1
|
Mercado NM, Szarowicz C, Stancati JA, Sortwell CE, Boezwinkle SA, Collier TJ, Caulfield ME, Steece-Collier K. Advancing age and the rs6265 BDNF SNP are permissive to graft-induced dyskinesias in parkinsonian rats. NPJ Parkinsons Dis 2024; 10:163. [PMID: 39179609 PMCID: PMC11344059 DOI: 10.1038/s41531-024-00771-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024] Open
Abstract
The rs6265 single nucleotide polymorphism (SNP) in the gene for brain-derived neurotrophic factor is a common variant that alters therapeutic outcomes for individuals with Parkinson's disease (PD). We previously investigated the effects of this SNP on the experimental therapeutic approach of neural grafting, demonstrating that young adult parkinsonian rats carrying the variant Met allele exhibited enhanced graft function compared to wild-type rats and also exclusively developed aberrant graft-induced dyskinesias (GID). Aging is the primary risk factor for PD and reduces graft efficacy. Here we investigated whether aging interacts with this SNP to further alter cell transplantation outcomes. We hypothesized that aging would reduce enhancement of graft function associated with this genetic variant and exacerbate GID in all grafted subjects. Unexpectedly, beneficial graft function was maintained in aged rs6265 subjects. However, aging was permissive to GID induction, regardless of genotype, with the greatest incidence and severity found in rs6265-expressing animals.
Collapse
Affiliation(s)
- Natosha M Mercado
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Carlye Szarowicz
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Jennifer A Stancati
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Caryl E Sortwell
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
- Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI, 49503, USA
| | - Samuel A Boezwinkle
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Timothy J Collier
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
- Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI, 49503, USA
| | - Margaret E Caulfield
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Kathy Steece-Collier
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA.
- Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
2
|
Rodríguez-Pérez AI, Garrido-Gil P, García-Garrote M, Muñoz A, Parga JA, Labandeira-García JL, Rodríguez-Pallares J. Non-HLA angiotensin-type-1 receptor autoantibodies mediate the long-term loss of grafted neurons in Parkinson's disease models. Stem Cell Res Ther 2024; 15:138. [PMID: 38735991 PMCID: PMC11089721 DOI: 10.1186/s13287-024-03751-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/02/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND Clinical trials have provided evidence that transplants of dopaminergic precursors, which may be replaced by new in vitro stem cell sources, can integrate into the host tissue, and alleviate motor symptoms in Parkinson´s disease (PD). In some patients, deterioration of graft function occurred several months after observing a graft-derived functional improvement. Rejection of peripheral organs was initially related to HLA-specific antibodies. However, the role of non-HLA antibodies is now considered also relevant for rejection. Angiotensin-II type-1 receptor autoantibodies (AT1-AA) act as agonists of the AT1 receptors. AT1-AA are the non-HLA antibodies most widely associated with graft dysfunction or rejection after transplantation of different solid organs and hematopoietic stem cells. However, it is not known about the presence and possible functional effects of AT1-AA in dopaminergic grafts, and the effects of treatment with AT1 receptor blockers (ARBs) such as candesartan on graft survival. METHODS In a 6-hydroxydopamine PD rat model, we studied the short-term (10 days)- and long-term (3 months) effects of chronic treatment with the ARB candesartan on survival of grafted dopaminergic neurons and microglial graft infiltration, as well as the effects of dopaminergic denervation and grafting on serum and CSF AT1-AA levels. The expression of AT1 receptors in grafted neurons was determined by laser capture microdissection. RESULTS At the early period post-grafting, the number of grafted dopaminergic neurons that survived was not significantly different between treated and untreated hosts (i.e., control rats and rats treated with candesartan), probably because, just after grafting, other deleterious factors are predominant for dopaminergic cell death, such as mechanical trauma, lack of growth factors/nutrients and ischemia. However, several months post-grafting, we observed a significantly higher number of surviving dopaminergic neurons and a higher density of striatal dopaminergic terminals in the candesartan-treated group. For several months, grafted rats showed blood and cerebrospinal fluid levels of AT1-AA higher than normal controls, and also higher AT1-AA levels than non-grafted parkinsonian rats. CONCLUSIONS The results suggest the use of ARBs such as candesartan in PD patients, particularly before and after dopaminergic grafts, and the need to monitor AT1-AA levels in PD patients, particularly in those candidates for dopaminergic grafting.
Collapse
Affiliation(s)
- Ana I Rodríguez-Pérez
- Research Center for Molecular Medicine and Chronic Diseases (CiMUS), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Pablo Garrido-Gil
- Research Center for Molecular Medicine and Chronic Diseases (CiMUS), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Maria García-Garrote
- Research Center for Molecular Medicine and Chronic Diseases (CiMUS), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Ana Muñoz
- Research Center for Molecular Medicine and Chronic Diseases (CiMUS), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Juan A Parga
- Research Center for Molecular Medicine and Chronic Diseases (CiMUS), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jose Luis Labandeira-García
- Research Center for Molecular Medicine and Chronic Diseases (CiMUS), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, 15782, Spain.
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| | - Jannette Rodríguez-Pallares
- Research Center for Molecular Medicine and Chronic Diseases (CiMUS), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, 15782, Spain.
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
3
|
Collier TJ, Begg L, Stancati JA, Mercado NM, Sellnow RC, Sandoval IM, Sortwell CE, Steece-Collier K. Quinpirole inhibits levodopa-induced dyskinesias at structural and behavioral levels: Efficacy negated by co-administration of isradipine. Exp Neurol 2023; 369:114522. [PMID: 37640098 PMCID: PMC10591902 DOI: 10.1016/j.expneurol.2023.114522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/06/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
Dopamine depletion associated with parkinsonism induces plastic changes in striatal medium spiny neurons (MSN) that are maladaptive and associated with the emergence of the negative side-effect of standard treatment: the abnormal involuntary movements termed levodopa-induced dyskinesia (LID). Prevention of MSN dendritic spine loss is hypothesized to diminish liability for LID in Parkinson's disease. Blockade of striatal CaV1.3 calcium channels can prevent spine loss and significantly diminish LID in parkinsonian rats. While pharmacological antagonism with FDA approved CaV1 L-type channel antagonist dihydropyridine (DHP) drugs (e.g, isradipine) are potentially antidyskinetic, pharmacologic limitations of current drugs may result in suboptimal efficacy. To provide optimal CaV1.3 antagonism, we investigated the ability of a dual pharmacological approach to more potently antagonize these channels. Specifically, quinpirole, a D2/D3-type dopamine receptor (D2/3R) agonist, has been demonstrated to significantly reduce calcium current activity at CaV1.3 channels in MSNs of rats by a mechanism distinct from DHPs. We hypothesized that dual inhibition of striatal CaV1.3 channels using the DHP drug isradipine combined with the D2/D3 dopamine receptor agonist quinpirole prior to, and in conjunction with, levodopa would be more effective at preventing structural modifications of dendritic spines and providing more stable LID prevention. For these proof-of-principle studies, rats with unilateral nigrostriatal lesions received daily administration of vehicle, isradipine, quinpirole, or isradipine + quinpirole prior to, and concurrent with, levodopa. Development of LID and morphological analysis of dendritic spines were assessed. Contrary to our hypothesis, quinpirole monotherapy was the most effective at reducing dyskinesia severity and preventing abnormal mushroom spine formation on MSNs, a structural phenomenon previously associated with LID. Notably, the antidyskinetic efficacy of quinpirole monotherapy was lost in the presence of isradipine co-treatment. These findings suggest that D2/D3 dopamine receptor agonists when given in combination with levodopa and initiated in early-stage Parkinson's disease may provide long-term protection against LID. The negative interaction of isradipine with quinpirole suggests a potential cautionary note for co-administration of these drugs in a clinical setting.
Collapse
Affiliation(s)
- Timothy J Collier
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, 400 Monroe Ave. N.W., Grand Rapids, MI 49503, USA; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, 220 Cherry St. S.E., Grand Rapids, MI 49503, USA.
| | - Lauren Begg
- Department of Biomedical Sciences, Grand Valley State University, 1 Campus Dr., Allendale, MI 49401, USA
| | - Jennifer A Stancati
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, 400 Monroe Ave. N.W., Grand Rapids, MI 49503, USA
| | - Natosha M Mercado
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, 400 Monroe Ave. N.W., Grand Rapids, MI 49503, USA
| | - Rhyomi C Sellnow
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, 400 Monroe Ave. N.W., Grand Rapids, MI 49503, USA; Cell and Molecular Biology Program, Michigan State University, East Lansing, MI 48824, USA
| | - Ivette M Sandoval
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, 400 Monroe Ave. N.W., Grand Rapids, MI 49503, USA; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, 220 Cherry St. S.E., Grand Rapids, MI 49503, USA.
| | - Caryl E Sortwell
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, 400 Monroe Ave. N.W., Grand Rapids, MI 49503, USA; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, 220 Cherry St. S.E., Grand Rapids, MI 49503, USA
| | - Kathy Steece-Collier
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, 400 Monroe Ave. N.W., Grand Rapids, MI 49503, USA; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, 220 Cherry St. S.E., Grand Rapids, MI 49503, USA
| |
Collapse
|
4
|
Lane EL, Lelos MJ. Defining the unknowns for cell therapies in Parkinson's disease. Dis Model Mech 2022; 15:dmm049543. [PMID: 36165848 PMCID: PMC9555765 DOI: 10.1242/dmm.049543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
First-in-human clinical trials have commenced to test the safety and efficacy of cell therapies for people with Parkinson's disease (PD). Proof of concept that this neural repair strategy is efficacious is based on decades of preclinical studies and clinical trials using primary foetal cells, as well as a significant literature exploring more novel stem cell-derived products. Although several measures of efficacy have been explored, including the successful in vitro differentiation of stem cells to dopamine neurons and consistent alleviation of motor dysfunction in rodent models, many unknowns still remain regarding the long-term clinical implications of this treatment strategy. Here, we consider some of these outstanding questions, including our understanding of the interaction between anti-Parkinsonian medication and the neural transplant, the impact of the cell therapy on cognitive or neuropsychiatric symptoms of PD, the role of neuroinflammation in the therapeutic process and the development of graft-induced dyskinesias. We identify questions that are currently pertinent to the field that require further exploration, and pave the way for a more holistic understanding of this neural repair strategy for treatment of PD.
