1
|
Hudakova N, Mudronova D, Marcincakova D, Slovinska L, Majerova P, Maloveska M, Petrouskova P, Humenik F, Cizkova D. The role of primed and non-primed MSC-derived conditioned media in neuroregeneration. Front Mol Neurosci 2023; 16:1241432. [PMID: 38025267 PMCID: PMC10656692 DOI: 10.3389/fnmol.2023.1241432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction With growing significance in nervous system repair, mesenchymal stem cell-derived conditioned media (MSCCM) have been used in cell-free therapies in regenerative medicine. However, the immunomodulatory and neuroregenerative effects of MSCCM and the influence of priming on these effects are still poorly understood. Methods In this study, by various methods focused on cell viability, proliferation, neuron-like differentiation, neurite outgrowth, cell migration and regrowth, we demonstrated that MSCCM derived from adipose tissue (AT-MSCCM) and amniotic membrane (AM-MSCCM) had different effects on SH-SY5Y cells. Results and discussion AT-MSCCM was found to have a higher proliferative capacity and the ability to impact neurite outgrowth during differentiation, while AM-MSCCM showed more pronounced immunomodulatory activity, migration, and re-growth of SH-SY5Y cells in the scratch model. Furthermore, priming of MSC with pro-inflammatory cytokine (IFN-γ) resulted in different proteomic profiles of conditioned media from both sources, which had the highest effect on SH-SY5Y proliferation and neurite outgrowth in terms of the length of neurites (pAT-MSCCM) compared to the control group (DMEM). Altogether, our results highlight the potential of primed and non-primed MSCCM as a therapeutic tool for neurodegenerative diseases, although some differences must be considered.
Collapse
Affiliation(s)
- Nikola Hudakova
- Centre of Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy in Kosice, Košice, Slovakia
| | - Dagmar Mudronova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Košice, Slovakia
| | - Dana Marcincakova
- Department of Pharmacology and Toxicology, University of Veterinary Medicine and Pharmacy in Kosice, Košice, Slovakia
| | - Lucia Slovinska
- Associated Tissue Bank, Faculty of Medicine, Pavol Jozef Safarik University and Luis Pasteur University Hospital, Košice, Slovakia
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marcela Maloveska
- Centre of Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy in Kosice, Košice, Slovakia
| | - Patricia Petrouskova
- Centre of Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy in Kosice, Košice, Slovakia
| | - Filip Humenik
- Centre of Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy in Kosice, Košice, Slovakia
| | - Dasa Cizkova
- Centre of Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy in Kosice, Košice, Slovakia
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
2
|
Yuan W, Liu W, Zhan X, Zhou Y, Ma R, Liang S, Wang T, Ge Z. Inhibition of miR-221-3p promotes axonal regeneration and repair of primary sensory neurons via regulating p27 expression. Neuroreport 2023; 34:471-484. [PMID: 37161985 PMCID: PMC10292576 DOI: 10.1097/wnr.0000000000001912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/12/2023] [Indexed: 05/11/2023]
Abstract
This study aimed to explore the key microRNA (miRNA) playing a vital role in axonal regeneration with a hostile microenvironment after spinal cord injury. Based on the theory that sciatic nerve conditioning injury (SNCI) could promote the repair of the injured dorsal column. Differentially expressed miRNAs were screened according to the microarray, revealing that 47 known miRNAs were differentially expressed after injury and perhaps involved in nerve regeneration. Among the 47 miRNAs, the expression of miR-221-3p decreased sharply in the SNCI group compared with the simple dorsal column lesion (SDCL) group. Subsequently, it was confirmed that p27 was the target gene of miR-221-3p from luciferase reporter assay. Further, we found that inhibition of miR-221-3p expression could specifically target p27 to upregulate the expression of growth-associated protein 43 (GAP-43), α-tubulin acetyltransferase (α-TAT1) together with α-tubulin, and advance the regeneration of dorsal root ganglion (DRG) neuronal axons. Chondroitin sulfate proteoglycans (CSPGs) are the main components of glial scar, which can hinder the extension and growth of damaged neuronal axons. After CSPGs were used in this study, the results demonstrated that restrained miR-221-3p expression also via p27 promoted the upregulation of GAP-43, α-TAT1, and α-tubulin and enhanced the axonal growth of DRG neurons. Hence, miR-221-3p could contribute significantly to the regeneration of DRG neurons by specifically regulating p27 in the p27/CDK2/GAP-43 and p27/α-TAT1/α-tubulin pathways even in the inhibitory environment with CSPGs.
Collapse
Affiliation(s)
- Wenqi Yuan
- Department of Orthopedic Surgery, General Hospital of Ningxia Medical University
| | - Wei Liu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region
| | - Xuehua Zhan
- Department of Orthopedic Surgery, General Hospital of Ningxia Medical University
| | - Yueyong Zhou
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region
| | - Rong Ma
- Department of Orthopedic Surgery, General Hospital of Ningxia Medical University
| | - Simin Liang
- Department of Orthopedic Surgery, General Hospital of Ningxia Medical University
| | - Tianyi Wang
- Department of Spine Surgery, 981st Hospital of the Chinese People’s Liberation Army Joint Logistics Support Force, Chengde, China
| | - Zhaohui Ge
- Department of Orthopedic Surgery, General Hospital of Ningxia Medical University
| |
Collapse
|
3
|
Hrabalova P, Bohuslavova R, Matejkova K, Papousek F, Sedmera D, Abaffy P, Kolar F, Pavlinkova G. Dysregulation of hypoxia-inducible factor 1α in the sympathetic nervous system accelerates diabetic cardiomyopathy. Cardiovasc Diabetol 2023; 22:88. [PMID: 37072781 PMCID: PMC10114478 DOI: 10.1186/s12933-023-01824-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 04/03/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND An altered sympathetic nervous system is implicated in many cardiac pathologies, ranging from sudden infant death syndrome to common diseases of adulthood such as hypertension, myocardial ischemia, cardiac arrhythmias, myocardial infarction, and heart failure. Although the mechanisms responsible for disruption of this well-organized system are the subject of intensive investigations, the exact processes controlling the cardiac sympathetic nervous system are still not fully understood. A conditional knockout of the Hif1a gene was reported to affect the development of sympathetic ganglia and sympathetic innervation of the heart. This study characterized how the combination of HIF-1α deficiency and streptozotocin (STZ)-induced diabetes affects the cardiac sympathetic nervous system and heart function of adult animals. METHODS Molecular characteristics of Hif1a deficient sympathetic neurons were identified by RNA sequencing. Diabetes was induced in Hif1a knockout and control mice by low doses of STZ treatment. Heart function was assessed by echocardiography. Mechanisms involved in adverse structural remodeling of the myocardium, i.e. advanced glycation end products, fibrosis, cell death, and inflammation, was assessed by immunohistological analyses. RESULTS We demonstrated that the deletion of Hif1a alters the transcriptome of sympathetic neurons, and that diabetic mice with the Hif1a-deficient sympathetic system have significant systolic dysfunction, worsened cardiac sympathetic innervation, and structural remodeling of the myocardium. CONCLUSIONS We provide evidence that the combination of diabetes and the Hif1a deficient sympathetic nervous system results in compromised cardiac performance and accelerated adverse myocardial remodeling, associated with the progression of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Petra Hrabalova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, BIOCEV, Vestec, Czechia
- Charles University, Prague, Czechia
| | - Romana Bohuslavova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, BIOCEV, Vestec, Czechia
| | - Katerina Matejkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, BIOCEV, Vestec, Czechia
| | | | - David Sedmera
- Institute of Physiology CAS, Prague, Czechia
- Institute of Anatomy, Charles University, Prague, Czechia
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology CAS, BIOCEV, Vestec, Czechia
| | | | - Gabriela Pavlinkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, BIOCEV, Vestec, Czechia.
| |
Collapse
|
4
|
Cao XM, Li SL, Cao YQ, Lv YH, Wang YX, Yu B, Yao C. A comparative analysis of differentially expressed genes in rostral and caudal regions after spinal cord injury in rats. Neural Regen Res 2022; 17:2267-2271. [PMID: 35259848 PMCID: PMC9083160 DOI: 10.4103/1673-5374.336874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/26/2021] [Accepted: 12/24/2021] [Indexed: 11/04/2022] Open
Abstract
The initial mechanical damage of a spinal cord injury (SCI) triggers a progressive secondary injury cascade, which is a complicated process integrating multiple systems and cells. It is crucial to explore the molecular and biological process alterations that occur after SCI for therapy development. The differences between the rostral and caudal regions around an SCI lesion have received little attention. Here, we analyzed the differentially expressed genes between rostral and caudal sites after injury to determine the biological processes in these two segments after SCI. We identified a set of differentially expressed genes, including Col3a1, Col1a1, Dcn, Fn1, Kcnk3, and Nrg1, between rostral and caudal regions at different time points following SCI. Functional enrichment analysis indicated that these genes were involved in response to mechanical stimulus, blood vessel development, and brain development. We then chose Col3a1, Col1a1, Dcn, Fn1, Kcnk3, and Nrg1 for quantitative real-time PCR and Fn1 for immunostaining validation. Our results indicate alterations in different biological events enriched in the rostral and caudal lesion areas, providing new insights into the pathology of SCI.
Collapse
Affiliation(s)
- Xue-Min Cao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Sheng-Long Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Yu-Qi Cao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Ye-Hua Lv
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Ya-Xian Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Chun Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
5
|
Allnoch L, Leitzen E, Zdora I, Baumgärtner W, Hansmann F. Astrocyte depletion alters extracellular matrix composition in the demyelinating phase of Theiler's murine encephalomyelitis. PLoS One 2022; 17:e0270239. [PMID: 35714111 PMCID: PMC9205503 DOI: 10.1371/journal.pone.0270239] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/07/2022] [Indexed: 12/14/2022] Open
Abstract
Astrocytes produce extracellular matrix (ECM) glycoproteins contributing to the blood-brain barrier and regulating the immune response in the central nervous system (CNS). The aim of this study was to investigate the impact of astrocyte depletion upon the clinical outcome and the composition of ECM glycoproteins in a virus-induced animal model of demyelination. Glial fibrillary acidic protein (GFAP)-thymidine-kinase transgenic SJL (GFAP-knockout) and wildtype mice were infected with Theiler’s murine encephalomyelitis virus (TMEV). Astrocyte depletion was induced during the progressive, demyelinating disease phase by ganciclovir administration once daily between 56 and 77 days post infection (dpi). At 77 dpi GFAP-knockout mice showed a significant deterioration of clinical signs associated with a reduction of azan and picrosirius red stained ECM-molecules in the thoracic spinal cord. Basement-membrane-associated ECM-molecules including laminin, entactin/nidogen-1 and Kir4.1 as well as non-basement membrane-associated ECM-molecules like collagen I, decorin, tenascin-R and CD44 were significantly reduced in the spinal cord of GFAP-knockout mice. The reduction of the investigated ECM-molecules demonstrates that astrocytes play a key role in the production of ECM-molecules. The present findings indicate that the detected loss of Kir4.1 and CD44 as well as the disruption of the integrity of perineuronal nets led to the deterioration of clinical signs in GFAP-knockout mice.
