department of Pharmacology and Experimental Therapeutics, Boston, MA, USA
| | | | - Brandon Maziuk
- Boston University School of Medicine, Department of Pharmacology and Experimental Therapeutics, Boston, MA, USA
| | - Lulu Jiang
- Boston University School of Medicine, Department of Pharmacology and Experimental Therapeutics, Boston, MA, USA
| | - Heather I Ballance
- Boston University School of Medicine, Department of Pharmacology and Experimental Therapeutics, Boston, MA, USA
| | - Samantha Boudeau
- Boston University School of Medicine, Department of Pharmacology and Experimental Therapeutics, Boston, MA, USA
| | | | - Hu Li
- Mayo Clinic, Rochester, MN, USA.
| | - Benjamin Wolozin
- Boston University School of Medicine, Department of Pharmacology and Experimental Therapeutics, Boston, MA, USA; Boston University School of Medicine, Department of Neurology, Boston, MA, USA.
| |
Collapse
|
22
|
Hanet A, Räsch F, Weber R, Ruscica V, Fauser M, Raisch T, Kuzuoğlu-Öztürk D, Chang CT, Bhandari D, Igreja C, Wohlbold L. HELZ directly interacts with CCR4-NOT and causes decay of bound mRNAs. Life Sci Alliance 2019; 2:2/5/e201900405. [PMID: 31570513 PMCID: PMC6769256 DOI: 10.26508/lsa.201900405] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/13/2019] [Accepted: 09/13/2019] [Indexed: 12/11/2022] Open
Abstract
The putative UPF1-like SF1 helicase HELZ directly interacts with the CCR4–NOT deadenylase complex to induce translational repression and 5′-to-3′ decay of bound mRNAs. Eukaryotic superfamily (SF) 1 helicases have been implicated in various aspects of RNA metabolism, including transcription, processing, translation, and degradation. Nevertheless, until now, most human SF1 helicases remain poorly understood. Here, we have functionally and biochemically characterized the role of a putative SF1 helicase termed “helicase with zinc-finger,” or HELZ. We discovered that HELZ associates with various mRNA decay factors, including components of the carbon catabolite repressor 4-negative on TATA box (CCR4–NOT) deadenylase complex in human and Drosophila melanogaster cells. The interaction between HELZ and the CCR4–NOT complex is direct and mediated by extended low-complexity regions in the C-terminal part of the protein. We further reveal that HELZ requires the deadenylase complex to mediate translational repression and decapping-dependent mRNA decay. Finally, transcriptome-wide analysis of Helz-null cells suggests that HELZ has a role in the regulation of the expression of genes associated with the development of the nervous system.
Collapse
Affiliation(s)
- Aoife Hanet
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Felix Räsch
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Ramona Weber
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Vincenzo Ruscica
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Maria Fauser
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Tobias Raisch
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany.,Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Duygu Kuzuoğlu-Öztürk
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany.,Helen Diller Family Cancer Research, University of California San Francisco, San Francisco, CA, USA
| | - Chung-Te Chang
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Dipankar Bhandari
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Cátia Igreja
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Lara Wohlbold
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
23
|
Kannan A, Bhatia K, Branzei D, Gangwani L. Combined deficiency of Senataxin and DNA-PKcs causes DNA damage accumulation and neurodegeneration in spinal muscular atrophy. Nucleic Acids Res 2019; 46:8326-8346. [PMID: 30010942 PMCID: PMC6144794 DOI: 10.1093/nar/gky641] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/05/2018] [Indexed: 12/12/2022] Open
Abstract
Chronic low levels of survival motor neuron (SMN) protein cause spinal muscular atrophy (SMA). SMN is ubiquitously expressed, but the mechanisms underlying predominant neuron degeneration in SMA are poorly understood. We report that chronic low levels of SMN cause Senataxin (SETX)-deficiency, which results in increased RNA–DNA hybrids (R-loops) and DNA double-strand breaks (DSBs), and deficiency of DNA-activated protein kinase-catalytic subunit (DNA-PKcs), which impairs DSB repair. Consequently, DNA damage accumulates in patient cells, SMA mice neurons and patient spinal cord tissues. In dividing cells, DSBs are repaired by homologous recombination (HR) and non-homologous end joining (NHEJ) pathways, but neurons predominantly use NHEJ, which relies on DNA-PKcs activity. In SMA dividing cells, HR repairs DSBs and supports cellular proliferation. In SMA neurons, DNA-PKcs-deficiency causes defects in NHEJ-mediated repair leading to DNA damage accumulation and neurodegeneration. Restoration of SMN levels rescues SETX and DNA-PKcs deficiencies and DSB accumulation in SMA neurons and patient cells. Moreover, SETX overexpression in SMA neurons reduces R-loops and DNA damage, and rescues neurodegeneration. Our findings identify combined deficiency of SETX and DNA-PKcs stemming downstream of SMN as an underlying cause of DSBs accumulation, genomic instability and neurodegeneration in SMA and suggest SETX as a potential therapeutic target for SMA.
Collapse
Affiliation(s)
- Annapoorna Kannan
- Center of Emphasis in Neurosciences, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905.,Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905
| | - Kanchan Bhatia
- Center of Emphasis in Neurosciences, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905.,Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905
| | - Dana Branzei
- The FIRC Institute of Molecular Oncology Foundation, IFOM Foundation, Via Adamello 16, Milan 20139, Italy.,Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Via Abbiategrasso 207, Pavia 27100, Italy
| | - Laxman Gangwani
- Center of Emphasis in Neurosciences, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905.,Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905.,Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|
24
|
Senataxin mutations elicit motor neuron degeneration phenotypes and yield TDP-43 mislocalization in ALS4 mice and human patients. Acta Neuropathol 2018; 136:425-443. [PMID: 29725819 DOI: 10.1007/s00401-018-1852-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis type 4 (ALS4) is a rare, early-onset, autosomal dominant form of ALS, characterized by slow disease progression and sparing of respiratory musculature. Dominant, gain-of-function mutations in the senataxin gene (SETX) cause ALS4, but the mechanistic basis for motor neuron toxicity is unknown. SETX is a RNA-binding protein with a highly conserved helicase domain, but does not possess a low-complexity domain, making it unique among ALS-linked disease proteins. We derived ALS4 mouse models by expressing two different senataxin gene mutations (R2136H and L389S) via transgenesis and knock-in gene targeting. Both approaches yielded SETX mutant mice that develop neuromuscular phenotypes and motor neuron degeneration. Neuropathological characterization of SETX mice revealed nuclear clearing of TDP-43, accompanied by TDP-43 cytosolic mislocalization, consistent with the hallmark pathology observed in human ALS patients. Postmortem material from ALS4 patients exhibited TDP-43 mislocalization in spinal cord motor neurons, and motor neurons from SETX ALS4 mice displayed enhanced stress granule formation. Immunostaining analysis for nucleocytoplasmic transport proteins Ran and RanGAP1 uncovered nuclear membrane abnormalities in the motor neurons of SETX ALS4 mice, and nuclear import was delayed in SETX ALS4 cortical neurons, indicative of impaired nucleocytoplasmic trafficking. SETX ALS4 mice thus recapitulated ALS disease phenotypes in association with TDP-43 mislocalization and provided insight into the basis for TDP-43 histopathology, linking SETX dysfunction to common pathways of ALS motor neuron degeneration.