Collapse
Affiliation(s)
- Emma L. Lane
- Cardiff School of Pharmacy and Pharmaceutical Sciences, King Edward VII Avenue, Cardiff University, Cardiff CF10 3NB, UK
| | - Mariah J. Lelos
- School of Biosciences, Museum Avenue, Cardiff University, Cardiff CF10 3AX, UK
| |
Collapse
|
5
|
Ahrabi B, Tabatabaei Mirakabad FS, Niknazar S, Payvandi AA, Ahmady Roozbahany N, Ahrabi M, Torkamani SD, Abbaszadeh HA. Photobiomodulation Therapy and Cell Therapy Improved Parkinson's Diseases by Neuro-regeneration and Tremor Inhibition. J Lasers Med Sci 2022; 13:e28. [PMID: 36743130 PMCID: PMC9841383 DOI: 10.34172/jlms.2022.28] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/02/2022] [Indexed: 11/22/2022]
Abstract
Introduction: Parkinson's disease (PD) is a progressive and severe neurodegenerative disorder of the central nervous system (CNS). The most prominent features of this disease are cell reduction in the substantia nigra and accumulation of α-synuclein, especially in the brainstem, spinal cord, and cortical areas. In addition to drug-based treatment, other therapies such as surgery, cell therapy, and laser therapy can be considered. In this study, articles on cell therapy and laser therapy for PD have been collected to evaluate the improvement of motor function, cell differentiation, and dopaminergic cell proliferation. Methods: Articles were collected from four electronic databases: PubMed, Scopus, Google Scholar, and Web of Science from 2010 to 2022. The keywords were "photobiomodulation", "low-level light therapy", "Low-level laser therapy", "near-infrared light", "Parkinson's disease", "Parkinsonism", and "stem cell therapy". About 100 related articles were included in the study. Results: The results of the studies showed that cell therapy and laser therapy are useful in the treatment of PD, and despite their limitations, they can be useful in improving PD. Conclusion: Concomitant use of cell therapy and photobiomodulation therapy can improve the symptoms of PD.
Collapse
Affiliation(s)
- Behnaz Ahrabi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Somayeh Niknazar
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Asghar Payvandi
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mahnaz Ahrabi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shaysteh Dordshaikh Torkamani
- Department of Anatomical Sciences and Biology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojjat Allah Abbaszadeh
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Department of Anatomical Sciences and Biology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Correspondence to Hojjat-Allah Abbaszadeh, Laser Application in Medical Sciences Research Center and Department of Biology and Anatomical Sciences, school of medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. P.O. Box: 19395-4719. Tel: +98-21-23872555;
| |
Collapse
|
6
|
Lane EL, Harrison DJ, Ramos‐Varas E, Hills R, Turner S, Lelos MJ. Spontaneous Graft-Induced Dyskinesias Are Independent of 5-HT Neurons and Levodopa Priming in a Model of Parkinson's Disease. Mov Disord 2022; 37:613-619. [PMID: 34766658 PMCID: PMC9208367 DOI: 10.1002/mds.28856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/28/2021] [Accepted: 10/20/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The risk of graft-induced dyskinesias (GIDs) presents a major challenge in progressing cell transplantation as a therapy for Parkinson's disease. Current theories implicate the presence of grafted serotonin neurons, hotspots of dopamine release, neuroinflammation and established levodopa-induced dyskinesia. OBJECTIVE To elucidate the mechanisms of GIDs. METHODS Neonatally desensitized, dopamine denervated rats received intrastriatal grafts of human embryonic stem cells (hESCs) differentiated into either ventral midbrain dopaminergic progenitor (vmDA) (n = 15) or ventral forebrain cells (n = 14). RESULTS Of the eight rats with surviving grafts, two vmDA rats developed chronic spontaneous GIDs, which were observed at 30 weeks post-transplantation. GIDs were inhibited by D2 -like receptor antagonists and not affected by 5-HT1A/1B/5-HT6 agonists/antagonists. Grafts in GID rats showed more microglial activation and lacked serotonin neurons. CONCLUSIONS These findings argue against current thinking that rats do not develop spontaneous GID and that serotonin neurons are causative, rather indicating that GID can be induced in rats by hESC-derived dopamine grafts and, critically, can occur independently of both previous levodopa exposure and grafted serotonin neurons. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Emma L. Lane
- School of Pharmacy and Pharmaceutical SciencesCardiff UniversityCardiffUnited Kingdom
| | - David J. Harrison
- Brain Repair Group, School of BiosciencesCardiff UniversityCardiffUnited Kingdom
| | - Elena Ramos‐Varas
- Brain Repair Group, School of BiosciencesCardiff UniversityCardiffUnited Kingdom
| | - Rachel Hills
- Brain Repair Group, School of BiosciencesCardiff UniversityCardiffUnited Kingdom
| | - Sophie Turner
- Brain Repair Group, School of BiosciencesCardiff UniversityCardiffUnited Kingdom
| | - Mariah J. Lelos
- School of Pharmacy and Pharmaceutical SciencesCardiff UniversityCardiffUnited Kingdom
| |
Collapse
|
7
|
The BDNF Val66Met polymorphism (rs6265) enhances dopamine neuron graft efficacy and side-effect liability in rs6265 knock-in rats. Neurobiol Dis 2020; 148:105175. [PMID: 33188920 PMCID: PMC7855552 DOI: 10.1016/j.nbd.2020.105175] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 01/10/2023] Open
Abstract
Prevalent in approximately 20% of the worldwide human population, the
rs6265 (also called ‘Val66Met’) single nucleotide polymorphism
(SNP) in the gene for brain-derived neurotrophic factor (BDNF)
is a common genetic variant that can alter therapeutic responses in individuals
with Parkinson’s disease (PD). Possession of the variant Met allele
results in decreased activity-dependent release of BDNF. Given the resurgent
worldwide interest in neural transplantation for PD and the biological relevance
of BDNF, the current studies examined the effects of the rs6265 SNP on
therapeutic efficacy and side-effect development following primary dopamine (DA)
neuron transplantation. Considering the significant reduction in BDNF release
associated with rs6265, we hypothesized that rs6265-mediated dysfunctional BDNF
signaling contributes to the limited clinical benefit observed in a
subpopulation of PD patients despite robust survival of grafted DA neurons, and
further, that this mutation contributes to the development of aberrant
graft-induced dyskinesias (GID). To this end, we generated a CRISPR knock-in rat
model of the rs6265 BDNF SNP to examine for the first time the
influence of a common genetic polymorphism on graft survival, functional
efficacy, and side-effect liability, comparing these parameters between
wild-type (Val/Val) rats and those homozygous for the variant Met allele
(Met/Met). Counter to our hypothesis, the current research indicates that
Met/Met rats show enhanced graft-associated therapeutic efficacy and a
paradoxical enhancement of graft-derived neurite outgrowth compared to wild-type
rats. However, consistent with our hypothesis, we demonstrate that the rs6265
genotype in the host rat is strongly linked to development of GID, and that this
behavioral phenotype is significantly correlated with neurochemical signatures
of atypical glutamatergic neurotransmission by grafted DA neurons.
Collapse
|
8
|
Chung YG, Seay M, Elsworth JD, Redmond DE. Generation of Pluripotent Stem Cells Using Somatic Cell Nuclear Transfer and Induced Pluripotent Somatic Cells from African Green Monkeys. Stem Cells Dev 2020; 29:1294-1307. [PMID: 32715987 DOI: 10.1089/scd.2020.0059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Patient-specific stem cells derived from somatic cell nuclear transfer (SCNT) embryos or from induced pluripotent stem cells (iPSCs) could be used to treat various diseases with minimal immune rejection. Many studies using these cells have been conducted in rats and mice; however, there exist numerous dissimilarities between the rodents and humans limiting the clinical predictive power and experimental utility of rodent experiments alone. Nonhuman primates (NHPs) share greater homology to human than rodents in all respects, including genomics, physiology, biochemistry, and the immune system. Thus, experimental data obtained from monkey studies would be more predictive for designing an effective cell replacement therapy in humans. Unfortunately, there are few iPSC lines and even fewer SCNT lines that have been derived in NHPs, hampering broader studies in regenerative medicine. One promising potential therapy would be the replacement of dopamine neurons that are lost in Parkinson's disease. After dopamine depletion by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), the African green monkey (Chlorocebus sabaeus) shows the most complete model of Parkinsonism compared with other species and brain pathology and behavioral changes are almost identical to those in humans after accidental exposure to MPTP. Therefore, we have developed a SCNT procedure to generate multiple pluripotent stem cell lines in this species for studies of possible treatment of Parkinsonism and for comparing with cells derived from iPSCs. Using 24 female monkeys as egg donors and 7 somatic cell donor monkeys, we have derived 11 SCNT embryonic stem cell lines that expressed typical stemness genes and formed all three germ layer derivatives. We also derived two iPSC lines using an episome-mediated reprogramming factor delivery system. This report describes the process for deriving these cell lines and proving their pluripotency for differentiation into various potentially therapeutic cells.
Collapse
Affiliation(s)
- Young Gie Chung
- Enolc, Inc., Farmington, Connecticut, USA.,Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA.,Some of these data were presented in Poster 132.05 at the Society for Neuroscience, Chicago, Illinois, USA, 2019
| | - Montrell Seay
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA.,Some of these data were presented in Poster 132.05 at the Society for Neuroscience, Chicago, Illinois, USA, 2019
| | - John D Elsworth
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA.,Some of these data were presented in Poster 132.05 at the Society for Neuroscience, Chicago, Illinois, USA, 2019
| | - D Eugene Redmond
- Research Department, Axion Research Foundation, Hamden, Connecticut, USA.,Some of these data were presented in Poster 132.05 at the Society for Neuroscience, Chicago, Illinois, USA, 2019
| |
Collapse
|
9
|
Tomov N. Glial cells in intracerebral transplantation for Parkinson's disease. Neural Regen Res 2020; 15:1173-1178. [PMID: 31960796 PMCID: PMC7047789 DOI: 10.4103/1673-5374.270296] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/02/2019] [Accepted: 09/02/2019] [Indexed: 12/11/2022] Open
Abstract
In the last few decades, intracerebral transplantation has grown from a dubious neuroscientific topic to a plausible modality for treatment of neurological disorders. The possibility for cell replacement opens a new field of perspectives in the therapy of neurodegenerative disorders, ischemia, and neurotrauma, with the most lessons learned from intracerebral transplantation in Parkinson's disease. Multiple animal studies and a few small-scale clinical trials have proven the concept of intracerebral grafting, but still have to provide a uniform and highly efficient approach to the procedure, suitable for clinical application. The success of intracerebral transplantation is highly dependent on the integration of the grafted cells with the host brain. In this process, glial cells are clearly more than passive bystanders. They provide transplanted cells with mechanical support, trophics, mediate synapse formation, and participate in graft vascularization. At the same time, glial cells mediate scarring, graft rejection, and neuroinflammation, which can be detrimental. We can use this information to try to understand the mechanisms behind the glial reaction to intracerebral transplantation. Recognizing and utilizing glial reactivity can move translational research forward and provide an insight not only to post-transplantation events but also to mechanisms of neuronal death and degeneration. Knowledge about glial reactivity to transplanted cells could also be a key for optimization of transplantation protocols, which ultimately should contribute to greater patient benefit.