Collapse
Affiliation(s)
- Lisa Allnoch
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Eva Leitzen
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Isabel Zdora
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
- * E-mail:
| | - Florian Hansmann
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
- Institute for Veterinary Pathology, Veterinary Faculty, Leipzig University, Leipzig, Germany
| |
Collapse
|
6
|
Wu M, Downie LE, Hill LJ, Chinnery HR. The effect of topical decorin on temporal changes to corneal immune cells after epithelial abrasion. J Neuroinflammation 2022; 19:90. [PMID: 35414012 PMCID: PMC9006562 DOI: 10.1186/s12974-022-02444-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/24/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Corneal immune cells interact with corneal sensory nerves during both homeostasis and inflammation. This study sought to evaluate temporal changes to corneal immune cell density in a mouse model of epithelial abrasion and nerve injury, and to investigate the immunomodulatory effects of topical decorin, which we have shown previously to promote corneal nerve regeneration. METHODS Bilateral corneal epithelial abrasions (2 mm) were performed on C57BL/6J mice. Topical decorin or saline eye drops were applied three times daily for 12 h, 24 h, 3 days or 5 days. Optical coherence tomography imaging was performed to measure the abrasion area. The densities of corneal sensory nerves (β-tubulin III) and immune cells, including dendritic cells (DCs; CD11c+), macrophages (Iba-1+) and neutrophils (NIMP-R14+) were measured. Cx3cr1gfp/gfp mice that spontaneously lack resident corneal intraepithelial DCs were used to investigate the specific contribution of epithelial DCs. Neuropeptide and cytokine gene expression was evaluated using qRT-PCR at 12 h post-injury. RESULTS In decorin-treated corneas, higher intraepithelial DC densities and lower neutrophil densities were observed at 24 h after injury, compared to saline controls. At 12 h post-injury, topical decorin application was associated with greater re-epithelialisation. At 5 days post-injury, corneal stromal macrophage density in the decorin-treated and contralateral eyes was lower, and nerve density was higher, compared to eyes treated with saline only. Lower expression of transforming growth factor beta (TGF-β) and higher expression of CSPG4 mRNA was detected in corneas treated with topical decorin. There was no difference in corneal neutrophil density in Cx3cr1gfp/gfp mice treated with or without decorin at 12 h. CONCLUSIONS Topical decorin regulates immune cell dynamics after corneal injury, by inhibiting neutrophils and recruiting intraepithelial DCs during the acute phase (< 24 h), and inhibiting macrophage density at the study endpoint (5 days). These immunomodulatory effects were associated with faster re-epithelialisation and likely contribute to promoting sensory nerve regeneration. The findings suggest a potential interaction between DCs and neutrophils with topical decorin treatment, as the decorin-induced neutrophil inhibition was absent in Cx3cr1gfp/gfp mice that lack corneal epithelial DCs. TGF-β and CSPG4 proteoglycan likely regulate decorin-mediated innate immune cell responses and nerve regeneration after injury.
Collapse
Affiliation(s)
- Mengliang Wu
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Laura E Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Lisa J Hill
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Holly R Chinnery
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
7
|
The Mammary Gland: Basic Structure and Molecular Signaling during Development. Int J Mol Sci 2022; 23:ijms23073883. [PMID: 35409243 PMCID: PMC8998991 DOI: 10.3390/ijms23073883] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/22/2022] [Accepted: 03/30/2022] [Indexed: 01/27/2023] Open
Abstract
The mammary gland is a compound, branched tubuloalveolar structure and a major characteristic of mammals. The mammary gland has evolved from epidermal apocrine glands, the skin glands as an accessory reproductive organ to support postnatal survival of offspring by producing milk as a source of nutrition. The mammary gland development begins during embryogenesis as a rudimentary structure that grows into an elementary branched ductal tree and is embedded in one end of a larger mammary fat pad at birth. At the onset of ovarian function at puberty, the rudimentary ductal system undergoes dramatic morphogenetic change with ductal elongation and branching. During pregnancy, the alveolar differentiation and tertiary branching are completed, and during lactation, the mature milk-producing glands eventually develop. The early stages of mammary development are hormonal independent, whereas during puberty and pregnancy, mammary gland development is hormonal dependent. We highlight the current understanding of molecular regulators involved during different stages of mammary gland development.
Collapse
|
8
|
Shi Y, Wu X, Zhou J, Cui W, Wang J, Hu Q, Zhang S, Han L, Zhou M, Luo J, Wang Q, Liu H, Feng D, Ge S, Qu Y. Single-Nucleus RNA Sequencing Reveals that Decorin Expression in the Amygdala Regulates Perineuronal Nets Expression and Fear Conditioning Response after Traumatic Brain Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104112. [PMID: 35038242 PMCID: PMC8895134 DOI: 10.1002/advs.202104112] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/17/2021] [Indexed: 06/14/2023]
Abstract
Traumatic brain injury (TBI) is a risk factor for posttraumatic stress disorder (PTSD). Augmented fear is a defining characteristic of PTSD, and the amygdala is considered the main brain region to process fear. The mechanism by which the amygdala is involved in fear conditioning after TBI is still unclear. Using single-nucleus RNA sequencing (snRNA-seq), transcriptional changes in cells in the amygdala after TBI are investigated. In total, 72 328 nuclei are obtained from the sham and TBI groups. 7 cell types, and analysis of differentially expressed genes (DEGs) reveals widespread transcriptional changes in each cell type after TBI are identified. In in vivo experiments, it is demonstrated that Decorin (Dcn) expression in the excitatory neurons of the amygdala significantly increased after TBI, and Dcn knockout in the amygdala mitigates TBI-associated fear conditioning. Of note, this effect is caused by a Dcn-mediated decrease in the expression of perineuronal nets (PNNs), which affect the glutamate-γ-aminobutyric acid balance in the amygdala. Finally, the results suggest that Dcn functions by interacting with collagen VI α3 (Col6a3). Consequently, the findings reveal transcriptional changes in different cell types of the amygdala after TBI and provide direct evidence that Dcn relieves fear conditioning by regulating PNNs.
Collapse
Affiliation(s)
- Yingwu Shi
- Department of NeurosurgeryTangdu HospitalFourth Military Medical UniversityXi'anShaanxi710038China
| | - Xun Wu
- Department of NeurosurgeryTangdu HospitalFourth Military Medical UniversityXi'anShaanxi710038China
| | - Jinpeng Zhou
- Department of NeurosurgeryTangdu HospitalFourth Military Medical UniversityXi'anShaanxi710038China
| | - Wenxing Cui
- Department of NeurosurgeryTangdu HospitalFourth Military Medical UniversityXi'anShaanxi710038China
| | - Jin Wang
- Department of NeurosurgeryTangdu HospitalFourth Military Medical UniversityXi'anShaanxi710038China
| | - Qing Hu
- Department of NeurosurgeryTangdu HospitalFourth Military Medical UniversityXi'anShaanxi710038China
| | - Shenghao Zhang
- Department of NeurosurgeryTangdu HospitalFourth Military Medical UniversityXi'anShaanxi710038China
| | - Liying Han
- Department of NeurosurgeryTangdu HospitalFourth Military Medical UniversityXi'anShaanxi710038China
| | - Meixuan Zhou
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Jianing Luo
- Department of NeurosurgeryWest Theater General HospitalChengduSichuan610083China
| | - Qiang Wang
- Department of NeurosurgeryTangdu HospitalFourth Military Medical UniversityXi'anShaanxi710038China
| | - Haixiao Liu
- Department of NeurosurgeryTangdu HospitalFourth Military Medical UniversityXi'anShaanxi710038China
| | - Dayun Feng
- Department of NeurosurgeryTangdu HospitalFourth Military Medical UniversityXi'anShaanxi710038China
| | - Shunnan Ge
- Department of NeurosurgeryTangdu HospitalFourth Military Medical UniversityXi'anShaanxi710038China
| | - Yan Qu
- Department of NeurosurgeryTangdu HospitalFourth Military Medical UniversityXi'anShaanxi710038China
| |
Collapse
|
9
|
Wu J, Zhu ZY, Fan ZW, Chen Y, Yang RY, Li Y. Downregulation of EphB2 by RNA interference attenuates glial/fibrotic scar formation and promotes axon growth. Neural Regen Res 2022; 17:362-369. [PMID: 34269211 PMCID: PMC8463997 DOI: 10.4103/1673-5374.317988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The rapid formation of a glial/fibrotic scar is one of the main factors hampering axon growth after spinal cord injury. The bidirectional EphB2/ephrin-B2 signaling of the fibroblast-astrocyte contact-dependent interaction is a trigger for glial/fibrotic scar formation. In the present study, a new in vitro model was produced by coculture of fibroblasts and astrocytes wounded by scratching to mimic glial/fibrotic scar-like structures using an improved slide system. After treatment with RNAi to downregulate EphB2, changes in glial/fibrotic scar formation and the growth of VSC4.1 motoneuron axons were examined. Following RNAi treatment, fibroblasts and astrocytes dispersed without forming a glial/fibrotic scar-like structure. Furthermore, the expression levels of neurocan, NG2 and collagen I in the coculture were reduced, and the growth of VSC4.1 motoneuron axons was enhanced. These findings suggest that suppression of EphB2 expression by RNAi attenuates the formation of a glial/fibrotic scar and promotes axon growth. This study was approved by the Laboratory Animal Ethics Committee of Jiangsu Province, China (approval No. 2019-0506-002) on May 6, 2019.
Collapse
Affiliation(s)
- Jian Wu
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu Province, China
| | - Zhen-Yu Zhu
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu Province, China
| | - Zhi-Wei Fan
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu Province, China
| | - Ying Chen
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu Province, China
| | - Ri-Yun Yang
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu Province, China
| | - Yi Li
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
10
|
Matthews J, Surey S, Grover LM, Logan A, Ahmed Z. Thermosensitive collagen/fibrinogen gels loaded with decorin suppress lesion site cavitation and promote functional recovery after spinal cord injury. Sci Rep 2021; 11:18124. [PMID: 34518601 PMCID: PMC8438067 DOI: 10.1038/s41598-021-97604-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/27/2021] [Indexed: 11/10/2022] Open
Abstract
The treatment of spinal cord injury (SCI) is a complex challenge in regenerative medicine, complicated by the low intrinsic capacity of CNS neurons to regenerate their axons and the heterogeneity in size, shape and extent of human injuries. For example, some contusion injuries do not compromise the dura mater and in such cases implantation of preformed scaffolds or drug delivery systems may cause further damage. Injectable in situ thermosensitive scaffolds are therefore a less invasive alternative. In this study, we report the development of a novel, flowable, thermosensitive, injectable drug delivery system comprising bovine collagen (BC) and fibrinogen (FB) that forms a solid BC/FB gel (Gel) immediately upon exposure to physiological conditions and can be used to deliver reparative drugs, such as the naturally occurring anti-inflammatory, anti-scarring agent Decorin, into adult rat spinal cord lesion sites. In dorsal column lesions of adult rats treated with the Gel + Decorin, cavitation was completely suppressed and instead lesion sites became filled with injury-responsive cells and extracellular matrix materials, including collagen and laminin. Decorin increased the intrinsic potential of dorsal root ganglion neurons (DRGN) by increasing their expression of regeneration associated genes (RAGs), enhanced local axon regeneration/sprouting, as evidenced both histologically and by improved electrophysiological, locomotor and sensory function recovery. These results suggest that this drug formulated, injectable hydrogel has the potential to be further studied and translated into the clinic.