Collapse
|
25
|
Singh P, Saha U, Paira S, Das B. Nuclear mRNA Surveillance Mechanisms: Function and Links to Human Disease. J Mol Biol 2018; 430:1993-2013. [PMID: 29758258 DOI: 10.1016/j.jmb.2018.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/30/2018] [Accepted: 05/07/2018] [Indexed: 01/05/2023]
Abstract
Production of export-competent mRNAs involves transcription and a series of dynamic processing and modification events of pre-messenger RNAs in the nucleus. Mutations in the genes encoding the transcription and mRNP processing machinery and the complexities involved in the biogenesis events lead to the formation of aberrant messages. These faulty transcripts are promptly eliminated by the nuclear RNA exosome and its cofactors to safeguard the cells and organisms from genetic catastrophe. Mutations in the components of the core nuclear exosome and its cofactors lead to the tissue-specific dysfunction of exosomal activities, which are linked to diverse human diseases and disorders. In this article, we examine the structure and function of both the yeast and human RNA exosome complex and its cofactors, discuss the nature of the various altered amino acid residues implicated in these diseases with the speculative mechanisms of the mutation-induced disorders and project the frontier and prospective avenues of the future research in this field.
Collapse
Affiliation(s)
- Pragyan Singh
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Upasana Saha
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Sunirmal Paira
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Biswadip Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India.
| |
Collapse
|
26
|
Bennett CL, La Spada AR. Senataxin, A Novel Helicase at the Interface of RNA Transcriptome Regulation and Neurobiology: From Normal Function to Pathological Roles in Motor Neuron Disease and Cerebellar Degeneration. ADVANCES IN NEUROBIOLOGY 2018; 20:265-281. [DOI: 10.1007/978-3-319-89689-2_10] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
27
|
Choudry TN, Hilton-Jones D, Lennox G, Houlden H. Ataxia with oculomotor apraxia type 2: an evolving axonal neuropathy. Pract Neurol 2017; 18:52-56. [PMID: 29212862 DOI: 10.1136/practneurol-2017-001711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2017] [Indexed: 11/04/2022]
Abstract
A 23-year-old woman had presented initially to a podiatrist complaining of poorly fitting shoes during her adolescence. After extensive neurological review, she was diagnosed with ataxia with oculomotor apraxia type 2. This is a progressive autosomal recessive ataxia associated with cerebellar atrophy, peripheral neuropathy and an elevated serum α-fetoprotein. Within Europe, it is the most frequent autosomal recessive ataxia after Friedreich's ataxia and is due to mutations in the senataxin (SETX) gene. The age of onset is approximately 15 years.The diagnosis of oculomotor apraxia type 2 is often challenging. We provide a framework for assessing a young ataxic patient with or without oculomotor apraxia and review clues that will aid diagnosis. The prognosis, level of disability, cancer and immunosuppression risk all markedly differ between the conditions. Patients and their families need the correct diagnosis for genetic counselling, management and long-term surveillance with appropriate subspecialty services.
Collapse
Affiliation(s)
| | | | - Graham Lennox
- Department of Neurology, John Radcliffe Hospital, Oxford, UK
| | - Henry Houlden
- Reta Lila Weston Laboratories and Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| |
Collapse
|
28
|
Tripolszki K, Török D, Goudenège D, Farkas K, Sulák A, Török N, Engelhardt JI, Klivényi P, Procaccio V, Nagy N, Széll M. High-throughput sequencing revealed a novel SETX mutation in a Hungarian patient with amyotrophic lateral sclerosis. Brain Behav 2017; 7:e00669. [PMID: 28413711 PMCID: PMC5390843 DOI: 10.1002/brb3.669] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/13/2017] [Accepted: 01/28/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the degeneration of the motor neurons. To date, 126 genes have been implicated in ALS. Therefore, the heterogenous genetic background of ALS requires comprehensive genetic investigative approaches. METHODS In this study, DNA from 28 Hungarian ALS patients was subjected to targeted high-throughput sequencing of the coding regions of three Mendelian ALS genes: FUS, SETX, and C9ORF72. RESULTS A novel heterozygous missense mutation (c.791A>G, p.N264S) of the SETX gene was identified in a female patient presenting an atypical ALS phenotype, including adult onset and lower motor neuron impairment. No further mutations were detected in the other Mendelian ALS genes investigated. CONCLUSION Our study contributes to the understanding of the genetic and phenotypic diversity of motor neuron diseases (MNDs). Our results also suggest that the elucidation of the genetic background of MNDs requires a complex approach, including the screening of both Mendelian and non-Mendelian genes.
