1
|
Rahimi‐Tesiye M, Rajabi‐Maham H, Azizi V, Hosseini A. The Anticonvulsant Effect of Nonsteroidal Anti-Inflammatory Drug, Fenoprofen, in Pentylenetetrazole-Induced Epileptic Rats: Behavioral, Histological, and Biochemical Evidence. Pharmacol Res Perspect 2025; 13:e70072. [PMID: 39907374 PMCID: PMC11795576 DOI: 10.1002/prp2.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/04/2025] [Accepted: 01/19/2025] [Indexed: 02/06/2025] Open
Abstract
This study aimed to evaluate the anticonvulsant properties of fenoprofen on the experimental model of pentylenetetrazole (PTZ)-induced epilepsy. Male Wistar rats were randomly grouped into five, and the kindling model was induced by intraperitoneal injection of PTZ 35 (mg/kg) every other day for 1 month. Aside from the control and PTZ groups, three groups received intraperitoneal injections of fenoprofen at doses of 10, 20, and 40 (mg/kg) before each PTZ injection. Rats were challenged with PTZ 70 (mg/kg) 1 week after kindling development. Then rats were subjected to deep anesthesia, and serum and brain samples were prepared. Oxidative stress (OS) markers (malondialdehyde, superoxide dismutase, and glutathione peroxidase) were measured in serum samples. Hippocampal tissue was used to investigate the relative expression of OS-related genes (nuclear factor [erythroid-derived 2]-like 2 (Nrf2)/heme oxygenase 1 (Hmox1)) and histological studies. Seizure behavior was assessed based on Lüttjohann's score. In treated groups, the number of myoclonic jerks and generalized tonic-clonic seizure (GTCS) duration decreased significantly, while myoclonic jerks and GTCS latency increased compared with the PTZ group. The biochemical evaluation revealed the antioxidative effects of fenoprofen. The decreased expression of Nrf2/HO-1 genes in the PTZ group was reversed after fenoprofen administration. The results of the histological study obtained from Nissl staining in the hippocampal tissue also confirmed the protective effect of fenoprofen. The anticonvulsant effects of fenoprofen seem to be through inhibition of OS-related markers, induction of protective effect in hippocampal tissue, and activation of the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Maryam Rahimi‐Tesiye
- Department of Animal Sciences and Marine BiologyFaculty of Life Sciences and BiotechnologyShahid Beheshti UniversityTehranIran
| | - Hassan Rajabi‐Maham
- Department of Animal Sciences and Marine BiologyFaculty of Life Sciences and BiotechnologyShahid Beheshti UniversityTehranIran
| | - Vahid Azizi
- Department of Animal Sciences and Marine BiologyFaculty of Life Sciences and BiotechnologyShahid Beheshti UniversityTehranIran
| | - Abdolkarim Hosseini
- Department of Animal Sciences and Marine BiologyFaculty of Life Sciences and BiotechnologyShahid Beheshti UniversityTehranIran
| |
Collapse
|
2
|
Zeng ML, Xu W. A Narrative Review of the Published Pre-Clinical Evaluations: Multiple Effects of Arachidonic Acid, its Metabolic Enzymes and Metabolites in Epilepsy. Mol Neurobiol 2025; 62:288-303. [PMID: 38842673 DOI: 10.1007/s12035-024-04274-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
Arachidonic acid (AA), an important polyunsaturated fatty acid in the brain, is hydrolyzed by a direct action of phospholipase A2 (PLA2) or through the combined action of phospholipase C and diacylglycerol lipase, and released into the cytoplasm. Various derivatives of AA can be synthesized mainly through the cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P450 (P450) enzyme pathways. AA and its metabolic enzymes and metabolites play important roles in a variety of neurophysiological activities. The abnormal metabolites and their catalytic enzymes in the AA cascade are related to the pathogenesis of various central nervous system (CNS) diseases, including epilepsy. Here, we systematically reviewed literatures in PubMed about the latest randomized controlled trials, animal studies and clinical studies concerning the known features of AA, its metabolic enzymes and metabolites, and their roles in epilepsy. The exclusion criteria include non-original studies and articles not in English.
Collapse
Affiliation(s)
- Meng-Liu Zeng
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Wei Xu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
3
|
Jain S, LaFrancois JJ, Gerencer K, Botterill JJ, Kennedy M, Criscuolo C, Scharfman HE. Increasing adult-born neurons protects mice from epilepsy. eLife 2024; 12:RP90893. [PMID: 39446467 PMCID: PMC11501206 DOI: 10.7554/elife.90893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
Neurogenesis occurs in the adult brain in the hippocampal dentate gyrus, an area that contains neurons which are vulnerable to insults and injury, such as severe seizures. Previous studies showed that increasing adult neurogenesis reduced neuronal damage after these seizures. Because the damage typically is followed by chronic life-long seizures (epilepsy), we asked if increasing adult-born neurons would prevent epilepsy. Adult-born neurons were selectively increased by deleting the pro-apoptotic gene Bax from Nestin-expressing progenitors. Tamoxifen was administered at 6 weeks of age to conditionally delete Bax in Nestin-CreERT2Baxfl/fl mice. Six weeks after tamoxifen administration, severe seizures (status epilepticus; SE) were induced by injection of the convulsant pilocarpine. After mice developed epilepsy, seizure frequency was quantified for 3 weeks. Mice with increased adult-born neurons exhibited fewer chronic seizures. Postictal depression was reduced also. These results were primarily in female mice, possibly because they were more affected by Bax deletion than males, consistent with sex differences in Bax. The female mice with enhanced adult-born neurons also showed less neuronal loss of hilar mossy cells and hilar somatostatin-expressing neurons than wild-type females or males, which is notable because loss of these two hilar cell types is implicated in epileptogenesis. The results suggest that selective Bax deletion to increase adult-born neurons can reduce experimental epilepsy, and the effect shows a striking sex difference. The results are surprising in light of past studies showing that suppressing adult-born neurons can also reduce chronic seizures.
Collapse
Affiliation(s)
- Swati Jain
- Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric ResearchOrangeburgUnited States
| | - John J LaFrancois
- Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric ResearchOrangeburgUnited States
| | - Kasey Gerencer
- Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric ResearchOrangeburgUnited States
| | - Justin J Botterill
- Department of Anatomy, Physiology, & Pharmacology, College of Medicine, University of SaskatchewanSaskatoonCanada
| | - Meghan Kennedy
- Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric ResearchOrangeburgUnited States
| | - Chiara Criscuolo
- Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric ResearchOrangeburgUnited States
- Departments of Child and Adolescent Psychiatry, New York University Grossman School of MedicineNew YorkUnited States
| | - Helen E Scharfman
- Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric ResearchOrangeburgUnited States
- Departments of Child and Adolescent Psychiatry, New York University Grossman School of MedicineNew YorkUnited States
- Departments of Neuroscience & Physiology, Psychiatry, and the Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
| |
Collapse
|
4
|
Jain S, LaFrancois JJ, Gerencer K, Botterill JJ, Kennedy M, Criscuolo C, Scharfman HE. Increasing adult-born neurons protects mice from epilepsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.08.548217. [PMID: 37502909 PMCID: PMC10369878 DOI: 10.1101/2023.07.08.548217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Neurogenesis occurs in the adult brain in the hippocampal dentate gyrus, an area that contains neurons which are vulnerable to insults and injury, such as severe seizures. Previous studies showed that increasing adult neurogenesis reduced neuronal damage after these seizures. Because the damage typically is followed by chronic life-long seizures (epilepsy), we asked if increasing adult-born neurons would prevent epilepsy. Adult-born neurons were selectively increased by deleting the pro-apoptotic gene Bax from Nestin-expressing progenitors. Tamoxifen was administered at 6 weeks of age to conditionally delete Bax in Nestin-CreERT2 Bax fl/fl mice. Six weeks after tamoxifen administration, severe seizures (status epilepticus; SE) were induced by injection of the convulsant pilocarpine. After mice developed epilepsy, seizure frequency was quantified for 3 weeks. Mice with increased adult-born neurons exhibited fewer chronic seizures. Postictal depression was reduced also. These results were primarily in female mice, possibly because they were the more affected by Bax deletion than males, consistent with sex differences in Bax. The female mice with enhanced adult-born neurons also showed less neuronal loss of hilar mossy cells and hilar somatostatin-expressing neurons than wild type females or males, which is notable because these two hilar cell types are implicated in epileptogenesis. The results suggest that selective Bax deletion to increase adult-born neurons can reduce experimental epilepsy, and the effect shows a striking sex difference. The results are surprising in light of past studies showing that suppressing adult-born neurons can also reduce chronic seizures.
Collapse
Affiliation(s)
- Swati Jain
- Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962
| | - John J. LaFrancois
- Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962
| | - Kasey Gerencer
- Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Current address: Department of Psychology, The University of Maine, Orono, ME 04469
| | - Justin J. Botterill
- Department of Anatomy, Physiology, & Pharmacology, College of Medicine, Saskatoon, SK S7N 5E5
| | - Meghan Kennedy
- Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962
| | - Chiara Criscuolo
- Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Departments of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY 10016
| | - Helen E. Scharfman
- Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Departments of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY 10016
- Departments of Neuroscience & Physiology, Psychiatry, and the New York University, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016
| |
Collapse
|
5
|
Socała K, Jakubiec M, Abram M, Mlost J, Starowicz K, Kamiński RM, Ciepiela K, Andres-Mach M, Zagaja M, Metcalf CS, Zawadzki P, Wlaź P, Kamiński K. TRPV1 channel in the pathophysiology of epilepsy and its potential as a molecular target for the development of new antiseizure drug candidates. Prog Neurobiol 2024; 240:102634. [PMID: 38834133 DOI: 10.1016/j.pneurobio.2024.102634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/26/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
Identification of transient receptor potential cation channel, subfamily V member 1 (TRPV1), also known as capsaicin receptor, in 1997 was a milestone achievement in the research on temperature sensation and pain signalling. Very soon after it became evident that TRPV1 is implicated in a wide array of physiological processes in different peripheral tissues, as well as in the central nervous system, and thereby could be involved in the pathophysiology of numerous diseases. Increasing evidence suggests that modulation of TRPV1 may also affect seizure susceptibility and epilepsy. This channel is localized in brain regions associated with seizures and epilepsy, and its overexpression was found both in animal models of seizures and in brain samples from epileptic patients. Moreover, modulation of TRPV1 on non-neuronal cells (microglia, astrocytes, and/or peripheral immune cells) may have an impact on the neuroinflammatory processes that play a role in epilepsy and epileptogenesis. In this paper, we provide a comprehensive and critical overview of currently available data on TRPV1 as a possible molecular target for epilepsy management, trying to identify research gaps and future directions. Overall, several converging lines of evidence implicate TRPV1 channel as a potentially attractive target in epilepsy research but more studies are needed to exploit the possible role of TRPV1 in seizures/epilepsy and to evaluate the value of TRPV1 ligands as candidates for new antiseizure drugs.
