1
|
Agrawal A, Saghatelian A. Identification of microproteins with transactivation activity by polyalanine motif selection. RSC Chem Biol 2025; 6:800-808. [PMID: 40083654 PMCID: PMC11898273 DOI: 10.1039/d4cb00277f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/26/2025] [Indexed: 03/16/2025] Open
Abstract
Microproteins are an emerging class of proteins that are encoded by small open reading frames (smORFs) less than or equal to 100 amino acids. The functions of several microproteins have been illuminated through phenotypic screening or protein-protein interaction studies, but thousands of microproteins remain uncharacterized. The functional characterization of microproteins is challenging due to a lack of sequence homology. Here, we demonstrate a strategy to enrich microproteins that contain specific motifs as a means to more rapidly characterize microproteins. Specifically, we used the fact that polyalanine motifs are associated with nuclear proteins to select 58 candidate microproteins to screen for transactivation function. We identified three microproteins with transactivation activity when tested as GAL4-fusions in a cell-based luciferase assay. The results support the continued use of the motif selection strategy for the discovery of microprotein function.
Collapse
Affiliation(s)
- Archita Agrawal
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies La Jolla CA USA
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies La Jolla CA USA
| |
Collapse
|
2
|
Sato Y, Hayashi S, Oe S, Koike T, Nakano Y, Seki‐Omura R, Iwashita H, Hirahara Y, Kitada M. Chromosomal localization of PHOX2B during M-phase is disrupted in disease-associated mutants. Dev Growth Differ 2025; 67:136-148. [PMID: 39933489 PMCID: PMC11997733 DOI: 10.1111/dgd.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/13/2025]
Abstract
In the M-phase, the nuclear membrane is broken down, nucleosomes are condensed as mitotic chromosomes, and transcription factors are generally known to be dislocated from their recognition sequences and dispersed to the cytoplasm. However, some transcription factors have recently been reported to remain on mitotic chromosomes and facilitate the rapid re-activation of the target genes in early G1-phase. Paired-like homeobox 2B (PHOX2B) is a transcription factor exhibiting chromosomal localization during M-phase. PHOX2B mutations are associated with congenital central hypoventilation syndrome, Hirschsprung disease, and neuroblastoma. In this study, we investigated PHOX2B chromosomal localization during M-phase through immunostaining and fluorescence recovery after photobleaching analysis to determine whether the chromosomal localization of disease-associated PHOX2B mutants is altered during M-phase. Missense mutations in the homeodomain and the frameshift mutation in the C-terminal domain disrupted the chromosomal localization of PHOX2B in M-phase, leading to its dispersion in the cell. Furthermore, a PHOX2B mutant with polyalanine expansion showed a line-shaped localization to the restricted region of mitotic chromosomes. Our findings suggest an association between the disease-associated mutations and defective chromosomal localization of transcription factors during M-phase. Further investigations of PHOX2B chromosomal localization during M-phase could reveal pathogenic mechanisms of such diseases.
Collapse
Affiliation(s)
- Yuki Sato
- Department of Anatomy, Faculty of MedicineKansai Medical UniversityOsakaJapan
| | - Shinichi Hayashi
- Department of Anatomy, Faculty of MedicineKansai Medical UniversityOsakaJapan
| | - Souichi Oe
- Department of Anatomy, Faculty of MedicineKansai Medical UniversityOsakaJapan
| | - Taro Koike
- Department of Anatomy, Faculty of MedicineKansai Medical UniversityOsakaJapan
| | - Yousuke Nakano
- Department of Anatomy, Faculty of MedicineKansai Medical UniversityOsakaJapan
| | - Ryohei Seki‐Omura
- Department of Anatomy, Faculty of MedicineKansai Medical UniversityOsakaJapan
| | - Hikaru Iwashita
- Department of Anatomy, Faculty of MedicineKansai Medical UniversityOsakaJapan
| | - Yukie Hirahara
- Department of Anatomy, Faculty of MedicineKansai Medical UniversityOsakaJapan
- Faculty of Nursing, Kansai Medical UniversityOsakaJapan
| | - Masaaki Kitada
- Department of Anatomy, Faculty of MedicineKansai Medical UniversityOsakaJapan
| |
Collapse
|
3
|
Tsuboi A, Yoshihara S. Arx revisited: involved in the development of GABAergic interneurons. Front Cell Dev Biol 2025; 13:1563515. [PMID: 40226590 PMCID: PMC11985837 DOI: 10.3389/fcell.2025.1563515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/10/2025] [Indexed: 04/15/2025] Open
Abstract
The aristaless-related homeobox (Arx) transcription factor, located on the X chromosome, has been implicated in a wide range of neurological disorders, including intellectual disability and epilepsy, as well as diabetes and pancreatic developmental disorders. In the mouse brain, Arx is expressed not only in the olfactory bulb (OB) and cerebral cortex progenitor cells but also in these gamma-aminobutyric acid (GABA)-releasing interneurons. In the initial study, constitutive Arx knockout (KO) mice showed aberrant migration and a reduction in GABAergic interneurons in the neonatal OB. However, constitutive Arx KO mice with perinatal lethality preclude further analysis in adolescent or adult mice. To overcome this, Arx-floxed mice have been crossed with Cre driver mice to generate conditional KO mice with selective Arx deletion in distinct interneuron progenitors. These studies have identified Arx as a key transcriptional regulator involved in the generation, fate determination, and migration of cortical interneurons. This review focuses on the critical role of Arx in the development of progenitor cells and the migration of interneurons in the mouse OB and cerebral cortex, and discusses differences in Arx mutant-based abnormality between mouse mutants and human patients.