Collapse
Affiliation(s)
| | - Dóra Török
- Department of Medical GeneticsUniversity of SzegedSzegedHungary
| | - David Goudenège
- Département de Biochimie et GénétiqueIBS‐CHU AngersAngers Cedex 9France
| | - Katalin Farkas
- MTA SZTE Dermatological Research GroupUniversity of SzegedSzegedHungary
| | - Adrienn Sulák
- Department of Medical GeneticsUniversity of SzegedSzegedHungary
| | - Nóra Török
- Department of NeurologyUniversity of SzegedSzegedHungary
| | | | - Péter Klivényi
- Department of NeurologyUniversity of SzegedSzegedHungary
| | - Vincent Procaccio
- Département de Biochimie et GénétiqueIBS‐CHU AngersAngers Cedex 9France
| | - Nikoletta Nagy
- Department of Medical GeneticsUniversity of SzegedSzegedHungary
- MTA SZTE Dermatological Research GroupUniversity of SzegedSzegedHungary
| | - Márta Széll
- Department of Medical GeneticsUniversity of SzegedSzegedHungary
- MTA SZTE Dermatological Research GroupUniversity of SzegedSzegedHungary
| |
Collapse
|
29
|
Gama-Carvalho M, L Garcia-Vaquero M, R Pinto F, Besse F, Weis J, Voigt A, Schulz JB, De Las Rivas J. Linking amyotrophic lateral sclerosis and spinal muscular atrophy through RNA-transcriptome homeostasis: a genomics perspective. J Neurochem 2017; 141:12-30. [PMID: 28054357 DOI: 10.1111/jnc.13945] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/02/2016] [Accepted: 12/24/2016] [Indexed: 12/11/2022]
Abstract
In this review, we present our most recent understanding of key biomolecular processes that underlie two motor neuron degenerative disorders, amyotrophic lateral sclerosis, and spinal muscular atrophy. We focus on the role of four multifunctional proteins involved in RNA metabolism (TDP-43, FUS, SMN, and Senataxin) that play a causal role in these diseases. Recent results have led to a novel scenario of intricate connections between these four proteins, bringing transcriptome homeostasis into the spotlight as a common theme in motor neuron degeneration. We review reported functional and physical interactions between these four proteins, highlighting their common association with nuclear bodies and small nuclear ribonucleoprotein particle biogenesis and function. We discuss how these interactions are turning out to be particularly relevant for the control of transcription and chromatin homeostasis, including the recent identification of an association between SMN and Senataxin required to ensure the resolution of DNA-RNA hybrid formation and proper termination by RNA polymerase II. These connections strongly support the existence of common pathways underlying the spinal muscular atrophy and amyotrophic lateral sclerosis phenotype. We also discuss the potential of genome-wide expression profiling, in particular RNA sequencing derived data, to contribute to unravelling the underlying mechanisms. We provide a review of publicly available datasets that have addressed both diseases using these approaches, and highlight the value of investing in cross-disease studies to promote our understanding of the pathways leading to neurodegeneration.
Collapse
Affiliation(s)
- Margarida Gama-Carvalho
- Universidade de Lisboa, Faculdade de Ciências, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, 1749-016 Lisboa, Portugal
| | - Marina L Garcia-Vaquero
- Universidade de Lisboa, Faculdade de Ciências, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, 1749-016 Lisboa, Portugal
| | - Francisco R Pinto
- Universidade de Lisboa, Faculdade de Ciências, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, 1749-016 Lisboa, Portugal
| | | | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University, Aachen, Germany
| | - Aaron Voigt
- Department of Neurology, University Hospital, RWTH Aachen University, Aachen, Germany.,JARA-Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Jörg B Schulz
- Department of Neurology, University Hospital, RWTH Aachen University, Aachen, Germany.,JARA-Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Javier De Las Rivas
- Cancer Research Center (CiC-IBMCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca (USAL), Salamanca, Spain
| |
Collapse
|
30
|
Groh M, Albulescu LO, Cristini A, Gromak N. Senataxin: Genome Guardian at the Interface of Transcription and Neurodegeneration. J Mol Biol 2016; 429:3181-3195. [PMID: 27771483 DOI: 10.1016/j.jmb.2016.10.021] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/14/2016] [Accepted: 10/15/2016] [Indexed: 12/12/2022]
Abstract
R-loops comprise an RNA/DNA hybrid and a displaced single-stranded DNA. They play crucial biological functions and are implicated in neurological diseases, including ataxias, amyotrophic lateral sclerosis, nucleotide expansion disorders (Friedreich ataxia and fragile X syndrome), and cancer. Currently, it is unclear which mechanisms cause R-loop structures to become pathogenic. The RNA/DNA helicase senataxin (SETX) is one of the best characterised R-loop-binding factors in vivo. Mutations in SETX are linked to two neurodegenerative disorders: ataxia with oculomotor apraxia type 2 (AOA2) and amyotrophic lateral sclerosis type 4 (ALS4). SETX is known to play a role in transcription, neurogenesis, and antiviral response. Here, we review the causes of R-loop dysregulation in neurodegenerative diseases and how these structures contribute to pathomechanisms. We will discuss the importance of SETX as a genome guardian in suppressing aberrant R-loop formation and analyse how SETX mutations can lead to neurodegeneration in AOA2/ALS4. Finally, we will discuss the implications for other R-loop-associated neurodegenerative diseases and point to future therapeutic approaches to treat these disorders.
Collapse
Affiliation(s)
- Matthias Groh
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE, UK
| | - Laura Oana Albulescu
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE, UK
| | - Agnese Cristini
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE, UK
| | - Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE, UK.
| |
Collapse
|
31
|
Mushtaq Z, Choudhury SD, Gangwar SK, Orso G, Kumar V. Human Senataxin Modulates Structural Plasticity of the Neuromuscular Junction in Drosophila through a Neuronally Conserved TGFβ Signalling Pathway. NEURODEGENER DIS 2016; 16:324-36. [PMID: 27197982 DOI: 10.1159/000445435] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/12/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mutations in the human Senataxin (hSETX) gene have been shown to cause two forms of neurodegenerative disorders - a dominant form called amyotrophic lateral sclerosis type 4 (ALS4) and a recessive form called ataxia with oculomotor apraxia type 2 (AOA2). SETX is a putative DNA/RNA helicase involved in RNA metabolism. Although several dominant mutations linked with ALS4 have been identified in SETX, their contribution towards ALS4 pathophysiology is still elusive. METHOD In order to model ALS4 in Drosophila and to elucidate the morphological, physiological and signalling consequences, we overexpressed the wild-type and pathological forms of hSETX in Drosophila. RESULTS AND CONCLUSIONS The pan-neuronal expression of wild-type or mutant forms of hSETX induced morphological plasticity at neuromuscular junction (NMJ) synapses. Surprisingly, we found that while the NMJ synapses were increased in number, the neuronal function was normal. Analysis of signalling pathways revealed that hSETX modulates the Highwire (Hiw; a conserved neuronal E3 ubiquitin ligase)-dependent bone morphogenetic protein/TGFβ pathway. Thus, our study could pave the way for a better understanding of ALS4 progression by SETX through the regulation of neuronal E3 ubiquitin pathways.
Collapse
Affiliation(s)
- Zeeshan Mushtaq
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | | | | | | | | |
Collapse
|
32
|
Li HF, Wu ZY. Genotype-phenotype correlations of amyotrophic lateral sclerosis. Transl Neurodegener 2016; 5:3. [PMID: 26843957 PMCID: PMC4738789 DOI: 10.1186/s40035-016-0050-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 01/27/2016] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by progressive neuronal loss and degeneration of upper motor neuron (UMN) and lower motor neuron (LMN). The clinical presentations of ALS are heterogeneous and there is no single test or procedure to establish the diagnosis of ALS. Most cases are diagnosed based on symptoms, physical signs, progression, EMG, and tests to exclude the overlapping conditions. Familial ALS represents about 5 ~ 10 % of ALS cases, whereas the vast majority of patients are sporadic. To date, more than 20 causative genes have been identified in hereditary ALS. Detecting the pathogenic mutations or risk variants for each ALS individual is challenging. However, ALS patients carrying some specific mutations or variant may exhibit subtly distinct clinical features. Unraveling the respective genotype-phenotype correlation has important implications for the genetic explanations. In this review, we will delineate the clinical features of ALS, outline the major ALS-related genes, and summarize the possible genotype-phenotype correlations of ALS.