Collapse
Affiliation(s)
- Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, Lublin PL 20-033, Poland.
| | - Marcin Jakubiec
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| | - Michał Abram
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| | - Jakub Mlost
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Cracow PL 31-343, Poland
| | - Katarzyna Starowicz
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Cracow PL 31-343, Poland
| | - Rafał M Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| | - Katarzyna Ciepiela
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland; Selvita S.A., Bobrzyńskiego 14, Cracow PL 30-348, Poland
| | - Marta Andres-Mach
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, Lublin PL 20-090, Poland
| | - Mirosław Zagaja
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, Lublin PL 20-090, Poland
| | - Cameron S Metcalf
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Przemysław Zawadzki
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, Lublin PL 20-033, Poland
| | - Krzysztof Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| |
Collapse
|
6
|
Ruiz-Reig N, Chehade G, Yerna X, Durá I, Gailly P, Tissir F. Aberrant generation of dentate gyrus granule cells is associated with epileptic susceptibility in p53 conditional knockout mice. Front Neurosci 2024; 18:1418973. [PMID: 39206115 PMCID: PMC11349535 DOI: 10.3389/fnins.2024.1418973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Neuronal apoptosis is a mechanism used to clear the cells of oxidative stress or DNA damage and refine the final number of neurons for a functional neuronal circuit. The tumor suppressor protein p53 is a key regulator of the cell cycle and serves as a checkpoint for eliminating neurons with high DNA damage, hyperproliferative signals or cellular stress. During development, p53 is largely expressed in progenitor cells. In the adult brain, p53 expression is restricted to the neurogenic niches where it regulates cell proliferation and self-renewal. To investigate the functional consequences of p53 deletion in the cortex and hippocampus, we generated a conditional mutant mouse (p53-cKO) in which p53 is deleted from pallial progenitors and their derivatives. Surprisingly, we did not find any significant change in the number of neurons in the mutant cortex or CA region of the hippocampus compared with control mice. However, p53-cKO mice exhibit more proliferative cells in the subgranular zone of the dentate gyrus and more granule cells in the granular cell layer. Glutamatergic synapses in the CA3 region are more numerous in p53-cKO mice compared with control littermates, which correlates with overexcitability and higher epileptic susceptibility in the mutant mice.
Collapse
Affiliation(s)
- Nuria Ruiz-Reig
- Laboratory of Developmental Neurobiology, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Georges Chehade
- Laboratory of Developmental Neurobiology, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Xavier Yerna
- Laboratory of Cell Physiology, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Irene Durá
- Laboratory of Developmental Neurobiology, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Philippe Gailly
- Laboratory of Cell Physiology, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Fadel Tissir
- Laboratory of Developmental Neurobiology, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
7
|
Han J, Wang Y, Wei P, Lu D, Shan Y. Unveiling the hidden connection: the blood-brain barrier's role in epilepsy. Front Neurol 2024; 15:1413023. [PMID: 39206290 PMCID: PMC11349696 DOI: 10.3389/fneur.2024.1413023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
Epilepsy is characterized by abnormal synchronous electrical activity of neurons in the brain. The blood-brain barrier, which is mainly composed of endothelial cells, pericytes, astrocytes and other cell types and is formed by connections between a variety of cells, is the key physiological structure connecting the blood and brain tissue and is critical for maintaining the microenvironment in the brain. Physiologically, the blood-brain barrier controls the microenvironment in the brain mainly by regulating the passage of various substances. Disruption of the blood-brain barrier and increased leakage of specific substances, which ultimately leading to weakened cell junctions and abnormal regulation of ion concentrations, have been observed during the development and progression of epilepsy in both clinical studies and animal models. In addition, disruption of the blood-brain barrier increases drug resistance through interference with drug trafficking mechanisms. The changes in the blood-brain barrier in epilepsy mainly affect molecular pathways associated with angiogenesis, inflammation, and oxidative stress. Further research on biomarkers is a promising direction for the development of new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | - Yongzhi Shan
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Xiao N, Li X, Li W, Zhao J, Li Y, Wang L. Pharmacokinetic study of Q808 in rhesus monkey using liquid chromatography-tandem mass spectrometry. Front Pharmacol 2024; 15:1433043. [PMID: 39050760 PMCID: PMC11266035 DOI: 10.3389/fphar.2024.1433043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Background Q808 is a novel antiepileptic agent currently in development. In this study, we established and validated a LC-MS/MS method for the quantification of Q808 in Rhesus monkey plasma. Furthermore, we applied this method to investigate the pharmacokinetics of Q808 in Rhesus monkeys. Methods Samples containing diazepam as an internal standard (IS) were subjected to liquid-liquid extraction (LLE) and separated using a Zorbax Extend C18 column. The detection of Q808 and IS was performed using multiple reaction monitoring mode (MRM), specifically monitoring precursor-to-product ion transitions at m/z 297.9 to 213.9 and m/z 285.2 to 193.1 for Q808 and IS, respectively. For the pharmacokinetic study of Q808, a total of 30 healthy Rhesus monkeys (half male and half female) were administered single oral doses, single IV doses, or multiple oral doses of Q808. Blood samples were collected at predetermined time points for subsequent pharmacokinetic analysis. Results The developed LC-MS/MS method exhibited linearity within the concentration range of 1.5-750 ng/mL with intra-day precision ≤8.3% and inter-day precision ≤14.6%. Additionally, accuracy was found to be ≤ 3.4%. In the pharmacokinetic study involving single oral doses of Q808 in Rhesus monkeys, Q808 was absorbed with a median time to peak plasma concentration ranging from 4.50-6.00 h and was eliminated with a terminal elimination half-life (t1/2) between 9.34-11.31 h. No definitive conclusion regarding linear pharmacokinetic characteristics could be drawn. The absolute bioavailability was determined as 20.95%, indicating limited systemic exposure after oral administration. Multiple dosing did not result in significant accumulation based on an accumulation factor Rac value of 1.31. Conclusion We have successfully developed and validated a rapid yet sensitive LC-MS/MS method for quantifying levels of Q808 in rhesus monkey plasma for the first time. The determination method and pharmacokinetic characteristics of Q808 in rhesus monkey support the next steps in drug development.
Collapse
Affiliation(s)
- Ning Xiao
- Office of Clinical Trial Institutions, Jilin Province FAW General Hospital, Changchun, China
| | - Xiang Li
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Wei Li
- Jilin Provincial Academy of Traditional Chinese Medicine, Changchun, China
| | - Jialin Zhao
- Department of Pharmacy, Jilin Province FAW General Hospital, Changchun, China
| | - Yingnan Li
- Hand and Foot Surgery and Burn and Plastic Surgery, Jilin Province FAW General Hospital, Changchun, China
| | - Limei Wang
- Department of Pharmacy, Jilin Province FAW General Hospital, Changchun, China
| |
Collapse
|
9
|
Gautam V, Rawat K, Sandhu A, Kumar A, Kharbanda PS, Medhi B, Bhatia A, Saha L. Exploring the effect of 6-BIO and sulindac in modulation of Wnt/β-catenin signaling pathway in chronic phase of temporal lobe epilepsy. Neuropharmacology 2024; 251:109931. [PMID: 38570067 DOI: 10.1016/j.neuropharm.2024.109931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
The prospective involvement of the Wnt/β-catenin signaling pathway in epilepsy, with the proposed therapeutic uses of its modulators, has been suggested; however, comprehensive knowledge in this regard is currently limited. Despite postulations about the pathway's significance and treatment potential, a systematic investigation is required to better understand its implications in chronic epilepsy. We investigated the role of key proteins like β-catenin, GSK-3β, and their modulators sulindac and 6-BIO, in Wnt/β-catenin pathway during chronic phase of temporal lobe epilepsy. We also evaluated the role of modulators in seizure score, seizure frequency and neurobehavioral parameters in temporal lobe epilepsy. We developed status epilepticus model using lithium-pilocarpine. The assessment of neurobehavioral parameters was done followed by histopathological examination and immunohistochemistry staining of hippocampus as well as RT-qPCR and western blotting to analyse gene and protein expression. In SE rats, seizure score and frequency were significantly high compared to control rats, with notable changes in neurobehavioral parameters and neuronal damage observed in hippocampus. Our study also revealed a substantial upregulation of the Wnt/β-catenin pathway in chronic epilepsy, as evidenced by gene and protein expression studies. Sulindac emerged as a potent modulator, reducing seizure score, frequency, neuronal damage, apoptosis, and downregulating the Wnt/β-catenin pathway when compared to 6-BIO. Our findings emphasize the potential of GSK-3β and β-catenin as promising drug targets for chronic temporal lobe epilepsy, offering valuable treatment options for chronic epilepsy. The promising outcomes with sulindac encourages further exploration in clinical trials to assess its therapeutic potential.
Collapse
Affiliation(s)
- Vipasha Gautam
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Kajal Rawat
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Arushi Sandhu
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Anil Kumar
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Parampreet Singh Kharbanda
- Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Lekha Saha
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| |
Collapse
|
10
|
Chang Y, Chen YJ, Wang SJ. Sodium Houttuyfonate Prevents Seizures and Neuronal Cell Loss by Maintaining Glutamatergic System Stability in Male Rats with Kainic Acid-Induced Seizures. Biomedicines 2024; 12:1312. [PMID: 38927519 PMCID: PMC11202147 DOI: 10.3390/biomedicines12061312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The present study evaluated the antiseizure and neuroprotective effects of sodium houttuyfonate (SH), a derivative of Houttuynia cordata Thunb. (H. cordata), in a kainic acid (KA)- induced seizure rat model and its underlying mechanism. Sprague Dawley rats were administered normal saline, SH (50 or 100 mg/kg), or carbamazepine (300 mg/kg) by oral gavage for seven consecutive days before the intraperitoneal administration of KA (15 mg/kg). SH showed antiseizure effects at a dose of 100 mg/kg; it prolonged seizure latency and decreased seizure scores. SH also significantly decreased neuronal loss in the hippocampi of KA-treated rats, which was associated with the prevention of glutamate level increase, the upregulation of glutamate reuptake-associated proteins (excitatory amino acid transporters 1-3), glutamate metabolism enzyme glutamine synthetase, the downregulation of the glutamate synthesis enzyme glutaminase, and significant alterations in the expression of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor) and NMDA (N-methyl-D-aspartic acid receptor) receptor subunits in the hippocampus. Furthermore, the effects of SH were similar to those of the antiseizure drug carbamazepine. Therefore, the results of the present study suggest that SH has antiseizure effects on KA-induced seizures, possibly through the prevention of glutamatergic alterations. Our findings suggest that SH is a potential alternative treatment that may prevent seizures by preserving the normal glutamatergic system.
Collapse
Affiliation(s)
- Yi Chang
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
- Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan
| | - Yi-Jun Chen
- Department of Respiratory Therapy, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
| | - Su-Jane Wang
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City 33303, Taiwan
| |
Collapse
|
11
|
Łukasiuk K, Lasoń W. Emerging Molecular Targets for Anti-Epileptogenic and Epilepsy Modifying Drugs. Int J Mol Sci 2023; 24:ijms24032928. [PMID: 36769250 PMCID: PMC9917847 DOI: 10.3390/ijms24032928] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The pharmacological treatment of epilepsy is purely symptomatic. Despite many decades of intensive research, causal treatment of this common neurologic disorder is still unavailable. Nevertheless, it is expected that advances in modern neuroscience and molecular biology tools, as well as improved animal models may accelerate designing antiepileptogenic and epilepsy-modifying drugs. Epileptogenesis triggers a vast array of genomic, epigenomic and transcriptomic changes, which ultimately lead to morphological and functional transformation of specific neuronal circuits resulting in the occurrence of spontaneous convulsive or nonconvulsive seizures. Recent decades unraveled molecular processes and biochemical signaling pathways involved in the proepileptic transformation of brain circuits including oxidative stress, apoptosis, neuroinflammatory and neurotrophic factors. The "omics" data derived from both human and animal epileptic tissues, as well as electrophysiological, imaging and neurochemical analysis identified a plethora of possible molecular targets for drugs, which could interfere with various stages of epileptogenetic cascade, including inflammatory processes and neuroplastic changes. In this narrative review, we briefly present contemporary views on the neurobiological background of epileptogenesis and discuss the advantages and disadvantages of some more promising molecular targets for antiepileptogenic pharmacotherapy.