Collapse
Affiliation(s)
- Akio Tsuboi
- Department of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Seiich Yoshihara
- Laboratory for Molecular Biology of Neural Systems, Medical Research Center, Nara Medical University, Kashihara, Japan
| |
Collapse
|
4
|
Atienzar-Aroca S, Kat M, López-Castel A. Decoding Nucleotide Repeat Expansion Diseases: Novel Insights from Drosophila melanogaster Studies. Int J Mol Sci 2024; 25:11794. [PMID: 39519345 PMCID: PMC11546515 DOI: 10.3390/ijms252111794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Drosophila melanogaster usage has provided substantial insights into the pathogenesis of several nucleotide repeat expansion diseases (NREDs), a group of genetic diseases characterized by the abnormal expansion of DNA repeats. Leveraging the genetic simplicity and manipulability of Drosophila, researchers have successfully modeled close to 15 NREDs such as Huntington's disease (HD), several spinocerebellar ataxias (SCA), and myotonic dystrophies type 1 and 2 (DM1/DM2). These models have been instrumental in characterizing the principal associated molecular mechanisms: protein aggregation, RNA toxicity, and protein function loss, thus recapitulating key features of human disease. Used in chemical and genetic screenings, they also enable us to identify promising small molecules and genetic modifiers that mitigate the toxic effects of expanded repeats. This review summarizes the close to 150 studies performed in this area during the last seven years. The relevant highlights are the achievement of the first fly-based models for some NREDs, the incorporation of new technologies such as CRISPR for developing or evaluating transgenic flies containing repeat expanded motifs, and the evaluation of less understood toxic mechanisms in NREDs such as RAN translation. Overall, Drosophila melanogaster remains a powerful platform for research in NREDs.
Collapse
Affiliation(s)
- Sandra Atienzar-Aroca
- Department of Dentristy, Faculty of Health Sciences, European University of Valencia, 46010 Valencia, Spain;
| | - Marleen Kat
- Institute for Life Sciences and Chemistry, HU University of Applied Sciences Utrecht, NL-3584 Utrecht, The Netherlands;
| | - Arturo López-Castel
- Human Translational Genomics Group, University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Burjasot, Spain
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
- CIBERER, Centro de Investigación en Red de Enfermedades Raras, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
5
|
Nieto-Estevez V, Varma P, Mirsadeghi S, Caballero J, Gamero-Alameda S, Hosseini A, Silvosa MJ, Thodeson DM, Lybrand ZR, Giugliano M, Navara C, Hsieh J. Dual effects of ARX poly-alanine mutations in human cortical and interneuron development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577271. [PMID: 38328230 PMCID: PMC10849640 DOI: 10.1101/2024.01.25.577271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Infantile spasms, with an incidence of 1.6 to 4.5 per 10,000 live births, are a relentless and devastating childhood epilepsy marked by severe seizures but also leads to lifelong intellectual disability. Alarmingly, up to 5% of males with this condition carry a mutation in the Aristaless-related homeobox ( ARX ) gene. Our current lack of human-specific models for developmental epilepsy, coupled with discrepancies between animal studies and human data, underscores the gap in knowledge and urgent need for innovative human models, organoids being one of the best available. Here, we used human neural organoid models, cortical organoids (CO) and ganglionic eminences organoids (GEO) which mimic cortical and interneuron development respectively, to study the consequences of PAE mutations, one of the most prevalent mutation in ARX . ARX PAE produces a decrease expression of ARX in GEOs, and an enhancement in interneuron migration. That accelerated migration is cell autonomously driven, and it can be rescued by inhibiting CXCR4. We also found that PAE mutations result in an early increase in radial glia cells and intermediate progenitor cells, followed by a subsequent loss of cortical neurons at later timepoints. Moreover, ARX expression is upregulated in COs derived from patients at 30 DIV and is associated with alterations in the expression of CDKN1C . Furthermore, ARX PAE assembloids had hyperactivity which were evident at early stages of development. With effective treatments for infantile spasms and developmental epilepsies still elusive, delving into the role of ARX PAE mutations in human brain organoids represents a pivotal step toward uncovering groundbreaking therapeutic strategies.
Collapse
|
6
|
Uguen K, Michaud JL, Génin E. Short Tandem Repeats in the era of next-generation sequencing: from historical loci to population databases. Eur J Hum Genet 2024; 32:1037-1044. [PMID: 38982300 PMCID: PMC11369099 DOI: 10.1038/s41431-024-01666-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
In this study, we explore the landscape of short tandem repeats (STRs) within the human genome through the lens of evolving technologies to detect genomic variations. STRs, which encompass approximately 3% of our genomic DNA, are crucial for understanding human genetic diversity, disease mechanisms, and evolutionary biology. The advent of high-throughput sequencing methods has revolutionized our ability to accurately map and analyze STRs, highlighting their significance in genetic disorders, forensic science, and population genetics. We review the current available methodologies for STR analysis, the challenges in interpreting STR variations across different populations, and the implications of STRs in medical genetics. Our findings underscore the urgent need for comprehensive STR databases that reflect the genetic diversity of global populations, facilitating the interpretation of STR data in clinical diagnostics, genetic research, and forensic applications. This work sets the stage for future studies aimed at harnessing STR variations to elucidate complex genetic traits and diseases, reinforcing the importance of integrating STRs into genetic research and clinical practice.