Collapse
Affiliation(s)
- Nikola Tomov
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| |
Collapse
|
10
|
Precious SV, Smith GA, Heuer A, Jaeger I, Lane EL, Dunnett SB, Li M, Kelly CM, Rosser AE. Dopaminergic Progenitors Derived From Epiblast Stem Cells Function Similarly to Primary VM-Derived Progenitors When Transplanted Into a Parkinson's Disease Model. Front Neurosci 2020; 14:312. [PMID: 32317925 PMCID: PMC7154167 DOI: 10.3389/fnins.2020.00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/17/2020] [Indexed: 11/13/2022] Open
Abstract
Neural transplantation in neurodegenerative diseases such as Parkinson’s disease (PD) offers to replace cells lost during the progression of the disease process. Primary fetal ventral mesencephalon (VM), the origin of bona fide midbrain dopaminergic (DAergic) precursors, is currently the gold standard source of cells for transplantation in PD. However, the use of tissue from this source raises ethical and logistical constraints necessitating the need for alternative supplies of donor cells. The requirement of any alternative donor cell source is to have the capability to generate authentic mature DAergic neurons, which could be utilized in cell-replacement strategies. Mouse pluripotent stem cells can efficiently generate electrochemically mature midbrain DAergic precursors in vitro using a stepwise control of FGF signaling. Here, we have compared DAergic transplants derived from two progenitor cell sources in an allograft system: mouse epiblast stem cells (EpiSC) and primary fetal mouse VM tissue. Cells were transplanted into the striatum of 6-OHDA lesioned mice pre-treated with L-DOPA. Drug-induced rotations, a number of motor tests and drug-induced abnormal involuntary movements (AIMs) were assessed. Functional improvements were demonstrated post-transplantation in some behavioral tests, with no difference in graft volume or the number of TH immuno-positive cells in the grafts of the two transplant groups. L-DOPA-induced AIMs and amphetamine-induced AIMs were observed in both transplant groups, with no differences in rate or severity between the two groups. Collectively, in this mouse-to-mouse allograft system, we report no significant differences in the functional ability between the gold standard primary VM derived and pluripotent stem cell-derived DAergic transplants.
Collapse
Affiliation(s)
- Sophie V Precious
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Gaynor A Smith
- School of Medicine, UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Andreas Heuer
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom.,Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Ines Jaeger
- Stem Cell Neurogenesis Group, School of Medicine and Biosciences, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Emma L Lane
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | - Stephen B Dunnett
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Meng Li
- Stem Cell Neurogenesis Group, School of Medicine and Biosciences, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Claire M Kelly
- School of Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Anne E Rosser
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom.,Wales Brain Repair and Intracranial Neurotherapeutics Unit, School of Medicine, Cardiff University, Cardiff, United Kingdom.,MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
11
|
Osborn TM, Hallett PJ, Schumacher JM, Isacson O. Advantages and Recent Developments of Autologous Cell Therapy for Parkinson's Disease Patients. Front Cell Neurosci 2020; 14:58. [PMID: 32317934 PMCID: PMC7147334 DOI: 10.3389/fncel.2020.00058] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/27/2020] [Indexed: 12/14/2022] Open
Abstract
Parkinson’s Disease (PD) is a progressive degenerative disease characterized by tremor, bradykinesia, rigidity and postural instability. There are approximately 7–10 million PD patients worldwide. Currently, there are no biomarkers available or pharmaceuticals that can halt the dopaminergic neuron degeneration. At the time of diagnosis about 60% of the midbrain dopamine (mDA) neurons have already degenerated, resulting in a depletion of roughly 70% of striatal dopamine (DA) levels and synapses. Symptomatic treatment (e.g., with L-dopa) can initially restore DA levels and motor function, but with time often lead to side-effects like dyskinesia. Deep-brain-stimulation can alleviate these side-effects and some of the motor symptoms but requires repeat procedures and adds limitations for the patients. Restoration of dopaminergic synapses using neuronal cell replacement therapy has shown benefit in clinical studies using cells from fetal ventral midbrain. This approach, if done correctly, increases DA levels and restores synapses, allowing biofeedback regulation between the grafted cells and the host brain. Drawbacks are that it is not scalable for a large patient population and the patients require immunosuppression. Stem cells differentiated in vitro to mDA neurons or progenitors have shown promise in animal studies and is a scalable approach that allows for cryopreservation of transplantable cells and rigorous quality control prior to transplantation. However, all allogeneic grafts require immunosuppression. HLA-donor-matching, reduces, but does not completely eliminate, the need for immunosuppression, and is currently investigated in a clinical trial for PD in Japan. Since immune compatibility is very important in all areas of transplantation, these approaches may ultimately be of less benefit to the patients than an autologous approach. By using the patient’s own somatic cells, reprogrammed to induced pluripotent stem cells (iPSCs) and differentiated to mDA neurons immunosuppression is not required, and may also present with several biological and functional advantages in the patients, as described in this article. The proof-of-principle of autologous iPSC mDA restoration of function has been shown in parkinsonian non-human primates (NHPs), and this can now be investigated in clinical trials in addition to the allogeneic and HLA-matched approaches. In this review, we focus on the autologous approach of cell therapy for PD.
Collapse
Affiliation(s)
- Teresia M Osborn
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, Belmont, MA, United States
| | - Penelope J Hallett
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, Belmont, MA, United States
| | - James M Schumacher
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, Belmont, MA, United States
| | - Ole Isacson
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, Belmont, MA, United States
| |
Collapse
|
12
|
Peng Q, Zhong S, Tan Y, Zeng W, Wang J, Cheng C, Yang X, Wu Y, Cao X, Xu Y. The Rodent Models of Dyskinesia and Their Behavioral Assessment. Front Neurol 2019; 10:1016. [PMID: 31681132 PMCID: PMC6798181 DOI: 10.3389/fneur.2019.01016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/09/2019] [Indexed: 12/24/2022] Open
Abstract
Dyskinesia, a major motor complication resulting from dopamine replacement treatment, manifests as involuntary hyperkinetic or dystonic movements. This condition poses a challenge to the treatment of Parkinson's disease. So far, several behavioral models based on rodent with dyskinesia have been established. These models have provided an important platform for evaluating the curative effect of drugs at the preclinical research level over the past two decades. However, there are differences in the modeling and behavioral testing procedures among various laboratories that adversely affect the rat and mouse models as credible experimental tools in this field. This article systematically reviews the history, the pros and cons, and the controversies surrounding rodent models of dyskinesia as well as their behavioral assessment protocols. A summary of factors that influence the behavioral assessment in the rodent dyskinesia models is also presented, including the degree of dopamine denervation, stereotaxic lesion sites, drug regimen, monitoring styles, priming effect, and individual and strain differences. Besides, recent breakthroughs like the genetic mouse models and the bilateral intoxication models for dyskinesia are also discussed.
Collapse
Affiliation(s)
- Qiwei Peng
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shaoping Zhong
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Tan
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - WeiQi Zeng
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ji Wang
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Chi Cheng
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoman Yang
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Wu
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xuebing Cao
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Xu
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Collier TJ, Sortwell CE, Mercado NM, Steece‐Collier K. Cell therapy for Parkinson's disease: Why it doesn't work every time. Mov Disord 2019; 34:1120-1127. [PMID: 31234239 PMCID: PMC6771700 DOI: 10.1002/mds.27742] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/08/2019] [Accepted: 05/20/2019] [Indexed: 11/29/2022] Open
Abstract
The clinical experience with cell replacement therapy for advanced PD has yielded notable successes and failures. A recent autopsy case report of an individual that received implants of fetal dopamine neurons 16 years previously, but at no time experienced clinical benefit despite the best documented survival of grafted neurons and most extensive reinnervation of the striatum, raises sobering issues. With good reason, a great deal of effort in cell replacement science continues to focus on optimizing the cell source and implantation procedure. Here, we describe our preclinical studies in aged rats indicating that despite survival of large numbers of transplanted dopamine neurons and dense reinnervation of the striatum, synaptic connections between graft and host are markedly decreased and behavioral recovery is impaired. This leads us to the hypothesis that the variability in therapeutic response to dopamine neuron grafts may be less about the viability of transplanted neurons and more about the integrity of the aged, dopamine-depleted striatum and its capacity for repair. Replacement of dopamine innervation only can be fully effective if the correct target is present. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Timothy J. Collier
- Translational Science and Molecular Medicine, Michigan State University College of Human Medicine, Grand Rapids, Michigan, USA, and Hauenstein Neuroscience CenterMercy Health/St. Mary'sGrand RapidsMichiganUSA
| | - Caryl E. Sortwell
- Translational Science and Molecular Medicine, Michigan State University College of Human Medicine, Grand Rapids, Michigan, USA, and Hauenstein Neuroscience CenterMercy Health/St. Mary'sGrand RapidsMichiganUSA
| | - Natosha M. Mercado
- Translational Science and Molecular Medicine, Michigan State University College of Human Medicine, Grand Rapids, Michigan, USA, and Hauenstein Neuroscience CenterMercy Health/St. Mary'sGrand RapidsMichiganUSA
| | - Kathy Steece‐Collier
- Translational Science and Molecular Medicine, Michigan State University College of Human Medicine, Grand Rapids, Michigan, USA, and Hauenstein Neuroscience CenterMercy Health/St. Mary'sGrand RapidsMichiganUSA
| |
Collapse
|
14
|
Cell therapy for Parkinson′s disease is coming of age: current challenges and future prospects with a focus on immunomodulation. Gene Ther 2019; 27:6-14. [DOI: 10.1038/s41434-019-0077-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/12/2019] [Accepted: 03/20/2019] [Indexed: 12/17/2022]
|
15
|
Abstract
Cell therapy for Parkinson's disease has a history of being applied clinically with aborted embryos as donor source. Efficacy of the therapy under the appropriate condition has been reported. Based on this experience and the advancement of stem cell technology, clinical trials of cell therapy with embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs) are going to start soon in several countries. In Japan a physician-initiated clinical trial of iPSC-based therapy for Parkinson's disease has launched since 2018. This trial adopts allogeneic transplantation with a cell line from iPSC stock. This article discusses patient selection, procedure, and risk of the therapy. It also introduces the world's current situation of the cell therapy for Parkinson's disease.
Collapse
Affiliation(s)
- Asuka Morizane
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University
| |
Collapse
|
16
|
Lane EL. L-DOPA for Parkinson's disease-a bittersweet pill. Eur J Neurosci 2018; 49:384-398. [PMID: 30118169 DOI: 10.1111/ejn.14119] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/23/2018] [Accepted: 07/30/2018] [Indexed: 01/02/2023]
Abstract
3,4-dihydroxy-L-phenylalanine (L-DOPA) is the gold standard treatment for Parkinson's disease. It has earned that title through its highly effective treatment of some of the motor symptoms in the early stages of the disease but it is a far from perfect drug. The inevitable long-term treatment that comes with this chronic neurodegenerative condition raises the risk significantly of the development of motor fluctuations including disabling L-DOPA-induced dyskinesia. Being unsurpassed as a therapy means that understanding the mechanisms of dyskinesia priming and induction is vital to the search for therapies to treat these side effects and allow optimal use of L-DOPA. However, L-DOPA use may also have consequences (positive or negative) for the development of other interventions, such as cell transplantation, which are designed to treat or repair the ailing brain. This review looks at the issues around the use of L-DOPA with a focus on its potential impact on advanced reparative interventions.