Collapse
Affiliation(s)
- Katarzyna Łukasiuk
- The Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Władysław Lasoń
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
- Correspondence:
| |
Collapse
|
12
|
A Commentary on Electrographic Seizure Management and Clinical Outcomes in Critically Ill Children. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10020258. [PMID: 36832387 PMCID: PMC9954965 DOI: 10.3390/children10020258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/17/2023] [Accepted: 01/29/2023] [Indexed: 02/03/2023]
Abstract
Continuous EEG (cEEG) monitoring is the gold standard for detecting electrographic seizures in critically ill children and the current consensus-based guidelines recommend urgent cEEG to detect electrographic seizures that would otherwise be undetected. The detection of seizures usually leads to the use of antiseizure medications, even though current evidence that treatment leads to important improvements in outcomes is limited, raising the question of whether the current strategies need re-evaluation. There is emerging evidence indicating that the presence of electrographic seizures is not associated with unfavorable neurological outcome, and thus treatment is unlikely to alter the outcomes in these children. However, a high seizure burden and electrographic status epilepticus is associated with unfavorable outcome and the treatment of status epilepticus is currently warranted. Ultimately, outcomes are more likely a function of etiology than of a direct effect of the seizures themselves. We suggest re-examining our current consensus toward aggressive treatment to abolish all electrographic seizures and recommend a tailored approach where therapeutic interventions are indicated when seizure burden breaches above a critical threshold that may be associated with adverse outcomes. Future studies should explicitly evaluate whether there is a positive impact of treating electrographic seizures or electrographic status epilepticus in order to justify continuing current approaches.
Collapse
|
13
|
Effects of Diclofenac Sodium on Seizure Activity in Rats with Pentylenetetrazole-Induced Convulsions. Neurochem Res 2022; 48:1412-1423. [PMID: 36474102 DOI: 10.1007/s11064-022-03838-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/12/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Epilepsy is a disease which affects between 1 and 2% of the population, and a large proportion of these people do not react to currently available anticonvulsant medications, indicating the need for further research into novel pharmacological therapies. Numerous studies have demonstrated that oxidative stress and inflammation occur during epilepsy and may contribute to its development and progression, indicating higher levels of oxidative and inflammatory parameters in experimental models and clinical patients. This research aimed to assess the impact of diclofenac sodium, a nonsteroidal anti-inflammatory medicine, on seizure and levels of oxidative stress and inflammatory biomarkers in a rat model of epilepsy triggered by pentylenetetrazole (PTZ). 60 rats were randomly allocated to one of two groups: electroencephalography (EEG) recordings or behavioral evaluation. Rats received diclofenac sodium at three various doses (25, 50, and 75 mg/kg) intraperitoneally (IP) or a placebo, followed by intraperitoneal (IP) pentylenetetrazole, a powerful seizure-inducing medication. To investigate if diclofenac sodium had antiseizure properties, seizure activity in rats was evaluated using EEG recordings, the Racine convulsion scale (RCS) behaviour score, the duration of the first myoclonic jerk (FMJ), and the levels of MDA, TNF-α, and SOD. The average percentage of EEG spike waves decreased from 76.8% (placebo) to 64.1% (25 mg/kg diclofenac), 55.9% (50 mg/kg diclofenac), and 37.8% (75 mg/kg diclofenac). FMJ had increased from a mean of 58.8 s (placebo), to 93.6 s (25 mg/kg diclofenac), 185.8 s (50 mg/kg diclofenac) and 231.7 s (75 mg/kg diclofenac). RCS scores decreased from a mean score of 5.6 (placebo), to 3.75 (25 mg/kg diclofenac), 2.8 (50 mg/kg diclofenac) and 1.75 (75 mg/kg diclofenac). MDA levels reduced from 14.2 ng/gr (placebo) to 9.6 ng/gr (25 mg/kg diclofenac), 8.4 ng/gr (50 mg/kg diclofenac) and 5.1 ng/gr (75 mg/kg diclofenac). Likely, TNF-α levels decreased from 67.9 ng/gr (placebo) to 48.1 ng/gr (25 mg/kg diclofenac), 33.5 ng/gr (50 mg/kg diclofenac) and 21.3 ng/gr (75 mg/kg diclofenac). SOD levels, however, enhanced from 0.048 U/mg (placebo) to 0.055 U/mg (25 mg/kg diclofenac), 0.14 U/mg (50 mg/kg diclofenac), and 0.18 U/mg (75 mg/kg diclofenac). Diclofenac sodium (25, 50, and 75 mg/kg i.p.) effectively lowered the spike percentages and RCS scores linked with PTZ-induced epilepsy in rats, as well as significantly decreased MDA, TNF-α, IL-1β, PGE2 and increased SOD levels. Probably as a result of its anti-oxidative and anti-inflammatory effects, diclofenac sodium dramatically lowered seizure activity at both doses compared to placebo control. Each of these results were significant, with p-values of < 0.01, < 0.05. Therefore, the therapeutic application diclofenac sodium as a potential anticonvulsant should be investigated further.
Collapse
|
14
|
Rubio C, López-López F, Rojas-Hernández D, Moreno W, Rodríguez-Quintero P, Rubio-Osornio M. Caloric restriction: Anti-inflammatory and antioxidant mechanisms against epileptic seizures. Epilepsy Res 2022; 186:107012. [PMID: 36027691 DOI: 10.1016/j.eplepsyres.2022.107012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/26/2022] [Accepted: 08/13/2022] [Indexed: 11/03/2022]
Abstract
Caloric restriction (CR) possesses different cellular mechanisms. Though there are still gaps in the literature regarding its plausible beneficial effects, the suggestion that this alternative therapy can improve the inflammatory and antioxidant response to control epileptic seizures is explored throughout this study. Epilepsy is the second most prevalent neurodegenerative disease in the world. However, the appropriate mechanisms for it to be fully controlled are still unknown. Neuroinflammation and oxidative stress promote epileptic seizures' appearance and might even aggravate them. There is growing evidence that caloric restriction has extensive anti-inflammatory and antioxidant properties. For instance, nuclear factor erythroid 2-related factor 2 (Nrf2) and all-trans retinoic acid (ATRA) have been proposed to induce antioxidant processes and ulteriorly improve the disease progression. Caloric restriction can be an option for those patients with refractory epilepsy since it allows for anti-inflammatory and antioxidant properties to evolve within the brain areas involved.
Collapse
Affiliation(s)
- Carmen Rubio
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Mexico
| | - Felipe López-López
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Mexico; Facultad de Medicina, Universidad Autónoma de Baja California, Campus Mexicali, Mexico
| | - Daniel Rojas-Hernández
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Mexico; Universidad Autónoma Metropolitana, Unidad Xochimilco, Mexico
| | - Wilhelm Moreno
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Mexico; Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico
| | - Paola Rodríguez-Quintero
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Mexico; Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico
| | - Moisés Rubio-Osornio
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Mexico.
| |
Collapse
|
15
|
Han W, Jiang L, Song X, Li T, Chen H, Cheng L. VEGF Modulates Neurogenesis and Microvascular Remodeling in Epileptogenesis After Status Epilepticus in Immature Rats. Front Neurol 2022; 12:808568. [PMID: 35002944 PMCID: PMC8739962 DOI: 10.3389/fneur.2021.808568] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022] Open
Abstract
Neurogenesis and angiogenesis are widely recognized to occur during epileptogenesis and important in brain development. Because vascular endothelial growth factor (VEGF) is a critical neurovascular target in neurological diseases, its effect on neurogenesis, microvascular remodeling and epileptogenesis in the immature brain after lithium-pilocarpine-induced status epilepticus (SE) was investigated. The dynamic changes in and the correlation between hippocampal neurogenesis and microvascular remodeling after SE and the influence of VEGF or SU5416 injection into the lateral ventricles at different stages after SE on neurogenesis and microvascular remodeling through regulation of VEGF expression were assessed by immunofluorescence and immunohistochemistry. Western blot analysis revealed that the VEGFR2 signaling pathway promotes phosphorylated ERK and phosphorylated AKT expression. The effects of VEGF expression regulation at different stages after SE on pathological changes in hippocampal structure and spontaneous recurrent seizures (SRS) were evaluated by Nissl staining and electroencephalography (EEG). The results showed that hippocampal neurogenesis after SE is related to microvascular regeneration. VEGF promotion in the acute period and inhibition in the latent period after SE alleviates loss of hippocampal neuron, abnormal vascular regeneration and inhibits neural stem cells (NSCs) ectopic migration, which may effectively alleviate SRS severity. Interfering with VEGF via the AKT and ERK pathways in different phases after SE may be a promising strategy for treating and preventing epilepsy in children.
Collapse
Affiliation(s)
- Wei Han
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Li Jiang
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xiaojie Song
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Tianyi Li
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Hengsheng Chen
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Li Cheng
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
16
|
Bonilla-Jaime H, Zeleke H, Rojas A, Espinosa-Garcia C. Sleep Disruption Worsens Seizures: Neuroinflammation as a Potential Mechanistic Link. Int J Mol Sci 2021; 22:12531. [PMID: 34830412 PMCID: PMC8617844 DOI: 10.3390/ijms222212531] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
Sleep disturbances, such as insomnia, obstructive sleep apnea, and daytime sleepiness, are common in people diagnosed with epilepsy. These disturbances can be attributed to nocturnal seizures, psychosocial factors, and/or the use of anti-epileptic drugs with sleep-modifying side effects. Epilepsy patients with poor sleep quality have intensified seizure frequency and disease progression compared to their well-rested counterparts. A better understanding of the complex relationship between sleep and epilepsy is needed, since approximately 20% of seizures and more than 90% of sudden unexpected deaths in epilepsy occur during sleep. Emerging studies suggest that neuroinflammation, (e.g., the CNS immune response characterized by the change in expression of inflammatory mediators and glial activation) may be a potential link between sleep deprivation and seizures. Here, we review the mechanisms by which sleep deprivation induces neuroinflammation and propose that neuroinflammation synergizes with seizure activity to worsen neurodegeneration in the epileptic brain. Additionally, we highlight the relevance of sleep interventions, often overlooked by physicians, to manage seizures, prevent epilepsy-related mortality, and improve quality of life.
Collapse
Affiliation(s)
- Herlinda Bonilla-Jaime
- Departamento de Biología de la Reproducción, Área de Biología Conductual y Reproductiva, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de Mexico CP 09340, Mexico;
| | - Helena Zeleke
- Neuroscience and Behavioral Biology Program, College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA;
| | - Asheebo Rojas
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Claudia Espinosa-Garcia
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
17
|
Lee WJ, Moon J, Lim JA, Jeon D, Yoo JS, Park DK, Han D, Lee ST, Jung KH, Park KI, Lee SK, Chu K. Proteins related to ictogenesis and seizure clustering in chronic epilepsy. Sci Rep 2021; 11:21508. [PMID: 34728717 PMCID: PMC8563854 DOI: 10.1038/s41598-021-00956-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/14/2021] [Indexed: 12/01/2022] Open
Abstract
Seizure clustering is a common phenomenon in epilepsy. Protein expression profiles during a seizure cluster might reflect the pathomechanism underlying ictogenesis. We performed proteomic analyses to identify proteins with a specific temporal expression pattern in cluster phases and to demonstrate their potential pathomechanistic role. Pilocarpine epilepsy model mice with confirmed cluster pattern of spontaneous recurrent seizures by long-term video-electroencpehalography were sacrificed at the onset, peak, or end of a seizure cluster or in the seizure-free period. Proteomic analysis was performed in the hippocampus and the cortex. Differentially expressed proteins (DEPs) were identified and classified according to their temporal expression pattern. Among the five hippocampal (HC)-DEP classes, HC-class 1 (66 DEPs) represented disrupted cell homeostasis due to clustered seizures, HC-class 2 (63 DEPs) cluster-onset downregulated processes, HC-class 3 (42 DEPs) cluster-onset upregulated processes, and HC-class 4 (103 DEPs) consequences of clustered seizures. Especially, DEPs in HC-class 3 were hippocampus-specific and involved in axonogenesis, synaptic vesicle assembly, and neuronal projection, indicating their pathomechanistic roles in ictogenesis. Key proteins in HC-class 3 were highly interconnected and abundantly involved in those biological processes. This study described the seizure cluster-associated spatiotemporal regulation of protein expression. HC-class 3 provides insights regarding ictogenesis-related processes.