Collapse
Affiliation(s)
- Kevin Uguen
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France.
- Service de Génétique Médicale et Biologie de la Reproduction, CHU de Brest, Brest, France.
- CHU Sainte-Justine Azrieli Research Centre, Montréal, QC, Canada.
| | - Jacques L Michaud
- CHU Sainte-Justine Azrieli Research Centre, Montréal, QC, Canada
- Department of Pediatrics, Université de Montréal, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | | |
Collapse
|
7
|
Rashid R, Rajion ZA, Zilfalil BA, Jaafar S. Association of rs8670 Polymorphism in the MSX1 Gene With Non-Syndromic Cleft Lip With or Without Cleft Palate in Malay Population. Cureus 2024; 16:e68958. [PMID: 39385896 PMCID: PMC11461356 DOI: 10.7759/cureus.68958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2024] [Indexed: 10/12/2024] Open
Abstract
OBJECTIVE This study aimed to investigate the association between variants present in the MSX1 gene and the risk of developing non-syndromic cleft lip with or without cleft palate (NSCL±P) among individuals of Malay ethnicity in Malaysia. MATERIALS AND METHODS This case-control study involved 89 patients with NSCL±P and 100 healthy control subjects. Polymerase chain reaction (PCR) was performed on both exon 1 and exon 2 of the MSX1 gene using four pairs of primers. The amplification products were then subjected to denaturing high-pressure liquid chromatography for initial screening, and the presence of a heteroduplex peak was validated using direct sequencing analysis to detect the single-nucleotide polymorphism. RESULTS Five previously known variations (c.-36G>A, p.Ala30Ala, p.Ala34Gly, p.Gly110Gly, and rs8670: C>T) were detected within the MSX1 gene in both NSCL±P patients and controls.A significant association was found between the rs8670: C>T variant and NSCL±P (p = 0.017; OR: 0.368; 95% CI: 0.152 - 0.893), with this particular single-nucleotide polymorphism present in 20% (20) among controls and 7.9% (7) of the NSCL±P cases. CONCLUSIONS Our data showed a lower incidence of the rs8670: C>T polymorphism among NSCL±P cases compared to control in this Malay population. However, since this variant is located in the 3'UTR, it could potentially impact the stability of MSX1 mRNA.
Collapse
Affiliation(s)
- Roslina Rashid
- Basic Sciences Unit, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, MYS
| | - Zainul Ahmad Rajion
- Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan, MYS
| | - Bin Alwi Zilfalil
- Human Genome Center, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, MYS
| | - Saidi Jaafar
- Basic Sciences Unit, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, MYS
| |
Collapse
|
8
|
Antón R, Treviño MÁ, Pantoja-Uceda D, Félix S, Babu M, Cabrita EJ, Zweckstetter M, Tinnefeld P, Vera AM, Oroz J. Alternative low-populated conformations prompt phase transitions in polyalanine repeat expansions. Nat Commun 2024; 15:1925. [PMID: 38431667 PMCID: PMC10908835 DOI: 10.1038/s41467-024-46236-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
Abnormal trinucleotide repeat expansions alter protein conformation causing malfunction and contribute to a significant number of incurable human diseases. Scarce structural insights available on disease-related homorepeat expansions hinder the design of effective therapeutics. Here, we present the dynamic structure of human PHOX2B C-terminal fragment, which contains the longest polyalanine segment known in mammals. The major α-helical conformation of the polyalanine tract is solely extended by polyalanine expansions in PHOX2B, which are responsible for most congenital central hypoventilation syndrome cases. However, polyalanine expansions in PHOX2B additionally promote nascent homorepeat conformations that trigger length-dependent phase transitions into solid condensates that capture wild-type PHOX2B. Remarkably, HSP70 and HSP90 chaperones specifically seize PHOX2B alternative conformations preventing phase transitions. The precise observation of emerging polymorphs in expanded PHOX2B postulates unbalanced phase transitions as distinct pathophysiological mechanisms in homorepeat expansion diseases, paving the way towards the search of therapeutics modulating biomolecular condensates in central hypoventilation syndrome.