Collapse
Affiliation(s)
- Jacob Matthews
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Sarina Surey
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Liam M Grover
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ann Logan
- Warwick Medical School, Biomedical Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK. .,Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
11
|
Çınar Z, Emre U, Gül M, Yiğit Ö, Mammadov E, Yiğit E, Gül S, Cırık HR. Is Decorin a Promising New Agent for Facial Nerve Regeneration? An Experimental Study. Audiol Neurootol 2021; 26:195-205. [PMID: 33677432 DOI: 10.1159/000512003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/28/2020] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate the effects of systemic administration of decorin (DC) on facial nerve (FN) regeneration. METHODS A total of 32 female albino Wistar rats were divided into 4 groups: control (C) group: no bilateral FN neurorrhaphy (B-FNN), no DC application, sham-operated group: B-FNN without DC application, DC group: DC application without B-FNN, and B-FNN + DC group: B-FNN and DC application. Nerve conduction studies were performed before and after skin incisions at 1st, 3rd, 5th, and 7th weeks in all groups. The amplitude and latency of compound muscle action potentials were recorded. FN samples were obtained and were investigated under light microscopy and immunohistochemical staining. The nerve and axon diameter, number of axons, H score, Schwann cell proliferation, and myelin and axonal degeneration were recorded quantitatively. RESULTS In the sham group, the 3rd and 5th postoperative week, amplitude values were significantly lower than those of the B-FNN + DC group (p < 0.05). Nerve diameters were found to be significantly larger in the sham, DC, and B-FNN + DC groups than in the C group (p < 0.05). The number of axons, the axon diameter, and the H scores were found to be significantly higher in the B-FNN + DC group than in the sham group (p < 0.05). The Schwann cell proliferation, myelin degeneration, and axonal degeneration scores were significantly lower in the B-FNN + DC group than in the sham group (p < 0.05). CONCLUSION Electrophysiological and histopathological evaluation revealed the potential benefits provided by DC. This agent may increase FN regeneration.
Collapse
Affiliation(s)
- Zehra Çınar
- Department of Otorhinolaryngology & Head and Neck Surgery, İstanbul Training and Research Hospital, Istanbul, Turkey,
| | - Ufuk Emre
- Department of Neurology, Istanbul Training and Research Hospital, I, Istanbul, Turkey
| | - Mehmet Gül
- Department of Histology and Embryology, İnönü University Faculty of Medicine, Malatya, Turkey
| | - Özgür Yiğit
- Department of Otorhinolaryngology & Head and Neck Surgery, İstanbul Training and Research Hospital, Istanbul, Turkey
| | - Elshan Mammadov
- Department of Otorhinolaryngology & Head and Neck Surgery, İstanbul Training and Research Hospital, Istanbul, Turkey
| | - Enes Yiğit
- Department of Otorhinolaryngology & Head and Neck Surgery, Republic of Turkey Ministry of Health Luleburgaz State Hospital, Kırklareli, Turkey
| | - Semir Gül
- Department of Histology and Embryology, İnönü University Faculty of Medicine, Malatya, Turkey
| | - Hilal Rumeyza Cırık
- Department of Histology and Embryology, İnönü University Faculty of Medicine, Malatya, Turkey
| |
Collapse
|
12
|
Wu M, Downie LE, Grover LM, Moakes RJA, Rauz S, Logan A, Jiao H, Hill LJ, Chinnery HR. The neuroregenerative effects of topical decorin on the injured mouse cornea. J Neuroinflammation 2020; 17:142. [PMID: 32366307 PMCID: PMC7199348 DOI: 10.1186/s12974-020-01812-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/13/2020] [Indexed: 02/08/2023] Open
Abstract
Background The cornea is innervated with a rich supply of sensory nerves that play important roles in ocular surface health. Any injury or pathology of the corneal nerves increases the risk of dry eye disease and infection. This study aims to evaluate the therapeutic potential of topical decorin to improve corneal nerve regeneration in a mouse model of sterile epithelial abrasion injury. Methods Bilateral central corneal epithelial abrasions (2-mm, Alger Brush) were performed on young C57BL/6 J mice to remove the corneal sensory nerves. Decorin, or vehicle, was applied topically, three times per day for 1 week or every 2 h for 6 h. Spectral-domain optical coherence tomography was performed to measure the abrasion area and corneal thickness. Wholemount immunofluorescence staining was used to assess sensory nerve regeneration (β-tubulin III) and immune cell density (CD45, Iba1, CD11c). To investigate the specific role of dendritic cells (DCs), Cx3cr1gfp/gfp mice, which spontaneously lack resident corneal epithelial DCs, were also investigated. The effect of prophylactic topical administration of recombinant human decorin (applied prior to the abrasion) was also investigated. Nerve tracing (NeuronJ software) was performed to compare recovery of basal nerve axons and superficial nerve terminals in the central and peripheral cornea. Results At 6 h after injury, topical decorin application was associated with greater intraepithelial DC recruitment but no change in re-epithelialisation or corneal thickness, compared to the vehicle control. One week after injury, sub-basal nerve plexus and superficial nerve terminal density were significantly higher in the central cornea in the decorin-treated eyes. The density of corneal stromal macrophages in the decorin-treated eyes and their contralateral eyes was significantly lower compared to saline-treated corneas. No significant improvement in corneal nerve regeneration was observed in Cx3cr1gfp/gfp mice treated with decorin. Conclusions Decorin promotes corneal epithelial nerve regeneration after injury. The neuroregenerative effect of topical decorin was associated with a higher corneal DC density during the acute phase, and fewer macrophages at the study endpoint. The corneal neuroregenerative effects of decorin were absent in mice lacking intraepithelial DCs. Together, these findings support a role for decorin in DC-mediated neuroregeneration following corneal abrasion injury.
Collapse
Affiliation(s)
- Mengliang Wu
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, 3053, Australia
| | - Laura E Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, 3053, Australia
| | - Liam M Grover
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Richard J A Moakes
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Saaeha Rauz
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, Birmingham and Midland Eye Centre, Birmingham, UK.,Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ann Logan
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Haihan Jiao
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, 3053, Australia
| | - Lisa J Hill
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Holly R Chinnery
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, 3053, Australia.
| |
Collapse
|
13
|
Järvinen TAH, Ruoslahti E. Generation of a multi-functional, target organ-specific, anti-fibrotic molecule by molecular engineering of the extracellular matrix protein, decorin. Br J Pharmacol 2019; 176:16-25. [PMID: 29847688 PMCID: PMC6284330 DOI: 10.1111/bph.14374] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/04/2018] [Accepted: 05/10/2018] [Indexed: 02/06/2023] Open
Abstract
Extracellular matrix (ECM) molecules play important roles in regulating processes such as cell proliferation, migration, differentiation and survival. Decorin is a proteoglycan that binds to ('decorates') collagen fibrils in the ECM. Decorin also interacts with many growth factors and their receptors, the most notable of these interactions being its inhibitory activity on TGF-β, the growth factor responsible for fibrosis formation. We have generated a recombinant, multi-functional, fusion-protein consisting of decorin as a therapeutic domain and a vascular homing and cell-penetrating peptide as a targeting vehicle. This recombinant decorin (CAR-DCN) accumulates at the sites of the targeted disease at higher levels and, as a result, has substantially enhanced biological activity over native decorin. CAR-DCN is an example of how molecular engineering can give a compound the ability to seek out sites of disease and enhance its therapeutic potential. CAR-DCN will hopefully be used to treat severe human diseases. LINKED ARTICLES: This article is part of a themed section on Translating the Matrix. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.1/issuetoc.
Collapse
Affiliation(s)
- Tero A H Järvinen
- Faculty of Medicine and Life SciencesUniversity of TampereTampereFinland
- Department of Orthopedics and TraumatologyTampere University HospitalTampereFinland
| | - Erkki Ruoslahti
- Cancer CenterSanford Burnham Prebys Medical Discovery InstituteLa JollaCAUSA
| |
Collapse
|
14
|
Wang H, Li X, Xie X, Zhao H, Gao Y, Li Y, Xu X, Zhang X, Ke C, Liu J. Promotion of bone cancer pain development by decorin is accompanied by modification of excitatory synaptic molecules in the spinal cord. Mol Pain 2019; 15:1744806919864253. [PMID: 31258052 PMCID: PMC6659184 DOI: 10.1177/1744806919864253] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 06/16/2019] [Accepted: 06/18/2019] [Indexed: 01/25/2023] Open
Abstract
Bone cancer pain is refractory to currently available clinical treatment owing to its complicated underlying mechanisms. Studies found that extracellular matrix molecules can participate in the regulation of chronic pain. Decorin is one of the most abundant extracellular matrix molecules, and the present study evaluated the effect of decorin on the development of bone cancer pain. We found that decorin was upregulated in the L4–L6 spinal dorsal horn of the bone cancer pain rats. Spinal microinjection of a decorin-targeting RNAi lentivirus alleviated bone cancer pain-induced mechanical allodynia and reduced the expression of pGluR1-Ser831 in the bone cancer pain rats. Meanwhile, decorin knockdown impaired the excitatory synaptogenesis in cultured neurons and prevented the clustering and insertion of pGluR1-Ser831 into postsynaptic membranes. Taken together, the results of our study suggested that decorin contributes to the development of bone cancer pain possibly by regulating the activity of excitatory synaptic molecules in the spinal cord. Our findings provide a better understanding of the function of decorin as a possible therapeutic target for alleviating bone cancer pain.
Collapse
Affiliation(s)
- Huan Wang
- Department of Anesthesiology, Institute of Anesthesiology &
Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xiaohui Li
- Department of Anesthesiology, Institute of Anesthesiology &
Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xianqiao Xie
- Department of Anesthesiology, Institute of Anesthesiology &
Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Haiwen Zhao
- Department of Anesthesiology, Institute of Anesthesiology &
Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yan Gao
- Department of PET Center, Taihe Hospital, Hubei University of
Medicine, Shiyan, Hubei, China
| | - Yang Li
- Department of Anesthesiology, Institute of Anesthesiology &
Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xueqin Xu
- Department of Anesthesiology, Institute of Anesthesiology &
Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xiaofei Zhang
- Department of Anesthesiology, Institute of Anesthesiology &
Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Changbin Ke
- Department of Anesthesiology, Institute of Anesthesiology &
Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Juying Liu
- Department of Anesthesiology, Institute of Anesthesiology &
Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
15
|
Assunção-Silva RC, Mendes-Pinheiro B, Patrício P, Behie LA, Teixeira FG, Pinto L, Salgado AJ. Exploiting the impact of the secretome of MSCs isolated from different tissue sources on neuronal differentiation and axonal growth. Biochimie 2018; 155:83-91. [PMID: 30077816 DOI: 10.1016/j.biochi.2018.07.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/31/2018] [Indexed: 01/01/2023]
Abstract
Cell transplantation using Mesenchymal stem cell (MSC) secretome have recently been presented as a possible free-based therapy for CNS related disorders. MSC secretome is rich in several bio-factors that act synergically towards the repair of damaged tissues, thus making it an ideal candidate for regenerative applications. Great effort is currently being made to map the molecules that compose the MSC secretome. Previous proteomic characterization of the secretome (in the form of conditioned media - CM) of MSCs derived from adipose tissue (ASC), bone-marrow (BMSC) and umbilical cord (HUCPVC) was performed by our group, where proteins relevant for neuroprotection, neurogenic, neurodifferentiation, axon guidance and growth functions were identified. Moreover, we have found significant differences among the expression of several molecules, which may indicate that their therapeutic outcome might be distinct. Having this in mind, in the present study, the neuroregulatory potential of ASC, BMSC and HUCPVC CM in promoting neurodifferentiation and axonal outgrowth was tested in vitro, using human telencephalon neuroprogenitor cells and dorsal root ganglion explants, respectively. The CM from the three MSC populations induced neuronal differentiation from human neural progenitor cells, as well as neurite outgrowth from dorsal root ganglion explants. Moreover, all the MSC populations promoted the same extent of neurodifferentiation, while ASC CM demonstrated higher potential in promoting axonal growth.