Collapse
Affiliation(s)
- Woo-Jin Lee
- Department of Neurology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
- Program in Neuroscience, Neuroscience Research Institute of SNUMRC, Seoul National University College of Medicine, Seoul, South Korea
| | - Jangsup Moon
- Department of Neurology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
- Program in Neuroscience, Neuroscience Research Institute of SNUMRC, Seoul National University College of Medicine, Seoul, South Korea
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Jung-Ah Lim
- Department of Neurology, Cham Joeun Hospital, Gwangju, South Korea
| | - Daejong Jeon
- Advanced Neural Technologies, Seoul, South Korea
| | - Jung-Suk Yoo
- Department of Neurology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Dong-Kyu Park
- Department of Neurology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Dohyun Han
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Soon-Tae Lee
- Department of Neurology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
- Program in Neuroscience, Neuroscience Research Institute of SNUMRC, Seoul National University College of Medicine, Seoul, South Korea
| | - Keun-Hwa Jung
- Department of Neurology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
- Program in Neuroscience, Neuroscience Research Institute of SNUMRC, Seoul National University College of Medicine, Seoul, South Korea
| | - Kyung-Il Park
- Department of Neurology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
- Program in Neuroscience, Neuroscience Research Institute of SNUMRC, Seoul National University College of Medicine, Seoul, South Korea
- Department of Neurology, Seoul National University Healthcare System Gangnam Center, Seoul, South Korea
| | - Sang Kun Lee
- Department of Neurology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
- Program in Neuroscience, Neuroscience Research Institute of SNUMRC, Seoul National University College of Medicine, Seoul, South Korea.
| | - Kon Chu
- Department of Neurology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
- Program in Neuroscience, Neuroscience Research Institute of SNUMRC, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
18
|
Macht V, Vetreno R, Elchert N, Crews F. Galantamine prevents and reverses neuroimmune induction and loss of adult hippocampal neurogenesis following adolescent alcohol exposure. J Neuroinflammation 2021; 18:212. [PMID: 34530858 PMCID: PMC8447570 DOI: 10.1186/s12974-021-02243-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 08/18/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Binge ethanol exposure during adolescence reduces hippocampal neurogenesis, a reduction which persists throughout adulthood despite abstinence. This loss of neurogenesis, indicated by reduced doublecortin+ immunoreactivity (DCX+IR), is paralleled by an increase in hippocampal proinflammatory signaling cascades. As galantamine, a cholinesterase inhibitor, has anti-inflammatory actions, we tested the hypothesis that galantamine would prevent (study 1) or restore (study 2) AIE induction of proinflammatory signals within the hippocampus as well as AIE-induced loss of hippocampal neurogenesis. METHODS Galantamine (4 mg/kg) or vehicle (saline) was administered to Wistar rats during adolescent intermittent ethanol (AIE; 5.0 g/kg ethanol, 2 days on/2 days off, postnatal day [P] 25-54) (study 1, prevention) or after AIE during abstinent maturation to adulthood (study 2, restoration). RESULTS Results indicate AIE reduced DCX+IR and induced cleaved caspase3 (Casp3) in DCX-expressing immature neurons. Excitingly, AIE induction of activated Casp3 in DCX-expressing neurons is both prevented and reversed by galantamine treatment, which also resulted in prevention and restoration of neurogenesis (DCX+IR). Similarly, galantamine prevented and/or reversed AIE induction of proinflammatory markers, including the chemokine (C-C motif) ligand 2 (CCL2), cyclooxygenase-2 (COX-2), and high mobility group box 1 (HMGB1) protein, suggesting that AIE induction of proinflammatory signaling mediates both cell death cascades and hippocampal neurogenesis. Interestingly, galantamine treatment increased Ki67+IR generally as well as increased pan-Trk expression specifically in AIE-treated rats but failed to reverse AIE induction of NADPH-oxidase (gp91phox). CONCLUSIONS Collectively, our studies suggest that (1) loss of neurogenesis after AIE is mediated by persistent induction of proinflammatory cascades which drive activation of cell death machinery in immature neurons, and (2) galantamine can prevent and restore AIE disruptions in the hippocampal environmental milieu to then prevent and restore AIE-mediated loss of neurogenesis.
Collapse
Affiliation(s)
- Victoria Macht
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, 104 Manning Drive, Chapel Hill, NC, 27599, USA.
| | - Ryan Vetreno
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, 104 Manning Drive, Chapel Hill, NC, 27599, USA
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Natalie Elchert
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, 104 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Fulton Crews
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, 104 Manning Drive, Chapel Hill, NC, 27599, USA
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
19
|
Selected Molecular Targets for Antiepileptogenesis. Int J Mol Sci 2021; 22:ijms22189737. [PMID: 34575901 PMCID: PMC8466306 DOI: 10.3390/ijms22189737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023] Open
Abstract
The term epileptogenesis defines the usually durable process of converting normal brain into an epileptic one. The resistance of a significant proportion of patients with epilepsy to the available pharmacotherapy prompted the concept of a causative treatment option consisting in stopping or modifying the progress of epileptogenesis. Most antiepileptic drugs possess only a weak or no antiepileptogenic potential at all, but a few of them appear promising in this regard; these include, for example, eslicarbazepine (a sodium and T-type channel blocker), lamotrigine (a sodium channel blocker and glutamate antagonist) or levetiracetam (a ligand of synaptic vehicle protein SV2A). Among the approved non-antiepileptic drugs, antiepileptogenic potential seems to reside in losartan (a blocker of angiotensin II type 1 receptors), biperiden (an antiparkinsonian drug), nonsteroidal anti-inflammatory drugs, antioxidative drugs and minocycline (a second-generation tetracycline with anti-inflammatory and antioxidant properties). Among other possible antiepileptogenic compounds, antisense nucleotides have been considered, among these an antagomir targeting microRNA-134. The drugs and agents mentioned above have been evaluated in post-status epilepticus models of epileptogenesis, so their preventive efficacy must be verified. Limited clinical data indicate that biperiden in patients with brain injuries is well-tolerated and seems to reduce the incidence of post-traumatic epilepsy. Exceptionally, in this regard, our own original data presented here point to c-Fos as an early seizure duration, but not seizure intensity-related, marker of early epileptogenesis. Further research of reliable markers of early epileptogenesis is definitely needed to improve the process of designing adequate antiepileptogenic therapies.
Collapse
|
20
|
Cavalcante BRR, Improta-Caria AC, Melo VHD, De Sousa RAL. Exercise-linked consequences on epilepsy. Epilepsy Behav 2021; 121:108079. [PMID: 34058490 DOI: 10.1016/j.yebeh.2021.108079] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Epilepsy is a brain disorder that leads to seizures and neurobiological, cognitive, psychological, and social consequences. Physical inactivity can contribute to worse epilepsy pathophysiology. Here, we review how physical exercise affects epilepsy physiopathology. METHODS An extensive literature search was performed and the mechanisms of physical exercise on epilepsy were discussed. The search was conducted in Scopus and PubMed. Articles with relevant information were included. Only studies written in English were considered. RESULTS The regular practice of physical exercise can be beneficial for individuals with neurodegenerative diseases, such as epilepsy by decreasing the production of pro-inflammatory and stress biomarkers, increasing socialization, and reducing the incidence of epileptic seizures. Physical exercise is also capable of reducing the symptoms of depression and anxiety in epilepsy. Physical exercise can also improve cognitive function in epilepsy. The regular practice of physical exercise enhances the levels of brain-derived neuro factor (BDNF) in the hippocampi, induces neurogenesis, inhibits oxidative stress and reactive gliosis, avoids cognitive impairment, and stimulates the production of dopamine in the epileptic brain. CONCLUSION Physical exercise is an excellent non-pharmacological tool that can be used in the treatment of epilepsy.
Collapse
Affiliation(s)
| | - Alex Cleber Improta-Caria
- Post-Graduate Program in Medicine and Health, Faculty of Medicine, Federal University of Bahia, Bahia, Brazil
| | | | - Ricardo Augusto Leoni De Sousa
- Physiological Science Multicentric Program, Federal University of Valleyś Jequitinhonha and Mucuri, Minas Gerais, Brazil; Neuroscience and Exercise Study Group (Grupo de Estudos em Neurociências e Exercício - GENE), UFVJM, Diamantina, MG, Brazil.
| |
Collapse
|
21
|
The effects of genotype on inflammatory response in hippocampal progenitor cells: A computational approach. Brain Behav Immun Health 2021; 15:100286. [PMID: 34345870 PMCID: PMC8261829 DOI: 10.1016/j.bbih.2021.100286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023] Open
Abstract
Cell culture models are valuable tools to study biological mechanisms underlying health and disease in a controlled environment. Although their genotype influences their phenotype, subtle genetic variations in cell lines are rarely characterised and taken into account for in vitro studies. To investigate how the genetic makeup of a cell line might affect the cellular response to inflammation, we characterised the single nucleotide variants (SNPs) relevant to inflammation-related genes in an established hippocampal progenitor cell line (HPC0A07/03C) that is frequently used as an in vitro model for hippocampal neurogenesis (HN). SNPs were identified using a genotyping array, and genes associated with chronic inflammatory and neuroinflammatory response gene ontology terms were retrieved using the AmiGO application. SNPs associated with these genes were then extracted from the genotyping dataset, for which a literature search was conducted, yielding relevant research articles for a total of 17 SNPs. Of these variants, 10 were found to potentially affect hippocampal neurogenesis whereby a majority (n=7) is likely to reduce neurogenesis under inflammatory conditions. Taken together, the existing literature seems to suggest that all stages of hippocampal neurogenesis could be negatively affected due to the genetic makeup in HPC0A07/03C cells under inflammation. Additional experiments will be needed to validate these specific findings in a laboratory setting. However, this computational approach already confirms that in vitro studies in general should control for cell lines subtle genetic variations which could mask or exacerbate findings.
Collapse
|
22
|
Paudel YN, Angelopoulou E, Piperi C, Gnatkovsky V, Othman I, Shaikh MF. From the Molecular Mechanism to Pre-clinical Results: Anti-epileptic Effects of Fingolimod. Curr Neuropharmacol 2021; 18:1126-1137. [PMID: 32310049 PMCID: PMC7709153 DOI: 10.2174/1570159x18666200420125017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/13/2020] [Accepted: 04/14/2020] [Indexed: 02/08/2023] Open
Abstract
Epilepsy is a devastating neurological condition characterized by long-term tendency to generate unprovoked seizures, affecting around 1-2% of the population worldwide. Epilepsy is a serious health concern which often associates with other neurobehavioral comorbidities that further worsen disease conditions. Despite tremendous research, the mainstream anti-epileptic drugs (AEDs) exert only symptomatic relief leading to 30% of untreatable patients. This reflects the complexity of the disease pathogenesis and urges the precise understanding of underlying mechanisms in order to explore novel therapeutic strategies that might alter the disease progression as well as minimize the epilepsy-associated comorbidities. Unfortunately, the development of novel AEDs might be a difficult process engaging huge funds, tremendous scientific efforts and stringent regulatory compliance with a possible chance of end-stage drug failure. Hence, an alternate strategy is drug repurposing, where anti-epileptic effects are elicited from drugs that are already used to treat non-epileptic disorders. Herein, we provide evidence of the anti-epileptic effects of Fingolimod (FTY720), a modulator of sphingosine-1-phosphate (S1P) receptor, USFDA approved already for Relapsing-Remitting Multiple Sclerosis (RRMS). Emerging experimental findings suggest that Fingolimod treatment exerts disease-modifying anti-epileptic effects based on its anti-neuroinflammatory properties, potent neuroprotection, anti-gliotic effects, myelin protection, reduction of mTOR signaling pathway and activation of microglia and astrocytes. We further discuss the underlying molecular crosstalk associated with the anti-epileptic effects of Fingolimod and provide evidence for repurposing Fingolimod to overcome the limitations of current AEDs.
