1
|
Han J, Chear S, Talbot J, Swier V, Booth C, Reuben-Thomas C, Dalvi S, Weimer JM, Hewitt AW, Cook AL, Singh R. Genetic and Cellular Basis of Impaired Phagocytosis and Photoreceptor Degeneration in CLN3 Disease. Invest Ophthalmol Vis Sci 2024; 65:23. [PMID: 39535788 PMCID: PMC11563035 DOI: 10.1167/iovs.65.13.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose CLN3 Batten disease (also known as juvenile neuronal ceroid lipofuscinosis) is a lysosomal storage disorder that typically initiates with retinal degeneration but is followed by seizure onset, motor decline and premature death. Patient-derived CLN3 disease induced pluripotent stem cell-RPE cells show defective phagocytosis of photoreceptor outer segment (POS). Because modifier genes are implicated in CLN3 disease, our goal here was to investigate a direct link between CLN3 mutation and POS phagocytosis defect. Methods Isogenic control and CLN3 mutant stem cell lines were generated by CRISPR-Cas9-mediated biallelic deletion of exons 7 and 8. A transgenic CLN3Δ7-8/Δ7-8 (CLN3) Yucatan miniswine was also used to study the impact of CLN3Δ7-8/Δ7-8 mutation on POS phagocytosis. POS phagocytosis by cultured RPE cells was analyzed by Western blotting and immunohistochemistry. Electroretinogram, optical coherence tomography and histological analysis of CLN3Δ7-8/Δ7-8 and wild-type miniswine eyes were carried out at 6, 36, or 48 months of age. Results CLN3Δ7-8/Δ7-8 RPE (CLN3 RPE) displayed decreased POS binding and consequently decreased uptake of POS compared with isogenic control RPE cells. Furthermore, wild-type miniswine RPE cells phagocytosed CLN3Δ7-8/Δ7-8 POS less efficiently than wild-type POS. Consistent with decreased POS phagocytosis, lipofuscin/autofluorescence was decreased in CLN3 miniswine RPE at 36 months of age and was followed by almost complete loss of photoreceptors at 48 months of age. Conclusions CLN3Δ7-8/Δ7-8 mutation (which affects ≤85% of patients) affects both RPE and POS and leads to photoreceptor cell loss in CLN3 disease. Furthermore, both primary RPE dysfunction and mutant POS independently contribute to impaired POS phagocytosis in CLN3 disease.
Collapse
Affiliation(s)
- Jimin Han
- Department of Ophthalmology, University of Rochester, Rochester, New York, United States
- Department of Biomedical Genetics, University of Rochester, Rochester, New York, United States
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Sueanne Chear
- Wicking Dementia Research and Education Centre, University of Tasmania, Tasmania, Australia
| | - Jana Talbot
- Wicking Dementia Research and Education Centre, University of Tasmania, Tasmania, Australia
| | - Vicki Swier
- Pediatrics & Rare Diseases Group; Sanford Research, Sioux Falls, South Dakota, United States
| | - Clarissa Booth
- Pediatrics & Rare Diseases Group; Sanford Research, Sioux Falls, South Dakota, United States
| | - Cheyenne Reuben-Thomas
- Department of Ophthalmology, University of Rochester, Rochester, New York, United States
- Department of Biomedical Genetics, University of Rochester, Rochester, New York, United States
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Sonal Dalvi
- Department of Ophthalmology, University of Rochester, Rochester, New York, United States
- Department of Biomedical Genetics, University of Rochester, Rochester, New York, United States
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Jill M. Weimer
- Pediatrics & Rare Diseases Group; Sanford Research, Sioux Falls, South Dakota, United States
- Department of Pediatrics; Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, United States
| | - Alex W. Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Tasmania, Australia
| | - Anthony L. Cook
- Wicking Dementia Research and Education Centre, University of Tasmania, Tasmania, Australia
| | - Ruchira Singh
- Department of Ophthalmology, University of Rochester, Rochester, New York, United States
- Department of Biomedical Genetics, University of Rochester, Rochester, New York, United States
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| |
Collapse
|
2
|
Han J, Chear S, Talbot J, Swier V, Booth C, Reuben-Thomas C, Dalvi S, Weimer JM, Hewitt AW, Cook AL, Singh R. Genetic and cellular basis of impaired phagocytosis and photoreceptor degeneration in CLN3 disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.09.597388. [PMID: 38895469 PMCID: PMC11185776 DOI: 10.1101/2024.06.09.597388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Purpose CLN3 Batten disease (also known as Juvenile Neuronal Ceroid Lipofuscinosis; JNCL) is a lysosomal storage disorder that typically initiates with retinal degeneration but is followed by seizure onset, motor decline and premature death. Patient-derived CLN3 disease iPSC-RPE cells show defective phagocytosis of photoreceptor outer segments (POSs). Because modifier genes are implicated in CLN3 disease, our goal here was to investigate a direct link between CLN3 mutation and POS phagocytosis defect. Methods Isogenic control and CLN3 mutant stem cell lines were generated by CRISPR-Cas9-mediated biallelic deletion of exons 7 and 8. A transgenic CLN3 Δ 7-8/ Δ 7-8 ( CLN3 ) Yucatan miniswine was also used to study the impact of CLN3 Δ 7-8/ Δ 7-8 mutation on POS phagocytosis. POS phagocytosis by cultured RPE cells was analyzed by Western blotting and immunohistochemistry. Electroretinogram, optical coherence tomography and histological analysis of CLN3 Δ 7/8 and wild-type miniswine eyes were carried out at 6-, 36-, or 48-month age. Results CLN3 Δ 7-8/ Δ 7-8 RPE ( CLN3 RPE) displayed reduced POS binding and consequently decreased uptake of POS compared to isogenic control RPE cells. Furthermore, wild-type miniswine RPE cells phagocytosed CLN3 Δ 7-8/ Δ 7-8 POS less efficiently than wild-type POS. Consistent with decreased POS phagocytosis, lipofuscin/autofluorescence was decreased in CLN3 miniswine RPE at 36 months-of-age and was followed by almost complete loss of photoreceptors at 48 months of age. Conclusions CLN3 Δ 7-8/ Δ 7-8 mutation (that affects up to 85% patients) affects both RPE and POSs and leads to photoreceptor cell loss in CLN3 disease. Furthermore, both primary RPE dysfunction and mutant POS independently contribute to impaired POS phagocytosis in CLN3 disease.
Collapse
|
3
|
Swier VJ, White KA, Johnson TB, Wang X, Han J, Pearce DA, Singh R, Drack AV, Pfeifer W, Rogers CS, Brudvig JJ, Weimer JM. A novel porcine model of CLN3 Batten disease recapitulates clinical phenotypes. Dis Model Mech 2023; 16:dmm050038. [PMID: 37305926 PMCID: PMC10434985 DOI: 10.1242/dmm.050038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Mouse models of CLN3 Batten disease, a rare lysosomal storage disorder with no cure, have improved our understanding of CLN3 biology and therapeutics through their ease of use and a consistent display of cellular pathology. However, the translatability of murine models is limited by disparities in anatomy, body size, life span and inconsistent subtle behavior deficits that can be difficult to detect in CLN3 mutant mouse models, thereby limiting their use in preclinical studies. Here, we present a longitudinal characterization of a novel miniswine model of CLN3 disease that recapitulates the most common human pathogenic variant, an exon 7-8 deletion (CLN3Δex7/8). Progressive pathology and neuron loss is observed in various regions of the CLN3Δex7/8 miniswine brain and retina. Additionally, mutant miniswine present with retinal degeneration and motor abnormalities, similar to deficits seen in humans diagnosed with the disease. Taken together, the CLN3Δex7/8 miniswine model shows consistent and progressive Batten disease pathology, and behavioral impairment mirroring clinical presentation, demonstrating its value in studying the role of CLN3 and safety/efficacy of novel disease-modifying therapeutics.