Collapse
Affiliation(s)
- Hong-Fu Li
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and the Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 310009 China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and the Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 310009 China
| |
Collapse
|
33
|
Flocculation inSaccharomyces cerevisiaeis regulated by RNA/DNA helicase Sen1p. FEBS Lett 2015; 589:3165-74. [DOI: 10.1016/j.febslet.2015.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 09/03/2015] [Accepted: 09/04/2015] [Indexed: 12/13/2022]
|
34
|
Role for RNA:DNA hybrids in origin-independent replication priming in a eukaryotic system. Proc Natl Acad Sci U S A 2015; 112:5779-84. [PMID: 25902524 DOI: 10.1073/pnas.1501769112] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA replication initiates at defined replication origins along eukaryotic chromosomes, ensuring complete genome duplication within a single S-phase. A key feature of replication origins is their ability to control the onset of DNA synthesis mediated by DNA polymerase-α and its intrinsic RNA primase activity. Here, we describe a novel origin-independent replication process that is mediated by transcription. RNA polymerase I transcription constraints lead to persistent RNA:DNA hybrids (R-loops) that prime replication in the ribosomal DNA locus. Our results suggest that eukaryotic genomes have developed tools to prevent R-loop-mediated replication events that potentially contribute to copy number variation, particularly relevant to carcinogenesis.
Collapse
|
35
|
Vantaggiato C, Cantoni O, Guidarelli A, Romaniello R, Citterio A, Arrigoni F, Doneda C, Castelli M, Airoldi G, Bresolin N, Borgatti R, Bassi MT. Novel SETX variants in a patient with ataxia, neuropathy, and oculomotor apraxia are associated with normal sensitivity to oxidative DNA damaging agents. Brain Dev 2014; 36:682-9. [PMID: 24183476 DOI: 10.1016/j.braindev.2013.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Homozygous and compound heterozygous mutations in SETX are associated with AOA2 disease, a recessive form of ataxia with oculomotor apraxia and neuropathy with onset of ataxia between the first and second decade of life. The majority of the AOA2 mutated cell lines tested show hypersensitivity to oxidative DNA damaging agents, with one exception. RESULTS We describe a patient presenting with early-onset progressive ataxia, oculomotor apraxia, axonal sensory-motor neuropathy, optic atrophy, delayed psychomotor development, and a behavior disorder. The patient carries two novel missense variants in the SETX gene. Based on the hypothesis that the patient's clinical phenotype may represent an atypical form of the AOA2 disease, we tested the patient-derived cell line for hypersensitivity to oxidative DNA damaging agents, with negative results. CONCLUSIONS The lack of hypersensitivity we observed may be explained either by considering the atypical clinical picture of the patient analyzed or, alternatively, by hypothesizing that the variants detected are not the cause of the observed phenotype. Consistent with the first hypothesis of an atypical AOA2 form and based on the multiple functions of senataxin reported so far, it is likely that different sets of SETX mutations/variants may have variable functional effects that still need to be functionally characterized. The possibility that the severe and complicated clinical picture presented by the patient described here represents a clinical entity differing from the known recessive ataxias should be considered as well.
Collapse
Affiliation(s)
- Chiara Vantaggiato
- Scientific Institute IRCCS E. Medea, Laboratory of Molecular Biology, 23842 Bosisio Parini, Lecco, Italy
| | - Orazio Cantoni
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Andrea Guidarelli
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Romina Romaniello
- Scientific Institute IRCCS E. Medea, Neuropsychiatry and Neurorehabilitation Unit, Bosisio Parini, Lecco, Italy
| | - Andrea Citterio
- Scientific Institute IRCCS E. Medea, Laboratory of Molecular Biology, 23842 Bosisio Parini, Lecco, Italy
| | - Filippo Arrigoni
- Scientific Institute IRCCS E.Medea, Neuroimaging Unit, Bosisio Parini, Lecco, Italy
| | - Chiara Doneda
- Radiology and Pediatric Neuroradiology, Buzzi Hospital, Milan, Italy
| | - Marianna Castelli
- Scientific Institute IRCCS E. Medea, Laboratory of Molecular Biology, 23842 Bosisio Parini, Lecco, Italy
| | - Giovanni Airoldi
- Scientific Institute IRCCS E. Medea, Laboratory of Molecular Biology, 23842 Bosisio Parini, Lecco, Italy
| | - Nereo Bresolin
- Scientific Institute IRCCS E. Medea, Laboratory of Molecular Biology, 23842 Bosisio Parini, Lecco, Italy; Dino Ferrari Centre, IRCCS Ca' Granda, Ospedale Maggiore Policlinico Foundation, Department of Physiopathology and Transplantation, University of Milan, Italy
| | - Renato Borgatti
- Scientific Institute IRCCS E. Medea, Neuropsychiatry and Neurorehabilitation Unit, Bosisio Parini, Lecco, Italy
| | - Maria Teresa Bassi
- Scientific Institute IRCCS E. Medea, Laboratory of Molecular Biology, 23842 Bosisio Parini, Lecco, Italy.
| |
Collapse
|
36
|
Roda RH, Rinaldi C, Singh R, Schindler AB, Blackstone C. Ataxia with oculomotor apraxia type 2 fibroblasts exhibit increased susceptibility to oxidative DNA damage. J Clin Neurosci 2014; 21:1627-31. [PMID: 24814856 DOI: 10.1016/j.jocn.2013.11.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/05/2013] [Accepted: 11/10/2013] [Indexed: 10/25/2022]
Abstract
Ataxia with oculomotor apraxia type 2 (AOA2) is an autosomal recessive cerebellar ataxia associated with mutations in SETX, which encodes the senataxin protein, a DNA/RNA helicase. We describe the clinical phenotype and molecular characterization of a Colombian AOA2 patient who is compound heterozygous for a c.994 C>T (p.R332W) missense mutation in exon 7 and a c.6848_6851delCAGA (p.T2283KfsX32) frameshift deletion in SETX exon 21. Immunocytochemistry of patient-derived fibroblasts revealed a normal cellular distribution of the senataxin protein, suggesting that these mutations do not lead to loss or mis-localization of the protein, but rather that aberrant function of senataxin underlies the disease pathogenesis. Furthermore, we used the alkaline comet assay to demonstrate that patient-derived fibroblast cells exhibit an increased susceptibility to oxidative DNA damage. This assay provides a novel and additional means to establish pathogenicity of SETX mutations.