Collapse
Affiliation(s)
- Yam Nath Paudel
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vadym Gnatkovsky
- Unit of Epileptology and Experimental Neurophysiology, Fondazione Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Iekhsan Othman
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
23
|
Liao XQ, Yu HC, Diao LM, Lu L, Li H, Zhou YY, Qin HL, Huang QL, Lv TT, Huang XM. Differentially expressed circRNA and functional pathways in the hippocampus of epileptic mice based on next-generation sequencing. Kaohsiung J Med Sci 2021; 37:803-811. [PMID: 34110683 DOI: 10.1002/kjm2.12404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/25/2021] [Accepted: 05/11/2021] [Indexed: 11/11/2022] Open
Abstract
Epilepsy is a clinical syndrome caused by the highly synchronized abnormal discharge of brain neurons. It has the characteristics of paroxysmal, transient, repetitive, and stereotyped. Circular RNAs (circRNAs) are a recently discovered type of noncoding RNA with diverse cellular functions related to their excellent stability; additionally, some circRNAs can bind and regulate microRNAs (miRNAs). The present study was designed to screen the differentially expressed circRNA in an acute seizure model of epilepsy in mice, analyze the related miRNA and mRNA, and study their participating functions and enrichment pathways. In order to obtain the differential expression of circRNA in epilepsy and infer their function, we used next-generation sequencing and found significantly different transcripts. CIRI (circRNA identifier) software was used to predict circRNA from the hippocampus cDNA, EdgeR was applied for the differential circRNA analysis between samples, and Cytoscape 3.7.2 software was used to draw the network diagram. A total of 10,388 differentially expressed circRNAs were identified, of which 34 were upregulated and 66 were downregulated. Among them, mm9_circ_008777 and mm9_circ_004424 were the key upregulated genes, and their expression in the epilepsy group was verified using Quantitative real-time PCR (QPCR). The analysis indicated that the extracted gene ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways were closely related to several epilepsy-associated processes. This study determined that mm9_circ_008777 and mm9_circ_004424 are potential biomarkers of epilepsy, which play important roles in epilepsy-related pathways. These results could help improve the understanding of the biological mechanisms of circRNAs and epilepsy treatments.
Collapse
Affiliation(s)
- Xian-Qiu Liao
- Department of Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Hai-Chun Yu
- Guangxi Technological College of Machinery and Electricity, Nanning, China
| | - Li-Mei Diao
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Ling Lu
- Department of Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Huan Li
- Department of Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yan-Ying Zhou
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Hong-Ling Qin
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Qi-Liu Huang
- Department of Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Ting-Ting Lv
- Department of Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xiao-Mei Huang
- Department of Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
24
|
Yang J, Feng G, Chen M, Wang S, Tang F, Zhou J, Bao N, Yu J, Jiang G. Glucosamine promotes seizure activity via activation of the PI3K/Akt pathway in epileptic rats. Epilepsy Res 2021; 175:106679. [PMID: 34166966 DOI: 10.1016/j.eplepsyres.2021.106679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 04/28/2021] [Accepted: 05/27/2021] [Indexed: 11/25/2022]
Abstract
CONTEXT Glucosamine is an amino monosaccharide with a small molecular weight and has a protective effect against various neurological diseases including multiple sclerosis and encephalomyelitis. Interestingly, low-dose glucosamine has exhibited anti-epilepsy activity. Recent studies have shown that the activation of the protein kinase B (Akt) signaling pathway may promote epilepsy. Glucosamine can increase the level of Akt phosphorylation in the brain tissue, which may aggravate epilepsy. Hence, we speculate that a higher dose of glucosamine may aggravate epilepsy via AKT signaling. OBJECTIVE To investigate the effect of glucosamine on the behavior and electrophysiology of epileptic rats through PI3K/Akt pathway. METHODS Glucose (2.0 g/kg) and glucosamine (0, 0.5, 1.0, and 2.0 g/kg) were added to 2 mL of drinking water, respectively. An acute seizure rat model of lithium-pilocarpine and PTZ-kindling were constructed to observe the effects of different doses of glucosamine on epileptic behavior and hippocampal electrical activity. Meanwhile, the changes in Akt were detected by western blot. RESULTS Epileptic seizures were induced by a single dose of pilocarpine or PTZ and 2.0 g/kg of glucosamine significantly prolonged the duration and severity of epileptic seizures, enhanced hippocampal electrical activity energy density, and increased phosphorylated AKT levels. A glucosamine dose of 2.0 g/kg also significantly increased the total onset energy density. Furthermore, 2.0 g/kg glucosamine facilitated the development of the chronic PTZ-kindling process. CONCLUSIONS Glucosamine may exacerbate acute and chronic epileptic seizures via activation of the PI3K/Akt pathway in rats with experimental epilepsy.
Collapse
Affiliation(s)
- Jin Yang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong, 637000, China; Institute of Neurological Diseases, North Sichuan Medical College, 234 Fujiang Road, Nanchong, Sichuan, China
| | - Guibo Feng
- Department of General Medicine, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China
| | - Mingyue Chen
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong, 637000, China; Institute of Neurological Diseases, North Sichuan Medical College, 234 Fujiang Road, Nanchong, Sichuan, China
| | - Shenglin Wang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong, 637000, China; Institute of Neurological Diseases, North Sichuan Medical College, 234 Fujiang Road, Nanchong, Sichuan, China
| | - Feng Tang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong, 637000, China; Institute of Neurological Diseases, North Sichuan Medical College, 234 Fujiang Road, Nanchong, Sichuan, China
| | - Jing Zhou
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong, 637000, China; Institute of Neurological Diseases, North Sichuan Medical College, 234 Fujiang Road, Nanchong, Sichuan, China
| | - Nana Bao
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong, 637000, China; Institute of Neurological Diseases, North Sichuan Medical College, 234 Fujiang Road, Nanchong, Sichuan, China
| | - Juming Yu
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong, 637000, China; Institute of Neurological Diseases, North Sichuan Medical College, 234 Fujiang Road, Nanchong, Sichuan, China
| | - Guohui Jiang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong, 637000, China; Institute of Neurological Diseases, North Sichuan Medical College, 234 Fujiang Road, Nanchong, Sichuan, China.
| |
Collapse
|
25
|
Andrew PM, Lein PJ. Neuroinflammation as a Therapeutic Target for Mitigating the Long-Term Consequences of Acute Organophosphate Intoxication. Front Pharmacol 2021; 12:674325. [PMID: 34054549 PMCID: PMC8153682 DOI: 10.3389/fphar.2021.674325] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/30/2021] [Indexed: 12/14/2022] Open
Abstract
Acute intoxication with organophosphates (OPs) can cause a potentially fatal cholinergic crisis characterized by peripheral parasympathomimetic symptoms and seizures that rapidly progress to status epilepticus (SE). While current therapeutic countermeasures for acute OP intoxication significantly improve the chances of survival when administered promptly, they are insufficient for protecting individuals from chronic neurologic outcomes such as cognitive deficits, affective disorders, and acquired epilepsy. Neuroinflammation is posited to contribute to the pathogenesis of these long-term neurologic sequelae. In this review, we summarize what is currently known regarding the progression of neuroinflammatory responses after acute OP intoxication, drawing parallels to other models of SE. We also discuss studies in which neuroinflammation was targeted following OP-induced SE, and explain possible reasons why such therapeutic interventions have inconsistently and only partially improved long-term outcomes. Finally, we suggest future directions for the development of therapeutic strategies that target neuroinflammation to mitigate the neurologic sequelae of acute OP intoxication.
Collapse
Affiliation(s)
| | - Pamela J. Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, United States
| |
Collapse
|
26
|
Chen L, Wang Y, Chen Z. Adult Neurogenesis in Epileptogenesis: An Update for Preclinical Finding and Potential Clinical Translation. Curr Neuropharmacol 2021; 18:464-484. [PMID: 31744451 PMCID: PMC7457402 DOI: 10.2174/1570159x17666191118142314] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/31/2019] [Accepted: 11/18/2019] [Indexed: 12/22/2022] Open
Abstract
Epileptogenesis refers to the process in which a normal brain becomes epileptic, and is characterized by hypersynchronous spontaneous recurrent seizures involving a complex epileptogenic network. Current available pharmacological treatment of epilepsy is generally symptomatic in controlling seizures but is not disease-modifying in epileptogenesis. Cumulative evidence suggests that adult neurogenesis, specifically in the subgranular zone of the hippocampal dentate gyrus, is crucial in epileptogenesis. In this review, we describe the pathological changes that occur in adult neurogenesis in the epileptic brain and how adult neurogenesis is involved in epileptogenesis through different interventions. This is followed by a discussion of some of the molecular signaling pathways involved in regulating adult neurogenesis, which could be potential druggable targets for epileptogenesis. Finally, we provide perspectives on some possible research directions for future studies.
Collapse
Affiliation(s)
- Liying Chen
- Institute of Pharmacology & Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yi Wang
- Institute of Pharmacology & Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
27
|
Barreiro-Iglesias A. Role of cyclooxygenases and prostaglandins in adult brain neurogenesis. Prostaglandins Other Lipid Mediat 2021; 152:106498. [PMID: 33035690 DOI: 10.1016/j.prostaglandins.2020.106498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/20/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023]
Abstract
The telencephalon of adult mammals shows constitutive neurogenesis, and disease or traumatic injuries alter the rate of neurogenesis in the adult brain. Understanding the molecular signals that control adult brain neurogenesis is of crucial importance for the development of therapies to promote regeneration in the injured or diseased brain. Here, I reviewed our current knowledge on the role of cyclooxygenases and prostaglandins in controlling adult brain neurogenesis. Current data indicate that cyclooxygenase-2 derived prostaglandin E2 acting through EP receptors promotes neurogenesis in adult neurogenic niches of the telencephalon and that manipulations of this signalling pathway could be used to promote neurogenesis under pathological conditions. In this review article, I also propose new research directions to increase our knowledge on the role of this signalling pathway in neurogenesis.
Collapse
Affiliation(s)
- Antón Barreiro-Iglesias
- Department of Functional Biology, Faculty of Biology, CIBUS, Campus Vida, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
28
|
Tang W, He X, Feng L, Liu D, Yang Z, Zhang J, Xiao B, Yang Z. The Role of Hippocampal Neurogenesis in ANT-DBS for LiCl-Pilocarpine-Induced Epileptic Rats. Stereotact Funct Neurosurg 2020; 99:55-64. [PMID: 33302280 DOI: 10.1159/000509314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 06/10/2020] [Indexed: 11/19/2022]
Abstract
PURPOSE Abnormal neurogenesis in the hippocampus after status epilepticus (SE) has been suggested as a key pathogeny of temporal lobe epilepsy. This study aimed to investigate the effect of deep brain stimulation of the anterior thalamic nucleus (ANT-DBS) on hippocampal neurogenesis in LiCl-pilocarpine-induced epileptic rats and to analyze its relationship with postoperative spontaneous recurrent seizures (SRS) and anxiety. METHOD SE was induced by a systemic LiCl-pilocarpine injection in adult male rats. Rats in the DBS group underwent ANT-DBS immediately after successful SE induction. SRS was only recorded during the chronic stage. An elevated plus maze was used to evaluate the level of anxiety in rats 7, 28, and 60 days after SE onset. After the elevated plus-maze experiment, rats were sacrificed under anesthesia in order to evaluate hippocampal neurogenesis. Doublecortin (DCX) was used as a marker for neurogenesis. RESULTS During the chronic stage, SRS in rats in the DBS group were significantly decreased. The level of anxiety was increased significantly in rats in the DBS group 28 days after SE, while no significant differences in anxiety levels were found 7 and 60 days after SE. The number of DCX-positive cells in the hippocampus was significantly increased 7 days after SE and was significantly decreased 60 days after SE in all rats in which SE was induced. However, the number of DCX-positive cells in the DBS group was significantly lower than that in the other groups 28 days after SE. CONCLUSIONS ANT-DBS may suppress SRS and increase the postoperative anxiety of epileptic rats by influencing hippocampal neurogenesis.