Collapse
Affiliation(s)
- Vicki J. Swier
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Katherine A. White
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Tyler B. Johnson
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | | | - Jimin Han
- Department of Ophthalmology, Center for Visual Science, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - David A. Pearce
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Ruchira Singh
- Department of Ophthalmology, Center for Visual Science, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Arlene V. Drack
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA 52242, USA
- University of Iowa Institute for Vision Research, Iowa City, IA 52242, USA
| | - Wanda Pfeifer
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA 52242, USA
| | | | - Jon J. Brudvig
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA
| | - Jill M. Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA
| |
Collapse
|
4
|
Sleat DE, Banach-Petrosky W, Larrimore KE, Nemtsova Y, Wiseman JA, Najafi A, Johnson D, Poole TA, Takahashi K, Cooper JD, Lobel P. A mouse mutant deficient in both neuronal ceroid lipofuscinosis-associated proteins CLN3 and TPP1. J Inherit Metab Dis 2023; 46:720-734. [PMID: 37078466 PMCID: PMC10330656 DOI: 10.1002/jimd.12619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 04/21/2023]
Abstract
Late-infantile neuronal ceroid lipofuscinosis (LINCL) and juvenile neuronal ceroid lipofuscinosis (JNCL) are inherited neurodegenerative diseases caused by mutations in the genes encoding lysosomal proteins tripeptidyl peptidase 1 (TPP1) and CLN3 protein, respectively. TPP1 is well-understood and, aided by animal models that accurately recapitulate the human disease, enzyme replacement therapy has been approved and other promising therapies are emerging. In contrast, there are no effective treatments for JNCL, partly because the function of the CLN3 protein remains unknown but also because animal models have attenuated disease and lack robust survival phenotypes. Mouse models for LINCL and JNCL, with mutations in Tpp1 and Cln3, respectively, have been thoroughly characterized but the phenotype of a double Cln3/Tpp1 mutant remains unknown. We created this double mutant and find that its phenotype is essentially indistinguishable from the single Tpp1-/- mutant in terms of survival and brain pathology. Analysis of brain proteomic changes in the single Tpp1-/- and double Cln3-/- ;Tpp1-/- mutants indicates largely overlapping sets of altered proteins and reinforces earlier studies that highlight GPNMB, LYZ2, and SERPINA3 as promising biomarker candidates in LINCL while several lysosomal proteins including SMPD1 and NPC1 appear to be altered in the Cln3-/- animals. An unexpected finding was that Tpp1 heterozygosity significantly decreased lifespan of the Cln3-/- mouse. The truncated survival of this mouse model makes it potentially useful in developing therapies for JNCL using survival as an endpoint. In addition, this model may also provide insights into CLN3 protein function and its potential functional interactions with TPP1.
Collapse
Affiliation(s)
- David E. Sleat
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States of America
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers Biomedical Health Sciences, Rutgers University, Piscataway, NJ, United States of America
| | - Whitney Banach-Petrosky
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States of America
| | - Katherine E. Larrimore
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States of America
| | - Yuliya Nemtsova
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States of America
| | - Jennifer A. Wiseman
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States of America
| | - Allison Najafi
- The Lundquist Institute (formerly Los Angeles Biomedical Research Institute), Harbor-UCLA Medical Center, and David Geffen School of Medicine, University of California, Los Angeles, Torrance, CA United States of America
| | - Dymonn Johnson
- Departments of Pediatrics, Division of Genetics and Genomic Medicine, Washington University in St Louis, School of Medicine, St Louis, MO, United States of America
| | - Timothy A. Poole
- Departments of Pediatrics, Division of Genetics and Genomic Medicine, Washington University in St Louis, School of Medicine, St Louis, MO, United States of America
| | - Keigo Takahashi
- Departments of Pediatrics, Division of Genetics and Genomic Medicine, Washington University in St Louis, School of Medicine, St Louis, MO, United States of America
| | - Jonathan D. Cooper
- The Lundquist Institute (formerly Los Angeles Biomedical Research Institute), Harbor-UCLA Medical Center, and David Geffen School of Medicine, University of California, Los Angeles, Torrance, CA United States of America
- Departments of Pediatrics, Division of Genetics and Genomic Medicine, Washington University in St Louis, School of Medicine, St Louis, MO, United States of America
- Genetics, Division of Genetics and Genomic Medicine, Washington University in St Louis, School of Medicine, St Louis, MO, United States of America
- Neurology, Division of Genetics and Genomic Medicine, Washington University in St Louis, School of Medicine, St Louis, MO, United States of America
| | - Peter Lobel
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States of America
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers Biomedical Health Sciences, Rutgers University, Piscataway, NJ, United States of America
| |
Collapse
|
5
|
Johnson TB, Brudvig JJ, Likhite S, Pratt MA, White KA, Cain JT, Booth CD, Timm DJ, Davis SS, Meyerink B, Pineda R, Dennys-Rivers C, Kaspar BK, Meyer K, Weimer JM. Early postnatal administration of an AAV9 gene therapy is safe and efficacious in CLN3 disease. Front Genet 2023; 14:1118649. [PMID: 37035740 PMCID: PMC10080320 DOI: 10.3389/fgene.2023.1118649] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/02/2023] [Indexed: 04/11/2023] Open
Abstract
CLN3 disease, caused by biallelic mutations in the CLN3 gene, is a rare pediatric neurodegenerative disease that has no cure or disease modifying treatment. The development of effective treatments has been hindered by a lack of etiological knowledge, but gene replacement has emerged as a promising therapeutic platform for such disorders. Here, we utilize a mouse model of CLN3 disease to test the safety and efficacy of a cerebrospinal fluid-delivered AAV9 gene therapy with a study design optimized for translatability. In this model, postnatal day one administration of the gene therapy virus resulted in robust expression of human CLN3 throughout the CNS over the 24-month duration of the study. A range of histopathological and behavioral parameters were assayed, with the therapy consistently and persistently rescuing a number of hallmarks of disease while being safe and well-tolerated. Together, the results show great promise for translation of the therapy into the clinic, prompting the launch of a first-in-human clinical trial (NCT03770572).
Collapse
Affiliation(s)
- Tyler B. Johnson
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, United States
- Amicus Therapeutics, Cranbury, NJ, United States
| | - Jon J. Brudvig
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, United States
- Amicus Therapeutics, Cranbury, NJ, United States
| | - Shibi Likhite
- The Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Melissa A. Pratt
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, United States
| | - Katherine A. White
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, United States
| | - Jacob T. Cain
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, United States
- Amicus Therapeutics, Cranbury, NJ, United States
| | - Clarissa D. Booth
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, United States
| | - Derek J. Timm
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, United States
| | - Samantha S. Davis
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, United States
| | - Brandon Meyerink
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, United States
| | - Ricardo Pineda
- The Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | | | - Brian K. Kaspar
- The Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Kathrin Meyer
- The Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Jill M. Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, United States
- Amicus Therapeutics, Cranbury, NJ, United States
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| |
Collapse
|
6
|
Fahad Raza M, Anwar M, Husain A, Rizwan M, Li Z, Nie H, Hlaváč P, Ali MA, Rady A, Su S. Differential gene expression analysis following olfactory learning in honeybee (Apis mellifera L.). PLoS One 2022; 17:e0262441. [PMID: 35139088 PMCID: PMC8827436 DOI: 10.1371/journal.pone.0262441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/26/2021] [Indexed: 11/19/2022] Open
Abstract
Insects change their stimulus-response through the perception of associating these stimuli with important survival events such as rewards, threats, and mates. Insects develop strong associations and relate them to their experiences through several behavioral procedures. Among the insects, Apis species, Apis mellifera ligustica are known for their outstanding ability to learn with tremendous economic importance. Apis mellifera ligustica has a strong cognitive ability and promising model species for investigating the neurobiological basis of remarkable olfactory learning abilities. Here we evaluated the olfactory learning ability of A. mellifera by using the proboscis extension reflex (PER) protocol. The brains of the learner and failed-learner bees were examined for comparative transcriptome analysis by RNA-Seq to explain the difference in the learning capacity. In this study, we used an appetitive olfactory learning paradigm in the same age of A. mellifera bees to examine the differential gene expression in the brain of the learner and failed-learner. Bees that respond in 2nd and 3rd trials or only responded to 3rd trials were defined as learned bees, failed-learner individuals were those bees that did not respond in all learning trials The results indicate that the learning ability of learner bees was significantly higher than failed-learner bees for 12 days. We obtained approximately 46.7 and 46.4 million clean reads from the learner bees failed-learner bees, respectively. Gene expression profile between learners' bees and failed-learners bees identified 74 differentially expressed genes, 57 genes up-regulated in the brains of learners and 17 genes were down-regulated in the brains of the bees that fail to learn. The qRT-PCR validated the differently expressed genes. Transcriptome analyses revealed that specific genes in learner and failed-learner bees either down-regulated or up-regulated play a crucial role in brain development and learning behavior. Our finding suggests that down-regulated genes of the brain involved in the integumentary system, storage proteins, brain development, sensory processing, and neurodegenerative disorder may result in reduced olfactory discrimination and olfactory sensitivity in failed-learner bees. This study aims to contribute to a better understanding of the olfactory learning behavior and gene expression information, which opens the door for understanding of the molecular mechanism of olfactory learning behavior in honeybees.