Collapse
Affiliation(s)
- Rita Catarina Assunção-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4701-057, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal; BnML, Behavioral and Molecular Lab, Braga, Portugal.
| | - Bárbara Mendes-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4701-057, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Patrícia Patrício
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4701-057, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal; BnML, Behavioral and Molecular Lab, Braga, Portugal.
| | - Leo A Behie
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada
| | - Fábio Gabriel Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4701-057, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4701-057, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal; BnML, Behavioral and Molecular Lab, Braga, Portugal.
| | - António José Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4701-057, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
16
|
Monteagudo A, Feola J, Natola H, Ji C, Pröschel C, Johnson GVW. Depletion of astrocytic transglutaminase 2 improves injury outcomes. Mol Cell Neurosci 2018; 92:128-136. [PMID: 29969654 DOI: 10.1016/j.mcn.2018.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 01/12/2023] Open
Abstract
Astrocytes play an indispensable role in maintaining a healthy, functional neural network in the central nervous system (CNS). A primary function of CNS astrocytes is to support the survival and function of neurons. In response to injury, astrocytes take on a reactive phenotype, which alters their molecular functions. Reactive astrocytes have been reported to be both beneficial and harmful to the CNS recovery process subsequent to injury. Understanding the molecular processes and regulatory proteins that determine the extent to which an astrocyte hinders or supports neuronal survival is important within the context of CNS repair. One protein that plays a role in modulating cellular survival is transglutaminase 2 (TG2). Global deletion of TG2 results in beneficial outcomes subsequent to in vivo ischemic brain injury. Ex vivo studies have also implicated TG2 as a negative regulator of astrocyte viability subsequent to injury. In this study we show that knocking down TG2 in astrocytes significantly increases their ability to protect neurons from oxygen glucose deprivation (OGD)/reperfusion injury. To begin to understand how deletion of TG2 in astrocytes improves their ability to protect neurons from injury, we performed transcriptome analysis of wild type and TG2-/- astrocytes. TG2 deletion resulted in alterations in genes involved in extracellular matrix remodeling, cell adhesion and axon growth/guidance. In addition, the majority of genes that showed increases in the TG2-/- astrocytes had predicted cJun/AP-1 binding motifs in their promoters. Furthermore, phospho-cJun levels were robustly elevated in TG2-/- astrocytes, a finding which was consistent with the increase in expression of AP-1 responsive genes. These in vitro data were subsequently extended into an in vivo model to determine whether the absence of astrocytic TG2 improves outcomes after CNS injury. Our results show that, following a spinal cord injury, scar formation is significantly attenuated in mice with astrocyte-specific TG2 deletion compared to mice expressing normal TG2 levels. Taken together, these data indicate that TG2 plays a pivotal role in mediating reactive astrocyte properties following CNS injury. Further, the data suggest that limiting the AP-1 mediated pro-survival injury response may be a contributing factor to that the detrimental effects of astrocytic TG2.
Collapse
Affiliation(s)
- Alina Monteagudo
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| | - Julianne Feola
- Department of Biomedical Genetics, University of Rochester, Rochester, NY 14642, USA
| | - Heather Natola
- Department of Biomedical Genetics, University of Rochester, Rochester, NY 14642, USA
| | - Changyi Ji
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY 14642, USA
| | - Christoph Pröschel
- Department of Biomedical Genetics, University of Rochester, Rochester, NY 14642, USA; Stem Cell and Regenerative Medicine Institute, University of Rochester, Rochester, NY 14642, USA
| | - Gail V W Johnson
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14642, USA; Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
17
|
The extracellular matrix: Focus on oligodendrocyte biology and targeting CSPGs for remyelination therapies. Glia 2018; 66:1809-1825. [DOI: 10.1002/glia.23333] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 03/06/2018] [Accepted: 03/06/2018] [Indexed: 12/31/2022]
|
18
|
Teh DBL, Prasad A, Jiang W, Ariffin MZ, Khanna S, Belorkar A, Wong L, Liu X, All AH. Transcriptome Analysis Reveals Neuroprotective aspects of Human Reactive Astrocytes induced by Interleukin 1β. Sci Rep 2017; 7:13988. [PMID: 29070875 PMCID: PMC5656635 DOI: 10.1038/s41598-017-13174-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 09/21/2017] [Indexed: 12/13/2022] Open
Abstract
Reactive astrogliosis is a critical process in neuropathological conditions and neurotrauma. Although it has been suggested that it confers neuroprotective effects, the exact genomic mechanism has not been explored. The prevailing dogma of the role of astrogliosis in inhibition of axonal regeneration has been challenged by recent findings in rodent model’s spinal cord injury, demonstrating its neuroprotection and axonal regeneration properties. We examined whether their neuroprotective and axonal regeneration potentials can be identify in human spinal cord reactive astrocytes in vitro. Here, reactive astrogliosis was induced with IL1β. Within 24 hours of IL1β induction, astrocytes acquired reactive characteristics. Transcriptome analysis of over 40000 transcripts of genes and analysis with PFSnet subnetwork revealed upregulation of chemokines and axonal permissive factors including FGF2, BDNF, and NGF. In addition, most genes regulating axonal inhibitory molecules, including ROBO1 and ROBO2 were downregulated. There was no increase in the gene expression of “Chondroitin Sulfate Proteoglycans” (CSPGs’) clusters. This suggests that reactive astrocytes may not be the main CSPG contributory factor in glial scar. PFSnet analysis also indicated an upregulation of “Axonal Guidance Signaling” pathway. Our result suggests that human spinal cord reactive astrocytes is potentially neuroprotective at an early onset of reactive astrogliosis.
Collapse
Affiliation(s)
- Daniel Boon Loong Teh
- Singapore Institute of Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Drive, 5-COR, Singapore, 117456, Singapore
| | - Ankshita Prasad
- Department of Biomedical Engineering, National University of Singapore, E4, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Wenxuan Jiang
- Department of Orthopaedic Surgery, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Mohd Zacky Ariffin
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sanjay Khanna
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Abha Belorkar
- Department of Computer Science, National University of Singapore, 13 Computing Drive, Singapore, 117417, Singapore
| | - Limsoon Wong
- Department of Computer Science, National University of Singapore, 13 Computing Drive, Singapore, 117417, Singapore
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.
| | - Angelo H All
- Singapore Institute of Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Drive, 5-COR, Singapore, 117456, Singapore. .,Department of Biomedical Engineering and Johns Hopkins School of Medicine, 701C Rutland Avenue 720, Baltimore, MD 21205, USA. .,Department of Neurology, Johns Hopkins School of Medicine, 701C Rutland Avenue 720, Baltimore, MD 21205, USA.
| |
Collapse
|
19
|
Pompili E, Fabrizi C, Somma F, Correani V, Maras B, Schininà ME, Ciraci V, Artico M, Fornai F, Fumagalli L. PAR1 activation affects the neurotrophic properties of Schwann cells. Mol Cell Neurosci 2017; 79:23-33. [PMID: 28064059 DOI: 10.1016/j.mcn.2017.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/14/2016] [Accepted: 01/01/2017] [Indexed: 01/02/2023] Open
Abstract
Protease-activated receptor-1 (PAR1) is the prototypic member of a family of four G-protein-coupled receptors that signal in response to extracellular proteases. In the peripheral nervous system, the expression and/or the role of PARs are still poorly investigated. High PAR1 mRNA expression was found in the rat dorsal root ganglia and the signal intensity of PAR1 mRNA increased in response to sciatic nerve transection. In the sciatic nerve, functional PAR1 receptor was reported at the level of non-compacted Schwann cell myelin microvilli of the nodes of Ranvier. Schwann cells are the principal population of glial cells of the peripheral nervous system which myelinate axons playing an important role during axonal regeneration and remyelination. The present study was undertaken in order to determine if the activation of PAR1 affects the neurotrophic properties of Schwann cells. Our results suggest that the stimulation of PAR1 could potentiate the Schwann cell ability to favour nerve regeneration. In fact, the conditioned medium obtained from Schwann cell cultures challenged with a specific PAR1 activating peptide (PAR1 AP) displays increased neuroprotective and neurotrophic properties with respect to the culture medium from untreated Schwann cells. The proteomic analysis of secreted proteins in untreated and PAR1 AP-treated Schwann cells allowed the identification of factors differentially expressed in the two samples. Some of them (such as macrophage migration inhibitory factor, matrix metalloproteinase-2, decorin, syndecan 4, complement C1r subcomponent, angiogenic factor with G patch and FHA domains 1) appear to be transcriptionally regulated after PAR1 AP treatment as shown by RT-PCR.
Collapse
Affiliation(s)
- Elena Pompili
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy.
| | - Cinzia Fabrizi
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Francesca Somma
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Virginia Correani
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Bruno Maras
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Viviana Ciraci
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Marco Artico
- Department of Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Francesco Fornai
- Department of Human Morphology and Applied Biology, University of Pisa, Pisa, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Lorenzo Fumagalli
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
20
|
Pires AO, Mendes-Pinheiro B, Teixeira FG, Anjo SI, Ribeiro-Samy S, Gomes ED, Serra SC, Silva NA, Manadas B, Sousa N, Salgado AJ. Unveiling the Differences of Secretome of Human Bone Marrow Mesenchymal Stem Cells, Adipose Tissue-Derived Stem Cells, and Human Umbilical Cord Perivascular Cells: A Proteomic Analysis. Stem Cells Dev 2016; 25:1073-83. [PMID: 27226274 DOI: 10.1089/scd.2016.0048] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The use of human mesenchymal stem cells (hMSCs) has emerged as a possible therapeutic strategy for CNS-related conditions. Research in the last decade strongly suggests that MSC-mediated benefits are closely related with their secretome. Studies published in recent years have shown that the secretome of hMSCs isolated from different tissue sources may present significant variation. With this in mind, the present work performed a comparative proteomic-based analysis through mass spectrometry on the secretome of hMSCs derived from bone marrow (BMSCs), adipose tissue (ASCs), and human umbilical cord perivascular cells (HUCPVCs). The results revealed that BMSCs, ASCs, and HUCPVCs differed in their secretion of neurotrophic, neurogenic, axon guidance, axon growth, and neurodifferentiative proteins, as well as proteins with neuroprotective actions against oxidative stress, apoptosis, and excitotoxicity, which have been shown to be involved in several CNS disorder/injury processes. Although important changes were observed within the secretome of the cell populations that were analyzed, all cell populations shared the capability of secreting important neuroregulatory molecules. The difference in their secretion pattern may indicate that their secretome is specific to a condition of the CNS. Nevertheless, the confirmation that the secretome of MSCs isolated from different tissue sources is rich in neuroregulatory molecules represents an important asset not only for the development of future neuroregenerative strategies but also for their use as a therapeutic option for human clinical trials.
Collapse
Affiliation(s)
- Ana O Pires
- 1 Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga, Portugal .,2 ICVS/3B's-PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Barbara Mendes-Pinheiro
- 1 Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga, Portugal .,2 ICVS/3B's-PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Fábio G Teixeira
- 1 Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga, Portugal .,2 ICVS/3B's-PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Sandra I Anjo
- 3 Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra , Coimbra, Portugal .,4 CNC-Center for Neurosciences and Cell Biology, University of Coimbra , Coimbra, Portugal
| | - Silvina Ribeiro-Samy
- 1 Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga, Portugal .,2 ICVS/3B's-PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Eduardo D Gomes
- 1 Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga, Portugal .,2 ICVS/3B's-PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Sofia C Serra
- 1 Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga, Portugal .,2 ICVS/3B's-PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Nuno A Silva
- 1 Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga, Portugal .,2 ICVS/3B's-PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Bruno Manadas
- 4 CNC-Center for Neurosciences and Cell Biology, University of Coimbra , Coimbra, Portugal
| | - Nuno Sousa
- 1 Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga, Portugal .,2 ICVS/3B's-PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Antonio J Salgado
- 1 Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga, Portugal .,2 ICVS/3B's-PT Government Associate Laboratory , Braga/Guimarães, Portugal
| |
Collapse
|
21
|
Astrocyte scar formation aids central nervous system axon regeneration. Nature 2016; 532:195-200. [PMID: 27027288 DOI: 10.1038/nature17623] [Citation(s) in RCA: 1296] [Impact Index Per Article: 144.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/26/2016] [Indexed: 12/20/2022]
Abstract
Transected axons fail to regrow in the mature central nervous system. Astrocytic scars are widely regarded as causal in this failure. Here, using three genetically targeted loss-of-function manipulations in adult mice, we show that preventing astrocyte scar formation, attenuating scar-forming astrocytes, or ablating chronic astrocytic scars all failed to result in spontaneous regrowth of transected corticospinal, sensory or serotonergic axons through severe spinal cord injury (SCI) lesions. By contrast, sustained local delivery via hydrogel depots of required axon-specific growth factors not present in SCI lesions, plus growth-activating priming injuries, stimulated robust, laminin-dependent sensory axon regrowth past scar-forming astrocytes and inhibitory molecules in SCI lesions. Preventing astrocytic scar formation significantly reduced this stimulated axon regrowth. RNA sequencing revealed that astrocytes and non-astrocyte cells in SCI lesions express multiple axon-growth-supporting molecules. Our findings show that contrary to the prevailing dogma, astrocyte scar formation aids rather than prevents central nervous system axon regeneration.