Collapse
Affiliation(s)
- Emma L Lane
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
17
|
Mercado NM, Collier TJ, Sortwell CE, Steece-Collier K. BDNF in the Aged Brain: Translational Implications for Parkinson's Disease. AUSTIN NEUROLOGY & NEUROSCIENCES 2017; 2:1021. [PMID: 29726549 PMCID: PMC5929154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Brain Derived Neurotrophic Factor (BDNF) is a member of the neurotrophin family of secreted growth factors. BDNF signaling is known to exert both chronic, pro-survival effects related to gene expression and protein synthesis ("canonical signaling"), and acute effects as a modulator of neurotransmission ("non-canonical signaling"). BDNF has received a great deal of attention for its role in neurodegenerative diseases including Huntington's Disease (HD), Alzheimer's Disease (AD), and Parkinson's Disease (PD) and has been extensively reviewed elsewhere in this regard (e.g., [1-6]). However aging-related changes in BDNF function and expression have been studied only rarely, with the majority of studies characterizing changes in structures such as the hippocampus and neocortex. In this review, we attempt to briefly summarize the extent of the existing literature on age-related BDNF changes, and discuss the relevance of these changes as a factor potentially impacting therapeutics in aged parkinsonian subjects.
Collapse
Affiliation(s)
- N M Mercado
- Department of Translational Science & Molecular Medicine, College of Human Medicine, Michigan State University, USA
| | - T J Collier
- Department of Translational Science & Molecular Medicine, College of Human Medicine, Michigan State University, USA
- Hauenstein Neuroscience Center, Mercy Health Saint Mary's, USA
| | - C E Sortwell
- Department of Translational Science & Molecular Medicine, College of Human Medicine, Michigan State University, USA
- Hauenstein Neuroscience Center, Mercy Health Saint Mary's, USA
| | - K Steece-Collier
- Department of Translational Science & Molecular Medicine, College of Human Medicine, Michigan State University, USA
- Hauenstein Neuroscience Center, Mercy Health Saint Mary's, USA
| |
Collapse
|
18
|
Vermilyea SC, Emborg ME. The role of nonhuman primate models in the development of cell-based therapies for Parkinson's disease. J Neural Transm (Vienna) 2017; 125:365-384. [PMID: 28326445 PMCID: PMC5847191 DOI: 10.1007/s00702-017-1708-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/12/2017] [Indexed: 12/23/2022]
Abstract
Through the course of over three decades, nonhuman primate (NHP) studies on cell-based therapies (CBTs) for Parkinson’s disease (PD) have provided insight into the feasibility, safety and efficacy of the approach, methods of cell collection and preparation, cell viability, as well as potential brain targets. Today, NHP research continues to be a vital source of information for improving cell grafts and analyzing how the host affects graft survival, integration and function. Overall, this article aims to discuss the role that NHP models of PD have played in CBT development and highlights specific issues that need to be considered to maximize the value of NHP studies for the successful clinical translation of CBTs.
Collapse
Affiliation(s)
- Scott C Vermilyea
- Neuroscience Training Program, University of Wisconsin, Madison, 1220 Capitol Court, Madison, WI, 53715, USA.,Wisconsin National Primate Research Center, University of Wisconsin, Madison, USA
| | - Marina E Emborg
- Neuroscience Training Program, University of Wisconsin, Madison, 1220 Capitol Court, Madison, WI, 53715, USA. .,Wisconsin National Primate Research Center, University of Wisconsin, Madison, USA. .,Department of Medical Physics, University of Wisconsin, Madison, USA.
| |
Collapse
|
19
|
Breger LS, Kienle K, Smith GA, Dunnett SB, Lane EL. Influence of chronic L-DOPA treatment on immune response following allogeneic and xenogeneic graft in a rat model of Parkinson's disease. Brain Behav Immun 2017; 61:155-164. [PMID: 27864045 PMCID: PMC5325122 DOI: 10.1016/j.bbi.2016.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/07/2016] [Accepted: 11/14/2016] [Indexed: 12/19/2022] Open
Abstract
Although intrastriatal transplantation of fetal cells for the treatment of Parkinson's disease had shown encouraging results in initial open-label clinical trials, subsequent double-blind studies reported more debatable outcomes. These studies highlighted the need for greater preclinical analysis of the parameters that may influence the success of cell therapy. While much of this has focused on the cells and location of the transplants, few have attempted to replicate potentially critical patient centered factors. Of particular relevance is that patients will be under continued L-DOPA treatment prior to and following transplantation, and that typically the grafts will not be immunologically compatible with the host. The aim of this study was therefore to determine the effect of chronic L-DOPA administered during different phases of the transplantation process on the survival and function of grafts with differing degrees of immunological compatibility. To that end, unilaterally 6-OHDA lesioned rats received sham surgery, allogeneic or xenogeneic transplants, while being treated with L-DOPA before and/or after transplantation. Irrespective of the L-DOPA treatment, dopaminergic grafts improved function and reduced the onset of L-DOPA induced dyskinesia. Importantly, although L-DOPA administered post transplantation was found to have no detrimental effect on graft survival, it did significantly promote the immune response around xenogeneic transplants, despite the administration of immunosuppressive treatment (cyclosporine). This study is the first to systematically examine the effect of L-DOPA on graft tolerance, which is dependent on the donor-host compatibility. These findings emphasize the importance of using animal models that adequately represent the patient paradigm.
Collapse
Affiliation(s)
- Ludivine S. Breger
- School of Pharmacy & Pharmaceutical Sciences, Redwood Building, King Edward VII Avenue, CF10 3NB Cardiff, UK,Brain Repair Group, Cardiff School of Biosciences, Museum Avenue, CF10 3AX Cardiff, UK,Corresponding author at: Dept of Experimental Medical Science, Wallenberg Neuroscience Centre, Lund University, BMC A11, 221 84 Lund, Sweden.Dept of Experimental Medical ScienceWallenberg Neuroscience CentreLund UniversityBMC A11221 84 LundSweden
| | - Korbinian Kienle
- School of Pharmacy & Pharmaceutical Sciences, Redwood Building, King Edward VII Avenue, CF10 3NB Cardiff, UK.
| | - Gaynor A. Smith
- Brain Repair Group, Cardiff School of Biosciences, Museum Avenue, CF10 3AX Cardiff, UK
| | - Stephen B. Dunnett
- Brain Repair Group, Cardiff School of Biosciences, Museum Avenue, CF10 3AX Cardiff, UK
| | - Emma L. Lane
- School of Pharmacy & Pharmaceutical Sciences, Redwood Building, King Edward VII Avenue, CF10 3NB Cardiff, UK
| |
Collapse
|
20
|
Mercado NM, Collier TJ, Freeman T, Steece-Collier K. Repairing the Aged Parkinsonian Striatum: Lessons from the Lab and Clinic. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2016; 7:476. [PMID: 28111608 PMCID: PMC5243125 DOI: 10.4172/2155-9899.1000476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The primary risk factor associated with Parkinson's disease (PD) is advanced age. While there are symptomatic therapies for PD, efficacy of these eventually wane and/or side-effects develop over time. An alternative experimental therapy that has received a great deal of attention over the past several decades has been neural transplantation aimed at replacing nigral dopamine (DA) neurons that degenerate in PD. However, in PD patients and parkinsonian rats, advanced age is associated with inferior benefit following intrastriatal grafting of embryonic DA neurons. Traditionally it has been thought that decreased therapeutic benefit results from the decreased survival of grafted DA neurons and the accompanying poor reinnervation observed in the aged host. However, recent clinical and preclinical data suggest that factors inherent to the aged striatum per se limit successful brain repair. In this short communication, we focus discussion on the implications of our recent grafting study in aged parkinsonian rats, with additional emphasis on a recent clinical report of the outcome of cell therapy in an aged PD patient with long-term (24 years) survival of DA neuron grafts. To address aging as a limiting factor in successful brain repair, we use the example of cell transplantation as a means to interrogate the environment of the aged striatum and identify factors that may, or may not, respond to interventions aimed at improving the prospects for adequate repair of the aged brain. We offer discussion of how these recent reports, in the context of other historical grafting studies, might provide new insight into specific risk factors that have potential to negatively impact all DA cell or terminal replacement strategies for clinical use in PD.
Collapse
Affiliation(s)
- Natosha M Mercado
- Department of Translational Science & Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Timothy J Collier
- Department of Translational Science & Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
- Hauenstein Neuroscience Center, Mercy Health Saint Mary’s, Grand Rapids, Michigan 49503, USA
| | - Thomas Freeman
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, College of Medicine, University of South Florida, FL 33612, USA
| | - Kathy Steece-Collier
- Department of Translational Science & Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
- Hauenstein Neuroscience Center, Mercy Health Saint Mary’s, Grand Rapids, Michigan 49503, USA
| |
Collapse
|
21
|
Rylander Ottosson D, Lane E. Striatal Plasticity in L-DOPA- and Graft-Induced Dyskinesia; The Common Link? Front Cell Neurosci 2016; 10:16. [PMID: 26903804 PMCID: PMC4744851 DOI: 10.3389/fncel.2016.00016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/15/2016] [Indexed: 12/31/2022] Open
Abstract
One of the major symptoms of the neurodegenerative condition Parkinson's disease (PD) is a slowness or loss of voluntary movement, yet frustratingly therapeutic strategies designed to restore movement can result in the development of excessive abnormal movements known as dyskinesia. These dyskinesias commonly develop as a result of pharmacotherapy in the form of L-DOPA administration, but have also been identified following deep brain stimulation (DBS) and intrastriatal cell transplantation. In the case of L-DOPA these movements can be treatment limiting, and whilst they are not long lasting or troubling following DBS, recognition of their development had a near devastating effect on the field of cell transplantation for PD.Understanding the relationship between these therapeutic approaches and the development of dyskinesia may improve our ability to restore function without disabling side effects. Interestingly, despite the fact that dopaminergic cell transplantation repairs many of the changes induced by the disease process and through L-DOPA treatment, there appears to be a relationship between the two. In rodent models of the disease, the severity of dyskinesia induced by L-DOPA prior to the transplantation procedure correlated with post-transplantation, graft-induced dyskinesia. A review of clinical data also suggested that the worse preoperational dyskinesia causes worsened graft-induced dyskinesia (GID). Understanding how these aberrant behaviors come about has been of keen interest to open up these therapeutic options more widely and one major underlying theory is the effects of these approaches on the plasticity of synapses within the basal ganglia. This review uniquely brings together developments in understanding the role of striatal synaptic plasticity in both L-DOPA and GID to guide and stimulate further investigations on the important striatal plasticity.