Collapse
Affiliation(s)
- Muhammad Fahad Raza
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Muhammad Anwar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Arif Husain
- Department of Soil and Environmental Sciences, Faculty of Agricultural Sciences, Ghazi University Dera Ghazi Khan, Dera Ghazi Khan, Pakistan
| | - Muhmmad Rizwan
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhiguo Li
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongyi Nie
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Pavol Hlaváč
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - M. Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Rady
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Songkun Su
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
7
|
Salpeter EM, Leonard BC, Lopez AJ, Murphy CJ, Thomasy S, Imai DM, Grimsrud K, Lloyd KCK, Yan J, Sanchez Russo R, Shankar SP, Moshiri A. Retinal degeneration in mice and humans with neuronal ceroid lipofuscinosis type 8. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1274. [PMID: 34532411 PMCID: PMC8421982 DOI: 10.21037/atm-20-4739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
Background Ceroid lipofuscinosis type 8 belongs to a heterogenous group of vision and life-threatening neurodegenerative diseases, neuronal ceroid lipofuscinosis (NCL). Effective therapy is limited to a single drug for treatment of ceroid lipofuscinosis type 2, necessitating animal disease models to facilitate further therapeutic development. Murine models are advantageous for therapeutic development due to easy genetic manipulation and rapid breeding, however appropriate genetic models need to be identified and characterized before being used for therapy testing. To date, murine models of ocular disease associated with ceroid lipofuscinosis type 8 have only been characterized in motor neuron degeneration mice. Methods Cln8−/− mice were produced by CRISPR/Cas9 genome editing through the International Mouse Phenotyping Consortium. Ophthalmic examination, optical coherence tomography, electroretinography, and ocular histology was performed on Cln8−/− mice and controls at 16 weeks of age. Quantification of all retinal layers, retinal pigmented epithelium, and the choriocapillaris was performed using images acquired with ocular coherence tomography and planimetry of histologic sections. Necropsy was performed to investigate concurrent systemic abnormalities. Clinical correlation with human patients with CLN8-associated retinopathy is provided. Results Retinal degeneration characterized by retinal pigment epithelium mottling, scattered drusen, and retinal vascular attenuation was noted in all Cln8−/− mice. Loss of inner and outer photoreceptor segment demarcation was noted on optical coherence tomography, with significant thinning of the whole retina (P=1e-9), outer nuclear layer (P=1e-9), and combined photoreceptor segments (P=1e-9). A global reduction in scotopic and photopic electroretinographic waveforms was noted in all Cln8−/− mice. Slight thickening of the inner plexiform layer (P=0.02) and inner nuclear layer (P=0.004), with significant thinning of the whole retina (P=0.03), outer nuclear layer (P=0.01), and outer photoreceptor segments (P=0.001) was appreciated on histologic sections. Scattered lipid vacuoles were noted in splenic red pulp of all Cln8−/− mice, though no gross systemic abnormalities were detected on necropsy. Retinal findings are consistent with those seen in patients with ceroid lipofuscinosis type 8. Conclusions This study provides detailed clinical characterization of retinopathy in adult Cln8−/− mice. Findings suggest that Cln8−/− mice may provide a useful murine model for development of novel therapeutics needed for treating ocular disease in patients with ceroid lipofuscinosis type 8.
Collapse
Affiliation(s)
- Elyse M Salpeter
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Brian C Leonard
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Antonio J Lopez
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Sacramento, California, USA
| | - Christopher J Murphy
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, Davis, California, USA.,Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Sacramento, California, USA
| | - Sara Thomasy
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, Davis, California, USA.,Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Sacramento, California, USA
| | - Denise M Imai
- Comparative Pathology Laboratory, School of Veterinary Medicine, UC Davis, Davis, California, USA
| | - Kristin Grimsrud
- Mouse Biology Program, University of California, Davis, Davis, California, USA.,Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Sacramento, California, USA
| | - K C Kent Lloyd
- Mouse Biology Program, University of California, Davis, Davis, California, USA.,Department of Surgery, School of Medicine, University of California, Davis, Sacramento, California, USA
| | - Jiong Yan
- Department of Ophthalmology, Emory University, Atlanta, Georgia, USA
| | | | - Suma P Shankar
- Department of Pediatrics & Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Sacramento, California, USA
| | - Ala Moshiri
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Sacramento, California, USA
| |
Collapse
|
8
|
Bassal M, Liu J, Jankowiak W, Saftig P, Bartsch U. Rapid and Progressive Loss of Multiple Retinal Cell Types in Cathepsin D-Deficient Mice-An Animal Model of CLN10 Disease. Cells 2021; 10:696. [PMID: 33800998 PMCID: PMC8003850 DOI: 10.3390/cells10030696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/11/2021] [Accepted: 03/19/2021] [Indexed: 12/18/2022] Open
Abstract
Vision loss is among the characteristic symptoms of neuronal ceroid lipofuscinosis (NCL), a fatal neurodegenerative lysosomal storage disorder. Here, we performed an in-depth analysis of retinal degeneration at the molecular and cellular levels in mice lacking the lysosomal aspartyl protease cathepsin D, an animal model of congenital CLN10 disease. We observed an early-onset accumulation of storage material as indicated by elevated levels of saposin D and subunit C of the mitochondrial ATP synthase. The accumulation of storage material was accompanied by reactive astrogliosis and microgliosis, elevated expression of the autophagy marker sequestosome 1/p62 and a dysregulated expression of several lysosomal proteins. The number of cone photoreceptor cells was reduced as early as at postnatal day 5. At the end stage of the disease, the outer nuclear layer was almost atrophied, and all cones were lost. A significant loss of rod and cone bipolar cells, amacrine cells and ganglion cells was found at advanced stages of the disease. Results demonstrate that cathepsin D deficiency results in an early-onset and rapidly progressing retinal dystrophy that involves all retinal cell types. Data of the present study will serve as a reference for studies aimed at developing treatments for retinal degeneration in CLN10 disease.
Collapse
Affiliation(s)
- Mahmoud Bassal
- Department of Ophthalmology, Experimental Ophthalmology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.B.); (J.L.); (W.J.)
| | - Junling Liu
- Department of Ophthalmology, Experimental Ophthalmology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.B.); (J.L.); (W.J.)
| | - Wanda Jankowiak
- Department of Ophthalmology, Experimental Ophthalmology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.B.); (J.L.); (W.J.)
| | - Paul Saftig
- Institute of Biochemistry, Christian-Albrechts-University Kiel, 24118 Kiel, Germany;
| | - Udo Bartsch
- Department of Ophthalmology, Experimental Ophthalmology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.B.); (J.L.); (W.J.)
| |
Collapse
|
9
|
Nelvagal HR, Lange J, Takahashi K, Tarczyluk-Wells MA, Cooper JD. Pathomechanisms in the neuronal ceroid lipofuscinoses. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165570. [DOI: 10.1016/j.bbadis.2019.165570] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 12/22/2022]
|
10
|
Zhong Y, Mohan K, Liu J, Al-Attar A, Lin P, Flight RM, Sun Q, Warmoes MO, Deshpande RR, Liu H, Jung KS, Mitov MI, Lin N, Butterfield DA, Lu S, Liu J, Moseley HNB, Fan TWM, Kleinman ME, Wang QJ. Loss of CLN3, the gene mutated in juvenile neuronal ceroid lipofuscinosis, leads to metabolic impairment and autophagy induction in retinal pigment epithelium. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165883. [PMID: 32592935 DOI: 10.1016/j.bbadis.2020.165883] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/08/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022]
Abstract
Juvenile neuronal ceroid lipofuscinosis (JNCL, aka. juvenile Batten disease or CLN3 disease) is a lysosomal storage disease characterized by progressive blindness, seizures, cognitive and motor failures, and premature death. JNCL is caused by mutations in the Ceroid Lipofuscinosis, Neuronal 3 (CLN3) gene, whose function is unclear. Although traditionally considered a neurodegenerative disease, CLN3 disease displays eye-specific effects: Vision loss not only is often one of the earliest symptoms of JNCL, but also has been reported in non-syndromic CLN3 disease. Here we described the roles of CLN3 protein in maintaining healthy retinal pigment epithelium (RPE) and normal vision. Using electroretinogram, fundoscopy and microscopy, we showed impaired visual function, retinal autofluorescent lesions, and RPE disintegration and metaplasia/hyperplasia in a Cln3 ~ 1 kb-deletion mouse model [1] on C57BL/6J background. Utilizing a combination of biochemical analyses, RNA-Seq, Seahorse XF bioenergetic analysis, and Stable Isotope Resolved Metabolomics (SIRM), we further demonstrated that loss of CLN3 increased autophagic flux, suppressed mTORC1 and Akt activities, enhanced AMPK activity, and up-regulated gene expression of the autophagy-lysosomal system in RPE-1 cells, suggesting autophagy induction. This CLN3 deficiency induced autophagy induction coincided with decreased mitochondrial oxygen consumption, glycolysis, the tricarboxylic acid (TCA) cycle, and ATP production. We also reported for the first time that loss of CLN3 led to glycogen accumulation despite of impaired glycogen synthesis. Our comprehensive analyses shed light on how loss of CLN3 affect autophagy and metabolism. This work suggests possible links among metabolic impairment, autophagy induction and lysosomal storage, as well as between RPE atrophy/degeneration and vision loss in JNCL.