Collapse
|
22
|
Caffeine treatment aggravates secondary degeneration after spinal cord injury. Brain Res 2015; 1634:75-82. [PMID: 26746340 DOI: 10.1016/j.brainres.2015.12.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 12/20/2022]
Abstract
Spinal cord injury (SCI) often results in some form of paralysis. Recently, SCI therapy has been focused on preventing secondary injury to reduce both neuroinflammation and lesion size so that functional outcome after an SCI may be improved. Previous studies have shown that adenosine receptors (AR) are a major regulator of inflammation after an SCI. The current study was performed to examine the effect of caffeine, a pan-AR blocker, on spontaneous functional recovery after an SCI. Animals were assigned into 3 groups randomly, including sham, PBS and caffeine groups. The rat SCI was generated by an NYU impactor with a 10 g rod dropped from a 25 mm height at thoracic 9 spinal cord level. Caffeine and PBS were injected daily during the experiment period. Hind limb motor function was evaluated by the Basso, Beattie, Bresnahan (BBB) locomotor rating scale at 1 week and 4 weeks after the SCI. Spinal cord segments were collected after final behavior evaluation for morphological analysis. The tissue sparing was evaluated by luxol fast blue staining. Immunofluorescence stain was employed to assess astrocyte activation and neurofilament positioning, while microglia activation was examined by immunohistochemistry stain.The results showed that spontaneous functional recovery was blocked after the animals were subjected caffeine daily. Moreover, caffeine administration increased the demyelination area, promoted astrocyte and microglia activation and decreased the quantity of neurofilaments. These findings suggest that the neurotoxicity effect of caffeine may be associated with the inhibition of neural repair and the promotion of neuroinflammation.
Collapse
|
23
|
Smith PD, Coulson-Thomas VJ, Foscarin S, Kwok JCF, Fawcett JW. "GAG-ing with the neuron": The role of glycosaminoglycan patterning in the central nervous system. Exp Neurol 2015; 274:100-14. [PMID: 26277685 DOI: 10.1016/j.expneurol.2015.08.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 07/17/2015] [Accepted: 08/06/2015] [Indexed: 01/17/2023]
Abstract
Proteoglycans (PGs) are a diverse family of proteins that consist of one or more glycosaminoglycan (GAG) chains, covalently linked to a core protein. PGs are major components of the extracellular matrix (ECM) and play critical roles in development, normal function and damage-response of the central nervous system (CNS). GAGs are classified based on their disaccharide subunits, into the following major groups: chondroitin sulfate (CS), heparan sulfate (HS), heparin (HEP), dermatan sulfate (DS), keratan sulfate (KS) and hyaluronic acid (HA). All except HA are modified by sulfation, giving GAG chains specific charged structures and binding properties. While significant neuroscience research has focused on the role of one PG family member, chondroitin sulfate proteoglycan (CSPG), there is ample evidence in support of a role for the other PGs in regulating CNS function in normal and pathological conditions. This review discusses the role of all the identified PG family members (CS, HS, HEP, DS, KS and HA) in normal CNS function and in the context of pathology. Understanding the pleiotropic roles of these molecules in the CNS may open the door to novel therapeutic strategies for a number of neurological conditions.
Collapse
Affiliation(s)
- Patrice D Smith
- John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK; Department of Neuroscience, Carleton University, Ottawa, ON, Canada.
| | - Vivien J Coulson-Thomas
- John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK
| | - Simona Foscarin
- John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK
| | - Jessica C F Kwok
- John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK
| | - James W Fawcett
- John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK.
| |
Collapse
|
24
|
Schira J, Falkenberg H, Hendricks M, Waldera-Lupa DM, Kögler G, Meyer HE, Müller HW, Stühler K. Characterization of Regenerative Phenotype of Unrestricted Somatic Stem Cells (USSC) from Human Umbilical Cord Blood (hUCB) by Functional Secretome Analysis. Mol Cell Proteomics 2015; 14:2630-43. [PMID: 26183719 DOI: 10.1074/mcp.m115.049312] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Indexed: 12/13/2022] Open
Abstract
Stem cell transplantation is a promising therapeutic strategy to enhance axonal regeneration after spinal cord injury. Unrestricted somatic stem cells (USSC) isolated from human umbilical cord blood is an attractive stem cell population available at GMP grade without any ethical concerns. It has been shown that USSC transplantation into acute injured rat spinal cords leads to axonal regrowth and significant locomotor recovery, yet lacking cell replacement. Instead, USSC secrete trophic factors enhancing neurite growth of primary cortical neurons in vitro. Here, we applied a functional secretome approach characterizing proteins secreted by USSC for the first time and validated candidate neurite growth promoting factors using primary cortical neurons in vitro. By mass spectrometric analysis and exhaustive bioinformatic interrogation we identified 1156 proteins representing the secretome of USSC. Using Gene Ontology we revealed that USSC secretome contains proteins involved in a number of relevant biological processes of nerve regeneration such as cell adhesion, cell motion, blood vessel formation, cytoskeleton organization and extracellular matrix organization. We found for instance that 31 well-known neurite growth promoting factors like, e.g. neuronal growth regulator 1, NDNF, SPARC, and PEDF span the whole abundance range of USSC secretome. By the means of primary cortical neurons in vitro assays we verified SPARC and PEDF as significantly involved in USSC mediated neurite growth and therewith underline their role in improved locomotor recovery after transplantation. From our data we are convinced that USSC are a valuable tool in regenerative medicine as USSC's secretome contains a comprehensive network of trophic factors supporting nerve regeneration not only by a single process but also maintained its regenerative phenotype by a multitude of relevant biological processes.
Collapse
Affiliation(s)
- Jessica Schira
- From the ‡Molecular Proteomics Laboratory (MPL), Institute for Molecular Medicine, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany; §Molecular Neurobiology Laboratory, Department of Neurology, Heinrich Heine University Medical Centre Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Heiner Falkenberg
- From the ‡Molecular Proteomics Laboratory (MPL), Institute for Molecular Medicine, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Marion Hendricks
- §Molecular Neurobiology Laboratory, Department of Neurology, Heinrich Heine University Medical Centre Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Daniel M Waldera-Lupa
- From the ‡Molecular Proteomics Laboratory (MPL), Institute for Molecular Medicine, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Gesine Kögler
- ¶Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Medical Center, Düsseldorf, Germany
| | - Helmut E Meyer
- ‖Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Str. 11, Dortmund, Germany
| | - Hans Werner Müller
- §Molecular Neurobiology Laboratory, Department of Neurology, Heinrich Heine University Medical Centre Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany; **Biologisch-Medizinisches Forschungszentrum (BMFZ), Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Kai Stühler
- From the ‡Molecular Proteomics Laboratory (MPL), Institute for Molecular Medicine, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany; **Biologisch-Medizinisches Forschungszentrum (BMFZ), Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
25
|
Horschitz S, Matthäus F, Groß A, Rosner J, Galach M, Greffrath W, Treede RD, Utikal J, Schloss P, Meyer-Lindenberg A. Impact of preconditioning with retinoic acid during early development on morphological and functional characteristics of human induced pluripotent stem cell-derived neurons. Stem Cell Res 2015; 15:30-41. [PMID: 26001168 DOI: 10.1016/j.scr.2015.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 04/21/2015] [Accepted: 04/30/2015] [Indexed: 10/23/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) are a suitable tool to study basic molecular and cellular mechanisms of neurodevelopment. The directed differentiation of hiPSCs via the generation of a self-renewable neuronal precursor cell line allows the standardization of defined differentiation protocols. Here, we have investigated whether preconditioning with retinoic acid during early neural induction impacts on morphological and functional characteristics of the neuronal culture after terminal differentiation. For this purpose we have analyzed neuronal and glial cell markers, neuronal outgrowth, soma size, depolarization-induced distal shifts of the axon initial segment as well as glutamate-evoked calcium influx. Retinoic acid preconditioning led to a higher yield of neurons vs. glia cells and longer axons than unconditioned controls. In contrast, glutamatergic activation and depolarization induced structural plasticity were unchanged. Our results show that the treatment of neuroectodermal cells with retinoic acid during early development, i.e. during the neurulation phase, increases the yield of neuronal phenotypes, but does not impact on the functionality of terminally differentiated neuronal cells.
Collapse
Affiliation(s)
- Sandra Horschitz
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Germany
| | - Friederike Matthäus
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Germany
| | - Anja Groß
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Germany
| | - Jan Rosner
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Germany; Department of Neurophysiology, Center for Biomedicine and Medical Technology Mannheim, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany
| | - Marta Galach
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany
| | - Wolfgang Greffrath
- Department of Neurophysiology, Center for Biomedicine and Medical Technology Mannheim, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany
| | - Rolf-Detlef Treede
- Department of Neurophysiology, Center for Biomedicine and Medical Technology Mannheim, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany
| | - Patrick Schloss
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Germany.
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Germany
| |
Collapse
|
26
|
Secreted ectodomain of sialic acid-binding Ig-like lectin-9 and monocyte chemoattractant protein-1 promote recovery after rat spinal cord injury by altering macrophage polarity. J Neurosci 2015; 35:2452-64. [PMID: 25673840 DOI: 10.1523/jneurosci.4088-14.2015] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Engrafted mesenchymal stem cells from human deciduous dental pulp (SHEDs) support recovery from neural insults via paracrine mechanisms that are poorly understood. Here we show that the conditioned serum-free medium (CM) from SHEDs, administered intrathecally into rat injured spinal cord during the acute postinjury period, caused remarkable functional recovery. The ability of SHED-CM to induce recovery was associated with an immunoregulatory activity that induced anti-inflammatory M2-like macrophages. Secretome analysis of the SHED-CM revealed a previously unrecognized set of inducers for anti-inflammatory M2-like macrophages: monocyte chemoattractant protein-1 (MCP-1) and the secreted ectodomain of sialic acid-binding Ig-like lectin-9 (ED-Siglec-9). Depleting MCP-1 and ED-Siglec-9 from the SHED-CM prominently reduced its ability to induce M2-like macrophages and to promote functional recovery after spinal cord injury (SCI). The combination of MCP-1 and ED-Siglec-9 synergistically promoted the M2-like differentiation of bone marrow-derived macrophages in vitro, and this effect was abolished by a selective antagonist for CC chemokine receptor 2 (CCR2) or by the genetic knock-out of CCR2. Furthermore, MCP-1 and ED-Siglec-9 administration into the injured spinal cord induced M2-like macrophages and led to a marked recovery of hindlimb locomotor function after SCI. The inhibition of this M2 induction through the inactivation of CCR2 function abolished the therapeutic effects of both SHED-CM and MCP-1/ED-Siglec-9. Macrophages activated by MCP-1 and ED-Siglec-9 extended neurite and suppressed apoptosis of primary cerebellar granule neurons against the neurotoxic effects of chondroitin sulfate proteoglycans. Our data suggest that the unique combination of MCP-1 and ED-Siglec-9 repairs the SCI through anti-inflammatory M2-like macrophage induction.