Collapse
Affiliation(s)
- Ricardo H Roda
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 35, Room 2C-911, 9000 Rockville Pike, Bethesda, MD 20892-3738, USA.
| | - Carlo Rinaldi
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Rajat Singh
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 35, Room 2C-911, 9000 Rockville Pike, Bethesda, MD 20892-3738, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Alice B Schindler
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Craig Blackstone
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 35, Room 2C-911, 9000 Rockville Pike, Bethesda, MD 20892-3738, USA
| |
Collapse
|
37
|
Fogel BL, Cho E, Wahnich A, Gao F, Becherel OJ, Wang X, Fike F, Chen L, Criscuolo C, De Michele G, Filla A, Collins A, Hahn AF, Gatti RA, Konopka G, Perlman S, Lavin MF, Geschwind DH, Coppola G. Mutation of senataxin alters disease-specific transcriptional networks in patients with ataxia with oculomotor apraxia type 2. Hum Mol Genet 2014; 23:4758-69. [PMID: 24760770 DOI: 10.1093/hmg/ddu190] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Senataxin, encoded by the SETX gene, contributes to multiple aspects of gene expression, including transcription and RNA processing. Mutations in SETX cause the recessive disorder ataxia with oculomotor apraxia type 2 (AOA2) and a dominant juvenile form of amyotrophic lateral sclerosis (ALS4). To assess the functional role of senataxin in disease, we examined differential gene expression in AOA2 patient fibroblasts, identifying a core set of genes showing altered expression by microarray and RNA-sequencing. To determine whether AOA2 and ALS4 mutations differentially affect gene expression, we overexpressed disease-specific SETX mutations in senataxin-haploinsufficient fibroblasts and observed changes in distinct sets of genes. This implicates mutation-specific alterations of senataxin function in disease pathogenesis and provides a novel example of allelic neurogenetic disorders with differing gene expression profiles. Weighted gene co-expression network analysis (WGCNA) demonstrated these senataxin-associated genes to be involved in both mutation-specific and shared functional gene networks. To assess this in vivo, we performed gene expression analysis on peripheral blood from members of 12 different AOA2 families and identified an AOA2-specific transcriptional signature. WGCNA identified two gene modules highly enriched for this transcriptional signature in the peripheral blood of all AOA2 patients studied. These modules were disease-specific and preserved in patient fibroblasts and in the cerebellum of Setx knockout mice demonstrating conservation across species and cell types, including neurons. These results identify novel genes and cellular pathways related to senataxin function in normal and disease states, and implicate alterations in gene expression as underlying the phenotypic differences between AOA2 and ALS4.
Collapse
Affiliation(s)
- Brent L Fogel
- Program in Neurogenetics, Department of Neurology and
| | - Ellen Cho
- Program in Neurogenetics, Department of Neurology and
| | | | - Fuying Gao
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | - Olivier J Becherel
- Radiation Biology and Oncology Laboratory, University of Queensland, UQ Centre for Clinical Research, Herston, Australia
| | - Xizhe Wang
- Program in Neurogenetics, Department of Neurology and
| | | | - Leslie Chen
- Program in Neurogenetics, Department of Neurology and
| | - Chiara Criscuolo
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, Federico II University, Napoli, Italy
| | - Giuseppe De Michele
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, Federico II University, Napoli, Italy
| | - Alessandro Filla
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, Federico II University, Napoli, Italy
| | - Abigail Collins
- Department of Pediatrics and Department of Neurology, Children's Hospital Colorado, University of Colorado, Denver, School of Medicine, Aurora, CO, USA
| | - Angelika F Hahn
- Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada and
| | - Richard A Gatti
- Department of Pathology and Laboratory Medicine and Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Genevieve Konopka
- Department of Neuroscience, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Susan Perlman
- Program in Neurogenetics, Department of Neurology and
| | - Martin F Lavin
- Radiation Biology and Oncology Laboratory, University of Queensland, UQ Centre for Clinical Research, Herston, Australia
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology and Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Giovanni Coppola
- Program in Neurogenetics, Department of Neurology and Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| |
Collapse
|
38
|
Morales JC, Richard P, Rommel A, Fattah FJ, Motea EA, Patidar PL, Xiao L, Leskov K, Wu SY, Hittelman WN, Chiang CM, Manley JL, Boothman DA. Kub5-Hera, the human Rtt103 homolog, plays dual functional roles in transcription termination and DNA repair. Nucleic Acids Res 2014; 42:4996-5006. [PMID: 24589584 PMCID: PMC4005673 DOI: 10.1093/nar/gku160] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Functions of Kub5-Hera (In Greek Mythology Hera controlled Artemis) (K-H), the human homolog of the yeast transcription termination factor Rtt103, remain undefined. Here, we show that K-H has functions in both transcription termination and DNA double-strand break (DSB) repair. K-H forms distinct protein complexes with factors that repair DSBs (e.g. Ku70, Ku86, Artemis) and terminate transcription (e.g. RNA polymerase II). K-H loss resulted in increased basal R-loop levels, DSBs, activated DNA-damage responses and enhanced genomic instability. Significantly lowered Artemis protein levels were detected in K-H knockdown cells, which were restored with specific K-H cDNA re-expression. K-H deficient cells were hypersensitive to cytotoxic agents that induce DSBs, unable to reseal complex DSB ends, and showed significantly delayed γ-H2AX and 53BP1 repair-related foci regression. Artemis re-expression in K-H-deficient cells restored DNA-repair function and resistance to DSB-inducing agents. However, R loops persisted consistent with dual roles of K-H in transcription termination and DSB repair.
Collapse
Affiliation(s)
- Julio C Morales
- Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390-8807, USA, Department of Biological Sciences, Columbia University, New York, NY 10027, USA, Laboratory of Genetics, Salk Institute of Biological Studies, La Jolla, CA 92037, USA, Department of Radiation Oncology, Case Western Reserve University, Cleveland, OH 44106, USA and Department of Experimental Therapeutics, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wang IX, Core LJ, Kwak H, Brady L, Bruzel A, McDaniel L, Richards AL, Wu M, Grunseich C, Lis JT, Cheung VG. RNA-DNA differences are generated in human cells within seconds after RNA exits polymerase II. Cell Rep 2014; 6:906-15. [PMID: 24561252 DOI: 10.1016/j.celrep.2014.01.037] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 12/27/2013] [Accepted: 01/28/2014] [Indexed: 10/25/2022] Open
Abstract
RNA sequences are expected to be identical to their corresponding DNA sequences. Here, we found all 12 types of RNA-DNA sequence differences (RDDs) in nascent RNA. Our results show that RDDs begin to occur in RNA chains ~55 nt from the RNA polymerase II (Pol II) active site. These RDDs occur so soon after transcription that they are incompatible with known deaminase-mediated RNA-editing mechanisms. Moreover, the 55 nt delay in appearance indicates that they do not arise during RNA synthesis by Pol II or as a direct consequence of modified base incorporation. Preliminary data suggest that RDD and R-loop formations may be coupled. These findings identify sequence substitution as an early step in cotranscriptional RNA processing.