Collapse
Affiliation(s)
- Yu Zhong
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Kabhilan Mohan
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY, United States
| | - Jinpeng Liu
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Ahmad Al-Attar
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Penghui Lin
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Robert M Flight
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States; Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Qiushi Sun
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Marc O Warmoes
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Rahul R Deshpande
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Huijuan Liu
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Kyung Sik Jung
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY, United States
| | - Mihail I Mitov
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | | | - D Allan Butterfield
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States; Department of Chemistry, University of Kentucky, Lexington, KY, United States
| | - Shuyan Lu
- Pfizer Inc., San Diego, CA, United States
| | - Jinze Liu
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States; Department of Computer Science, University of Kentucky, Lexington, KY, United States; Institute for Biomedical Informatics, University of Kentucky, Lexington, KY, United States
| | - Hunter N B Moseley
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States; Institute for Biomedical Informatics, University of Kentucky, Lexington, KY, United States
| | - Teresa W M Fan
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States; Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY, United States; Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| | - Mark E Kleinman
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY, United States
| | - Qing Jun Wang
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY, United States; Markey Cancer Center, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
11
|
Sleat DE, Wiseman JA, El-Banna M, Zheng H, Zhao C, Soherwardy A, Moore DF, Lobel P. Analysis of Brain and Cerebrospinal Fluid from Mouse Models of the Three Major Forms of Neuronal Ceroid Lipofuscinosis Reveals Changes in the Lysosomal Proteome. Mol Cell Proteomics 2019; 18:2244-2261. [PMID: 31501224 PMCID: PMC6823856 DOI: 10.1074/mcp.ra119.001587] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/06/2019] [Indexed: 01/06/2023] Open
Abstract
Treatments are emerging for the neuronal ceroid lipofuscinoses (NCLs), a group of similar but genetically distinct lysosomal storage diseases. Clinical ratings scales measure long-term disease progression and response to treatment but clinically useful biomarkers have yet to be identified in these diseases. We have conducted proteomic analyses of brain and cerebrospinal fluid (CSF) from mouse models of the most frequently diagnosed NCL diseases: CLN1 (infantile NCL), CLN2 (classical late infantile NCL) and CLN3 (juvenile NCL). Samples were obtained at different stages of disease progression and proteins quantified using isobaric labeling. In total, 8303 and 4905 proteins were identified from brain and CSF, respectively. We also conduced label-free analyses of brain proteins that contained the mannose 6-phosphate lysosomal targeting modification. In general, we detect few changes at presymptomatic timepoints but later in disease, we detect multiple proteins whose expression is significantly altered in both brain and CSF of CLN1 and CLN2 animals. Many of these proteins are lysosomal in origin or are markers of neuroinflammation, potentially providing clues to underlying pathogenesis and providing promising candidates for further validation.
Collapse
Affiliation(s)
- David E Sleat
- Center for Advanced Biotechnology and Medicine, Piscataway, NJ 08854; Department of Biochemistry and Molecular Biology, Robert-Wood Johnson Medical School, Rutgers Biomedical Health Sciences, Piscataway, NJ 08854.
| | | | - Mukarram El-Banna
- Center for Advanced Biotechnology and Medicine, Piscataway, NJ 08854
| | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine, Piscataway, NJ 08854
| | - Caifeng Zhao
- Center for Advanced Biotechnology and Medicine, Piscataway, NJ 08854
| | - Amenah Soherwardy
- Center for Advanced Biotechnology and Medicine, Piscataway, NJ 08854
| | - Dirk F Moore
- Department of Biostatistics, School of Public Health, Rutgers - The State University of New Jersey, Piscataway, NJ 08854
| | - Peter Lobel
- Center for Advanced Biotechnology and Medicine, Piscataway, NJ 08854; Department of Biochemistry and Molecular Biology, Robert-Wood Johnson Medical School, Rutgers Biomedical Health Sciences, Piscataway, NJ 08854.
| |
Collapse
|
12
|
Mice deficient in the lysosomal enzyme palmitoyl-protein thioesterase 1 (PPT1) display a complex retinal phenotype. Sci Rep 2019; 9:14185. [PMID: 31578378 PMCID: PMC6775149 DOI: 10.1038/s41598-019-50726-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/13/2019] [Indexed: 01/09/2023] Open
Abstract
Neuronal ceroid lipofuscinosis (NCL) type 1 (CLN1) is a neurodegenerative storage disorder caused by mutations in the gene encoding the lysosomal enzyme palmitoyl-protein thioesterase 1 (PPT1). CLN1 patients suffer from brain atrophy, mental and motor retardation, seizures, and retinal degeneration ultimately resulting in blindness. Here, we performed an in-depth analysis of the retinal phenotype of a PPT1-deficient mouse, an animal model of this condition. Reactive astrogliosis and microgliosis were evident in mutant retinas prior to the onset of retinal cell loss. Progressive accumulation of storage material, a pronounced dysregulation of various lysosomal proteins, and accumulation of sequestosome/p62-positive aggregates in the inner nuclear layer also preceded retinal degeneration. At advanced stages of the disease, the mutant retina was characterized by a significant loss of ganglion cells, rod and cone photoreceptor cells, and rod and cone bipolar cells. Results demonstrate that PPT1 dysfunction results in early-onset pathological alterations in the mutant retina, followed by a progressive degeneration of various retinal cell types at relatively late stages of the disease. Data will serve as a reference for future work aimed at developing therapeutic strategies for the treatment of retinal degeneration in CLN1 disease.
Collapse
|
13
|
El-Sitt S, Soueid J, Maalouf K, Makhoul N, Al Ali J, Makoukji J, Asser B, Daou D, Harati H, Boustany RM. Exogenous Galactosylceramide as Potential Treatment for CLN3 Disease. Ann Neurol 2019; 86:729-742. [PMID: 31393621 DOI: 10.1002/ana.25573] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 01/26/2023]
Abstract
OBJECTIVE CLN3 disease is the commonest of the neuronal ceroid lipofuscinoses, a group of pediatric neurodegenerative disorders. Functions of the CLN3 protein include antiapoptotic properties and facilitating anterograde transport of galactosylceramide from Golgi to lipid rafts. This study confirms the beneficial effects of long-term exogenous galactosylceramide supplementation on longevity, neurobehavioral parameters, neuronal cell counts, astrogliosis, and diminution in brain and serum ceramide levels in Cln3 Δex7/8 knock-in mice. Additionally, the impact of galactosylceramide on ceramide synthesis enzymes is documented. METHODS A group of 72 mice received galactosylceramide or vehicle for 40 weeks. The effect of galactosylceramide supplementation on Cln3 Δex7/8 mice was determined by performing behavioral tests, measuring ceramide in brains and serum, and assessing impact on longevity, subunit C storage, astrogliosis, and neuronal cell counts. RESULTS Galactosylceramide resulted in enhanced grip strength of forelimbs in male and female mice, better balance on the accelerating rotarod in females, and improved motor coordination during pole climbing in male mice. Brain and serum ceramide levels as well as apoptosis rates were lower in galactosylceramide-treated Cln3 Δex7/8 mice. Galactosylceramide also increased neuronal cell counts significantly in male and female mice and tended to decrease subunit C storage in specific brain regions. Astrogliosis dropped in females compared to a slight increase in males after galactosylceramide. Galactosylceramide increased the lifespan of affected mice. INTERPRETATION Galactosylceramide improved behavioral, neuropathological, and biochemical parameters in Cln3 Δex7/8 mice, paving the way for effective therapy for CLN3 disease and use of serum ceramide as a potential biomarker to track impact of therapies. ANN NEUROL 2019;86:729-742.