Collapse
|
27
|
Abstract
Three theories of regeneration dominate neuroscience today, all purporting to explain why the adult central nervous system (CNS) cannot regenerate. One theory proposes that Nogo, a molecule expressed by myelin, prevents axonal growth. The second theory emphasizes the role of glial scars. The third theory proposes that chondroitin sulfate proteoglycans (CSPGs) prevent axon growth. Blockade of Nogo, CSPG, and their receptors indeed can stop axon growth in vitro and improve functional recovery in animal spinal cord injury (SCI) models. These therapies also increase sprouting of surviving axons and plasticity. However, many investigators have reported regenerating spinal tracts without eliminating Nogo, glial scar, or CSPG. For example, many motor and sensory axons grow spontaneously in contused spinal cords, crossing gliotic tissue and white matter surrounding the injury site. Sensory axons grow long distances in injured dorsal columns after peripheral nerve lesions. Cell transplants and treatments that increase cAMP and neurotrophins stimulate motor and sensory axons to cross glial scars and to grow long distances in white matter. Genetic studies deleting all members of the Nogo family and even the Nogo receptor do not always improve regeneration in mice. A recent study reported that suppressing the phosphatase and tensin homolog (PTEN) gene promotes prolific corticospinal tract regeneration. These findings cannot be explained by the current theories proposing that Nogo and glial scars prevent regeneration. Spinal axons clearly can and will grow through glial scars and Nogo-expressing tissue under some circumstances. The observation that deleting PTEN allows corticospinal tract regeneration indicates that the PTEN/AKT/mTOR pathway regulates axonal growth. Finally, many other factors stimulate spinal axonal growth, including conditioning lesions, cAMP, glycogen synthetase kinase inhibition, and neurotrophins. To explain these disparate regenerative phenomena, I propose that the spinal cord has evolved regenerative mechanisms that are normally suppressed by multiple extrinsic and intrinsic factors but can be activated by injury, mediated by the PTEN/AKT/mTOR, cAMP, and GSK3b pathways, to stimulate neural growth and proliferation.
Collapse
Affiliation(s)
- Wise Young
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
28
|
Esmaeili M, Berry M, Logan A, Ahmed Z. Decorin treatment of spinal cord injury. Neural Regen Res 2014; 9:1653-6. [PMID: 25374584 PMCID: PMC4211183 DOI: 10.4103/1673-5374.141797] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2014] [Indexed: 12/23/2022] Open
Abstract
The scarring response after a penetrant central nervous system injury results from the interaction between invading leptominingeal/pericyte-derived fibroblasts and endogenous reactive astrocytes about the wound margin. Extracellular matrix and scar-derived axon growth inhibitory molecules fill the lesion site providing both a physical and chemical barrier to regenerating axons. Decorin, a small leucine-rich chondroitin-dermatan sulphate proteoglycan expressed by neurons and astrocytes in the central nervous system, is both anti-fibrotic and anti-inflammatory and attenuates the formation and partial dissolution of established and chronic scars. Here, we discuss the potential of using Decorin to antagonise scarring in the central nervous system.
Collapse
Affiliation(s)
- Maryam Esmaeili
- Neurotrauma Research Group, Neurobiology Section, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, B15 2TT, UK
| | - Martin Berry
- Neurotrauma Research Group, Neurobiology Section, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ann Logan
- Neurotrauma Research Group, Neurobiology Section, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, B15 2TT, UK
| | - Zubair Ahmed
- Neurotrauma Research Group, Neurobiology Section, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
29
|
Wang J, Wang X, Rong W, Lv J, Wei F, Liu Z. Alteration in chondroitin sulfate proteoglycan expression at the epicenter of spinal cord is associated with the loss of behavioral function in Tiptoe walking Yoshimura mice. Neurochem Res 2014; 39:2394-406. [PMID: 25273876 DOI: 10.1007/s11064-014-1442-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/08/2014] [Accepted: 09/23/2014] [Indexed: 12/15/2022]
Abstract
The objective of this study was to explore the correlation between the alteration in chondroitin sulfate proteoglycan (CSPG) expression at the epicenter of spinal cord and the loss of behavioral function in tiptoe walking Yoshimura mice. The tiptoe walking Yoshimura mice (twy) and Institute of Cancer Research (ICR) mice, aged 20 and 26 weeks, were used in the present study. The behavior assessment, micro-computed tomography and immunofluorescent staining were performed. The compressed spinal cord was histologically analyzed. The results showed that the expression of CSPG was statistically higher at the compressed spinal cord for twy mice compared with that at the normal spinal cord for ICR mice. At the 26th week, a large ossification block at the posterior longitudinal ligament of C1-3 was obviously observed at the micro-CT image We observed the BMS Score was significantly correlated with the expression of glial fibrillary acidic protein, CSPG and hyaluronan (P < 0.05). These findings suggest that compression injury induces the higher CSPG expression at the compressed spinal cord in the twy mice. Furthermore, the alteration in CSPG expression at the epicenter of spinal cord is associated with the loss of behavioral function in twy mice.
Collapse
Affiliation(s)
- Jun Wang
- Department of Orthopedics, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, People's Republic of China
| | | | | | | | | | | |
Collapse
|
30
|
Wu L, Li J, Chen L, Zhang H, Yuan L, Davies SJ. Combined transplantation of GDAs(BMP) and hr-decorin in spinal cord contusion repair. Neural Regen Res 2014; 8:2236-48. [PMID: 25206533 PMCID: PMC4146032 DOI: 10.3969/j.issn.1673-5374.2013.24.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/27/2013] [Indexed: 12/23/2022] Open
Abstract
Following spinal cord injury, astrocyte proliferation and scar formation are the main factors inhibiting the regeneration and growth of spinal cord axons. Recombinant decorin suppresses inflammatory reactions, inhibits glial scar formation, and promotes axonal growth. Rat models of T8 spinal cord contusion were created with the NYU impactor and these models were subjected to combined transplantation of bone morphogenetic protein-4-induced glial-restricted precursor-derived astrocytes and human recombinant decorin transplantation. At 28 days after spinal cord contusion, double-immunofluorescent histochemistry revealed that combined transplantation inhibited the early inflammatory response in injured rats. Furthermore, brain-derived neurotrophic factor, which was secreted by transplanted cells, protected injured axons. The combined transplantation promoted axonal regeneration and growth of injured motor and sensory neurons by inhibiting astrocyte proliferation and glial scar formation, with astrocytes forming a linear arrangement in the contused spinal cord, thus providing axonal regeneration channels.
Collapse
Affiliation(s)
- Liang Wu
- School of Rehabilitation Medicine, Capital Medical University, Beijing 100068, China ; Department of Neural Functional Reconstruction of Spine and Spinal Cord, China Rehabilitation Research Center, Beijing 100068, China ; Rehabilitation Center, Beijing Xiaotangshan Rehabilitation Hospital, Beijing 102211, China
| | - Jianjun Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing 100068, China ; Department of Neural Functional Reconstruction of Spine and Spinal Cord, China Rehabilitation Research Center, Beijing 100068, China
| | - Liang Chen
- School of Rehabilitation Medicine, Capital Medical University, Beijing 100068, China ; Department of Neural Functional Reconstruction of Spine and Spinal Cord, China Rehabilitation Research Center, Beijing 100068, China
| | - Hong Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing 100068, China
| | - Li Yuan
- School of Rehabilitation Medicine, Capital Medical University, Beijing 100068, China ; Department of Neural Functional Reconstruction of Spine and Spinal Cord, China Rehabilitation Research Center, Beijing 100068, China
| | - Stephen Ja Davies
- Department of Neurosurgery, University of Colorado Denver, 1250 14th Street Denver, Colorado 80217, USA
| |
Collapse
|
31
|
Zhang C, He X, Li H, Wang G. Chondroitinase ABC plus bone marrow mesenchymal stem cells for repair of spinal cord injury. Neural Regen Res 2014; 8:965-74. [PMID: 25206389 PMCID: PMC4145889 DOI: 10.3969/j.issn.1673-5374.2013.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 01/20/2013] [Indexed: 01/09/2023] Open
Abstract
As chondroitinase ABC can improve the hostile microenvironment and cell transplantation is proven to be effective after spinal cord injury, we hypothesized that their combination would be a more effective treatment option. At 5 days after T8 spinal cord crush injury, rats were injected with bone marrow mesenchymal stem cell suspension or chondroitinase ABC 1 mm from the edge of spinal cord damage zone. Chondroitinase ABC was first injected, and bone marrow mesenchymal stem cell suspension was injected on the next day in the combination group. At 14 days, the mean Basso, Beattie and Bresnahan score of the rats in the combination group was higher than other groups. Hematoxylin-eosin staining showed that the necrotic area was significantly reduced in the combination group compared with other groups. Glial fibrillary acidic protein-chondroitin sulfate proteoglycan double staining showed that the damage zone of astrocytic scars was significantly reduced without the cavity in the combination group. Glial fibrillary acidic protein/growth associated protein-43 double immunostaining revealed that positive fibers traversed the damage zone in the combination group. These results suggest that the combination of chondroitinase ABC and bone marrow mesenchymal stem cell transplantation contributes to the repair of spinal cord injury.
Collapse
Affiliation(s)
- Chun Zhang
- Department of Orthopedics, Second Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Xijing He
- Department of Orthopedics, Second Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Haopeng Li
- Department of Orthopedics, Second Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Guoyu Wang
- Department of Orthopedics, Second Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| |
Collapse
|
32
|
Ohtake Y, Li S. Molecular mechanisms of scar-sourced axon growth inhibitors. Brain Res 2014; 1619:22-35. [PMID: 25192646 DOI: 10.1016/j.brainres.2014.08.064] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/21/2014] [Indexed: 12/29/2022]
Abstract
Astrogliosis is a defense response of the CNS to minimize primary damage and to repair injured tissues, but it ultimately generates harmful effects by upregulating inhibitory molecules to suppress neuronal elongation and forming potent barriers to axon regeneration. Chondroitin sulfate proteoglycans (CSPGs) are highly expressed by reactive scars and are potent contributors to the non-permissive environment in mature CNS. Surmounting strong inhibition by CSPG-rich scar is an important therapeutic goal for achieving functional recovery after CNS injuries. Currently, enzymatic digestion of CSPGs with locally applied chondroitinase ABC is the main in vivo approach to overcome scar inhibition, but several disadvantages may prevent using this bacterial enzyme as a therapeutic option for patients. A better understanding of molecular mechanisms underlying CSPG function may facilitate development of new effective therapies to overcome scar-mediated inhibition. Previous studies support that CSPGs act by non-specifically hindering the binding of matrix molecules to their cell surface receptors through steric interactions, but two members of the leukocyte common antigen related (LAR) phosphatase subfamily, protein tyrosine phosphatase σ and LAR, are functional receptors that bind CSPGs with high affinity and mediate CSPG inhibition. CSPGs may also act by binding two receptors for myelin-associated growth inhibitors, Nogo receptors 1 and 3. Thus, CSPGs inhibit axon growth through multiple mechanisms, making them especially potent and difficult therapeutic targets. Identification of CSPG receptors is not only important for understanding the scar-mediated growth suppression, but also for developing novel and selective therapies to promote axon sprouting and/or regeneration after CNS injuries. This article is part of a Special Issue entitled SI: Spinal cord injury.