Collapse
Affiliation(s)
- Rosa Antón
- Instituto de Química Física Blas Cabrera (IQF), CSIC, E-28006, Madrid, Spain
| | - Miguel Á Treviño
- Instituto de Química Física Blas Cabrera (IQF), CSIC, E-28006, Madrid, Spain
| | - David Pantoja-Uceda
- Instituto de Química Física Blas Cabrera (IQF), CSIC, E-28006, Madrid, Spain
| | - Sara Félix
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
- UCIBIO, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
| | - María Babu
- German Center for Neurodegenerative Diseases (DZNE), 37075, Göttingen, Germany
| | - Eurico J Cabrita
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
- UCIBIO, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), 37075, Göttingen, Germany
- Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, München, 81377, Germany
| | - Andrés M Vera
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, München, 81377, Germany
| | - Javier Oroz
- Instituto de Química Física Blas Cabrera (IQF), CSIC, E-28006, Madrid, Spain.
| |
Collapse
|
9
|
Buscà R, Onesto C, Egensperger M, Pouysségur J, Pagès G, Lenormand P. N-terminal alanine-rich (NTAR) sequences drive precise start codon selection resulting in elevated translation of multiple proteins including ERK1/2. Nucleic Acids Res 2023; 51:7714-7735. [PMID: 37414542 PMCID: PMC10450180 DOI: 10.1093/nar/gkad528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
We report the discovery of N-terminal alanine-rich sequences, which we term NTARs, that act in concert with their native 5'-untranslated regions to promote selection of the proper start codon. NTARs also facilitate efficient translation initiation while limiting the production of non-functional polypeptides through leaky scanning. We first identified NTARs in the ERK1/2 kinases, which are among the most important signaling molecules in mammals. Analysis of the human proteome reveals that hundreds of proteins possess NTARs, with housekeeping proteins showing a particularly high prevalence. Our data indicate that several of these NTARs act in a manner similar to those found in the ERKs and suggest a mechanism involving some or all of the following features: alanine richness, codon rarity, a repeated amino acid stretch and a nearby second AUG. These features may help slow down the leading ribosome, causing trailing pre-initiation complexes (PICs) to pause near the native AUG, thereby facilitating accurate translation initiation. Amplification of erk genes is frequently observed in cancer, and we show that NTAR-dependent ERK protein levels are a rate-limiting step for signal output. Thus, NTAR-mediated control of translation may reflect a cellular need to precisely control translation of key transcripts such as potential oncogenes. By preventing translation in alternative reading frames, NTAR sequences may be useful in synthetic biology applications, e.g. translation from RNA vaccines.
Collapse
Affiliation(s)
- Roser Buscà
- Université Côte d’Azur (UCA), CNRS UMR 7284 and INSERM U 1081, Institute for Research on Cancer and Aging Nice (IRCAN), 28 Avenue de Valombrose, 06107 Nice, France
- Centre Antoine Lacassagne, Nice, France
| | - Cercina Onesto
- Université Côte d’Azur (UCA), CNRS UMR 7284 and INSERM U 1081, Institute for Research on Cancer and Aging Nice (IRCAN), 28 Avenue de Valombrose, 06107 Nice, France
- Centre Antoine Lacassagne, Nice, France
- Polytech’Nice Sophia, Bioengineering Department, Sophia-Antipolis, France
| | - Mylène Egensperger
- Université Côte d’Azur (UCA), CNRS UMR 7284 and INSERM U 1081, Institute for Research on Cancer and Aging Nice (IRCAN), 28 Avenue de Valombrose, 06107 Nice, France
- Centre Antoine Lacassagne, Nice, France
| | - Jacques Pouysségur
- Université Côte d’Azur (UCA), CNRS UMR 7284 and INSERM U 1081, Institute for Research on Cancer and Aging Nice (IRCAN), 28 Avenue de Valombrose, 06107 Nice, France
- Centre Antoine Lacassagne, Nice, France
- Centre Scientifique de Monaco, Biomedical Department, Principality of Monaco
| | - Gilles Pagès
- Université Côte d’Azur (UCA), CNRS UMR 7284 and INSERM U 1081, Institute for Research on Cancer and Aging Nice (IRCAN), 28 Avenue de Valombrose, 06107 Nice, France
- Centre Antoine Lacassagne, Nice, France
- Centre Scientifique de Monaco, Biomedical Department, Principality of Monaco
| | - Philippe Lenormand
- Université Côte d’Azur (UCA), CNRS UMR 7284 and INSERM U 1081, Institute for Research on Cancer and Aging Nice (IRCAN), 28 Avenue de Valombrose, 06107 Nice, France
- Centre Antoine Lacassagne, Nice, France
| |
Collapse
|
10
|
Böker A, Paul W. Thermodynamics and Conformations of Single Polyalanine, Polyserine, and Polyglutamine Chains within the PRIME20 Model. J Phys Chem B 2022; 126:7286-7297. [DOI: 10.1021/acs.jpcb.2c04360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arne Böker
- Institut für Physik, Martin Luther-Universität Halle-Wittenberg, von Seckendorff Platz 1, 06120 Halle, Germany
| | - Wolfgang Paul
- Institut für Physik, Martin Luther-Universität Halle-Wittenberg, von Seckendorff Platz 1, 06120 Halle, Germany
| |
Collapse
|
11
|
Depienne C, Mandel JL. 30 years of repeat expansion disorders: What have we learned and what are the remaining challenges? Am J Hum Genet 2021; 108:764-785. [PMID: 33811808 PMCID: PMC8205997 DOI: 10.1016/j.ajhg.2021.03.011] [Citation(s) in RCA: 238] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Tandem repeats represent one of the most abundant class of variations in human genomes, which are polymorphic by nature and become highly unstable in a length-dependent manner. The expansion of repeat length across generations is a well-established process that results in human disorders mainly affecting the central nervous system. At least 50 disorders associated with expansion loci have been described to date, with half recognized only in the last ten years, as prior methodological difficulties limited their identification. These limitations still apply to the current widely used molecular diagnostic methods (exome or gene panels) and thus result in missed diagnosis detrimental to affected individuals and their families, especially for disorders that are very rare and/or clinically not recognizable. Most of these disorders have been identified through family-driven approaches and many others likely remain to be identified. The recent development of long-read technologies provides a unique opportunity to systematically investigate the contribution of tandem repeats and repeat expansions to the genetic architecture of human disorders. In this review, we summarize the current and most recent knowledge about the genetics of repeat expansion disorders and the diversity of their pathophysiological mechanisms and outline the perspectives of developing personalized treatments in the future.