Collapse
Affiliation(s)
- Sally El-Sitt
- Neurogenetics Program, AUBMC Special Kids Clinic and Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut
| | - Jihane Soueid
- Neurogenetics Program, AUBMC Special Kids Clinic and Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut
| | - Katia Maalouf
- Neurogenetics Program, AUBMC Special Kids Clinic and Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut
| | - Nadine Makhoul
- Neurogenetics Program, AUBMC Special Kids Clinic and Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut
| | - Jamal Al Ali
- Neurogenetics Program, AUBMC Special Kids Clinic and Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut
| | - Joelle Makoukji
- Neurogenetics Program, AUBMC Special Kids Clinic and Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut
| | - Bilal Asser
- Neurogenetics Program, AUBMC Special Kids Clinic and Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut
| | - Daniel Daou
- Neurogenetics Program, AUBMC Special Kids Clinic and Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut
| | - Hayat Harati
- Neuroscience Research Center, Medical School, Lebanese University, Hadath, Lebanon
| | - Rose-Mary Boustany
- Neurogenetics Program, AUBMC Special Kids Clinic and Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut
| |
Collapse
|
14
|
Villani NA, Bullock G, Michaels JR, Yamato O, O'Brien DP, Mhlanga-Mutangadura T, Johnson GS, Katz ML. A mixed breed dog with neuronal ceroid lipofuscinosis is homozygous for a CLN5 nonsense mutation previously identified in Border Collies and Australian Cattle Dogs. Mol Genet Metab 2019; 127:107-115. [PMID: 31101435 PMCID: PMC6555421 DOI: 10.1016/j.ymgme.2019.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 12/29/2022]
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are a group of inherited neurodegenerative disorders characterized by progressive declines in neurological functions following normal development. The NCLs are distinguished from similar disorders by the accumulation of autofluorescent lysosomal storage bodies in neurons and many other cell types, and are classified as lysosomal storage diseases. At least 13 genes contain pathogenic sequence variants that underlie different forms of NCL. Naturally occurring canine NCLs can serve as models to develop better understanding of the disease pathologies and for preclinical evaluation of therapeutic interventions for these disorders. To date 14 sequence variants in 8 canine orthologs of human NCL genes have been found to cause progressive neurological disorders similar to human NCLs in 12 different dog breeds. A mixed breed dog with parents of uncertain breed background developed progressive neurological signs consistent with NCL starting at approximately 11 to 12 months of age, and when evaluated with magnetic resonance imaging at 21 months of age exhibited diffuse brain atrophy. Due to the severity of neurological decline the dog was euthanized at 23 months of age. Cerebellar and cerebral cortical neurons contained massive accumulations of autofluorescent storage bodies the contents of which had the appearance of tightly packed membranes. A whole genome sequence, generated with DNA from the affected dog contained a homozygous C-to-T transition at position 30,574,637 on chromosome 22 which is reflected in the mature CLN5 transcript (CLN5: c.619C > T) and converts a glutamine codon to a termination codon (p.Gln207Ter). The identical nonsense mutation has been previously associated with NCL in Border Collies, Australian Cattle Dogs, and a German Shepherd-Australian Cattle Dog mix. The current whole genome sequence and a previously generated whole genome sequence for an Australian Cattle Dog with NCL share a rare homozygous haplotype that extends for 87 kb surrounding 22: 30, 574, 637 and includes 21 polymorphic sites. When genotyped at 7 of these polymorphic sites, DNA samples from the German Shepherd-Australian Cattle Dog mix and from 5 Border Collies with NCL that were homozygous for the CLN5: c.619 T allele also shared this homozygous haplotype, suggesting that the NCL in all of these dogs stems from the same founding mutation event that may have predated the establishment of the modern dog breeds. If so, the CLN5 nonsence allele is probably segregating in other, as yet unidentified, breeds. Thus, dogs exhibiting similar NCL-like signs should be screened for this CLN5 nonsense allele regardless of breed.
Collapse
Affiliation(s)
- Natalie A Villani
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Garrett Bullock
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | | | - Osamu Yamato
- Laboratory of Clinical Pathology, Kagoshima University, Kagoshima, Japan
| | - Dennis P O'Brien
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | | | - Gary S Johnson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Martin L Katz
- Mason Eye Institute, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
15
|
Johnson TB, Cain JT, White KA, Ramirez-Montealegre D, Pearce DA, Weimer JM. Therapeutic landscape for Batten disease: current treatments and future prospects. Nat Rev Neurol 2019; 15:161-178. [PMID: 30783219 PMCID: PMC6681450 DOI: 10.1038/s41582-019-0138-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Batten disease (also known as neuronal ceroid lipofuscinoses) constitutes a family of devastating lysosomal storage disorders that collectively represent the most common inherited paediatric neurodegenerative disorders worldwide. Batten disease can result from mutations in 1 of 13 genes. These mutations lead to a group of diseases with loosely overlapping symptoms and pathology. Phenotypically, patients with Batten disease have visual impairment and blindness, cognitive and motor decline, seizures and premature death. Pathologically, Batten disease is characterized by lysosomal accumulation of autofluorescent storage material, glial reactivity and neuronal loss. Substantial progress has been made towards the development of effective therapies and treatments for the multiple forms of Batten disease. In 2017, cerliponase alfa (Brineura), a tripeptidyl peptidase enzyme replacement therapy, became the first globally approved treatment for CLN2 Batten disease. Here, we provide an overview of the promising therapeutic avenues for Batten disease, highlighting current FDA-approved clinical trials and prospective future treatments.
Collapse
Affiliation(s)
- Tyler B Johnson
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Jacob T Cain
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Katherine A White
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | | | - David A Pearce
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA.
- Department of Pediatrics, Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD, USA.
| | - Jill M Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA.
- Department of Pediatrics, Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD, USA.
| |
Collapse
|
16
|
Leinonen H, Tanila H. Vision in laboratory rodents-Tools to measure it and implications for behavioral research. Behav Brain Res 2017; 352:172-182. [PMID: 28760697 DOI: 10.1016/j.bbr.2017.07.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/17/2017] [Accepted: 07/27/2017] [Indexed: 02/09/2023]
Abstract
Mice and rats are nocturnal mammals and their vision is specialized for detection of motion and contrast in dim light conditions. These species possess a large proportion of UV-sensitive cones in their retinas and the majority of their optic nerve axons target superior colliculus rather than visual cortex. Therefore, it was a widely held belief that laboratory rodents hardly utilize vision during day-time behavior. This dogma is being questioned as accumulating evidence suggests that laboratory rodents are able to perform complex visual functions, such as perceiving subjective contours, and that declined vision may affect their performance in many behavioral tasks. For instance, genetic engineering may have unexpected consequences on vision as mouse models of Alzheimer's and Huntington's diseases have declined visual function. Rodent vision can be tested in numerous ways using operant training or reflex-based behavioral tasks, or alternatively using electrophysiological recordings. In this article, we will first provide a summary of visual system and explain its characteristics unique to rodents. Then, we present well-established techniques to test rodent vision, with an emphasis on pattern vision: visual water test, optomotor reflex test, pattern electroretinography and pattern visual evoked potentials. Finally, we highlight the importance of visual phenotyping in rodents. As the number of genetically engineered rodent models and volume of behavioral testing increase simultaneously, the possibility of visual dysfunctions needs to be addressed. Neglect in this matter potentially leads to crude biases in the field of neuroscience and beyond.
Collapse
Affiliation(s)
- Henri Leinonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, Neulaniementie 2, 70211 Kuopio, Finland.
| | - Heikki Tanila
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, Neulaniementie 2, 70211 Kuopio, Finland
| |
Collapse
|
17
|
Ouseph MM, Kleinman ME, Wang QJ. Vision loss in juvenile neuronal ceroid lipofuscinosis (CLN3 disease). Ann N Y Acad Sci 2016; 1371:55-67. [PMID: 26748992 DOI: 10.1111/nyas.12990] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Juvenile neuronal ceroid lipofuscinosis (JNCL; also known as CLN3 disease) is a devastating neurodegenerative lysosomal storage disorder and the most common form of Batten disease. Progressive visual and neurological symptoms lead to mortality in patients by the third decade. Although ceroid-lipofuscinosis, neuronal 3 (CLN3) has been identified as the sole disease gene, the biochemical and cellular bases of JNCL and the functions of CLN3 are yet to be fully understood. As severe ocular pathologies manifest early in disease progression, the retina is an ideal tissue to study in the efforts to unravel disease etiology and design therapeutics. There are significant discrepancies in the ocular phenotypes between human JNCL and existing murine models, impeding investigations on the sequence of events occurring during the progression of vision impairment. This review focuses on current understanding of vision loss in JNCL and discusses future research directions toward molecular dissection of the pathogenesis of the disease and associated vision problems in order to ultimately improve the quality of patient life and cure the disease.
Collapse
Affiliation(s)
| | | | - Qing Jun Wang
- Department of Molecular and Cellular Biochemistry.,Department of Toxicology and Cancer Biology.,Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
18
|
Wavre-Shapton ST, Calvi AA, Turmaine M, Seabra MC, Cutler DF, Futter CE, Mitchison HM. Photoreceptor phagosome processing defects and disturbed autophagy in retinal pigment epithelium of Cln3Δex1-6 mice modelling juvenile neuronal ceroid lipofuscinosis (Batten disease). Hum Mol Genet 2015; 24:7060-74. [PMID: 26450516 PMCID: PMC4654058 DOI: 10.1093/hmg/ddv406] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/22/2015] [Indexed: 12/21/2022] Open
Abstract
Retinal degeneration and visual impairment are the first signs of juvenile neuronal ceroid lipofuscinosis caused by CLN3 mutations, followed by inevitable progression to blindness. We investigated retinal degeneration in Cln3(Δex1-6) null mice, revealing classic 'fingerprint' lysosomal storage in the retinal pigment epithelium (RPE), replicating the human disease. The lysosomes contain mitochondrial F0-ATP synthase subunit c along with undigested membranes, indicating a reduced degradative capacity. Mature autophagosomes and basal phagolysosomes, the terminal degradative compartments of autophagy and phagocytosis, are also increased in Cln3(Δex1) (-6) RPE, reflecting disruption to these key pathways that underpin the daily phagocytic turnover of photoreceptor outer segments (POS) required for maintenance of vision. The accumulated autophagosomes have post-lysosome fusion morphology, with undigested internal contents visible, while accumulated phagosomes are frequently docked to cathepsin D-positive lysosomes, without mixing of phagosomal and lysosomal contents. This suggests lysosome-processing defects affect both autophagy and phagocytosis, supported by evidence that phagosomes induced in Cln3(Δex1) (-) (6)-derived mouse embryonic fibroblasts have visibly disorganized membranes, unprocessed internal vesicles and membrane contents, in addition to reduced LAMP1 membrane recruitment. We propose that defective lysosomes in Cln3(Δex1) (-) (6) RPE have a reduced degradative capacity that impairs the final steps of the intimately connected autophagic and phagocytic pathways that are responsible for degradation of POS. A build-up of degradative organellar by-products and decreased recycling of cellular materials is likely to disrupt processes vital to maintenance of vision by the RPE.