Collapse
Affiliation(s)
- Yosuke Ohtake
- Shriners Hospitals Pediatric Research Center and Department of Anatomy and Cell Biology, Temple University School of Medicine, 3500N. Broad Street, Philadelphia 19140, PA, USA
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center and Department of Anatomy and Cell Biology, Temple University School of Medicine, 3500N. Broad Street, Philadelphia 19140, PA, USA.
| |
Collapse
|
33
|
Alberti KA, Hopkins AM, Tang-Schomer MD, Kaplan DL, Xu Q. The behavior of neuronal cells on tendon-derived collagen sheets as potential substrates for nerve regeneration. Biomaterials 2014; 35:3551-7. [PMID: 24461939 DOI: 10.1016/j.biomaterials.2013.12.082] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 12/22/2013] [Indexed: 10/25/2022]
Abstract
Peripheral nervous system injuries result in a decreased quality of life, and generally require surgical intervention for repair. Currently, the gold standard of nerve autografting, based on the use of host tissue such as sensory nerves is suboptimal as it results in donor-site loss of function and requires a secondary surgery. Nerve guidance conduits fabricated from natural polymers such as collagen are a common alternative to bridge nerve defects. In the present work, tendon sections derived through a process named bioskiving were studied for their potential for use as a substrate to fabricate nerve guidance conduits. We show that cells such as rat Schwann cells adhere, proliferate, and align along the fibrous tendon substrate which has been shown to result in a more mature phenotype. Additionally we demonstrate that chick dorsal root ganglia explants cultured on the tendon grow to similar lengths compared to dorsal root ganglia cultured on collagen gels, but also grow in a more oriented manner on the tendon sections. These results show that tendon sections produced through bioskiving can support directional nerve growth and may be of use as a substrate for the fabrication of nerve guidance conduits.
Collapse
Affiliation(s)
- Kyle A Alberti
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA.
| | - Amy M Hopkins
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA.
| | - Min D Tang-Schomer
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA.
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA.
| |
Collapse
|
34
|
Burnside ER, Bradbury EJ. Review: Manipulating the extracellular matrix and its role in brain and spinal cord plasticity and repair. Neuropathol Appl Neurobiol 2014; 40:26-59. [DOI: 10.1111/nan.12114] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/20/2013] [Indexed: 12/17/2022]
Affiliation(s)
- E. R. Burnside
- King's College London; Regeneration Group; The Wolfson Centre for Age-Related Diseases; Guy's Campus; London UK
| | - E. J. Bradbury
- King's College London; Regeneration Group; The Wolfson Centre for Age-Related Diseases; Guy's Campus; London UK
| |
Collapse
|
35
|
Decorin blocks scarring and cystic cavitation in acute and induces scar dissolution in chronic spinal cord wounds. Neurobiol Dis 2013; 64:163-76. [PMID: 24384090 DOI: 10.1016/j.nbd.2013.12.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 11/30/2013] [Accepted: 12/12/2013] [Indexed: 12/22/2022] Open
Abstract
In the injured central nervous system (CNS), transforming growth factor (TGF)-β1/2-induced scarring and wound cavitation impede axon regeneration implying that a combination of both scar suppression and axogenic treatments is required to achieve functional recovery. After treating acute and chronic dorsal funicular spinal cord lesions (DFL) in adult rats with the pan-TGF-β1/2 antagonist Decorin, we report that in: (1), acute DFL, the development of all injury parameters was significantly retarded e.g., wound cavity area by 68%, encapsulation of the wound by a glia limitans accessoria (GLA) by 65%, GLA basal lamina thickness by 94%, fibronectin, NG2 and Sema-3A deposition by 87%, 48% and 48%, respectively, and both macrophage and reactive microglia accumulations by 60%; and (2), chronic DFL, all the above parameters were attenuated to a lesser extent e.g., wound cavity area by 11%, GLA encapsulation by 25%, GLA basal lamina thickness by 31%, extracellular fibronectin, NG2 and Sema-3A deposition by 58%, 22% and 29%, respectively, and macrophage and reactive microglia accumulations by 44%. Moreover, in acute and chronic DFL, levels of tissue plasminogen activator (tPA) were raised (by 236% and 482%, respectively), as were active-MMP-2 (by 64% and 91%, respectively) and active-MMP-9 (by 122% and 18%, respectively), while plasminogen activator inhibitor-1 (PAI-1) was suppressed (by 56% and 23%, respectively) and active-TIMP-1 and active TIMP-2 were both lower but only significantly suppressed in acute DFL (by 56 and 21%, respectively). These findings demonstrate that both scar tissue mass and cavitation are attenuated in acute and chronic spinal cord wounds by Decorin treatment and suggest that the dominant effect of Decorin during acute scarring is anti-fibrogenic through suppression of inflammatory fibrosis by neutralisation of TGF-β1/2 whereas, in chronic lesions, Decorin-induction of tPA and MMP (concomitant with reduced complimentary levels of TIMP and PAI-1) leads to dissolution of the mature established scar by fibrolysis. Decorin also promoted the regeneration of similar numbers of axons through acute and chronic wounds. Accordingly, intrathecal delivery of Decorin offers a potential translatable treatment for scar tissue attenuation in patients with spinal cord injury.
Collapse
|
36
|
Yuan YM, He C. The glial scar in spinal cord injury and repair. Neurosci Bull 2013; 29:421-35. [PMID: 23861090 DOI: 10.1007/s12264-013-1358-3] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 05/03/2013] [Indexed: 12/21/2022] Open
Abstract
Glial scarring following severe tissue damage and inflammation after spinal cord injury (SCI) is due to an extreme, uncontrolled form of reactive astrogliosis that typically occurs around the injury site. The scarring process includes the misalignment of activated astrocytes and the deposition of inhibitory chondroitin sulfate proteoglycans. Here, we first discuss recent developments in the molecular and cellular features of glial scar formation, with special focus on the potential cellular origin of scar-forming cells and the molecular mechanisms underlying glial scar formation after SCI. Second, we discuss the role of glial scar formation in the regulation of axonal regeneration and the cascades of neuro-inflammation. Last, we summarize the physical and pharmacological approaches targeting the modulation of glial scarring to better understand the role of glial scar formation in the repair of SCI.
Collapse
Affiliation(s)
- Yi-Min Yuan
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Ministry of Education, Neuroscience Research Center of Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | | |
Collapse
|
37
|
Kim JY, Kim DH, Kim JH, Yang YS, Oh W, Lee EH, Chang JW. Umbilical cord blood mesenchymal stem cells protect amyloid-β42 neurotoxicity via paracrine. World J Stem Cells 2012; 4:110-116. [PMID: 23293711 PMCID: PMC3536832 DOI: 10.4252/wjsc.v4.i11.110] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 12/04/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To understand the neuroprotective mechanism of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) against amyloid-β42 (Aβ42) exposed rat primary neurons.
METHODS: To evaluate the neuroprotective effect of hUCB-MSCs, the cells were co-cultured with Aβ42-exposed rat primary neuronal cells in a Transwell apparatus. To assess the involvement of soluble factors released from hUCB-MSCs in neuroprotection, an antibody-based array using co-cultured media was conducted. The neuroprotective roles of the identified hUCB-MSC proteins was assessed by treating recombinant proteins or specific small interfering RNAs (siRNAs) for each candidate protein in a co-culture system.
RESULTS: The hUCB-MSCs secreted elevated levels of decorin and progranulin when co-cultured with rat primary neuronal cells exposed to Aβ42. Treatment with recombinant decorin and progranulin protected from Aβ42-neurotoxicity in vitro. In addition, siRNA-mediated knock-down of decorin and progranulin production in hUCB-MSCs reduced the anti-apoptotic effects of hUCB-MSC in the co-culture system.
CONCLUSION: Decorin and progranulin may be involved in anti-apoptotic activity of hUCB-MSCs exposed to Aβ42.
Collapse
|
38
|
Gasimli L, Stansfield HE, Nairn AV, Liu H, Paluh JL, Yang B, Dordick JS, Moremen KW, Linhardt RJ. Structural remodeling of proteoglycans upon retinoic acid-induced differentiation of NCCIT cells. Glycoconj J 2012; 30:497-510. [PMID: 23053635 DOI: 10.1007/s10719-012-9450-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 09/08/2012] [Accepted: 09/10/2012] [Indexed: 12/26/2022]
Abstract
Pluripotent and multipotent cells become increasingly lineage restricted through differentiation. Alterations to the cellular proteoglycan composition and structure should accompany these changes to influence cell proliferation, delineation of tissues and acquisition of cell migration capabilities. Retinoic acid plays an important role in pre-patterning of the early embryo. Retinoic acid can be used in vitro to induce differentiation, causing pluripotent and multipotent cells to become increasingly lineage restricted. We examined retinoic acid-induced changes in the cellular proteoglycan composition of the well-characterized teratocarcinoma line NCCIT. Our analysis revealed changes in the abundance of transcripts for genes encoding core proteins, enzymes that are responsible for early and late linkage region biosynthesis, as well as enzymes for GAG chain extension and modification. Transcript levels for genes encoding core proteins used as backbones for polysaccharide synthesis revealed highly significant increases in expression of lumican and decorin, 1,500-fold and 2,800-fold, respectively. Similarly, glypican 3, glypican 5, versican and glypican 6 showed increases between 5 and 70-fold. Significant decreases in biglycan, serglycin, glypican 4, aggrecan, neurocan, CD74 and glypican 1 were observed. Disaccharide analysis of the glycans in heparin/heparan sulfate and chondroitin/dermatan sulfate revealed retinoic acid-induced changes restricted to chondroitin/dermatan sulfate glycans. Our study provides the first detailed analysis of changes in the glycosaminoglycan profile of human pluripotent cells upon treatment with the retinoic acid morphogen.
Collapse
Affiliation(s)
- Leyla Gasimli
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sharma K, Selzer ME, Li S. Scar-mediated inhibition and CSPG receptors in the CNS. Exp Neurol 2012; 237:370-8. [PMID: 22836147 PMCID: PMC5454774 DOI: 10.1016/j.expneurol.2012.07.009] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 07/14/2012] [Indexed: 11/21/2022]
Abstract
Severed axons in adult mammals do not regenerate appreciably after central nervous system (CNS) injury due to developmentally determined reductions in neuron-intrinsic growth capacity and extracellular environment for axon elongation. Chondroitin sulfate proteoglycans (CSPGs), which are generated by reactive scar tissues, are particularly potent contributors to the growth-limiting environment in mature CNS. Thus, surmounting the strong inhibition by CSPG-rich scar is an important therapeutic goal for achieving functional recovery after CNS injuries. As of now, the main in vivo approach to overcoming inhibition by CSPGs is enzymatic digestion with locally applied chondroitinase ABC (ChABC), but several disadvantages may prevent using this bacterial enzyme as a therapeutic option for patients. A better understanding of the molecular mechanisms underlying CSPG action is needed in order to develop more effective therapies to overcome CSPG-mediated inhibition of axon regeneration and/or sprouting. Because of their large size and dense negative charges, CSPGs were thought to act by non-specifically hindering the binding of matrix molecules to their cell surface receptors through steric interactions. Although this may be true, recent studies indicate that two members of the leukocyte common antigen related (LAR) phosphatase subfamily, protein tyrosine phosphatase σ (PTPσ) and LAR, are functional receptors that bind CSPGs with high affinity and mediate CSPG inhibitory effects. CSPGs also may act by binding to two receptors for myelin-associated growth inhibitors, Nogo receptors 1 and 3 (NgR1 and NgR3). If confirmed, it would suggest that CSPGs have multiple mechanisms by which they inhibit axon growth, making them especially potent and difficult therapeutic targets. Identification of CSPG receptors is not only important for understanding the scar-mediated growth suppression, but also for developing novel and selective therapies to promote axon sprouting and/or regeneration after CNS injuries, including spinal cord injury (SCI).