Collapse
Affiliation(s)
- Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Université, UMR S 1127, Inserm U1127, CNRS UMR 7225, 75013 Paris, France.
| | - Jean-Louis Mandel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France; Centre National de la Recherche Scientifique, UMR 7104, Illkirch 67400, France; Institut National de la Santé et de la Recherche Médicale, U 1258, Illkirch 67400, France; Université de Strasbourg, Illkirch 67400, France; USIAS University of Strasbourg Institute of Advanced study, 67000 Strasbourg, France.
| |
Collapse
|
12
|
Dworschak GC, Reutter HM, Ludwig M. Currarino syndrome: a comprehensive genetic review of a rare congenital disorder. Orphanet J Rare Dis 2021; 16:167. [PMID: 33836786 PMCID: PMC8034116 DOI: 10.1186/s13023-021-01799-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/30/2021] [Indexed: 11/10/2022] Open
Abstract
Background The triad of a presacral mass, sacral agenesis and an anorectal anomaly constitutes the rare Currarino syndrome (CS), which is caused by dorsal–ventral patterning defects during embryonic development. The major causative CS gene is MNX1, encoding a homeobox protein. Main body In the majority of patients, CS occurs as an autosomal dominant trait; however, a female predominance observed, implies that CS may underlie an additional mode(s) of inheritance. Often, the diagnosis of CS is established solely by clinical findings, impacting a detailed analysis of the disease. Our combined data, evaluating more than 60 studies reporting patients with CS-associated mutations, revealed a slightly higher incidence rate in females with a female-to-male ratio of 1.39:1. Overall, MNX1 mutation analysis was successful in only 57.4% of all CS patients investigated, with no mutation detected in 7.7% of the familial and 68% of the sporadic patients. Our studies failed to detect the presence of an expressed MNX1 isoform that might explain at least some of these mutation-negative cases. Conclusion Aside from MNX1, other genes or regulatory regions may contribute to CS and we discuss several cytogenetic studies and whole-exome sequencing data that have implicated further loci/genes in its etiology. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-01799-0.
Collapse
Affiliation(s)
- Gabriel C Dworschak
- Institute of Human Genetics, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany. .,Institute of Anatomy and Cell Biology, Medical Faculty, University of Bonn, 53115, Bonn, Germany. .,Department of Pediatrics, University Hospital Bonn, 53127, Bonn, Germany.
| | - Heiko M Reutter
- Institute of Human Genetics, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.,Department of Neonatology and Pediatric Intensive Care, University Hospital Bonn, 53127, Bonn, Germany
| | - Michael Ludwig
- Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, 53127, Bonn, Germany
| |
Collapse
|
13
|
Udagawa T, Seki M, Okuyama T, Adachi S, Natsume T, Noguchi T, Matsuzawa A, Inada T. Failure to Degrade CAT-Tailed Proteins Disrupts Neuronal Morphogenesis and Cell Survival. Cell Rep 2021; 34:108599. [PMID: 33406423 DOI: 10.1016/j.celrep.2020.108599] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/24/2020] [Accepted: 12/14/2020] [Indexed: 12/25/2022] Open
Abstract
Ribosome-associated quality control (RQC) relieves stalled ribosomes and eliminates potentially toxic nascent polypeptide chains (NCs) that can cause neurodegeneration. During RQC, RQC2 modifies NCs with a C-terminal alanine and threonine (CAT) tail. CAT tailing promotes ubiquitination of NCs for proteasomal degradation, while RQC failure in budding yeast disrupts proteostasis via CAT-tailed NC aggregation. However, the CAT tail and its cytotoxicity in mammals have remained largely uncharacterized. We demonstrate that NEMF, a mammalian RQC2 homolog, modifies translation products of nonstop mRNAs, major erroneous mRNAs in mammals, with a C-terminal tail mainly composed of alanine with several other amino acids. Overproduction of nonstop mRNAs induces NC aggregation and caspase-3-dependent apoptosis and impairs neuronal morphogenesis, which are ameliorated by NEMF depletion. Moreover, we found that homopolymeric alanine tailing at least partially accounts for CAT-tail cytotoxicity. These findings explain the cytotoxicity of CAT-tailed NCs and demonstrate physiological significance of RQC on proper neuronal morphogenesis and cell survival.