Collapse
Affiliation(s)
- Isabel X Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Leighton J Core
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Hojoong Kwak
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Lauren Brady
- Cell and Molecular Biology Graduate Program, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alan Bruzel
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Lee McDaniel
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Allison L Richards
- Human Genetics Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ming Wu
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Christopher Grunseich
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| | - Vivian G Cheung
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Departments of Pediatrics and Genetics, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
40
|
Bennett CL, Chen Y, Vignali M, Lo RS, Mason AG, Unal A, Huq Saifee NP, Fields S, La Spada AR. Protein interaction analysis of senataxin and the ALS4 L389S mutant yields insights into senataxin post-translational modification and uncovers mutant-specific binding with a brain cytoplasmic RNA-encoded peptide. PLoS One 2013; 8:e78837. [PMID: 24244371 PMCID: PMC3823977 DOI: 10.1371/journal.pone.0078837] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 09/24/2013] [Indexed: 12/12/2022] Open
Abstract
Senataxin is a large 303 kDa protein linked to neuron survival, as recessive mutations cause Ataxia with Oculomotor Apraxia type 2 (AOA2), and dominant mutations cause amyotrophic lateral sclerosis type 4 (ALS4). Senataxin contains an amino-terminal protein-interaction domain and a carboxy-terminal DNA/RNA helicase domain. In this study, we focused upon the common ALS4 mutation, L389S, by performing yeast two-hybrid screens of a human brain expression library with control senataxin or L389S senataxin as bait. Interacting clones identified from the two screens were collated, and redundant hits and false positives subtracted to yield a set of 13 protein interactors. Among these hits, we discovered a highly specific and reproducible interaction of L389S senataxin with a peptide encoded by the antisense sequence of a brain-specific non-coding RNA, known as BCYRN1. We further found that L389S senataxin interacts with other proteins containing regions of conserved homology with the BCYRN1 reverse complement-encoded peptide, suggesting that such aberrant protein interactions may contribute to L389S ALS4 disease pathogenesis. As the yeast two-hybrid screen also demonstrated senataxin self-association, we confirmed senataxin dimerization via its amino-terminal binding domain and determined that the L389S mutation does not abrogate senataxin self-association. Finally, based upon detection of interactions between senataxin and ubiquitin-SUMO pathway modification enzymes, we examined senataxin for the presence of ubiquitin and SUMO monomers, and observed this post-translational modification. Our senataxin protein interaction study reveals a number of features of senataxin biology that shed light on senataxin normal function and likely on senataxin molecular pathology in ALS4.
Collapse
Affiliation(s)
- Craig L. Bennett
- Comparative Genomics Centre, School of Pharmacy and Molecular Sciences, James Cook University, Townsville, Queensland, Australia
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
| | - Yingzhang Chen
- Department of Pediatrics, University of Washington Medical Center, Seattle, Washington, United States of America
| | - Marissa Vignali
- Department of Genome Sciences, University of Washington Medical Center, Seattle, Washington, United States of America
| | - Russell S. Lo
- Department of Genome Sciences, University of Washington Medical Center, Seattle, Washington, United States of America
| | - Amanda G. Mason
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
| | - Asli Unal
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
| | - Nabiha P. Huq Saifee
- Department of Pharmacology, University of Washington Medical Center, Seattle, Washington, United States of America
| | - Stanley Fields
- Department of Genome Sciences, University of Washington Medical Center, Seattle, Washington, United States of America
| | - Albert R. La Spada
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
- Rady Children’s Hospital, La Jolla, California, United States of America
| |
Collapse
|
41
|
Richard P, Feng S, Manley JL. A SUMO-dependent interaction between Senataxin and the exosome, disrupted in the neurodegenerative disease AOA2, targets the exosome to sites of transcription-induced DNA damage. Genes Dev 2013; 27:2227-32. [PMID: 24105744 PMCID: PMC3814643 DOI: 10.1101/gad.224923.113] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Senataxin (SETX) is an RNA/DNA helicase implicated in transcription termination and the DNA damage response and is mutated in two distinct neurological disorders: AOA2 (ataxia oculomotor apraxia 2) and ALS4 (amyotrophic lateral sclerosis 4). Here we provide evidence that Rrp45, a subunit of the exosome, associates with SETX in a manner dependent on SETX sumoylation. We show that the interaction and SETX sumoylation are disrupted by SETX mutations associated with AOA2 but not ALS4. Furthermore, Rrp45 colocalizes with SETX in distinct foci upon induction of transcription-related DNA damage. Our results thus provide evidence for a SUMO-dependent interaction between SETX and the exosome, disrupted in AOA2, that targets the exosome to sites of DNA damage.
Collapse
Affiliation(s)
- Patricia Richard
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | |
Collapse
|
42
|
Davis MY, Keene CD, Swanson PD, Sheehy C, Bird TD. Novel mutations in ataxia telangiectasia and AOA2 associated with prolonged survival. J Neurol Sci 2013; 335:134-8. [PMID: 24090759 DOI: 10.1016/j.jns.2013.09.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/16/2013] [Accepted: 09/10/2013] [Indexed: 12/23/2022]
Abstract
Ataxia telangiectasia (AT) and ataxia oculomotor apraxia type 2 (AOA2) are autosomal recessive ataxias caused by mutations in genes involved in maintaining DNA integrity. Lifespan in AT is greatly shortened (20s-30s) due to increased susceptibility to malignancies (leukemia/lymphoma). Lifespan in AOA2 is uncertain. We describe a woman with variant AT with two novel mutations in ATM (IVS14+2T>G and 5825C>T, p.A1942V) who died at age 48 with pancreatic adenocarcinoma. Her mutations are associated with an unusually long life for AT and with a cancer rarely associated with that disease. We also describe two siblings with AOA2, heterozygous for two novel mutations in senataxin (3 bp deletion c.343-345 and 1398T>G, p.I466M) who have survived into their 70s, allowing us to characterize the longitudinal course of AOA2. In contrast to AT, we show that persons with AOA2 can experience a prolonged lifespan with considerable motor disability.