Collapse
Affiliation(s)
- Weiting Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xinghui He
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China,
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Dingyang Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhuanyi Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Junmei Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhiquan Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
29
|
Lourenço DM, Ribeiro-Rodrigues L, Sebastião AM, Diógenes MJ, Xapelli S. Neural Stem Cells and Cannabinoids in the Spotlight as Potential Therapy for Epilepsy. Int J Mol Sci 2020; 21:E7309. [PMID: 33022963 PMCID: PMC7582633 DOI: 10.3390/ijms21197309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 01/18/2023] Open
Abstract
Epilepsy is one of the most common brain diseases worldwide, having a huge burden in society. The main hallmark of epilepsy is the occurrence of spontaneous recurrent seizures, having a tremendous impact on the lives of the patients and of their relatives. Currently, the therapeutic strategies are mostly based on the use of antiepileptic drugs, and because several types of epilepsies are of unknown origin, a high percentage of patients are resistant to the available pharmacotherapy, continuing to experience seizures overtime. Therefore, the search for new drugs and therapeutic targets is highly important. One key aspect to be targeted is the aberrant adult hippocampal neurogenesis (AHN) derived from Neural Stem Cells (NSCs). Indeed, targeting seizure-induced AHN may reduce recurrent seizures and shed some light on the mechanisms of disease. The endocannabinoid system is a known modulator of AHN, and due to the known endogenous antiepileptic properties, it is an interesting candidate for the generation of new antiepileptic drugs. However, further studies and clinical trials are required to investigate the putative mechanisms by which cannabinoids can be used to treat epilepsy. In this manuscript, we will review how cannabinoid-induced modulation of NSCs may promote neural plasticity and whether these drugs can be used as putative antiepileptic treatment.
Collapse
Affiliation(s)
- Diogo M. Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Leonor Ribeiro-Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Ana M. Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Maria J. Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| |
Collapse
|
30
|
Mukhtar I. Inflammatory and immune mechanisms underlying epileptogenesis and epilepsy: From pathogenesis to treatment target. Seizure 2020; 82:65-79. [PMID: 33011590 DOI: 10.1016/j.seizure.2020.09.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a brain disease associated with epileptic seizures as well as with neurobehavioral outcomes of this condition. In the last century, inflammation emerged as a crucial factor in epilepsy etiology. Various brain insults through activation of neuronal and non-neuronal brain cells initiate a series of inflammatory events. Growing observations strongly suggest that abnormal activation of critical inflammatory processes contributes to epileptogenesis, a gradual process by which a normal brain transforms into the epileptic brain. Increased knowledge of inflammatory pathways in epileptogenesis has unveiled mechanistic targets for novel antiepileptic therapies. Molecules specifically targeting the pivotal inflammatory pathways may serve as promising candidates to halt the development of epilepsy. The present paper reviews the pieces of evidence conceptually supporting the potential role of inflammatory mechanisms and the relevant blood-brain barrier (BBB) disruption in epileptogenesis. Also, it discusses the mechanisms underlying inflammation-induced neuronal-glial network impairment and highlights innovative neuroregulatory actions of typical inflammatory molecules. Finally, it presents a brief analysis of observations supporting the therapeutic role of inflammation-targeting tiny molecules in epileptic seizures.
Collapse
Affiliation(s)
- Iqra Mukhtar
- H.E.J Research Institute of Chemistry, International Center For Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
31
|
Tang FL, Wang J, Itokazu Y, Yu RK. Enhanced Susceptibility to Chemoconvulsant-Induced Seizures in Ganglioside GM3 Synthase Knockout Mice. ASN Neuro 2020; 12:1759091420938175. [PMID: 32664815 PMCID: PMC7364800 DOI: 10.1177/1759091420938175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ganglioside GM3 synthase (α-2,3-sialyltransferase, ST3GAL5, GM3S) is a key enzyme involved in the biosynthesis of gangliosides. ST3GAL5 deficiency causes an absence of GM3 and all downstream biosynthetic derivatives. The affected individuals manifest deafness, severe irritability, intractable seizures, and profound intellectual disability. To investigate whether deficiency of GM3 is involved in seizure susceptibility, we induced seizures with different chemoconvulsants in ST3GAL5 knockout mice. We report here that ST3GAL5 knockout mice are hyperactive and more susceptible to seizures induced by chemoconvulsants, including kainate and pilocarpine, compared with normal controls. In the hippocampal dentate gyrus, loss of GM3 aggravates seizure-induced aberrant neurogenesis. These data indicate that GM3 and gangliosides derived from GM3 may serve as important regulators of epilepsy and may play an important role in aberrant neurogenesis associated with seizures.
Collapse
Affiliation(s)
- Fu-Lei Tang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, United States
| | - Jing Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, United States
| | - Yukata Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, United States
| | - Robert K Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, United States
| |
Collapse
|
32
|
Evaluation of the ameliorative effects of oral administration of metformin on epileptogenesis in the temporal lobe epilepsy model in rats. Life Sci 2020; 257:118066. [PMID: 32652135 DOI: 10.1016/j.lfs.2020.118066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/26/2020] [Accepted: 07/05/2020] [Indexed: 12/14/2022]
Abstract
AIMS Understanding the underlying molecular mechanisms involved in epileptogenesis is necessary to target the best therapeutic interventions in epilepsy. Recently, it has been postulated that metformin, an old antidiabetic oral drug, has anti-seizure properties mostly due to its antioxidant activities. This study was designed to evaluate the ameliorative effects of metformin on the progression of epilepsy in the temporal lobe epilepsy model in rats. MAIN METHODS Temporal lobe Epilepsy was induced by intracerebroventricular microinjection of kainic acid. Metformin was orally administered for two weeks before induction of epilepsy. Anti-epileptogenic activity of metformin was evaluated by intracranial electroencepholography (IEEG) recording to detect spontaneous seizures, mossy fiber sprouting by Timm staining, neurogenesis by BrdU staining. KEY FINDINGS Oral administration of metformin prior to kainite-induced status epilepticus blocked the variant characterizations of epileptogenesis like neuronal cell death, aberrant neurogenesis, mossy fiber sprouting, and spontaneous seizures. SIGNIFICANCE These findings indicate that metformin has potential anti-epileptogenic properties in temporal lobe epilepsy.
Collapse
|
33
|
Miziak B, Konarzewska A, Ułamek-Kozioł M, Dudra-Jastrzębska M, Pluta R, Czuczwar SJ. Anti-Epileptogenic Effects of Antiepileptic Drugs. Int J Mol Sci 2020; 21:ijms21072340. [PMID: 32231010 PMCID: PMC7178140 DOI: 10.3390/ijms21072340] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022] Open
Abstract
Generally, the prevalence of epilepsy does not exceed 0.9% of the population and approximately 70% of epilepsy patients may be adequately controlled with antiepileptic drugs (AEDs). Moreover, status epilepticus (SE) or even a single seizure may produce neurodegeneration within the brain and SE has been recognized as one of acute brain insults leading to acquired epilepsy via the process of epileptogenesis. Two questions thus arise: (1) Are AEDs able to inhibit SE-induced neurodegeneration? and (2) if so, can a probable neuroprotective potential of particular AEDs stop epileptogenesis? An affirmative answer to the second question would practically point to the preventive potential of a given neuroprotective AED following acute brain insults. The available experimental data indicate that diazepam (at low and high doses), gabapentin, pregabalin, topiramate and valproate exhibited potent or moderate neuroprotective effects in diverse models of SE in rats. However, only diazepam (at high doses), gabapentin and pregabalin exerted some protective activity against acquired epilepsy (spontaneous seizures). As regards valproate, its effects on spontaneous seizures were equivocal. With isobolography, some supra-additive combinations of AEDs have been delineated against experimental seizures. One of such combinations, levetiracetam + topiramate proved highly synergistic in two models of seizures and this particular combination significantly inhibited epileptogenesis in rats following status SE. Importantly, no neuroprotection was evident. It may be strikingly concluded that there is no correlation between neuroprotection and antiepileptogenesis. Probably, preclinically verified combinations of AEDs may be considered for an anti-epileptogenic therapy.
Collapse
Affiliation(s)
- Barbara Miziak
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland; (B.M.); (A.K.); (M.D.-J.)
| | - Agnieszka Konarzewska
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland; (B.M.); (A.K.); (M.D.-J.)
| | - Marzena Ułamek-Kozioł
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Monika Dudra-Jastrzębska
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland; (B.M.); (A.K.); (M.D.-J.)
| | - Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland;
- Correspondence: (R.P.); (S.J.C.); Tel.: +48-22-6086-540 (ext. 6086-469) (R.P.); +48-81-448-65-00 (S.J.C.); Fax: +48-81-448-65-01 (S.J.C.); +48-22-6086-627/668-55-32 (R.P.)
| | - Stanisław J. Czuczwar
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland; (B.M.); (A.K.); (M.D.-J.)
- Correspondence: (R.P.); (S.J.C.); Tel.: +48-22-6086-540 (ext. 6086-469) (R.P.); +48-81-448-65-00 (S.J.C.); Fax: +48-81-448-65-01 (S.J.C.); +48-22-6086-627/668-55-32 (R.P.)
| |
Collapse
|
34
|
Hodges SL, Lugo JN. Therapeutic role of targeting mTOR signaling and neuroinflammation in epilepsy. Epilepsy Res 2020; 161:106282. [PMID: 32036255 PMCID: PMC9205332 DOI: 10.1016/j.eplepsyres.2020.106282] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/03/2020] [Accepted: 01/29/2020] [Indexed: 02/08/2023]
Abstract
Existing therapies for epilepsy are primarily symptomatic and target mechanisms of neuronal transmission in order to restore the excitatory/inhibitory imbalance in the brain after seizures. However, approximately one third of individuals with epilepsy have medically refractory epilepsy and do not respond to available treatments. There is a critical need for the development of therapeutics that extend beyond manipulation of excitatory neurotransmission and target pathological changes underlying the cause of the disease. Epilepsy is a multifaceted condition, and it could be that effective treatment involves the targeting of several mechanisms. There is evidence for both dysregulated PI3K/Akt/mTOR (mTOR) signaling and heightened neuroinflammatory processes following seizures in the brain. Signaling via mTOR has been implicated in several epileptogenic processes, including synaptic plasticity mechanisms and changes in ion channel expression following seizures. Inflammatory signaling, such as increased synthesis of cytokines and other immune molecules, has also shown to play a significant role in the development of chronic epilepsy. mTOR pathway activation and immune signaling are known to interact in normal physiological states, as well as influence one another following seizures. Simultaneous inhibition of both processes could be a promising therapeutic avenue to prevent the development of chronic epilepsy by targeting two key pathological mechanisms implicated in epileptogenesis.
Collapse
Affiliation(s)
- Samantha L Hodges
- Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA
| | - Joaquin N Lugo
- Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA; Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA; Department of Biology, Baylor University, Waco, TX 76798, USA.
| |
Collapse
|
35
|
Downregulation of peripheral PTGS2/COX-2 in response to valproate treatment in patients with epilepsy. Sci Rep 2020; 10:2546. [PMID: 32054883 PMCID: PMC7018850 DOI: 10.1038/s41598-020-59259-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/22/2020] [Indexed: 12/18/2022] Open
Abstract
Antiepileptic drug therapy has significant inter-patient variability in response towards it. The current study aims to understand this variability at the molecular level using microarray-based analysis of peripheral blood gene expression profiles of patients receiving valproate (VA) monotherapy. Only 10 unique genes were found to be differentially expressed in VA responders (n = 15) and 6 genes in the non-responders (n = 8) (fold-change >2, p < 0.05). PTGS2 which encodes cyclooxygenase-2, COX-2, showed downregulation in the responders compared to the non-responders. PTGS2/COX-2 mRNA profiles in the two groups corresponded to their plasma profiles of the COX-2 product, prostaglandin E2 (PGE2). Since COX-2 is believed to regulate P-glycoprotein (P-gp), a multidrug efflux transporter over-expressed at the blood-brain barrier (BBB) in drug-resistant epilepsy, the pathway connecting COX-2 and P-gp was further explored in vitro. Investigation of the effect of VA upon the brain endothelial cells (hCMEC/D3) in hyperexcitatory conditions confirmed suppression of COX-2-dependent P-gp upregulation by VA. Our findings suggest that COX-2 downregulation by VA may suppress seizure-mediated P-gp upregulation at the BBB leading to enhanced drug delivery to the brain in the responders. Our work provides insight into the association of peripheral PTGS2/COX-2 expression with VA efficacy and the role of COX-2 as a potential therapeutic target for developing efficacious antiepileptic treatment.