Collapse
Affiliation(s)
- Daniella Rylander Ottosson
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Lund UniversityLund, Sweden
| | - Emma Lane
- School of Pharmacy and Pharmaceutical Sciences, Cardiff UniversityCardiff, UK
| |
Collapse
|
22
|
Foetal Cell Transplantation for Parkinson's Disease: Focus on Graft-Induced Dyskinesia. PARKINSONS DISEASE 2015; 2015:563820. [PMID: 26881178 PMCID: PMC4736211 DOI: 10.1155/2015/563820] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 12/02/2015] [Accepted: 12/16/2015] [Indexed: 02/05/2023]
Abstract
Transplantation of dopamine- (DA-) rich foetal ventral mesencephalic cells emerged as a promising therapy for Parkinson's disease (PD), as it allowed significant improvement of motor symptoms in several PD patients in open-label studies. However, double-blind clinical trials have been largely disappointing. The general agreement in the field is that the lack of standardization of tissue collection and preparation, together with the absence of postsurgical immunosuppression, played a key role in the failure of these studies. Moreover, a further complication that emerged in previous studies is the appearance of the so-called graft-induced dyskinesia (GID), in a subset of grafted patients, which resembles dyskinesia induced by L-DOPA but in the absence of medication. Preclinical evidence pointed to the serotonin neurons as possible players in the appearance of GID. In agreement, clinical investigations have shown that grafted tissue may contain a large number of serotonin neurons, in the order of half of the DA cells; moreover, the serotonin 5-HT1A receptor agonist buspirone has been found to produce significant dampening of GID in grafted patients. In this paper, we will review the recent preclinical and clinical studies focusing on cell transplantation for PD and on the mechanisms underlying GID.
Collapse
|
23
|
Bastide MF, Meissner WG, Picconi B, Fasano S, Fernagut PO, Feyder M, Francardo V, Alcacer C, Ding Y, Brambilla R, Fisone G, Jon Stoessl A, Bourdenx M, Engeln M, Navailles S, De Deurwaerdère P, Ko WKD, Simola N, Morelli M, Groc L, Rodriguez MC, Gurevich EV, Quik M, Morari M, Mellone M, Gardoni F, Tronci E, Guehl D, Tison F, Crossman AR, Kang UJ, Steece-Collier K, Fox S, Carta M, Angela Cenci M, Bézard E. Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson's disease. Prog Neurobiol 2015. [PMID: 26209473 DOI: 10.1016/j.pneurobio.2015.07.002] [Citation(s) in RCA: 358] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Involuntary movements, or dyskinesia, represent a debilitating complication of levodopa (L-dopa) therapy for Parkinson's disease (PD). L-dopa-induced dyskinesia (LID) are ultimately experienced by the vast majority of patients. In addition, psychiatric conditions often manifested as compulsive behaviours, are emerging as a serious problem in the management of L-dopa therapy. The present review attempts to provide an overview of our current understanding of dyskinesia and other L-dopa-induced dysfunctions, a field that dramatically evolved in the past twenty years. In view of the extensive literature on LID, there appeared a critical need to re-frame the concepts, to highlight the most suitable models, to review the central nervous system (CNS) circuitry that may be involved, and to propose a pathophysiological framework was timely and necessary. An updated review to clarify our understanding of LID and other L-dopa-related side effects was therefore timely and necessary. This review should help in the development of novel therapeutic strategies aimed at preventing the generation of dyskinetic symptoms.
Collapse
Affiliation(s)
- Matthieu F Bastide
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Wassilios G Meissner
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Department of Neurology, University Hospital Bordeaux, France
| | - Barbara Picconi
- Laboratory of Neurophysiology, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Stefania Fasano
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Pierre-Olivier Fernagut
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Michael Feyder
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Veronica Francardo
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Cristina Alcacer
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Yunmin Ding
- Department of Neurology, Columbia University, New York, USA
| | - Riccardo Brambilla
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - A Jon Stoessl
- Pacific Parkinson's Research Centre and National Parkinson Foundation Centre of Excellence, University of British Columbia, Vancouver, Canada
| | - Mathieu Bourdenx
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Michel Engeln
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Sylvia Navailles
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Philippe De Deurwaerdère
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Wai Kin D Ko
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Nicola Simola
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, Cagliari University, 09124 Cagliari, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, Cagliari University, 09124 Cagliari, Italy
| | - Laurent Groc
- Univ. de Bordeaux, Institut Interdisciplinaire de neurosciences, UMR 5297, 33000 Bordeaux, France; CNRS, Institut Interdisciplinaire de neurosciences, UMR 5297, 33000 Bordeaux, France
| | - Maria-Cruz Rodriguez
- Department of Neurology, Hospital Universitario Donostia and Neuroscience Unit, Bio Donostia Research Institute, San Sebastian, Spain
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Maryka Quik
- Center for Health Sciences, SRI International, CA 94025, USA
| | - Michele Morari
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Manuela Mellone
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy
| | - Fabrizio Gardoni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy
| | - Elisabetta Tronci
- Department of Biomedical Sciences, Physiology Section, Cagliari University, Cagliari, Italy
| | - Dominique Guehl
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - François Tison
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Department of Neurology, University Hospital Bordeaux, France
| | | | - Un Jung Kang
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Kathy Steece-Collier
- Michigan State University, College of Human Medicine, Department of Translational Science and Molecular Medicine & The Udall Center of Excellence in Parkinson's Disease Research, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Susan Fox
- Morton & Gloria Shulman Movement Disorders Center, Toronto Western Hospital, Toronto, Ontario M4T 2S8, Canada
| | - Manolo Carta
- Department of Biomedical Sciences, Physiology Section, Cagliari University, Cagliari, Italy
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Erwan Bézard
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Motac Neuroscience Ltd, Manchester, UK.
| |
Collapse
|
24
|
Collier TJ, O'Malley J, Rademacher DJ, Stancati JA, Sisson KA, Sortwell CE, Paumier KL, Gebremedhin KG, Steece-Collier K. Interrogating the aged striatum: robust survival of grafted dopamine neurons in aging rats produces inferior behavioral recovery and evidence of impaired integration. Neurobiol Dis 2015; 77:191-203. [PMID: 25771169 PMCID: PMC4402284 DOI: 10.1016/j.nbd.2015.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 02/28/2015] [Accepted: 03/03/2015] [Indexed: 01/13/2023] Open
Abstract
Advanced age is the primary risk factor for Parkinson's disease (PD). In PD patients and rodent models of PD, advanced age is associated with inferior symptomatic benefit following intrastriatal grafting of embryonic dopamine (DA) neurons, a pattern believed to result from decreased survival and reinnervation provided by grafted neurons in the aged host. To help understand the capacity of the aged, parkinsonian striatum to be remodeled with new DA terminals, we used a grafting model and examined whether increasing the number of grafted DA neurons in aged rats would translate to enhanced behavioral recovery. Young (3months), middle-aged (15months), and aged (22months) parkinsonian rats were grafted with proportionately increasing numbers of embryonic ventral mesencephalic (VM) cells to evaluate whether the limitations of the graft environment in subjects of advancing age can be offset by increased numbers of transplanted neurons. Despite robust survival of grafted neurons in aged rats, reinnervation of striatal neurons remained inferior and amelioration of levodopa-induced dyskinesias (LID) was delayed or absent. This study demonstrates that: 1) counter to previous evidence, under certain conditions the aged striatum can support robust survival of grafted DA neurons; and 2) unknown factors associated with the aged striatum result in inferior integration of graft and host, and continue to present obstacles to full therapeutic efficacy of DA cell-based therapy in this model of aging.
Collapse
Affiliation(s)
- Timothy J Collier
- Michigan State University, College of Human Medicine, Department of Translational Science and Molecular Medicine & The Udall Center of Excellence in Parkinson's Disease Research, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Jennifer O'Malley
- Cincinnati Children's Hospital Medical Center, Division of Child Neurology, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - David J Rademacher
- Lake Forest College, Department of Psychology, 555 N Sheridan Rd, Lake Forest, IL 60045, USA
| | - Jennifer A Stancati
- Michigan State University, College of Human Medicine, Department of Translational Science and Molecular Medicine & The Udall Center of Excellence in Parkinson's Disease Research, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Kellie A Sisson
- Michigan State University, College of Human Medicine, Department of Translational Science and Molecular Medicine & The Udall Center of Excellence in Parkinson's Disease Research, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Caryl E Sortwell
- Michigan State University, College of Human Medicine, Department of Translational Science and Molecular Medicine & The Udall Center of Excellence in Parkinson's Disease Research, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Katrina L Paumier
- Michigan State University, College of Human Medicine, Department of Translational Science and Molecular Medicine & The Udall Center of Excellence in Parkinson's Disease Research, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Kibrom G Gebremedhin
- Michigan State University, College of Human Medicine, Department of Translational Science and Molecular Medicine & The Udall Center of Excellence in Parkinson's Disease Research, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Kathy Steece-Collier
- Michigan State University, College of Human Medicine, Department of Translational Science and Molecular Medicine & The Udall Center of Excellence in Parkinson's Disease Research, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA.
| |
Collapse
|
25
|
Huot P, Fox SH, Brotchie JM. Monoamine reuptake inhibitors in Parkinson's disease. PARKINSON'S DISEASE 2015; 2015:609428. [PMID: 25810948 PMCID: PMC4355567 DOI: 10.1155/2015/609428] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/26/2014] [Indexed: 12/13/2022]
Abstract
The motor manifestations of Parkinson's disease (PD) are secondary to a dopamine deficiency in the striatum. However, the degenerative process in PD is not limited to the dopaminergic system and also affects serotonergic and noradrenergic neurons. Because they can increase monoamine levels throughout the brain, monoamine reuptake inhibitors (MAUIs) represent potential therapeutic agents in PD. However, they are seldom used in clinical practice other than as antidepressants and wake-promoting agents. This review article summarises all of the available literature on use of 50 MAUIs in PD. The compounds are divided according to their relative potency for each of the monoamine transporters. Despite wide discrepancy in the methodology of the studies reviewed, the following conclusions can be drawn: (1) selective serotonin transporter (SERT), selective noradrenaline transporter (NET), and dual SERT/NET inhibitors are effective against PD depression; (2) selective dopamine transporter (DAT) and dual DAT/NET inhibitors exert an anti-Parkinsonian effect when administered as monotherapy but do not enhance the anti-Parkinsonian actions of L-3,4-dihydroxyphenylalanine (L-DOPA); (3) dual DAT/SERT inhibitors might enhance the anti-Parkinsonian actions of L-DOPA without worsening dyskinesia; (4) triple DAT/NET/SERT inhibitors might exert an anti-Parkinsonian action as monotherapy and might enhance the anti-Parkinsonian effects of L-DOPA, though at the expense of worsening dyskinesia.