Collapse
Affiliation(s)
- Marie Y Davis
- Department of Neurology, University of Washington, Seattle, WA, United States
| | | | | | | | | |
Collapse
|
43
|
Lavin MF, Yeo AJ, Becherel OJ. Senataxin protects the genome: Implications for neurodegeneration and other abnormalities. Rare Dis 2013; 1:e25230. [PMID: 25003001 PMCID: PMC3927485 DOI: 10.4161/rdis.25230] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 05/31/2013] [Indexed: 11/29/2022] Open
Abstract
Ataxia oculomotor apraxia type 2 (AOA2) is a rare autosomal recessive disorder characterized by cerebellar atrophy, peripheral neuropathy, loss of Purkinje cells and elevated α-fetoprotein. AOA2 is caused by mutations in the SETX gene that codes for the high molecular weight protein senataxin. Mutations in this gene also cause dominant neurodegenerative disorders. Similar to that observed for other autosomal recessive ataxias, this protein protects the integrity of the genome against oxidative and other forms of DNA damage to reduce the risk of neurodegeneration. Senataxin functions in transcription termination and RNA splicing and it has been shown to resolve RNA/DNA hybrids (R-loops) that arise at transcription pause sites or when transcription is blocked. Recent data suggest that this protein functions at the interface between transcription and DNA replication to minimise the risk of collision and maintain genome stability. Our recent data using SETX gene-disrupted mice revealed that male mice were defective in spermatogenesis and were infertile. DNA double strand-breaks persisted throughout meiosis and crossing-over failed in SETX mutant mice. These changes can be explained by the accumulation of R-loops, which interfere with Holiday junctions and crossing-over. We also showed that senataxin was localized to the XY body in pachytene cells and was involved in transcriptional silencing of these chromosomes. While the defect in meiotic recombination was striking in these animals, there was no evidence of neurodegeneration as observed in AOA2 patients. We discuss here potentially different roles for senataxin in proliferating and post-mitotic cells.
Collapse
Affiliation(s)
- Martin F Lavin
- Queensland Institute of Medical Research; Radiation Biology and Oncology; Brisbane, QLD, Australia ; University of Queensland Centre for Clinical Research; Herston, QLD, Australia
| | - Abrey J Yeo
- Queensland Institute of Medical Research; Radiation Biology and Oncology; Brisbane, QLD, Australia ; School of Medicine; University of Queensland; Herston, QLD, Australia
| | - Olivier J Becherel
- Queensland Institute of Medical Research; Radiation Biology and Oncology; Brisbane, QLD, Australia ; School of Chemistry & Molecular Biosciences; University of Queensland; St. Lucia, QLD, Australia
| |
Collapse
|
44
|
Golla U, Singh V, Azad GK, Singh P, Verma N, Mandal P, Chauhan S, Tomar RS. Sen1p contributes to genomic integrity by regulating expression of ribonucleotide reductase 1 (RNR1) in Saccharomyces cerevisiae. PLoS One 2013; 8:e64798. [PMID: 23741394 PMCID: PMC3669351 DOI: 10.1371/journal.pone.0064798] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/18/2013] [Indexed: 12/29/2022] Open
Abstract
Gene expression is a multi-step process which requires recruitment of several factors to promoters. One of the factors, Sen1p is an RNA/DNA helicase implicated in transcriptional termination and RNA processing in yeast. In the present study, we have identified a novel function of Sen1p that regulates the expression of ribonucleotide reductase RNR1 gene, which is essential for maintaining genomic integrity. Cells with mutation in the helicase domain or lacking N-terminal domain of Sen1p displayed a drastic decrease in the basal level transcription of RNR1 gene and showed enhanced sensitivity to various DNA damaging agents. Moreover, SEN1 mutants [Sen1-1 (G1747D), Sen1-2 (Δ1-975)] exhibited defects in DNA damage checkpoint activation. Surprisingly, CRT1 deletion in Sen1p mutants (Sen1-1, Sen1-2) was partly able to rescue the slow growth phenotype upon genotoxic stress. Altogether, our observations suggest that Sen1p is required for cell protection against DNA damage by regulating the expression of DNA repair gene RNR1. Thus, the misregulation of Sen1p regulated genes can cause genomic instability that may lead to neurological disorders and premature aging.
Collapse
Affiliation(s)
- Upendarrao Golla
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Vikash Singh
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Gajendra Kumar Azad
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Prabhat Singh
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Naveen Verma
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Papita Mandal
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Sakshi Chauhan
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Raghuvir S. Tomar
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
- * E-mail:
| |
Collapse
|
45
|
Abstract
OBJECTIVE In this paper, we document two cases of a new SETX mutation (820:A>G) combined with an established recessive SETX mutation (5927:T>G) causing ataxia with oculomotor apraxia type 2 (AOA2). METHODS The patients had a detailed neurological history and examination performed. Radiological imaging was obtained and genetic analysis was obtained. RESULTS Both siblings demonstrated healthy and normal growth until adolescence. At that time, slowed speech, hypophonia, dysarthria, extraocular muscle dysfunction and some mild choreiform movements began to appear. Family history included some movement disorder difficulties in second degree relatives. The diagnosis of AOA2 was confirmed by genetic testing. CONCLUSIONS We describe a new SETX gene mutation, which when combined with a recognized SETX mutation results in AOA2. The clinical, radiographic and ancillary testing are described.
Collapse
Affiliation(s)
- Neil Datta
- Boston University School of Medicine, Department of Neurology, Boston, MA, USA.
| | | |
Collapse
|
46
|
Clinical and molecular findings of ataxia with oculomotor apraxia type 2 (AOA2) in 5 Tunisian families. ACTA ACUST UNITED AC 2013; 21:241-5. [PMID: 23111195 DOI: 10.1097/pdm.0b013e318257ad9a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Ataxia with oculomotor apraxia type 2 (AOA2) is a recently described autosomal recessive cerebellar ataxia caused by mutations in the SETX gene. It is a rare monogenic disease characterized by progressive cerebellar ataxia, oculomotor apraxia, axonal sensorimotor neuropathy, and an elevated serum α-fetoprotein level. To date, >100 AOA2 patients have been described and 75 different mutations in the SETX gene have been identified. We report here the clinical and genetic findings of 13 AOA2 patients from 5 unrelated Tunisian consanguineous families. DNA was collected from probands and available family members, and the 24 SETX exons were screened by direct sequencing. Four different homozygous SETX gene mutations were identified. The missense mutation 915G>T [W305C] has been described previously in Algeria. The 3 other SETX mutations are novel, including a missense mutation c.7231C>T [R 2380 W], a nonsense mutation c.6475 C>T [R2098X], and a deletion c.7180-7183delAAAA [D2332fsX2343]. More extensive screening by molecular genetic analysis of SETX in patients with Friedreich ataxia-like phenotype may show that AOA2 is more common in Tunisia than previously thought.