Collapse
|
36
|
Terrone G, Frigerio F, Balosso S, Ravizza T, Vezzani A. Inflammation and reactive oxygen species in status epilepticus: Biomarkers and implications for therapy. Epilepsy Behav 2019; 101:106275. [PMID: 31171434 DOI: 10.1016/j.yebeh.2019.04.028] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 04/15/2019] [Indexed: 01/13/2023]
Abstract
Preclinical studies in immature and adult rodents and clinical observations show that neuroinflammation and oxidative stress are rapid onset phenomena occurring in the brain during status epilepticus and persisting thereafter. Notably, both neuroinflammation and oxidative stress contribute to the acute and long-term sequelae of status epilepticus thus representing potential druggable targets. Antiinflammatory drugs that interfere with the IL-1β pathway, such as anakinra, can control benzodiazepine-refractory status epilepticus in animals, and there is recent proof-of-concept evidence for therapeutic effects in children with Febrile infection related epilepsy syndrome (FIRES). Inhibitors of monoacylglycerol lipase and P2X7 receptor antagonists are also promising antiinflammatory drug candidates for rapidly aborting de novo status epilepticus and provide neuroprotection. Antiinflammatory and antioxidant drugs administered to rodents during status epilepticus and transiently thereafter, prevent long-term sequelae such as cognitive deficits and seizure progression in animals developing epilepsy. Some drugs are already in medical use and are well-tolerated, therefore, they may be considered for treating status epilepticus and its neurological consequences. Finally, markers of neuroinflammation and oxidative stress are measureable in peripheral blood and by neuroimaging, which offers an opportunity for developing prognostic and predictive mechanistic biomarkers in people exposed to status epilepticus. This article is part of the Special Issue "Proceedings of the 7th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures.
Collapse
Affiliation(s)
- Gaetano Terrone
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Federica Frigerio
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Silvia Balosso
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Teresa Ravizza
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Annamaria Vezzani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy.
| |
Collapse
|
37
|
Dexamethasone Attenuates Hyperexcitability Provoked by Experimental Febrile Status Epilepticus. eNeuro 2019; 6:ENEURO.0430-19.2019. [PMID: 31685676 PMCID: PMC6860985 DOI: 10.1523/eneuro.0430-19.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 10/20/2019] [Indexed: 12/16/2022] Open
Abstract
The role of neuroinflammation in the mechanisms of epilepsy development is important because inflammatory mediators provide tractable targets for intervention. Inflammation is intrinsically involved in the generation of childhood febrile seizures (FSs), and prolonged FS [febrile status epilepticus (FSE)] precedes a large proportion of adult cases of temporal lobe epilepsy (TLE). As TLE is often refractory to therapy and is associated with serious cognitive and emotional problems, we investigated whether its development can be prevented using anti-inflammatory strategies. Using an immature rat model of FSE [experimental FSE (eFSE)], we administered dexamethasone (DEX), a broad anti-inflammatory agent, over 3 d following eFSE. We assessed eFSE-provoked hippocampal network hyperexcitability by quantifying the presence, frequency, and duration of hippocampal spike series, as these precede and herald the development of TLE-like epilepsy. We tested whether eFSE provoked hippocampal microgliosis, astrocytosis, and proinflammatory cytokine production in male and female rats and investigated blood–brain barrier (BBB) breaches as a potential contributor. We then evaluated whether DEX attenuated these eFSE sequelae. Spike series were not observed in control rats given vehicle or DEX, but occurred in 41.6% of eFSE-vehicle rats, associated with BBB leakage and elevated hippocampal cytokines. eFSE did not induce astrocytosis or microgliosis but provoked BBB disruption in 60% of animals. DEX significantly reduced spike series prevalence (to 7.6%) and frequency, and abrogated eFSE-induced cytokine production and BBB leakage (to 20%). These findings suggest that a short, postinsult intervention with a clinically available anti-inflammatory agent potently attenuates epilepsy-predicting hippocampal hyperexcitability, potentially by minimizing BBB disruption and related neuroinflammation.
Collapse
|
38
|
Rawat C, Kukal S, Dahiya UR, Kukreti R. Cyclooxygenase-2 (COX-2) inhibitors: future therapeutic strategies for epilepsy management. J Neuroinflammation 2019; 16:197. [PMID: 31666079 PMCID: PMC6822425 DOI: 10.1186/s12974-019-1592-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 09/23/2019] [Indexed: 01/15/2023] Open
Abstract
Epilepsy, a common multifactorial neurological disease, affects about 69 million people worldwide constituting nearly 1% of the world population. Despite decades of extensive research on understanding its underlying mechanism and developing the pharmacological treatment, very little is known about the biological alterations leading to epileptogenesis. Due to this gap, the currently available antiepileptic drug therapy is symptomatic in nature and is ineffective in 30% of the cases. Mounting evidences revealed the pathophysiological role of neuroinflammation in epilepsy which has shifted the focus of epilepsy researchers towards the development of neuroinflammation-targeted therapeutics for epilepsy management. Markedly increased expression of key inflammatory mediators in the brain and blood-brain barrier may affect neuronal function and excitability and thus may increase seizure susceptibility in preclinical and clinical settings. Cyclooxygenase-2 (COX-2), an enzyme synthesizing the proinflammatory mediators, prostaglandins, has widely been reported to be induced during seizures and is considered to be a potential neurotherapeutic target for epilepsy management. However, the efficacy of such therapy involving COX-2 inhibition depends on various factors viz., therapeutic dose, time of administration, treatment duration, and selectivity of COX-2 inhibitors. This article reviews the preclinical and clinical evidences supporting the role of COX-2 in seizure-associated neuroinflammation in epilepsy and the potential clinical use of COX-2 inhibitors as a future strategy for epilepsy treatment.
Collapse
Affiliation(s)
- Chitra Rawat
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India.,Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Samiksha Kukal
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India.,Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Ujjwal Ranjan Dahiya
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India.,Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India. .,Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR), Delhi, India.
| |
Collapse
|
39
|
Upadhya D, Kodali M, Gitai D, Castro OW, Zanirati G, Upadhya R, Attaluri S, Mitra E, Shuai B, Hattiangady B, Shetty AK. A Model of Chronic Temporal Lobe Epilepsy Presenting Constantly Rhythmic and Robust Spontaneous Seizures, Co-morbidities and Hippocampal Neuropathology. Aging Dis 2019; 10:915-936. [PMID: 31595192 PMCID: PMC6764729 DOI: 10.14336/ad.2019.0720] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 07/20/2019] [Indexed: 12/18/2022] Open
Abstract
Many animal prototypes illustrating the various attributes of human temporal lobe epilepsy (TLE) are available. These models have been invaluable for comprehending multiple epileptogenic processes, modifications in electrophysiological properties, neuronal hyperexcitability, neurodegeneration, neural plasticity, and chronic neuroinflammation in TLE. Some models have also uncovered the efficacy of new antiepileptic drugs or biologics for alleviating epileptogenesis, cognitive impairments, or spontaneous recurrent seizures (SRS). Nonetheless, the suitability of these models for testing candidate therapeutics in conditions such as chronic TLE is debatable because of a lower frequency of SRS and an inconsistent pattern of SRS activity over days, weeks or months. An ideal prototype of chronic TLE for investigating novel therapeutics would need to display a large number of SRS with a dependable frequency and severity and related co-morbidities. This study presents a new kainic acid (KA) model of chronic TLE generated through induction of status epilepticus (SE) in 6-8 weeks old male F344 rats. A rigorous characterization in the chronic epilepsy period validated that the animal prototype mimicked the most salient features of robust chronic TLE. Animals displayed a constant frequency and intensity of SRS across weeks and months in the 5th and 6th month after SE, as well as cognitive and mood impairments. Moreover, SRS frequency displayed a rhythmic pattern with 24-hour periodicity and a consistently higher number of SRS in the daylight period. Besides, the model showed many neuropathological features of chronic TLE, which include a partial loss of inhibitory interneurons, reduced neurogenesis with persistent aberrant migration of newly born neurons, chronic neuroinflammation typified by hypertrophied astrocytes and rod-shaped microglia, and a significant aberrant mossy fiber sprouting in the hippocampus. This consistent chronic seizure model is ideal for investigating the efficacy of various antiepileptic drugs and biologics as well as understanding multiple pathophysiological mechanisms underlying chronic epilepsy.
Collapse
Affiliation(s)
| | | | - Daniel Gitai
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, USA
| | - Olagide W Castro
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, USA
| | - Gabriele Zanirati
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, USA
| | - Raghavendra Upadhya
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, USA
| | - Sahithi Attaluri
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, USA
| | - Eeshika Mitra
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, USA
| | - Bing Shuai
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, USA
| | - Bharathi Hattiangady
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, USA
| |
Collapse
|
40
|
Klein P, Tyrlikova I. No prevention or cure of epilepsy as yet. Neuropharmacology 2019; 168:107762. [PMID: 31499048 DOI: 10.1016/j.neuropharm.2019.107762] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/02/2019] [Accepted: 09/05/2019] [Indexed: 12/29/2022]
Abstract
Approximately 20% of all epilepsy is caused by acute acquired injury such as traumatic brain injury, stroke and CNS infection. The known onset of the injury which triggers the epileptogenic process, early presentation to medical care, and a latency between the injury and the development of clinical epilepsy present an opportunity to intervene with treatment to prevent epilepsy. No such treatment exists and yet there has been remarkably little clinical research during the last 20 years to try to develop such treatment. We review possible reasons for this, possible ways to rectify the situations and note some of the ways currently under way to do so. Resective surgical treatment can achieve "cure" in some patients but is sparsely utilized. In certain "self-limiting" syndromes of childhood and adolescence epilepsy remits spontaneously. In a proportion of patients who become seizure free on medications or with dietary treatment, seizure freedom persists when treatment is discontinued. We discuss these situations which can be considered "cures"; and note that at present we have little understanding of mechanism of such cures, and cannot therefore translate them into a treatment paradigm targeting a "cure" of epilepsy. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
- Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, MD, USA.
| | | |
Collapse
|
41
|
Terrone G, Balosso S, Pauletti A, Ravizza T, Vezzani A. Inflammation and reactive oxygen species as disease modifiers in epilepsy. Neuropharmacology 2019; 167:107742. [PMID: 31421074 DOI: 10.1016/j.neuropharm.2019.107742] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/10/2019] [Accepted: 08/13/2019] [Indexed: 02/06/2023]
Abstract
Neuroinflammation and reactive oxygen and nitrogen species are rapidly induced in the brain after acute cerebral injuries that are associated with an enhanced risk for epilepsy in humans and related animal models. These phenomena reinforce each others and persist during epileptogenesis as well as during chronic spontaneous seizures. Anti-inflammatory and anti-oxidant drugs transiently administered either before, or shortly after the clinical onset of symptomatic epilepsy, similarly block the progression of spontaneous seizures, and may delay their onset. Moreover, neuroprotection and rescue of cognitive deficits are also observed in the treated animals. Therefore, although these treatments do not prevent epilepsy development, they offer clinically relevant disease-modification effects. These therapeutic effects are mediated by targeting molecular signaling pathways such as the IL-1β-IL-1 receptor type 1 and TLR4, P2X7 receptors, the transcriptional anti-oxidant factor Nrf2, while the therapeutic impact of COX-2 inhibition for reducing spontaneous seizures remains controversial. Some anti-inflammatory and anti-oxidant drugs that are endowed of disease modification effects in preclinical models are already in medical use and have a safety profile, therefore, they provide potential re-purposed treatments for improving the disease course and for reducing seizure burden. Markers of neuroinflammation and oxidative stress can be measured in blood or by neuroimaging, therefore they represent testable prognostic and predictive biomarkers for selecting the patient's population at high risk for developing epilepsy therefore eligible for novel treatments. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
- Gaetano Terrone
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Silvia Balosso
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Alberto Pauletti
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Teresa Ravizza
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Annamaria Vezzani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy.
| |
Collapse
|
42
|
Abstract
Compelling evidence indicates that hippocampal dentate granule cells are generated throughout human life and into old age. While animal studies demonstrate that these new neurons are important for memory function, animal research also implicates these cells in the pathogenesis of temporal lobe epilepsy. Several recent preclinical studies in rodents now suggest that targeting these new neurons can have disease-modifying effects in epilepsy.