Collapse
Affiliation(s)
- Philippe Huot
- Toronto Western Research Institute, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8
- Division of Neurology, Movement Disorder Clinic, Toronto Western Hospital, University Health Network, University of Toronto, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8
- Department of Pharmacology and Division of Neurology, Faculty of Medicine, Université de Montréal and Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Susan H. Fox
- Toronto Western Research Institute, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8
- Division of Neurology, Movement Disorder Clinic, Toronto Western Hospital, University Health Network, University of Toronto, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8
| | - Jonathan M. Brotchie
- Toronto Western Research Institute, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8
| |
Collapse
|
26
|
Rylander D, Bagetta V, Pendolino V, Zianni E, Grealish S, Gardoni F, Di Luca M, Calabresi P, Cenci MA, Picconi B. Region-specific restoration of striatal synaptic plasticity by dopamine grafts in experimental parkinsonism. Proc Natl Acad Sci U S A 2013; 110:E4375-84. [PMID: 24170862 PMCID: PMC3831970 DOI: 10.1073/pnas.1311187110] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intrastriatal transplantation of dopaminergic neurons can restore striatal dopamine levels and improve parkinsonian deficits, but the mechanisms underlying these effects are poorly understood. Here, we show that transplants of dopamine neurons partially restore activity-dependent synaptic plasticity in the host striatal neurons. We evaluated synaptic plasticity in regions distal or proximal to the transplant (i.e., dorsolateral and ventrolateral striatum) and compared the effects of dopamine- and serotonin-enriched grafts using a rat model of Parkinson disease. Naïve rats showed comparable intrinsic membrane properties in the two subregions but distinct patterns of long-term synaptic plasticity. The ventrolateral striatum showed long-term potentiation using the same protocol that elicited long-term depression in the dorsolateral striatum. The long-term potentiation was linked to higher expression of postsynaptic AMPA and N2B NMDA subunits (GluN2B) and was dependent on the activation of GluN2A and GluN2B subunits and the D1 dopamine receptor. In both regions, the synaptic plasticity was abolished after a severe dopamine depletion and could not be restored by grafted serotonergic neurons. Solely, dopamine-enriched grafts could restore the long-term potentiation and partially restore motor deficits in the rats. The restoration could only be seen close to the graft, in the ventrolateral striatum where the graft-derived reinnervation was denser, compared with the distal dorsolateral region. These data provide proof of concept that dopamine-enriched transplants are able to functionally integrate into the host brain and restore deficits in striatal synaptic plasticity after experimental parkinsonism. The region-specific restoration might impose limitations in symptomatic improvement following neural transplantation.
Collapse
Affiliation(s)
- Daniella Rylander
- Basal Ganglia Pathophysiological Unit, Lund University, BMC F11, 22184 Lund, Sweden
- Fondazione Santa Lucia, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00143 Rome, Italy
| | - Vincenza Bagetta
- Fondazione Santa Lucia, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00143 Rome, Italy
| | - Valentina Pendolino
- Fondazione Santa Lucia, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00143 Rome, Italy
| | - Elisa Zianni
- Dipartimento Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20122 Milan, Italy
| | - Shane Grealish
- Developmental and Regenerative Neurobiology, Lund University, BMC A11, 22184 Lund, Sweden; and
| | - Fabrizio Gardoni
- Dipartimento Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20122 Milan, Italy
| | - Monica Di Luca
- Dipartimento Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20122 Milan, Italy
| | - Paolo Calabresi
- Fondazione Santa Lucia, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00143 Rome, Italy
- Clinica Neurologica, Università degli studi di Perugia, Ospedale Santa Maria della Misericordia, S. Andrea delle Fratte, 06156 Perugia, Italy
| | - M. Angela Cenci
- Basal Ganglia Pathophysiological Unit, Lund University, BMC F11, 22184 Lund, Sweden
| | - Barbara Picconi
- Fondazione Santa Lucia, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00143 Rome, Italy
| |
Collapse
|
27
|
Zhang Y, Meredith GE, Mendoza-Elias N, Rademacher DJ, Tseng KY, Steece-Collier K. Aberrant restoration of spines and their synapses in L-DOPA-induced dyskinesia: involvement of corticostriatal but not thalamostriatal synapses. J Neurosci 2013; 33:11655-67. [PMID: 23843533 PMCID: PMC3724545 DOI: 10.1523/jneurosci.0288-13.2013] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 05/07/2013] [Accepted: 06/05/2013] [Indexed: 11/21/2022] Open
Abstract
We examined the structural plasticity of excitatory synapses from corticostriatal and thalamostriatal pathways and their postsynaptic targets in adult Sprague-Dawley rats to understand how these striatal circuits change in l-DOPA-induced dyskinesias (LIDs). We present here detailed electron and light microscopic analyses that provide new insight into the nature of the structural and synaptic remodeling of medium spiny neurons in response to LIDs. Numerous studies have implicated enhanced glutamate signaling and persistent long-term potentiation as central to the behavioral sensitization phenomenon of LIDs. Moreover, experience-dependent alterations in behavior are thought to involve structural modifications, specifically alterations in patterns of synaptic connectivity. Thus, we hypothesized that in the striatum of rats with LIDs, one of two major glutamatergic pathways would form new or altered contacts, especially onto the spines of medium spiny neuron (MSNs). Our data provide compelling evidence for a dramatic rewiring of the striatum of dyskinetic rats and that this rewiring involves corticostriatal but not thalamostriatal contacts onto MSNs. There is a dramatic increase in corticostriatal contacts onto spines and dendrites that appear to be directly linked to dyskinetic behaviors, since they were not seen in the striatum of animals that did not develop dyskinesia. There is also an aberrant increase in spines receiving more than one excitatory contact(i.e., multisynaptic spines) in the dyskinetic animals compared with the 6-hydroxydopamine-treated and control rats. Such alterations could substantially impair the ability of striatal neurons to gate cortically driven signals and contribute to the loss of bidirectional synaptic plasticity.
Collapse
Affiliation(s)
- Yiyue Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, and
- Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064, and
| | | | - Nasya Mendoza-Elias
- Department of Pharmaceutical Sciences, College of Pharmacy, and
- Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064, and
| | - David J. Rademacher
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, Michigan 49503
| | - Kuei Y. Tseng
- Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064, and
| | - Kathy Steece-Collier
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, Michigan 49503
| |
Collapse
|
28
|
Effects of L-DOPA and STN-HFS dyskinesiogenic treatments on NR2B regulation in basal ganglia in the rat model of Parkinson's disease. Neurobiol Dis 2012; 48:379-90. [DOI: 10.1016/j.nbd.2012.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 06/06/2012] [Accepted: 06/22/2012] [Indexed: 11/22/2022] Open
|
29
|
García J, Carlsson T, Döbrössy M, Nikkhah G, Winkler C. Impact of dopamine versus serotonin cell transplantation for the development of graft-induced dyskinesia in a rat Parkinson model. Brain Res 2012; 1470:119-29. [DOI: 10.1016/j.brainres.2012.06.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 06/20/2012] [Accepted: 06/22/2012] [Indexed: 01/31/2023]
|
30
|
Shin E, Garcia J, Winkler C, Björklund A, Carta M. Serotonergic and dopaminergic mechanisms in graft-induced dyskinesia in a rat model of Parkinson's disease. Neurobiol Dis 2012; 47:393-406. [PMID: 22579773 DOI: 10.1016/j.nbd.2012.03.038] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/23/2012] [Accepted: 03/31/2012] [Indexed: 01/17/2023] Open
Abstract
Dyskinesia seen in the off-state, referred as graft-induced dyskinesia (GID), has emerged as a serious complication induced by dopamine (DA) cell transplantation in parkinsonian patients. Although the mechanism underlying the appearance of GID is unknown, in a recent clinical study the partial 5-HT(1A) agonist buspirone was found to markedly reduce GID in three grafted patients, who showed significant serotonin (5-HT) hyperinnervation in the grafted striatum in positron emission tomography scanning (Politis et al., 2010, 2011). Prompted by these findings, this study was performed to investigate the involvement of serotonin neurons in the appearance of GID in the rat 6-hydroxydopamine model. L-DOPA-primed rats received transplants of DA neurons only, DA plus 5-HT neurons or 5-HT neurons only into the lesioned striatum. In DA cell-grafted rats, with or without 5-HT neurons, but not in 5-HT grafts, GID was observed consistently after administration of amphetamine (1.5mg/kg, i.p.) indicating that grafted DA neurons are required to induce GID. Strikingly, a low dose of buspirone produced a complete suppression of GID. In addition, activation of 5-HT(1A) and 5-HT(1B) receptors by 8-OH-DPAT and CP 94253, known to inhibit the activity of 5-HT neurons, significantly reduced GID, whereas induction of neurotransmitter release by fenfluramine administration significantly increased GID, indicating an involvement of the 5-HT system in the modulation of GID. To investigate the involvement of the host 5-HT system in GID, the endogenous 5-HT terminals were removed by intracerebral injection of 5,7-dihydroxytryptamine, but this treatment did not affect GID expression. However, 5-HT terminal destruction suppressed the anti-GID effect of 5-HT(1A) and 5-HT(1B) agonists, demonstrating that the 5-HT(1) agonist combination exerted its anti-GID effect through the activation of pre-synaptic host-derived receptors. By contrast, removal of the host 5-HT innervation or pre-treatment with a 5-HT(1A) antagonist did not abolish the anti-GID effect of buspirone, showing that its effect is independent from activation of either pre- or post-synaptic 5-HT(1A) receptors. Since buspirone is known to also act as a DA D(2) receptor antagonist, the selective D(2) receptor antagonist eticlopride was administered to test whether blockade of D(2) receptors could account for the anti-dyskinetic effect of buspirone. In fact, eticlopride produced complete suppression of GID in grafted animals already at very low dose. Together, these results point to a critical role of both 5-HT(1) and D(2) receptors in the modulation of GID, and suggest that 5-HT neurons exert a modulatory role in the development of this side effect of neuronal transplantation.
Collapse
Affiliation(s)
- Eunju Shin
- Wallenberg Neuroscience Center, Division of Neurobiology, Lund University, Lund, Sweden
| | | | | | | | | |
Collapse
|
31
|
Piquet AL, Venkiteswaran K, Marupudi NI, Berk M, Subramanian T. The immunological challenges of cell transplantation for the treatment of Parkinson's disease. Brain Res Bull 2012; 88:320-31. [PMID: 22521427 DOI: 10.1016/j.brainresbull.2012.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/07/2012] [Accepted: 03/09/2012] [Indexed: 01/24/2023]
Abstract
Dopaminergic cell transplantation is an experimental therapy for Parkinson's disease (PD). It has many potential theoretical advantages over current treatment strategies such as providing continuous local dopaminergic replenishment, eliminating motor fluctuations and medication-induced dyskinesias, slowing down disease progression or even reversing disease pathology in the host. Recent studies also show that dopaminergic cell transplants provide long-term neuromodulation in the basal ganglia that simulates the combined effects of oral dopaminergic therapy and surgical therapies like deep brain stimulation, the contemporary therapeutic approach to advanced PD. However, dopaminergic cell transplantation in PD as not been optimized and current experimental techniques have many drawbacks. In published experiments to date of attempted dopaminergic grafting in PD, the major challenges are unacceptable graft-induced dyskinesias or failure of such grafts to exceed the benefits afforded by sham surgery. A deleterious host immune response to the transplant has been implicated as a major putative cause for these adverse outcomes. This article focuses on recent advances in understanding the immunology of the transplantation in PD and possible methods to overcome adverse events such that we could translate cell replacement strategies into viable clinical treatments in the future.