Collapse
Affiliation(s)
- Tsuyoshi Udagawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan.
| | - Moeka Seki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Taku Okuyama
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Shungo Adachi
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | - Tohru Natsume
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | - Takuya Noguchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Atsushi Matsuzawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Toshifumi Inada
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan.
| |
Collapse
|
14
|
Mary Rajathei D, Parthasarathy S, Selvaraj S. HPREP: a comprehensive database for human proteome repeats. J Integr Bioinform 2020; 0:/j/jib.ahead-of-print/jib-2020-0024/jib-2020-0024.xml. [PMID: 33136065 DOI: 10.1515/jib-2020-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/17/2020] [Indexed: 11/15/2022] Open
Abstract
Amino acid repeats are found to play important roles in both structures and functions of the proteins. These are commonly found in all kingdoms of life, especially in eukaryotes and a larger fraction of human proteins composed of repeats. Further, the abnormal expansions of shorter repeats cause various diseases to humans. Therefore, the analysis of repeats of the entire human proteome along with functional, mutational and disease information would help to better understand their roles in proteins. To fulfill this need, we developed a web database HPREP (http://bioinfo.bdu.ac.in/hprep) for human proteome repeats using Perl and HTML programming. We identified different categories of well-characterized repeats and domain repeats that are present in the human proteome of UniProtKB/Swiss-Prot by using in-house Perl programming and novel repeats by using the repeat detection T-REKS tool as well as XSTREAM web server. Further, these proteins are annotated with functional, mutational and disease information and grouped according to specific repeat types. The developed database enables the users to search by specific repeat type in order to understand their involvement in proteins. Thus, the HPREP database is expected to be a useful resource to gain better insight regarding the different repeats in human proteome and their biological roles.
Collapse
Affiliation(s)
- David Mary Rajathei
- Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Subbiah Parthasarathy
- Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Samuel Selvaraj
- Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, India
| |
Collapse
|
15
|
Khristich AN, Mirkin SM. On the wrong DNA track: Molecular mechanisms of repeat-mediated genome instability. J Biol Chem 2020; 295:4134-4170. [PMID: 32060097 PMCID: PMC7105313 DOI: 10.1074/jbc.rev119.007678] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Expansions of simple tandem repeats are responsible for almost 50 human diseases, the majority of which are severe, degenerative, and not currently treatable or preventable. In this review, we first describe the molecular mechanisms of repeat-induced toxicity, which is the connecting link between repeat expansions and pathology. We then survey alternative DNA structures that are formed by expandable repeats and review the evidence that formation of these structures is at the core of repeat instability. Next, we describe the consequences of the presence of long structure-forming repeats at the molecular level: somatic and intergenerational instability, fragility, and repeat-induced mutagenesis. We discuss the reasons for gender bias in intergenerational repeat instability and the tissue specificity of somatic repeat instability. We also review the known pathways in which DNA replication, transcription, DNA repair, and chromatin state interact and thereby promote repeat instability. We then discuss possible reasons for the persistence of disease-causing DNA repeats in the genome. We describe evidence suggesting that these repeats are a payoff for the advantages of having abundant simple-sequence repeats for eukaryotic genome function and evolvability. Finally, we discuss two unresolved fundamental questions: (i) why does repeat behavior differ between model systems and human pedigrees, and (ii) can we use current knowledge on repeat instability mechanisms to cure repeat expansion diseases?
Collapse
Affiliation(s)
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, Massachusetts 02155.
| |
Collapse
|
16
|
Pelassa I, Cibelli M, Villeri V, Lilliu E, Vaglietti S, Olocco F, Ghirardi M, Montarolo PG, Corà D, Fiumara F. Compound Dynamics and Combinatorial Patterns of Amino Acid Repeats Encode a System of Evolutionary and Developmental Markers. Genome Biol Evol 2020; 11:3159-3178. [PMID: 31589292 PMCID: PMC6839033 DOI: 10.1093/gbe/evz216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2019] [Indexed: 01/05/2023] Open
Abstract
Homopolymeric amino acid repeats (AARs) like polyalanine (polyA) and polyglutamine (polyQ) in some developmental proteins (DPs) regulate certain aspects of organismal morphology and behavior, suggesting an evolutionary role for AARs as developmental "tuning knobs." It is still unclear, however, whether these are occasional protein-specific phenomena or hints at the existence of a whole AAR-based regulatory system in DPs. Using novel approaches to trace their functional and evolutionary history, we find quantitative evidence supporting a generalized, combinatorial role of AARs in developmental processes with evolutionary implications. We observe nonrandom AAR distributions and combinations in HOX and other DPs, as well as in their interactomes, defining elements of a proteome-wide combinatorial functional code whereby different AARs and their combinations appear preferentially in proteins involved in the development of specific organs/systems. Such functional associations can be either static or display detectable evolutionary dynamics. These findings suggest that progressive changes in AAR occurrence/combination, by altering embryonic development, may have contributed to taxonomic divergence, leaving detectable traces in the evolutionary history of proteomes. Consistent with this hypothesis, we find that the evolutionary trajectories of the 20 AARs in eukaryotic proteomes are highly interrelated and their individual or compound dynamics can sharply mark taxonomic boundaries, or display clock-like trends, carrying overall a strong phylogenetic signal. These findings provide quantitative evidence and an interpretive framework outlining a combinatorial system of AARs whose compound dynamics mark at the same time DP functions and evolutionary transitions.