Collapse
Affiliation(s)
- Kartavya Sharma
- Department of Neurology and Neuroscience Graduate Program, UT Southwestern Medical Center, Dallas, Texas 75390-8813, USA
| | - Michael E. Selzer
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Shuxin Li
- Department of Neurology and Neuroscience Graduate Program, UT Southwestern Medical Center, Dallas, Texas 75390-8813, USA
| |
Collapse
|
40
|
Ma L, Yu YM, Guo Y, Hart RP, Schachner M. Cysteine- and glycine-rich protein 1a is involved in spinal cord regeneration in adult zebrafish. Eur J Neurosci 2012; 35:353-65. [PMID: 22288476 DOI: 10.1111/j.1460-9568.2011.07958.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In contrast to mammals, adult zebrafish have the ability to regrow descending axons and gain locomotor recovery after spinal cord injury (SCI). In zebrafish, a decisive factor for successful spinal cord regeneration is the inherent ability of some neurons to regrow their axons via (re)expressing growth-associated genes during the regeneration period. The nucleus of the medial longitudinal fascicle (NMLF) is one of the nuclei capable of regenerative response after SCI. Using microarray analysis with laser capture microdissected NMLF, we show that cysteine- and glycine-rich protein (CRP)1a (encoded by the csrp1a gene in zebrafish), the function of which is largely unknown in the nervous system, was upregulated after SCI. In situ hybridization confirmed the upregulation of csrp1a expression in neurons during the axon growth phase after SCI, not only in the NMLF, but also in other nuclei capable of regeneration, such as the intermediate reticular formation and superior reticular formation. The upregulation of csrp1a expression in regenerating nuclei started at 3 days after SCI and continued to 21 days post-injury, the longest time point studied. In vivo knockdown of CRP1a expression using two different antisense morpholino oligonucleotides impaired axon regeneration and locomotor recovery when compared with a control morpholino, demonstrating that CRP1a upregulation is an important part of the innate regeneration capability in injured neurons of adult zebrafish. This study is the first to demonstrate the requirement of CRP1a for zebrafish spinal cord regeneration.
Collapse
Affiliation(s)
- Liping Ma
- W. M. Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
41
|
Dellett M, Hu W, Papadaki V, Ohnuma SI. Small leucine rich proteoglycan family regulates multiple signalling pathways in neural development and maintenance. Dev Growth Differ 2012; 54:327-40. [DOI: 10.1111/j.1440-169x.2012.01339.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Margaret Dellett
- University College London (UCL) Institute of Ophthalmology; UCL; London; UK
| | - Wanzhou Hu
- University College London (UCL) Institute of Ophthalmology; UCL; London; UK
| | - Vasiliki Papadaki
- University College London (UCL) Institute of Ophthalmology; UCL; London; UK
| | - Shin-ichi Ohnuma
- University College London (UCL) Institute of Ophthalmology; UCL; London; UK
| |
Collapse
|
42
|
Hunt D, Raivich G, Anderson PN. Activating transcription factor 3 and the nervous system. Front Mol Neurosci 2012; 5:7. [PMID: 22347845 PMCID: PMC3278981 DOI: 10.3389/fnmol.2012.00007] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 01/20/2012] [Indexed: 12/18/2022] Open
Abstract
Activating transcription factor 3 (ATF3) belongs to the ATF/cyclic AMP responsive element binding family of transcription factors and is often described as an adaptive response gene whose activity is usually regulated by stressful stimuli. Although expressed in a number of splice variants and generally recognized as a transcriptional repressor, ATF3 has the ability to interact with a number of other transcription factors including c-Jun to form complexes which not only repress, but can also activate various genes. ATF3 expression is modulated mainly at the transcriptional level and has markedly different effects in different types of cell. The levels of ATF3 mRNA and protein are normally very low in neurons and glia but their expression is rapidly upregulated in response to injury. ATF3 expression in neurons is closely linked to their survival and the regeneration of their axons following axotomy, and that in peripheral nerves correlates with the generation of a Schwann cell phenotype that is conducive to axonal regeneration. ATF3 is also induced by Toll-like receptor (TLR) ligands but acts as a negative regulator of TLR signaling, suppressing the innate immune response which is involved in immuno-surveillance and can enhance or reduce the survival of injured neurons and promote the regeneration of their axons.
Collapse
Affiliation(s)
- David Hunt
- Medical Education Centre, Newham University Hospital London, UK
| | | | | |
Collapse
|
43
|
Bartus K, James ND, Bosch KD, Bradbury EJ. Chondroitin sulphate proteoglycans: key modulators of spinal cord and brain plasticity. Exp Neurol 2011; 235:5-17. [PMID: 21871887 DOI: 10.1016/j.expneurol.2011.08.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 07/15/2011] [Accepted: 08/08/2011] [Indexed: 01/08/2023]
Abstract
Chondroitin sulphate proteoglycans (CSPGs) are a family of inhibitory extracellular matrix molecules that are highly expressed during development, where they are involved in processes of pathfinding and guidance. CSPGs are present at lower levels in the mature CNS, but are highly concentrated in perineuronal nets where they play an important role in maintaining stability and restricting plasticity. Whilst important for maintaining stable connections, this can have an adverse effect following insult to the CNS, restricting the capacity for repair, where enhanced synapse formation leading to new connections could be functionally beneficial. CSPGs are also highly expressed at CNS injury sites, where they can restrict anatomical plasticity by inhibiting sprouting and reorganisation, curbing the extent to which spared systems may compensate for the loss function of injured pathways. Modification of CSPGs, usually involving enzymatic degradation of glycosaminoglycan chains from the CSPG molecule, has received much attention as a potential strategy for promoting repair following spinal cord and brain injury. Pre-clinical studies in animal models have demonstrated a number of reparative effects of CSPG modification, which are often associated with functional recovery. Here we discuss the potential of CSPG modification to stimulate restorative plasticity after injury, reviewing evidence from studies in the brain, the spinal cord and the periphery.
Collapse
Affiliation(s)
- K Bartus
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London Bridge, SE1 1UL, UK.
| | | | | | | |
Collapse
|
44
|
Minor KH, Bournat JC, Toscano N, Giger RJ, Davies SJA. Decorin, erythroblastic leukaemia viral oncogene homologue B4 and signal transducer and activator of transcription 3 regulation of semaphorin 3A in central nervous system scar tissue. ACTA ACUST UNITED AC 2010; 134:1140-55. [PMID: 21115466 DOI: 10.1093/brain/awq304] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Scar tissue at sites of traumatic injury in the adult central nervous system presents a combined physical and molecular impediment to axon regeneration. Of multiple known central nervous system scar associated axon growth inhibitors, semaphorin 3A has been shown to be strongly expressed by invading leptomeningeal fibroblasts. We have previously demonstrated that infusion of the small leucine-rich proteoglycan decorin results in major suppression of several growth inhibitory chondroitin sulphate proteoglycans and growth of adult sensory axons across acute spinal cord injuries. Furthermore, decorin treatment of leptomeningeal fibroblasts significantly increases their ability to support neurite growth of co-cultured adult dorsal root ganglion neurons. In the present study we show that decorin has the ability to suppress semaphorin 3A expression within adult rat cerebral cortex scar tissue and in primary leptomeningeal fibroblasts in vitro. Infusion of decorin core protein for eight days resulted in a significant reduction of semaphorin 3A messenger RNA expression within injury sites compared with saline-treated control animals. Both in situ hybridization and immunostaining confirmed that semaphorin 3A messenger RNA expression and protein levels are significantly reduced in decorin-treated animals. Similarly, decorin treatment decreased the expression of semaphorin 3A messenger RNA in cultured rat leptomeningeal fibroblasts compared with untreated cells. Mechanistic studies revealed that decorin-mediated suppression of semaphorin 3A critically depends on erythroblastic leukaemia viral oncogene homologue B4 and signal transducer and activator of transcription 3 function. Collectively, our studies show that in addition to suppressing the levels of inhibitory chondroitin sulphate proteoglycans, decorin has the ability to suppress semaphorin 3A in the injured central nervous system. Our findings provide further evidence for the use of decorin as a potential therapy for promoting axonal growth and repair in the injured adult mammalian brain and spinal cord.
Collapse
Affiliation(s)
- Kenneth H Minor
- Department of Neurosurgery, University of Colorado at Denver, Aurora, CO 80045, USA
| | | | | | | | | |
Collapse
|
45
|
Ali SAM, Hosaka YZ, Uehara M. Expression of small leucine-rich proteoglycans in the developing retina and kainic acid-induced retinopathy in ICR mice. J Vet Med Sci 2010; 73:439-45. [PMID: 21116103 DOI: 10.1292/jvms.10-0464] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to determine the developmental changes of small leucine-rich proteoglycans (PGs), decorin, biglycan and fibromodulin, in ICR mouse retinas and to elucidate their role in the adult retina using kainic acid (KA)-induced retinal degeneration model. Retinas of prenatal, postnatal and adult mice were collected for histological and immunohistochemical staining to investigate the changes in distribution of these PGs. Decorin-and fibromodulin-immunostainings were diffusely distributed at prenatal and early postnatal stages and were stronger in the adult retina. However, biglycan was moderately distributed in the prenatal and early postnatal stages and was faint in the adult retina. Retinas were collected at 1, 3 and 7 days after intravitreal injection of KA. Retinas of KA injected eyes underwent shrinkage accompanied by serious damage in the inner layers. Decorin and fibromodulin were upregulated in the inner retinal layers of KA-injected eyes compared to the normal ones. Our results suggest that decorin and fibromodulin play key roles in retinal differentiation, and contribute to the retinal damage and repair process. However, biglycan may have no or only a limited role in the mouse retinal development or repair process.
Collapse
Affiliation(s)
- Safwat Ali Mohamed Ali
- Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | | | | |
Collapse
|
46
|
Maller O, Martinson H, Schedin P. Extracellular matrix composition reveals complex and dynamic stromal-epithelial interactions in the mammary gland. J Mammary Gland Biol Neoplasia 2010; 15:301-18. [PMID: 20811805 DOI: 10.1007/s10911-010-9189-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 08/16/2010] [Indexed: 12/25/2022] Open
Abstract
The mammary gland is an excellent model system to study the interplay between stroma and epithelial cells because of the gland's unique postnatal development and its distinct functional states. This review focuses on the contribution of the extracellular matrix (ECM) to stromal-epithelial interactions in the mammary gland. We describe how ECM physical properties, protein composition, and proteolytic state impact mammary gland architecture as well as provide instructive cues that influence the function of mammary epithelial cells during pubertal gland development and throughout adulthood. Further, based on recent proteomic analyses of mammary ECM, we describe known mammary ECM proteins and their potential functions, as well as describe several ECM proteins not previously recognized in this organ. ECM proteins are discussed in the context of the morphologically-distinct stromal subcompartments: the basal lamina, the intra- and interlobular stroma, and the fibrous connective tissue. Future studies aimed at in-depth qualitative and quantitative characterization of mammary ECM within these various subcompartments is required to better elucidate the function of ECM in normal as well as in pathological breast tissue.
Collapse
Affiliation(s)
- Ori Maller
- Department of Medicine, Division of Medical Oncology, University of Colorado-Denver, 12801 E 17th Ave., Aurora, CO 80045, USA
| | | | | |
Collapse
|
47
|
Extrinsic and intrinsic factors controlling axonal regeneration after spinal cord injury. Expert Rev Mol Med 2009; 11:e37. [PMID: 19968910 DOI: 10.1017/s1462399409001288] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Spinal cord injury is one of the most devastating conditions that affects the central nervous system. It can lead to permanent disability and there are around two million people affected worldwide. After injury, accumulation of myelin debris and formation of an inhibitory glial scar at the site of injury leads to a physical and chemical barrier that blocks axonal growth and regeneration. The mammalian central nervous system thus has a limited intrinsic ability to repair itself after injury. To improve axonal outgrowth and promote functional recovery, it is essential to identify the various intrinsic and extrinsic factors controlling regeneration and navigation of axons within the inhibitory environment of the central nervous system. Recent advances in spinal cord research have opened new avenues for the exploration of potential targets for repairing the cord and improving functional recovery after trauma. Here, we discuss some of the important key molecules that could be harnessed for repairing spinal cord injury.
Collapse
|