Collapse
Affiliation(s)
- Amanda L Piquet
- Department of Neurology, The Pennsylvania State University College of Medicine, Hershey, United States
| | | | | | | | | |
Collapse
|
32
|
Gorelik M, Janowski M, Galpoththawela C, Rifkin R, Levy M, Lukomska B, Kerr DA, Bulte JWM, Walczak P. Noninvasive monitoring of immunosuppressive drug efficacy to prevent rejection of intracerebral glial precursor allografts. Cell Transplant 2012; 21:2149-57. [PMID: 22508097 DOI: 10.3727/096368912x636911] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The development of cell-based therapies opens up new avenues for treating a myriad of diseases of the central nervous system (CNS). While significant effort is being directed toward development of patient-specific, autologous transplantable cells, at present, the majority of cell transplantation studies performed clinically utilize allografts. In this context, the issue of graft rejection and immunoprotection is of key importance. In this study, we transplanted mouse glial-restricted progenitors into immunodeficient, immunocompetent, and immunosuppressed mice and monitored their survival noninvasively using bioluminescence imaging (BLI). With the use of serial BLI, we evaluated both the prevalence and dynamics of cell rejection. We demonstrate that allografts in immunocompetent mice were rejected at a rate of 69.2% (n = 13) indicating that graft tolerance is possible even without immunosuppression. Immunosuppression using a combination of rapamycin and FK506 or cyclosporin failed to fully protect the grafts. FK506 and rapamycin treatment resulted in a slight improvement of immunoprotection (22.2% rejected, n = 9) compared to cyclosporin A (55.6% rejected, n = 9); however, the difference was not significant. Notably, immunohistochemistry revealed leukocytes infiltrating the graft area in both rejecting and nonrejecting immunocompetent animals, but not in immunodeficient animals. The induction of an inflammatory process, even in surviving allografts, has implications for their long-term survival and functionality.
Collapse
Affiliation(s)
- Michael Gorelik
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Krause M, Ganser C, Kobayashi E, Papazoglou A, Nikkhah G. The Lewis GFP transgenic rat strain is a useful cell donor for neural transplantation. Cell Transplant 2012; 21:1837-51. [PMID: 22405077 DOI: 10.3727/096368911x627426] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Stem cell transplantation is a promising therapeutic approach in neurodegenerative diseases. Studying graft survival and development has important implications for the further development of experimental and clinical transplantation protocols. Cellular elements in neural transplants are sometimes difficult to identify. The existing labeling methods cannot reliably provide stably labeled cells that can be detected in long-term experiments. Transgenic (tg) Lewis rats ubiquitously expressing green fluorescent protein (GFP) provide an ideal donor source. The aim of this project was to investigate the potential of GFP-tg Lewis rats to serve as donor tissue for neural stem cell transplantation. Ventral mesencephalon (VM) GFP-tg E14.5-derived cells were compared to wild-type (wt) in vitro and in vivo. Firstly, cells from GFP and non-GFP VM tissue were compared with regard to their proliferation and response towards 6-OHDA-toxicity in culture. Secondly, 6-OHDA-lesioned hemiparkinsonian Sprague-Dawley/Crl:CD(SD) rats received intrastriatal grafts derived from VM of E14.5 GFP-tg rats. Due to the fact that donor and recipient belong to two different rat strains, we focused on graft survival in correlation with immunosuppression and graft GFP and tyrosine hydroxylase (TH) expression. In summary, in vitro tg cells exhibited 98% GFP expression and did not differ from wt cells in any of the measured parameters. In vivo, all experimental groups showed a significant compensation in rotation behavior after transplantation. Furthermore, there was no difference on rotation behavior or graft morphology and survival pattern as well as GFP expression between immunosuppressed and nonimmunosuppressed animals. The GFP-positive population of the graft was composed of 13.3% GFAP-positive, 56.1% NeuN-positive, and 1.9% TH-positive cells. Analysis of graft subpopulations manifested that 70.6% of GFAP-positive, 86.9% of NeuN-positive, and 80.1% of TH-positive cells coexpressed GFP. In conclusion, our data show that the Lewis GFP-tg rats serve as an excellent cell source for studying primary neural precursor cells in the transplantation paradigm.
Collapse
Affiliation(s)
- Martin Krause
- Laboratory of Molecular Neurosurgery, Department of Stereotactic and Functional Neurosurgery, Neurocentre, University Hospital Freiburg, Freiburg, Germany
| | | | | | | | | |
Collapse
|
34
|
Steece-Collier K, Rademacher DJ, Soderstrom K. Anatomy of Graft-induced Dyskinesias: Circuit Remodeling in the Parkinsonian Striatum. ACTA ACUST UNITED AC 2012; 2:15-30. [PMID: 22712056 DOI: 10.1016/j.baga.2012.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The goal of researchers and clinicians interested in re-instituting cell based therapies for PD is to develop an effective and safe surgical approach to replace dopamine (DA) in individuals suffering from Parkinson's disease (PD). Worldwide clinical trials involving transplantation of embryonic DA neurons into individuals with PD have been discontinued because of the often devastating post-surgical side-effect known as graft-induced dyskinesia (GID). There have been many review articles published in recent years on this subject. There has been a tendency to promote single factors in the cause of GID. In this review, we contrast the pros and cons of multiple factors that have been suggested from clinical and/or preclinical observations, as well as novel factors not yet studied that may be involved with GID. It is our intention to provide a platform that might be instrumental in examining how individual factors that correlate with GID and/or striatal pathology might interact to give rise to dysfunctional circuit remodeling and aberrant motor output.
Collapse
Affiliation(s)
- Kathy Steece-Collier
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI 49503
| | | | | |
Collapse
|
35
|
Evans JR, Mason SL, Barker RA. Current status of clinical trials of neural transplantation in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2012. [DOI: 10.1016/b978-0-444-59575-1.00008-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
36
|
Lane EL, Winkler C. l-DOPA- and graft-induced dyskinesia following transplantation. PROGRESS IN BRAIN RESEARCH 2012. [DOI: 10.1016/b978-0-444-59575-1.00007-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
37
|
García J, Carlsson T, Döbrössy M, Nikkhah G, Winkler C. Extent of pre-operative L-DOPA-induced dyskinesia predicts the severity of graft-induced dyskinesia after fetal dopamine cell transplantation. Exp Neurol 2011; 232:270-9. [DOI: 10.1016/j.expneurol.2011.09.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 09/09/2011] [Indexed: 10/17/2022]
|
38
|
Deleidi M, Hargus G, Hallett P, Osborn T, Isacson O. Development of histocompatible primate-induced pluripotent stem cells for neural transplantation. Stem Cells 2011; 29:1052-63. [PMID: 21608081 DOI: 10.1002/stem.662] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Immune rejection and risk of tumor formation are perhaps the greatest hurdles in the field of stem cell transplantation. Here, we report the generation of several lines of induced pluripotent stem cells (iPSCs) from cynomolgus macaque (CM) skin fibroblasts carrying specific major histocompatibility complex (MHC) haplotypes. To develop a collection of MHC-matched iPSCs, we genotyped the MHC locus of 25 CMs by microsatellite polymerase chain reaction analysis. Using retroviral infection of dermal skin fibroblasts, we generated several CM-iPSC lines carrying different haplotypes. We characterized the immunological properties of CM-iPSCs and demonstrated that CM-iPSCs can be induced to differentiate in vitro along specific neuronal populations, such as midbrain dopaminergic (DA) neurons. Midbrain-like DA neurons generated from CM-iPSCs integrated into the striatum of a rodent model of Parkinson's disease and promoted behavioral recovery. Importantly, neither tumor formation nor inflammatory reactions were observed in the transplanted animals up to 6 months after transplantation. We believe that the generation and characterization of such histocompatible iPSCs will allow the preclinical validation of safety and efficacy of iPSCs for neurodegenerative diseases and several other human conditions in the field of regenerative medicine.
Collapse
Affiliation(s)
- Michela Deleidi
- Center for Neuroregeneration Research, Harvard Medical School/McLean Hospital, Belmont, Massachusetts 02478, USA
| | | | | | | | | |
Collapse
|
39
|
The interhemispheric connections of the striatum: Implications for Parkinson's disease and drug-induced dyskinesias. Brain Res Bull 2011; 87:1-9. [PMID: 21963946 DOI: 10.1016/j.brainresbull.2011.09.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 09/16/2011] [Accepted: 09/19/2011] [Indexed: 11/20/2022]
Abstract
Parkinson's disease (PD) is characterized by loss of nigrostriatal neurons and depletion of dopamine. This pathological feature leads to alterations to basal ganglia circuitry and subsequent motor disability. Pharmacological dopamine replacement therapy with medications such as levodopa ameliorates the symptoms of PD but can lead to motor complications known as drug-induced dyskinesias. We have recently shown that clinically hemiparkinsonian rhesus monkeys do not develop levodopa-induced dyskinesias despite chronic intermittent exposure and significant unilateral loss of nigrostriatal neurons and dopamine. It is currently unclear what mechanisms prevent the onset of dyskinesias in these animals. Based on our study and results from previous lesioning studies in both the rat and monkey models of PD, we hypothesize that one potential mechanism that may prevent the genesis of dyskinesias in these animals is interhemispheric neuromodulation. Two potential interhemispheric connections that may modulate dyskinesias are the interhemispheric nigrostriatal and corticostriatal pathways. Few investigators have examined the interhemispheric nigrostriatal and corticostriatal connections and the functional role they may play in drug-induced dyskinesias in PD. Therefore, in the following review, we assess the neuroanatomical, electrophysiological and behavioral properties of these interhemispheric connections. Future studies evaluating these interhemispheric striatal pathways and the pathophysiological changes that occur to these pathways in the dyskinetic state are warranted to further develop treatments that prevent or mitigate drug-induced dyskinesias in PD.