Collapse
Affiliation(s)
- Silène T Wavre-Shapton
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK, Molecular Medicine, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Alessandra A Calvi
- Nuclear Dynamics and Architecture, Institute of Medical Biology, Singapore 138648, Singapore
| | - Mark Turmaine
- Faculty of Life Sciences, Division of Biosciences and
| | - Miguel C Seabra
- Molecular Medicine, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Daniel F Cutler
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK and MRC Cell Biology Unit, MRC Laboratory for Molecular Cell Biology, London, UK
| | - Clare E Futter
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK,
| | - Hannah M Mitchison
- Genetics and Genomic Medicine Programme and Birth Defects Research Centre, Institute of Child Health, University College London, London WC1N 1EH, UK,
| |
Collapse
|
19
|
Guo J, O'Brien DP, Mhlanga-Mutangadura T, Olby NJ, Taylor JF, Schnabel RD, Katz ML, Johnson GS. A rare homozygous MFSD8 single-base-pair deletion and frameshift in the whole genome sequence of a Chinese Crested dog with neuronal ceroid lipofuscinosis. BMC Vet Res 2015; 10:960. [PMID: 25551667 PMCID: PMC4298050 DOI: 10.1186/s12917-014-0181-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 08/06/2014] [Indexed: 02/02/2023] Open
Abstract
Background The neuronal ceroid lipofuscinoses are heritable lysosomal storage diseases characterized by progressive neurological impairment and the accumulation of autofluorescent storage granules in neurons and other cell types. Various forms of human neuronal ceroid lipofuscinosis have been attributed to mutations in at least 13 different genes. So far, mutations in the canine orthologs of 7 of these genes have been identified in DNA from dogs with neuronal ceroid lipofuscinosis. The identification of new causal mutations could lead to the establishment of canine models to investigate the pathogenesis of the corresponding human neuronal ceroid lipofuscinoses and to evaluate and optimize therapeutic interventions for these fatal human diseases. Case presentation We obtained blood and formalin-fixed paraffin-embedded brain sections from a rescue dog that was reported to be a young adult Chinese Crested. The dog was euthanized at approximately 19 months of age as a consequence of progressive neurological decline that included blindness, anxiety, and cognitive impairment. A diagnosis of neuronal ceroid lipofuscinosis was made based on neurological signs, magnetic resonance imaging of the brain, and fluorescence microscopic and electron microscopic examination of brain sections. We isolated DNA from the blood and used it to generate a whole genome sequence with 33-fold average coverage. Among the 7.2 million potential sequence variants revealed by aligning the sequence reads to the canine genome reference sequence was a homozygous single base pair deletion in the canine ortholog of one of 13 known human NCL genes: MFSD8:c.843delT. MFSD8:c.843delT is predicted to cause a frame shift and premature stop codon resulting in a truncated protein, MFSD8:p.F282Lfs13*, missing its 239 C-terminal amino acids. The MFSD8:c.843delT allele is absent from the whole genome sequences of 101 healthy canids or dogs with other diseases. The genotyping of archived DNA from 1478 Chinese Cresteds did not identify any additional MFSD8:c.843delT homozygotes and found only one heterozygote. Conclusion We conclude that the neurodegenerative disease of the Chinese Crested rescue dog was neuronal ceroid lipofuscinosis and that homozygosity for the MFSD8:c.843delT sequence variant was very likely to be the molecular-genetic cause of the disease. Electronic supplementary material The online version of this article (doi:10.1186/s12917-014-0181-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juyuan Guo
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.
| | - Dennis P O'Brien
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.
| | - Tendai Mhlanga-Mutangadura
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.
| | - Natasha J Olby
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| | - Jeremy F Taylor
- Division of Animal Science, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, USA.
| | - Robert D Schnabel
- Division of Animal Science, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, USA.
| | - Martin L Katz
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, USA.
| | - Gary S Johnson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
20
|
Groh J, Stadler D, Buttmann M, Martini R. Non-invasive assessment of retinal alterations in mouse models of infantile and juvenile neuronal ceroid lipofuscinosis by spectral domain optical coherence tomography. Acta Neuropathol Commun 2014; 2:54. [PMID: 24887158 PMCID: PMC4035096 DOI: 10.1186/2051-5960-2-54] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 04/30/2014] [Indexed: 12/29/2022] Open
Abstract
Introduction The neuronal ceroid lipofuscinoses constitute a group of fatal inherited lysosomal storage diseases that manifest in profound neurodegeneration in the CNS. Visual impairment usually is an early symptom and selective degeneration of retinal neurons has been described in patients suffering from distinct disease subtypes. We have previously demonstrated that palmitoyl protein thioesterase 1 deficient (Ppt1-/-) mice, a model of the infantile disease subtype, exhibit progressive axonal degeneration in the optic nerve and loss of retinal ganglion cells, faithfully reflecting disease severity in the CNS. Here we performed spectral domain optical coherence tomography (OCT) in Ppt1-/- and ceroid lipofuscinosis neuronal 3 deficient (Cln3-/-) mice, which are models of infantile and juvenile neuronal ceroid lipofuscinosis, respectively, in order to establish a non-invasive method to assess retinal alterations and monitor disease severity in vivo. Results Blue laser autofluorescence imaging revealed increased accumulation of autofluorescent storage material in the inner retinae of 7-month-old Ppt1-/- and of 16-month-old Cln3-/- mice in comparison with age-matched control littermates. Additionally, optical coherence tomography demonstrated reduced thickness of retinae in knockout mice in comparison with age-matched control littermates. High resolution scans and manual measurements allowed for separation of different retinal composite layers and revealed a thinning of layers in the inner retinae of both mouse models at distinct ages. OCT measurements correlated well with subsequent histological analysis of the same retinae. Conclusions These results demonstrate the feasibility of OCT to assess neurodegenerative disease severity in mouse models of neuronal ceroid lipofuscinosis and might have important implications for diagnostic evaluation of disease progression and therapeutic efficacy in patients. Moreover, the non-invasive method allows for longitudinal studies in experimental models, reducing the number of animals used for research.
Collapse
|
21
|
Volz C, Mirza M, Langmann T, Jägle H. Retinal function in aging homozygous Cln3 (Δex7/8) knock-in mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 801:495-501. [PMID: 24664736 DOI: 10.1007/978-1-4614-3209-8_63] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neuronal ceroid lipofuscinoses (NCL) are characterized by lysosomal accumulation of autofluorescent material and lead to degeneration of the central nervous system. Patients affected by the juvenile form of NCL (JNCL), the most common form of the disease, develop visual failure prior to mental and motor deficits. It is currently unclear if the corresponding mouse model, Cln3 (Δex7/8) knock-in, develops the same retinal phenotype and electroretinogram (ERG) measurements as affected patients. The aim of our study was to investigate the visual disease progression in the Cln3 (Δex7/8) mice using scotopic and photopic ERGs as well as optokinetic tracking (OKT) at different ages. The results were then compared with age-matched controls.The amplitudes of the a-wave and b-wave (scotopic ERG) decrease significantly in Cln3 (Δex7/8) mice starting at the age of 12 months. A reduction in the b/a-amplitude ratio indicates a degeneration preferentially of the inner retina. An amplitude reduction observed in the Cln3 (+/+) control mice may be attributed to an additional Crb1 (rd8) mutation. Using optokinetic tracking (OKT) the Cln3 (Δex7/8) mice show a progressive decline in visual acuity after 12 months of age.