Collapse
Affiliation(s)
- Ilaria Pelassa
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Italy
| | - Marica Cibelli
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Italy
| | - Veronica Villeri
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Italy
| | - Elena Lilliu
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Italy
| | - Serena Vaglietti
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Italy
| | - Federica Olocco
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Italy
| | - Mirella Ghirardi
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Italy.,National Institute of Neuroscience (INN), Torino, Italy
| | - Pier Giorgio Montarolo
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Italy.,National Institute of Neuroscience (INN), Torino, Italy
| | - Davide Corà
- Department of Translational Medicine, Piemonte Orientale University, Novara, Italy.,Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Novara, Italy
| | - Ferdinando Fiumara
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Italy.,National Institute of Neuroscience (INN), Torino, Italy
| |
Collapse
|
17
|
Pirone L, Caldinelli L, Di Lascio S, Di Girolamo R, Di Gaetano S, Fornasari D, Pollegioni L, Benfante R, Pedone E. Molecular insights into the role of the polyalanine region in mediating PHOX2B aggregation. FEBS J 2019; 286:2505-2521. [PMID: 30955232 DOI: 10.1111/febs.14841] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/27/2019] [Accepted: 04/04/2019] [Indexed: 11/26/2022]
Abstract
About 90% of congenital central hypoventilation syndrome (CCHS) patients show polyalanine triplet expansions in the coding region of transcription factor PHOX2B, which renders this protein an intriguing target to understand the insurgence of this syndrome and for the design of a novel therapeutical approach. Consistently with the role of PHOX2B as a transcriptional regulator, it is reasonable that a general transcriptional dysregulation caused by the polyalanine expansion might represent an important mechanism underlying CCHS pathogenesis. Therefore, this study focused on the biochemical characterization of different PHOX2B variants, such as a variant containing the correct C-terminal (20 alanines) stretch, one of the most frequent polyalanine expansions (+7 alanines), and a variant lacking the complete alanine stretch (0 alanines). Comparison of the different variants by a multidisciplinary approach based on different methodologies (including circular dichroism, spectrofluorimetry, light scattering, and Atomic Force Microscopy studies) highlighted the propensity to aggregate for the PHOX2B variant containing the polyalanine expansion (+7-alanines), especially in the presence of DNA, while the 0-alanines variant resembled the protein with the correct polyalanine length. Moreover, and unexpectedly, the formation of fibrils was revealed only for the pathological variant, suggesting a plausible role of such fibrils in the insurgence of CCHS.
Collapse
Affiliation(s)
- Luciano Pirone
- Institute of Biostructure and Bioimaging, CNR, Napoli, Italy
| | - Laura Caldinelli
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell'Insubria, Varese, Italy
| | - Simona Di Lascio
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Italy
| | - Rocco Di Girolamo
- Department of Chemical Sciences, University of Naples Federico II, Italy
| | | | - Diego Fornasari
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Italy
| | - Loredano Pollegioni
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell'Insubria, Varese, Italy
| | - Roberta Benfante
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Italy
- CNR- Neuroscience Institute, Milan, Italy
| | - Emilia Pedone
- Institute of Biostructure and Bioimaging, CNR, Napoli, Italy
| |
Collapse
|
18
|
Banerjee A, Phillips BL, Deng Q, Seyfried NT, Pavlath GK, Vest KE, Corbett AH. Proteomic analysis reveals that wildtype and alanine-expanded nuclear poly(A)-binding protein exhibit differential interactions in skeletal muscle. J Biol Chem 2019; 294:7360-7376. [PMID: 30837270 DOI: 10.1074/jbc.ra118.007287] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/19/2019] [Indexed: 12/22/2022] Open
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is a late-onset, primarily autosomal dominant disease caused by a short GCN expansion in the PABPN1 (polyadenylate-binding protein nuclear 1) gene that results in an alanine expansion at the N terminus of the PABPN1 protein. Expression of alanine-expanded PABPN1 is linked to the formation of nuclear aggregates in tissues from individuals with OPMD. However, as with other nuclear aggregate-associated diseases, controversy exists over whether these aggregates are the direct cause of pathology. An emerging hypothesis is that a loss of PABPN1 function and/or aberrant protein interactions contribute to pathology in OPMD. Here, we present the first global proteomic analysis of the protein interactions of WT and alanine-expanded PABPN1 in skeletal muscle tissue. These data provide both insight into the function of PABPN1 in muscle and evidence that the alanine expansion alters the protein-protein interactions of PABPN1. We extended this analysis to demonstrate altered complex formation with and loss of function of TDP-43 (TAR DNA-binding protein 43), which we show interacts with alanine-expanded but not WT PABPN1. The results from our study support a model where altered protein interactions with alanine-expanded PABPN1 that lead to loss or gain of function could contribute to pathology in OPMD.