Collapse
|
47
|
Reynolds JJ, Stewart GS. A single strand that links multiple neuropathologies in human disease. ACTA ACUST UNITED AC 2013; 136:14-27. [PMID: 23365091 DOI: 10.1093/brain/aws310] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The development of the human central nervous system is a complex process involving highly coordinated periods of neuronal proliferation, migration and differentiation. Disruptions in these neurodevelopmental processes can result in microcephaly, a neuropathological disorder characterized by a reduction in skull circumference and total brain volume, whereas a failure to maintain neuronal health in the adult brain can lead to progressive neurodegeneration. Defects in the cellular pathways that detect and repair DNA damage are a common cause of both these neuropathologies and are associated with a growing number of hereditary human disorders. In particular, defects in the repair of DNA single strand breaks, one of the most commonly occurring types of DNA lesion, have been associated with three neuropathological diseases: ataxia oculomotor apraxia 1, spinocerebellar ataxia with neuronal neuropathy 1 and microcephaly, early-onset, intractable seizures and developmental delay. A striking similarity between these three human diseases is that they are all caused by mutations in DNA end processing factors, suggesting that a particularly crucial stage of DNA single strand break repair is the repair of breaks with 'damaged' termini. Additionally all three disorders lack any extraneurological symptoms, such as immunodeficiency and cancer predisposition, which are typically found in other human diseases associated with defective DNA repair. However despite these similarities, two of these disorders present with progressive cerebellar degeneration, whereas the third presents with severe microcephaly. This review discusses the molecular defects behind these disorders and presents several hypotheses based on current literature on a number of important questions, in particular, how do mutations in different end processing factors within the same DNA repair pathway lead to such different neuropathologies?
Collapse
Affiliation(s)
- John J Reynolds
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | | |
Collapse
|
48
|
Fast motor axon loss in SMARD1 does not correspond to morphological and functional alterations of the NMJ. Neurobiol Dis 2013; 54:169-82. [PMID: 23295857 DOI: 10.1016/j.nbd.2012.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 11/30/2012] [Accepted: 12/21/2012] [Indexed: 11/20/2022] Open
Abstract
Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is a childhood motoneuron disease caused by mutations in the gene encoding for IGHMBP2, an ATPase/Helicase. Paralysis of the diaphragm is an early and prominent clinical sign resulting both from denervation and myopathy. In skeletal muscles, muscle atrophy mainly results from loss of motoneuron cell bodies and axonal degeneration. Although it is well known that loss of motoneurons at the lumbar spinal cord is an early event in the pathogenesis of the disease, it is not clear whether the corresponding proximal axons and NMJs are also early affected. In order to address this question, we have investigated the time course of the disease progression at the level of the motoneuron cell body, proximal axon (ventral root), distal axon (sciatic nerve), NMJ, and muscle fiber in Nmd(2J) mice, a mouse model for SMARD1. Our results show an early and apparently parallel loss of motoneurons, proximal axons, and NMJs. In affected muscles, however, denervated fibers coexist with NMJs with normal morphology and unaltered neurotransmission. Furthermore, unaffected axons are able to sprout and reinnervate muscle fibers, suggesting selective vulnerability of neurons to Ighmbp2 deficiency. The preservation of the NMJ morphology and neurotransmission in the Nmd(2J) mouse until motor axon loss takes place, differs from that observed in SMA mouse models in which NMJ impairment is an early and more general phenomenon in affected muscles.
Collapse
|
49
|
Yüce Ö, West SC. Senataxin, defective in the neurodegenerative disorder ataxia with oculomotor apraxia 2, lies at the interface of transcription and the DNA damage response. Mol Cell Biol 2013; 33:406-17. [PMID: 23149945 PMCID: PMC3554130 DOI: 10.1128/mcb.01195-12] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 11/05/2012] [Indexed: 12/11/2022] Open
Abstract
The neurodegenerative disorder ataxia with oculomotor apraxia 2 (AOA-2) is caused by defects in senataxin, a putative RNA/DNA helicase thought to be involved in the termination of transcription at RNA polymerase pause sites. RNA/DNA hybrids (R loops) that arise during transcription pausing lead to genome instability unless they are resolved efficiently. We found that senataxin forms distinct nuclear foci in S/G(2)-phase human cells and that the number of these foci increases in response to impaired DNA replication or DNA damage. Senataxin colocalizes with 53BP1, a key DNA damage response protein, and with other factors involved in DNA repair. Inhibition of transcription using α-amanitin, or the dissolution of R loops by transient expression of RNase H1, leads to the loss of senataxin foci. These results indicate that senataxin localizes to sites of collision between components of the replisome and the transcription apparatus and that it is targeted to R loops, where it plays an important role at the interface of transcription and the DNA damage response.
Collapse
Affiliation(s)
- Özlem Yüce
- London Research Institute, Cancer Research UK, Clare Hall Laboratories, South Mimms, Herts, United Kingdom
| | | |
Collapse
|
50
|
Murad NAA, Cullen JK, McKenzie M, Ryan MT, Thorburn D, Gueven N, Kobayashi J, Birrell G, Yang J, Dörk T, Becherel O, Grattan-Smith P, Lavin MF. Mitochondrial dysfunction in a novel form of autosomal recessive ataxia. Mitochondrion 2012. [PMID: 23178371 DOI: 10.1016/j.mito.2012.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Defects in the recognition and/or repair of damage to DNA are responsible for a sub-group of autosomal recessive ataxias. Included in this group is a novel form of ataxia with oculomotor apraxia characterised by sensitivity to DNA damaging agents, a defect in p53 stabilisation, oxidative stress and resistance to apoptosis. We provide evidence here that the defect in this patient's cells is at the level of the mitochondrion. Mitochondrial membrane potential was markedly reduced in cells from the patient and ROS levels were elevated. This was accompanied by lipid peroxidation of mitochondrial proteins involved in electron transport and RNA synthesis. However, no gross changes or alteration in composition or activity of mitochondrial electron transport complexes was evident. Sequencing of mitochondrial DNA revealed a mutation, I349T, in the mitochondrial cytochrome b gene. These results describe a patient with an apparently novel form of AOA characterised by a defect at the level of the mitochondrion.
Collapse
Affiliation(s)
- Nor Azian Abdul Murad
- Cancer and Cell Biology, Queensland Institute of Medical Research, Brisbane, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|