Collapse
Affiliation(s)
- Cornelia Volz
- Department of Ophthalmology, University Eye Clinic Regensburg, Franz-Josef-Strauß Allee 11, 93053, Regensburg, Germany,
| | | | | | | |
Collapse
|
22
|
Use of model organisms for the study of neuronal ceroid lipofuscinosis. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1842-65. [PMID: 23338040 DOI: 10.1016/j.bbadis.2013.01.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 12/26/2022]
Abstract
Neuronal ceroid lipofuscinoses are a group of fatal progressive neurodegenerative diseases predominantly affecting children. Identification of mutations that cause neuronal ceroid lipofuscinosis, and subsequent functional and pathological studies of the affected genes, underpins efforts to investigate disease mechanisms and identify and test potential therapeutic strategies. These functional studies and pre-clinical trials necessitate the use of model organisms in addition to cell and tissue culture models as they enable the study of protein function within a complex organ such as the brain and the testing of therapies on a whole organism. To this end, a large number of disease models and genetic tools have been identified or created in a variety of model organisms. In this review, we will discuss the ethical issues associated with experiments using model organisms, the factors underlying the choice of model organism, the disease models and genetic tools available, and the contributions of those disease models and tools to neuronal ceroid lipofuscinosis research. This article is part of a Special Issue entitled: The Neuronal Ceroid Lipofuscinoses or Batten Disease.
Collapse
|
23
|
Staropoli JF, Haliw L, Biswas S, Garrett L, Hölter SM, Becker L, Skosyrski S, Da Silva-Buttkus P, Calzada-Wack J, Neff F, Rathkolb B, Rozman J, Schrewe A, Adler T, Puk O, Sun M, Favor J, Racz I, Bekeredjian R, Busch DH, Graw J, Klingenspor M, Klopstock T, Wolf E, Wurst W, Zimmer A, Lopez E, Harati H, Hill E, Krause DS, Guide J, Dragileva E, Gale E, Wheeler VC, Boustany RM, Brown DE, Breton S, Ruether K, Gailus-Durner V, Fuchs H, de Angelis MH, Cotman SL. Large-scale phenotyping of an accurate genetic mouse model of JNCL identifies novel early pathology outside the central nervous system. PLoS One 2012; 7:e38310. [PMID: 22701626 PMCID: PMC3368842 DOI: 10.1371/journal.pone.0038310] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 05/08/2012] [Indexed: 12/29/2022] Open
Abstract
Cln3Δex7/8 mice harbor the most common genetic defect causing juvenile neuronal ceroid lipofuscinosis (JNCL), an autosomal recessive disease involving seizures, visual, motor and cognitive decline, and premature death. Here, to more thoroughly investigate the manifestations of the common JNCL mutation, we performed a broad phenotyping study of Cln3Δex7/8 mice. Homozygous Cln3Δex7/8 mice, congenic on a C57BL/6N background, displayed subtle deficits in sensory and motor tasks at 10–14 weeks of age. Homozygous Cln3Δex7/8 mice also displayed electroretinographic changes reflecting cone function deficits past 5 months of age and a progressive decline of retinal post-receptoral function. Metabolic analysis revealed increases in rectal body temperature and minimum oxygen consumption in 12–13 week old homozygous Cln3Δex7/8mice, which were also seen to a lesser extent in heterozygous Cln3Δex7/8 mice. Heart weight was slightly increased at 20 weeks of age, but no significant differences were observed in cardiac function in young adults. In a comprehensive blood analysis at 15–16 weeks of age, serum ferritin concentrations, mean corpuscular volume of red blood cells (MCV), and reticulocyte counts were reproducibly increased in homozygous Cln3Δex7/8 mice, and male homozygotes had a relative T-cell deficiency, suggesting alterations in hematopoiesis. Finally, consistent with findings in JNCL patients, vacuolated peripheral blood lymphocytes were observed in homozygous Cln3Δex7/8 neonates, and to a greater extent in older animals. Early onset, severe vacuolation in clear cells of the epididymis of male homozygous Cln3Δex7/8 mice was also observed. These data highlight additional organ systems in which to study CLN3 function, and early phenotypes have been established in homozygous Cln3Δex7/8 mice that merit further study for JNCL biomarker development.
Collapse
Affiliation(s)
- John F. Staropoli
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Larissa Haliw
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Sunita Biswas
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Lillian Garrett
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Sabine M. Hölter
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Lore Becker
- Department of Neurology, Friedrich-Baur-Institut, Ludwig-Maximilians-Universität München, Munich, Germany
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | | | | | - Julia Calzada-Wack
- Institute of Pathology, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Frauke Neff
- Institute of Pathology, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Birgit Rathkolb
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jan Rozman
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center, TUM, Freising-Weihenstephan, Germany
| | - Anja Schrewe
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Thure Adler
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
- Institute of Medical Microbiology, Immunology, and Hygiene, TUM, München, Germany
| | - Oliver Puk
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Minxuan Sun
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Jack Favor
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Ildikó Racz
- Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| | - Raffi Bekeredjian
- Department of Medicine III, Division of Cardiology, University of Heidelberg, Otto-Meyerhof-Zentrum, Heidelberg, Germany
| | - Dirk H. Busch
- Institute of Medical Microbiology, Immunology, and Hygiene, TUM, München, Germany
| | - Jochen Graw
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Martin Klingenspor
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center, TUM, Freising-Weihenstephan, Germany
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institut, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
- Lehrstuhl für Entwicklungsgenetik, TUM, Freising-Weihenstephan, Germany
- Max-Planck-Institute of Psychiatry, Munich, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. Site Munich, Munich, Germany
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| | - Edith Lopez
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Hayat Harati
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Neurogenetics Program and Division of Pediatric Neurology, Departments of Pediatrics and Biochemistry, American University of Beirut, Beirut, Lebanon
| | - Eric Hill
- Center for Systems Biology, Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Daniela S. Krause
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Jolene Guide
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Ella Dragileva
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Evan Gale
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Vanessa C. Wheeler
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Rose-Mary Boustany
- Neurogenetics Program and Division of Pediatric Neurology, Departments of Pediatrics and Biochemistry, American University of Beirut, Beirut, Lebanon
| | - Diane E. Brown
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Center for Comparative Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Sylvie Breton
- Center for Systems Biology, Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Klaus Ruether
- Augenabteilung Sankt Gertrauden Krankenhaus, Berlin, Germany
| | - Valérie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Martin Hrabě de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
- Lehrstuhl für Experimentelle Genetik, TUM, Freising-Weihenstephan, Germany
| | - Susan L. Cotman
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
24
|
Shacka JJ. Mouse models of neuronal ceroid lipofuscinoses: useful pre-clinical tools to delineate disease pathophysiology and validate therapeutics. Brain Res Bull 2012; 88:43-57. [PMID: 22502604 DOI: 10.1016/j.brainresbull.2012.03.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 03/04/2012] [Accepted: 03/14/2012] [Indexed: 12/11/2022]
Abstract
The neuronal ceroid lipofuscinoses (NCL, also known as Batten disease) is a devastating neurodegenerative diseases caused by mutations in either soluble enzymes or membrane-associated structural proteins that result in lysosome dysfunction. Different forms of NCL were defined initially by age of onset, affected population and/or type of storage material but collectively represent the most prevalent pediatric hereditary neurovisceral storage disorder. Specific gene mutations are now known for each subclass of NCL in humans that now largely define the disease: cathepsin D (CTSD) for congenital (CLN10 form); palmitoyl protein thioesterase 1 (PPT1) for infantile (CLN1 form); tripeptidyl peptidase 1 (TPP1) for classic late infantile (CLN2 form); variant late infantile-CLN5, CLN6 or CLN8 for variant late infantile forms; and CLN3 for juvenile (CLN3 form). Several mouse models of NCL have been developed, or in some cases exist sporadically, that exhibit mutations producing a progressive neurodegenerative phenotype similar to that observed in human NCL. The study of these mouse models of NCL has dramatically advanced our knowledge of NCL pathophysiology and in some cases has helped delineate the function of proteins mutated in human NCL. In addition, NCL mutant mice have been tested for several different therapeutic approaches and as such they have become important pre-clinical models for validating treatment options. In this review we will assess the current state of mouse models of NCL with regards to their unique pathophysiology and how these mice have helped investigators achieve a better understanding of human NCL disease and therapy.
Collapse
Affiliation(s)
- John J Shacka
- Neuropathology Division, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
25
|
A knock-in reporter mouse model for Batten disease reveals predominant expression of Cln3 in visual, limbic and subcortical motor structures. Neurobiol Dis 2010; 41:237-48. [PMID: 20875858 DOI: 10.1016/j.nbd.2010.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 08/30/2010] [Accepted: 09/19/2010] [Indexed: 11/23/2022] Open
Abstract
Juvenile neuronal ceroid lipofuscinosis (JNCL) or Batten disease is an autosomal recessive neurodegenerative disorder of children caused by mutation in CLN3. JNCL is characterized by progressive visual impairment, cognitive and motor deficits, seizures and premature death. Information about the localization of CLN3 expressing neurons in the nervous system is limited, especially during development. The present study has systematically mapped the spatial and temporal localization of CLN3 reporter neurons in the entire nervous system including retina, using a knock-in reporter mouse model. CLN3 reporter is expressed predominantly in post-migratory neurons in visual and limbic cortices, anterior and intralaminar thalamic nuclei, amygdala, cerebellum, red nucleus, reticular formation, vestibular nuclei and retina. CLN3 reporter in the nervous system is mainly expressed during the first postnatal month except in the dentate gyrus, parasolitary nucleus and retina, where it is still strongly expressed in adulthood. The predominant distribution of CLN3 reporter neurons in visual, limbic and subcortical motor structures correlates well with the clinical symptoms of JNCL. These findings have also revealed potential target brain regions and time periods for future investigations of the disease mechanisms and therapeutic intervention.