Collapse
Affiliation(s)
- Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Anesthesia, University of Cincinnati, Cincinnati, OH, USA.,Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Center for Pediatric Neuroscience, Cincinnati Children's Hospital, Cincinnati, OH, USA
| |
Collapse
|
43
|
Targeting Seizure-Induced Neurogenesis in a Clinically Relevant Time Period Leads to Transient But Not Persistent Seizure Reduction. J Neurosci 2019; 39:7019-7028. [PMID: 31308098 DOI: 10.1523/jneurosci.0920-19.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 11/21/2022] Open
Abstract
Mesial temporal lobe epilepsy (mTLE), the most common form of medically refractory epilepsy in adults, is usually associated with hippocampal pathophysiology. Using rodent models of mTLE, many studies including work from our laboratory have shown that new neurons born around the onset of severe acute seizures known as status epilepticus (SE) are crucial for the process of epileptogenesis and targeting seizure-induced neurogenesis either genetically or pharmacologically can impact the frequency of chronic seizures. However, these studies are limited in their clinical relevance as none of them determines the potential of blocking new neurons generated after the epileptogenic insult to alleviate the development of chronic seizures. Therefore, using a pilocarpine-induced SE model of mTLE in mice of either sex, we show that >4 weeks of continuous and concurrent ablation of seizure-induced neurogenesis after SE can reduce the formation of spontaneous recurrent seizures by 65%. We also found that blocking post-SE neurogenesis does not lead to long-term seizure reduction as the effect was observed only transiently for 10 d with >4 weeks of continuous and concurrent ablation of seizure-induced neurogenesis. Thus, these findings provide evidence that seizure-induced neurogenesis when adequately reduced in a clinically relevant time period has the potential to transiently suppress recurrent seizures, but additional mechanisms need to be targeted to permanently prevent epilepsy development.SIGNIFICANCE STATEMENT Consistent with morphological and electrophysiological studies suggesting aberrant adult-generated neurons contribute to epilepsy development, ablation of seizure-induced new neurons at the time of the initial insult reduces the frequency of recurrent seizures. In this study, we show that continuous targeting of post-insult new neurons in a therapeutically relevant time period reduces chronic seizures; however, this effect does not persist suggesting possible additional mechanisms.
Collapse
|
44
|
Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nat Rev Neurol 2019; 15:459-472. [DOI: 10.1038/s41582-019-0217-x] [Citation(s) in RCA: 538] [Impact Index Per Article: 89.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2019] [Indexed: 02/06/2023]
|
45
|
Hong S, JianCheng H, JiaWen W, ShuQin Z, GuiLian Z, HaiQin W, Ru Z, Zhen G, HongWei R. Losartan inhibits development of spontaneous recurrent seizures by preventing astrocyte activation and attenuating blood-brain barrier permeability following pilocarpine-induced status epilepticus. Brain Res Bull 2019; 149:251-259. [DOI: 10.1016/j.brainresbull.2019.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 04/30/2019] [Accepted: 05/04/2019] [Indexed: 12/18/2022]
|
46
|
The effects of lamotrigine and ethosuximide on seizure frequency, neuronal loss, and astrogliosis in a model of temporal-lobe epilepsy. Brain Res 2019; 1712:1-6. [DOI: 10.1016/j.brainres.2019.01.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 01/18/2019] [Accepted: 01/26/2019] [Indexed: 12/28/2022]
|
47
|
Löscher W. The holy grail of epilepsy prevention: Preclinical approaches to antiepileptogenic treatments. Neuropharmacology 2019; 167:107605. [PMID: 30980836 DOI: 10.1016/j.neuropharm.2019.04.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 02/06/2023]
Abstract
A variety of acute brain insults can induce epileptogenesis, a complex process that results in acquired epilepsy. Despite advances in understanding mechanisms of epileptogenesis, there is currently no approved treatment that prevents the development or progression of epilepsy in patients at risk. The current concept of epileptogenesis assumes a window of opportunity following acute brain insults that allows intervention with preventive treatment. Recent results suggest that injury-induced epileptogenesis can be a much more rapid process than previously thought, suggesting that the 'therapeutic window' may only be open for a brief period, as in stroke therapy. However, experimental data also suggest a second, possibly delayed process ("secondary epileptogenesis") that influences the progression and refractoriness of the epileptic state over time, allowing interfering with this process even after onset of epilepsy. In this review, both methodological issues in preclinical drug development and novel targets for antiepileptogenesis will be discussed. Several promising drugs that either prevent epilepsy (antiepileptogenesis) or slow epilepsy progression and alleviate cognitive or behavioral comorbidities of epilepsy (disease modification) have been described in recent years, using diverse animal models of acquired epilepsy. Promising agents include TrkB inhibitors, losartan, statins, isoflurane, anti-inflammatory and anti-oxidative drugs, the SV2A modulator levetiracetam, and epigenetic interventions. Research on translational target validity and on prognostic biomarkers that can be used to stratify patients (or experimental animals) at high risk of developing epilepsy will hopefully soon lead to proof-of-concept clinical trials with the most promising drugs, which will be essential to make prevention of epilepsy a reality. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
48
|
Rodrigues RS, Lourenço DM, Paulo SL, Mateus JM, Ferreira MF, Mouro FM, Moreira JB, Ribeiro FF, Sebastião AM, Xapelli S. Cannabinoid Actions on Neural Stem Cells: Implications for Pathophysiology. Molecules 2019; 24:E1350. [PMID: 30959794 PMCID: PMC6480122 DOI: 10.3390/molecules24071350] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 02/06/2023] Open
Abstract
With the increase of life expectancy, neurodegenerative disorders are becoming not only a health but also a social burden worldwide. However, due to the multitude of pathophysiological disease states, current treatments fail to meet the desired outcomes. Therefore, there is a need for new therapeutic strategies focusing on more integrated, personalized and effective approaches. The prospect of using neural stem cells (NSC) as regenerative therapies is very promising, however several issues still need to be addressed. In particular, the potential actions of pharmacological agents used to modulate NSC activity are highly relevant. With the ongoing discussion of cannabinoid usage for medical purposes and reports drawing attention to the effects of cannabinoids on NSC regulation, there is an enormous, and yet, uncovered potential for cannabinoids as treatment options for several neurological disorders, specifically when combined with stem cell therapy. In this manuscript, we review in detail how cannabinoids act as potent regulators of NSC biology and their potential to modulate several neurogenic features in the context of pathophysiology.
Collapse
Affiliation(s)
- Rui S Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Diogo M Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Sara L Paulo
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Joana M Mateus
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Miguel F Ferreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Francisco M Mouro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - João B Moreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Filipa F Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| |
Collapse
|
49
|
Welzel L, Twele F, Schidlitzki A, Töllner K, Klein P, Löscher W. Network pharmacology for antiepileptogenesis: Tolerability and neuroprotective effects of novel multitargeted combination treatments in nonepileptic vs. post-status epilepticus mice. Epilepsy Res 2019; 151:48-66. [PMID: 30831337 DOI: 10.1016/j.eplepsyres.2019.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/06/2019] [Accepted: 02/23/2019] [Indexed: 01/08/2023]
Abstract
Network-based approaches in drug discovery comprise both development of novel drugs interacting with multiple targets and repositioning of drugs with known targets to form novel drug combinations that interact with cellular or molecular networks whose function is disturbed in a disease. Epilepsy is a complex network phenomenon that, as yet, cannot be prevented or cured. We recently proposed multitargeted, network-based approaches to prevent epileptogenesis by combinations of clinically available drugs chosen to impact diverse epileptogenic processes. In order to test this strategy preclinically, we developed a multiphase sequential study design for evaluating such drug combinations in rodents, derived from human clinical drug development phases. Because pharmacokinetics of such drugs are known, only the tolerability of novel drug combinations needs to be evaluated in Phase I in öhealthy" controls. In Phase IIa, tolerability is assessed following an epileptogenic brain insult, followed by antiepileptogenic efficacy testing in Phase IIb. Here, we report Phase I and Phase IIa evaluation of 7 new drug combinations in mice, using 10 drugs (levetiracetam, topiramate, gabapentin, deferoxamine, fingolimod, ceftriaxone, α-tocopherol, melatonin, celecoxib, atorvastatin) with diverse mechanisms thought to be important in epileptogenesis. Six of the 7 drug combinations were well tolerated in mice during prolonged treatment at the selected doses in both controls and during the latent phase following status epilepticus induced by intrahippocampal kainate. However, none of the combinations prevented hippocampal damage in response to kainate, most likely because treatment started only 16-18 h after kainate. This suggests that antiepileptogenic or disease-modifying treatment may need to start earlier after the brain insult. The present data provide a rich collection of tolerable, network-based combinatorial therapies as a basis for antiepileptogenic or disease-modifying efficacy testing.
Collapse
Affiliation(s)
- Lisa Welzel
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Friederike Twele
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Alina Schidlitzki
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Kathrin Töllner
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, MD 20817, USA
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany.
| |
Collapse
|
50
|
Impact of a selective cyclooxygenase-2 inhibitor, celecoxib, on cortical excitability and electrophysiological properties of the brain in healthy volunteers: A randomized, double-blind, placebo-controlled study. PLoS One 2019; 14:e0212689. [PMID: 30794658 PMCID: PMC6386435 DOI: 10.1371/journal.pone.0212689] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/31/2019] [Indexed: 01/12/2023] Open
Abstract
The inflammatory response is considered a defence mechanism against physical or infectious insults and is prevalent within the central nervous system. Seizures also result in a robust inflammatory cascade, leading to enhanced activation of excitatory synaptic networks. Ample evidence based on animal models of epilepsy has demonstrated that celecoxib, a highly selective inhibitor of cyclooxygenase-2, has anticonvulsant effects. We aimed to evaluate the impact of celecoxib on the cortical excitability and electrophysiological properties of the brain in healthy humans. Electroencephalography (EEG) or transmagnetic stimulation (TMS) was used to measure neurophysiological activity. Forty healthy volunteers were randomized to 4 groups (n = 10 in each group): 1) celecoxib and EEG, 2) placebo and EEG, 3) celecoxib and TMS, and 4) placebo and TMS. For the EEG study, resting EEG was performed at baseline just before administering 400 mg of celecoxib or placebo and repeated 4 hours after administration. The subjects took 200 mg of celecoxib or placebo twice a day for 7 subsequent days, and a third EEG was conducted 4 hours after the final dose. Power spectra were compared at each time point. For the TMS study, the resting motor threshold (RMT), motor evoked potential (MEP) peak-to-peak amplitude, and cortical silent period (CSP) were measured at baseline and after taking 200 mg of celecoxib or placebo twice a day for 7 days. Celecoxib did not significantly change brain activity in the EEG study. However, the sum of power recorded from all electrodes tended to increase in the celecoxib group only at 4 hours after administration (p = 0.06). In detail, one dose of celecoxib (400 mg) transiently and significantly increased the alpha band power recorded in the frontal and parietal areas as well as in the whole brain (p = 0.049, 0.017, and 0.014, respectively) and the beta frequency in the central and parietal regions (p = 0.013 and 0.005, respectively), whereas the placebo did not. This effect was abolished after 7 days of treatment. In the TMS study, we found no statistically significant change in the RMT, MEP peak-to-peak amplitude or CSP. This evidence suggests that celecoxib transiently alters the electrophysiological properties of the brain but does not suppress neuronal excitability in healthy humans.
Collapse
|