Collapse
|
40
|
Gilmour TP, Piallat B, Lieu CA, Venkiteswaran K, Ramachandra R, Rao AN, Petticoffer AC, Berk MA, Subramanian T. The effect of striatal dopaminergic grafts on the neuronal activity in the substantia nigra pars reticulata and subthalamic nucleus in hemiparkinsonian rats. ACTA ACUST UNITED AC 2011; 134:3276-89. [PMID: 21911417 DOI: 10.1093/brain/awr226] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The electrophysiological correlates of parkinsonism in the basal ganglia have been well studied in patients with Parkinson's disease and animal models. Separately, striatal dopaminergic cell transplantation has shown promise in ameliorating parkinsonian motor symptoms. However, the effect of dopaminergic grafts on basal ganglia electrophysiology has not thoroughly been investigated. In this study, we transplanted murine foetal ventral mesencephalic cells into rats rendered hemiparkinsonian by 6-hydroxydopamine injection. Three months after transplantation, extracellular and local field potential recordings were taken under urethane anaesthesia from the substantia nigra pars reticulata and subthalamic nucleus along with cortical electroencephalograms and were compared to recordings from normal and hemiparkinsonian controls. Recordings from cortical slow-wave activity and global activation states were analysed separately. Rats with histologically confirmed xenografts showed behavioural improvement measured by counting apomorphine-induced rotations and with the extended body axis test. Firing rates in both nuclei were not significantly different between control and grafted groups. However, burst firing patterns in both nuclei in the slow-wave activity state were significantly reduced (P < 0.05) in rats with large surviving grafts, compared to hemiparkinsonian controls. The neuronal firing entropies and oscillations in both nuclei were restored to normal levels in the large-graft group. Electroencephalogram spike-triggered averages also showed normalization in the slow-wave activity state (P < 0.05). These results suggest that local continuous dopaminergic stimulation exerts a normalizing effect on the downstream parkinsonian basal ganglia firing patterns. This novel finding is relevant to future preclinical and clinical investigations of cell transplantation and the development of next-generation therapies for Parkinson's disease that ameliorate pathophysiological neural activity and provide optimal recovery of function.
Collapse
Affiliation(s)
- Timothy P Gilmour
- Department of Neurology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
García J, Carlsson T, Döbrössy M, Nikkhah G, Winkler C. Impact of dopamine to serotonin cell ratio in transplants on behavioral recovery and L-DOPA-induced dyskinesia. Neurobiol Dis 2011; 43:576-87. [DOI: 10.1016/j.nbd.2011.05.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 04/30/2011] [Accepted: 05/05/2011] [Indexed: 02/07/2023] Open
|
42
|
Intracerebral xenotransplantation: recent findings and perspectives for local immunosuppression. Curr Opin Organ Transplant 2011; 16:190-4. [DOI: 10.1097/mot.0b013e32834494b5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
43
|
Abstract
PURPOSE OF REVIEW We review recent experiments conducted using embryonic tissue and stem cell transplants in experimental models of Parkinson's disease. We also highlight the challenges which remain to be met in order for cell therapy to become clinically effective and safe. RECENT FINDINGS The outcome of previous clinical transplantation trials was variable in terms of motor recovery. We discuss whether transplants can mitigate L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesias and consider the risk factors which predispose to graft-induced dyskinesias. In addition, we introduce Transeuro, a new European Union-funded multicenter consortium which plans to perform transplantation trials.Stem cells have emerged as an alternative source for the generation of dopaminergic precursors. We briefly outline progress made in the use of human embryonic stem cells and focus predominantly on the emerging field of induced pluripotency. We conclude by introducing the exciting and novel method of direct reprogramming which involves the conversion of fibroblasts to neurons without inducing a pluripotent state. SUMMARY The area of cell transplantation has been revitalized by the identification of parameters which predispose patients to graft-induced dyskinesias and by the emergence of novel methods of generating dopaminergic neurons. Hopefully, the Transeuro clinical trials will give further impetus and act as a stepping stone to future trials employing stem-cell-derived neurons.
Collapse
|
44
|
Abstract
The transplantation of dopaminergic cells for the treatment of symptoms of Parkinson’s disease has several hurdles to overcome before it can be considered a successful therapeutic approach. One issue is the development of abnormal involuntary movements in the absence of L-3,4-dihydroxyphenylalanine following the transplantation of fetal ventral mesencephalon identified in three different clinical trials. Hypotheses as to the cause of these movements include: the composition of the graft, size of the graft, L-3,4-dihydroxyphenylalanine exposure and L-3,4-dihydroxyphenylalanine-induced dyskinesia prior to transplantation and inflammatory responses in and around the graft. We evaluate the clinical evidence supporting these hypotheses and the preclinical models upon which experiments are being based to resolve them.
Collapse
Affiliation(s)
- E L Lane
- Brain Repair Group, School of Bioscience, Cardiff University, Cardiff CF10 3AX, Wales, UK.
| | | |
Collapse
|
45
|
Cicchetti F, Soulet D, Freeman TB. Neuronal degeneration in striatal transplants and Huntington's disease: potential mechanisms and clinical implications. Brain 2011; 134:641-52. [DOI: 10.1093/brain/awq328] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
46
|
Ma Y, Peng S, Dhawan V, Eidelberg D. Dopamine cell transplantation in Parkinson's disease: challenge and perspective. Br Med Bull 2011; 100:173-89. [PMID: 21875864 PMCID: PMC3276236 DOI: 10.1093/bmb/ldr040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Functional imaging provides a valuable adjunct to clinical evaluation for assessing the efficacy of cell-based restorative therapies in Parkinson's disease (PD). SOURCES OF DATA In this article, we review the latest advances on the use of positron emission tomography (PET) imaging in evaluating the surgical outcome of embryonic dopamine (DA) cell transplantation in PD patients. AREAS OF AGREEMENT These studies suggest long-term cell survival and clinical benefit following striatal transplantation of fetal nigral tissue in PD patients and in models of experimental parkinsonism. AREAS OF CONTROVERSY Adverse events subsequent to transplantation have also been noted and attributed to a variety of causes. GROWING POINTS Optimal outcomes of DA cell transplantation therapies are dependent on tissue composition and phenotype of DA neurons in the graft. AREAS TIMELY FOR DEVELOPING RESEARCH Given continued progress in DA neuron production from stem cells in recent years, transplantation of neural stem cells may be the next to enter clinical trials in patients. CONCLUSION The existing data from studies of embryonic DA transplantation for advanced PD have provided valuable insights for the design of new cell-based therapies for the treatment of this and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Yilong Ma
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA.
| | | | | | | |
Collapse
|
47
|
Clinical and Experimental Experiences of Graft-Induced Dyskinesia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 98:173-86. [DOI: 10.1016/b978-0-12-381328-2.00007-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
48
|
Freeman TB, Cicchetti F, Bachoud-Lévi AC, Dunnett SB. Technical factors that influence neural transplant safety in Huntington's disease. Exp Neurol 2010; 227:1-9. [PMID: 20849848 DOI: 10.1016/j.expneurol.2010.08.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 08/18/2010] [Accepted: 08/21/2010] [Indexed: 01/30/2023]
Affiliation(s)
- T B Freeman
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33606-3571, USA.
| | | | | | | |
Collapse
|
49
|
Cooper O, Hargus G, Deleidi M, Blak A, Osborn T, Marlow E, Lee K, Levy A, Perez-Torres E, Yow A, Isacson O. Differentiation of human ES and Parkinson's disease iPS cells into ventral midbrain dopaminergic neurons requires a high activity form of SHH, FGF8a and specific regionalization by retinoic acid. Mol Cell Neurosci 2010; 45:258-66. [PMID: 20603216 DOI: 10.1016/j.mcn.2010.06.017] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 06/23/2010] [Accepted: 06/25/2010] [Indexed: 12/16/2022] Open
Abstract
The cardinal motor symptoms of Parkinson's disease (PD) are caused by the vulnerability to dysfunction and degeneration of ventral midbrain (VM) dopaminergic (DA) neurons. A major limitation for experimental studies of current ES/iPS cell differentiation protocols is the lack of VM DA neurons with a stable phenotype as defined by an expression marker code of FOXA2/TH/β-tubulin. Here we demonstrate a combination of three modifications that were required to produce VM DA neurons. Firstly, early and specific exposure to 10(-)(8)M (low dose) retinoic acid improved the regional identity of neural progenitor cells derived from human ES cells, PD or healthy subject-specific iPS cells. Secondly, a high activity form of human sonic hedgehog established a sizeable FOXA2(+) neural progenitor cell population in vitro. Thirdly, early exposure to FGF8a, rather than Fgf8b, and WNT1 was required for robust differentiation of the FOXA2(+) floor plate-like human neural progenitor cells into FOXA2(+) DA neurons. FOXA2(+) DA neurons were also generated when this protocol was adapted to feeder-free conditions. In summary, this new human ES and iPS cell differentiation protocol using FGF8a, WNT1, low dose retinoic acid and a high activity form of SHH can generate human VM DA neurons that are required for relevant new bioassays, drug discovery and cell based therapies for PD.
Collapse
Affiliation(s)
- Oliver Cooper
- Neuroregeneration Laboratories, Harvard Medical School/McLean Hospital, NINDS Udall Parkinson's Disease Research Center of Excellence, 115 Mill Street, Belmont, MA 02478, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Soderstrom KE, O'Malley JA, Levine ND, Sortwell CE, Collier TJ, Steece-Collier K. Impact of dendritic spine preservation in medium spiny neurons on dopamine graft efficacy and the expression of dyskinesias in parkinsonian rats. Eur J Neurosci 2010; 31:478-90. [PMID: 20105237 DOI: 10.1111/j.1460-9568.2010.07077.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dopamine deficiency associated with Parkinson's disease (PD) results in numerous changes in striatal transmitter function and neuron morphology. Specifically, there is marked atrophy of dendrites and dendritic spines on striatal medium spiny neurons (MSN), primary targets of inputs from nigral dopamine and cortical glutamate neurons, in advanced PD and rodent models of severe dopamine depletion. Dendritic spine loss occurs via dysregulation of intraspine Cav1.3 L-type Ca(2+)channels and can be prevented, in animal models, by administration of the calcium channel antagonist, nimodipine. The impact of MSN dendritic spine loss in the parkinsonian striatum on dopamine neuron graft therapy remains unexamined. Using unilaterally parkinsonian Sprague-Dawley rats, we tested the hypothesis that MSN dendritic spine preservation through administration of nimodipine would result in improved therapeutic benefit and diminished graft-induced behavioral abnormalities in rats grafted with embryonic ventral midbrain cells. Analysis of rotational asymmetry and spontaneous forelimb use in the cylinder task found no significant effect of dendritic spine preservation in grafted rats. However, analyses of vibrissae-induced forelimb use, levodopa-induced dyskinesias and graft-induced dyskinesias showed significant improvement in rats with dopamine grafts associated with preserved striatal dendritic spine density. Nimodipine treatment in this model did not impact dopamine graft survival but allowed for increased graft reinnervation of striatum. Taken together, these results demonstrate that even with grafting suboptimal numbers of cells, maintaining normal spine density on target MSNs results in overall superior behavioral efficacy of dopamine grafts.
Collapse
Affiliation(s)
- Katherine E Soderstrom
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|