Collapse
|
26
|
Stein CS, Yancey PH, Martins I, Sigmund RD, Stokes JB, Davidson BL. Osmoregulation of ceroid neuronal lipofuscinosis type 3 in the renal medulla. Am J Physiol Cell Physiol 2010; 298:C1388-400. [PMID: 20219947 DOI: 10.1152/ajpcell.00272.2009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recessive inheritance of mutations in ceroid neuronal lipofuscinosis type 3 (CLN3) results in juvenile neuronal ceroid lipofuscinosis (JNCL), a childhood neurodegenerative disease with symptoms including loss of vision, seizures, and motor and mental decline. CLN3p is a transmembrane protein with undefined function. Using a Cln3 reporter mouse harboring a nuclear-localized bacterial beta-galactosidase (beta-Gal) gene driven by the native Cln3 promoter, we detected beta-Gal most prominently in epithelial cells of skin, colon, lung, and kidney. In the kidney, beta-Gal-positive nuclei were predominant in medullary collecting duct principal cells, with increased expression along the medullary osmotic gradient. Quantification of Cln3 transcript levels from kidneys of wild-type (Cln3(+/+)) mice corroborated this expression gradient. Reporter mouse-derived renal epithelial cultures demonstrated a tonicity-dependent increase in beta-Gal expression. RT-quantitative PCR determination of Cln3 transcript levels further supported osmoregulation at the Cln3 locus. In vivo, osmoresponsiveness of Cln3 was demonstrated by reduction of medullary Cln3 transcript abundance after furosemide administration. Primary cultures of epithelial cells of the inner medulla from Cln3(lacZ/lacZ) (CLN3p-null) mice showed no defect in osmolyte accumulation or taurine flux, arguing against a requirement for CLN3p in osmolyte import or synthesis. CLN3p-deficient mice with free access to water showed a mild urine-concentrating defect but, upon water deprivation, were able to concentrate their urine normally. Unexpectedly, we found that CLN3p-deficient mice were hyperkalemic and had a low fractional excretion of K(+). Together, these findings suggest an osmoregulated role for CLN3p in renal control of water and K(+) balance.
Collapse
Affiliation(s)
- Colleen S Stein
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Bozorg S, Ramirez-Montealegre D, Chung M, Pearce DA. Juvenile neuronal ceroid lipofuscinosis (JNCL) and the eye. Surv Ophthalmol 2009; 54:463-71. [PMID: 19539834 DOI: 10.1016/j.survophthal.2009.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Juvenile neuronal ceroid lipofuscinoses, or Batten disease, is the most common type of NCL in the United States and Europe. This devastating disorder presents with vision failure and progresses to include seizures, motor dysfunction, and dementia. Death usually occurs in the third decade, but some patients die before age twenty. Though the mechanism of visual failure remains poorly understood, recent advances in molecular genetics have improved diagnostic testing and suggested possible therapeutic strategies. The ophthalmologist plays a crucial role in both early diagnosis and documentation of progression of juvenile neuronal ceroid lipofuscinoses. We update Batten disease research, particularly as it relates to the eye, and present various theories on the pathophysiology of retinal degeneration.
Collapse
Affiliation(s)
- Sara Bozorg
- Department of Ophthalmology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
28
|
Abstract
PURPOSE To characterize the retinal features of neuronal ceroid lipofuscinoses (NCLs) and to determine if retinal abnormalities are detectable in carriers of these autosomal recessively inherited diseases. METHODS Carriers of the NCLs and their affected children underwent ophthalmic examination including color fundus photography in all patients and fluorescein angiography in selected patients. Twenty-nine patients with NCL were examined and photographed: 3 with infantile form, 2 with late-infantile form, and 24 with juvenile form. Fourteen patients underwent fluorescein angiography. RESULTS Infantile and late-infantile retinal findings include fine retinal pigment epithelium pigment atrophy with no bone spicule changes and disk pallor. Juvenile retinal findings include macular retinal pigment epithelium atrophy and pigment stippling (>50%), epiretinal membrane (33%), bull's eye maculopathy (25%), and peripheral bone spicules (46%) and variable disk pallor. Fluorescein angiography of juvenile patients demonstrated diffuse retinal pigment epithelium atrophy with stippled hyperfluorescence (93%). Heterozygous NCL carriers had no identifying retinal abnormalities. CONCLUSION Significant variability exists in the retinal appearance of the NCLs, but, in general, ophthalmoscopy and fluorescein angiography distinguish these patients from other more common blinding disorders of childhood such as retinitis pigmentosa and Stargardt disease. Examining retinas of parents of affected children does not aid in the diagnosis of NCL.
Collapse
|
29
|
Jalanko A, Braulke T. Neuronal ceroid lipofuscinoses. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:697-709. [DOI: 10.1016/j.bbamcr.2008.11.004] [Citation(s) in RCA: 262] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 11/06/2008] [Accepted: 11/12/2008] [Indexed: 12/26/2022]
|
30
|
Osório NS, Sampaio-Marques B, Chan CH, Oliveira P, Pearce DA, Sousa N, Rodrigues F. Neurodevelopmental delay in the Cln3Deltaex7/8 mouse model for Batten disease. GENES BRAIN AND BEHAVIOR 2009; 8:337-45. [PMID: 19243453 DOI: 10.1111/j.1601-183x.2009.00478.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Juvenile neuronal ceroid lipofuscinosis (JNCL), also known as Batten disease, is a fatal inherited neurodegenerative disorder. The major clinical features of this disease are vision loss, seizures and progressive cognitive and motor decline starting in childhood. Mutations in CLN3 are known to cause the disease, allowing the generation of mouse models that are powerful tools for JNCL research. In this study, we applied behavioural phenotyping protocols to test for early behavioural alterations in Cln3(Deltaex7/8) knock-in mice, a genetic model that harbours the most common disease-causing CLN3 mutation. We found delayed acquisition of developmental milestones, including negative geotaxis, grasping, wire suspension time and postural reflex in both homozygous and heterozygous Cln3(Deltaex7/8) preweaning pups. To further investigate the consequences of this neurodevelopmental delay, we studied the behaviour of juvenile mice and found that homozygous and heterozygous Cln3(Deltaex7/8) knock-in mice also exhibit deficits in exploratory activity. Moreover, when analysing motor behaviour, we observed severe motor deficits in Cln3(Deltaex7/8) homozygous mice, but only a mild impairment in motor co-ordination and ambulatory gait in Cln3(Deltaex7/8) heterozygous animals. This study reveals previously overlooked behaviour deficits in neonate and young adult Cln3(Deltaex7/8) mice indicating neurodevelopmental delay as a putative novel component of JNCL.
Collapse
Affiliation(s)
- N S Osório
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
| | | | | | | | | | | | | |
Collapse
|
31
|
Tuxworth RI, Vivancos V, O'Hare MB, Tear G. Interactions between the juvenile Batten disease gene, CLN3, and the Notch and JNK signalling pathways. Hum Mol Genet 2008; 18:667-78. [PMID: 19028667 PMCID: PMC2638826 DOI: 10.1093/hmg/ddn396] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Mutations in the gene CLN3 are responsible for the neurodegenerative disorder juvenile neuronal ceroid lipofuscinosis or Batten disease. CLN3 encodes a multi-spanning and hydrophobic transmembrane protein whose function is unclear. As a consequence, the cell biology that underlies the pathology of the disease is not well understood. We have developed a genetic gain-of-function system in Drosophila to identify functional pathways and interactions for CLN3. We have identified previously unknown interactions between CLN3 and the Notch and Jun N-terminal kinase signalling pathways and have uncovered a potential role for the RNA splicing and localization machinery in regulating CLN3 function.
Collapse
Affiliation(s)
- Richard I Tuxworth
- MRC Centre for Developmental Neurobiology, New Hunt's House, Guy's Hospital Campus, King's College London, London, UK
| | | | | | | |
Collapse
|
32
|
Cooper JD. Moving towards therapies for Juvenile Batten disease? Exp Neurol 2008; 211:329-31. [DOI: 10.1016/j.expneurol.2008.02.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 01/28/2008] [Accepted: 02/22/2008] [Indexed: 11/16/2022]
|