Collapse
Affiliation(s)
| | - Brittany L Phillips
- From the Department of Biology and.,the Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia 30322
| | - Quidong Deng
- the Department of Biochemistry, Center for Neurodegenerative Diseases and
| | | | - Grace K Pavlath
- the Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, and
| | - Katherine E Vest
- the Department of Molecular Genetics, Biochemistry & Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | | |
Collapse
|
19
|
Dubos A, Meziane H, Iacono G, Curie A, Riet F, Martin C, Loaëc N, Birling MC, Selloum M, Normand E, Pavlovic G, Sorg T, Stunnenberg HG, Chelly J, Humeau Y, Friocourt G, Hérault Y. A new mouse model of ARX dup24 recapitulates the patients' behavioral and fine motor alterations. Hum Mol Genet 2019; 27:2138-2153. [PMID: 29659809 PMCID: PMC5985730 DOI: 10.1093/hmg/ddy122] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 03/26/2018] [Indexed: 01/27/2023] Open
Abstract
The aristaless-related homeobox (ARX) transcription factor is involved in the development of GABAergic and cholinergic neurons in the forebrain. ARX mutations have been associated with a wide spectrum of neurodevelopmental disorders in humans, among which the most frequent, a 24 bp duplication in the polyalanine tract 2 (c.428_451dup24), gives rise to intellectual disability, fine motor defects with or without epilepsy. To understand the functional consequences of this mutation, we generated a partially humanized mouse model carrying the c.428_451dup24 duplication (Arxdup24/0) that we characterized at the behavior, neurological and molecular level. Arxdup24/0 males presented with hyperactivity, enhanced stereotypies and altered contextual fear memory. In addition, Arxdup24/0 males had fine motor defects with alteration of reaching and grasping abilities. Transcriptome analysis of Arxdup24/0 forebrains at E15.5 showed a down-regulation of genes specific to interneurons and an up-regulation of genes normally not expressed in this cell type, suggesting abnormal interneuron development. Accordingly, interneuron migration was altered in the cortex and striatum between E15.5 and P0 with consequences in adults, illustrated by the defect in the inhibitory/excitatory balance in Arxdup24/0 basolateral amygdala. Altogether, we showed that the c.428_451dup24 mutation disrupts Arx function with a direct consequence on interneuron development, leading to hyperactivity and defects in precise motor movement control and associative memory. Interestingly, we highlighted striking similarities between the mouse phenotype and a cohort of 33 male patients with ARX c.428_451dup24, suggesting that this new mutant mouse line is a good model for understanding the pathophysiology and evaluation of treatment.
Collapse
Affiliation(s)
- Aline Dubos
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France.,CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 67404 Illkirch, France
| | - Hamid Meziane
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 67404 Illkirch, France
| | - Giovanni Iacono
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, The Netherlands
| | - Aurore Curie
- Centre de Référence Déficiences Intellectuelles de Causes Rares, Hôpital Femmes Mères Enfants, Hospices Civils de Lyon, Institut des Sciences Cognitives, CNRS UMR5304, Université Claude Bernard Lyon1, 69675 Bron, France
| | - Fabrice Riet
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 67404 Illkirch, France
| | - Christelle Martin
- Team Synapse in Cognition, Institut Interdisciplinaire de NeuroScience, Centre National de la Recherche Scientifique CNRS UMR5297, Université de Bordeaux, 33077 Bordeaux, France
| | - Nadège Loaëc
- Inserm UMR 1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé, Etablissement Français du Sang (EFS) Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 29200 Brest, France
| | | | - Mohammed Selloum
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 67404 Illkirch, France
| | - Elisabeth Normand
- Team Synapse in Cognition, Institut Interdisciplinaire de NeuroScience, Centre National de la Recherche Scientifique CNRS UMR5297, Université de Bordeaux, 33077 Bordeaux, France.,Pole In Vivo, Institut Interdisciplinaire de NeuroScience, Centre National de la Recherche Scientifique CNRS UMR5297, Université de Bordeaux, 33077 Bordeaux, France
| | - Guillaume Pavlovic
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 67404 Illkirch, France
| | - Tania Sorg
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 67404 Illkirch, France
| | - Henk G Stunnenberg
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, The Netherlands
| | - Jamel Chelly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France.,Service de Diagnostic Génétique, Hôpital Civil de Strasbourg, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France
| | - Yann Humeau
- Team Synapse in Cognition, Institut Interdisciplinaire de NeuroScience, Centre National de la Recherche Scientifique CNRS UMR5297, Université de Bordeaux, 33077 Bordeaux, France
| | - Gaëlle Friocourt
- Inserm UMR 1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé, Etablissement Français du Sang (EFS) Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 29200 Brest, France
| | - Yann Hérault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France.,CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 67404 Illkirch, France
| |
Collapse
|
20
|
Ueyama M, Nagai Y. Repeat Expansion Disease Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1076:63-78. [PMID: 29951815 DOI: 10.1007/978-981-13-0529-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
Repeat expansion disorders are a group of inherited neuromuscular diseases, which are caused by expansion mutations of repeat sequences in the disease-causing genes. Repeat expansion disorders include a class of diseases caused by repeat expansions in the coding region of the genes, producing mutant proteins with amino acid repeats, mostly the polyglutamine (polyQ) diseases, and another class of diseases caused by repeat expansions in the noncoding regions, producing aberrant RNA with expanded repeats, which are called noncoding repeat expansion diseases. A variety of Drosophila disease models have been established for both types of diseases, and they have made significant contributions toward elucidating the molecular mechanisms of and developing therapies for these neuromuscular diseases.
Collapse
Affiliation(s)
- Morio Ueyama
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshitaka Nagai
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
21
|
Deregulation of RNA Metabolism in Microsatellite Expansion Diseases. ADVANCES IN NEUROBIOLOGY 2018; 20:213-238. [PMID: 29916021 DOI: 10.1007/978-3-319-89689-2_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RNA metabolism impacts different steps of mRNA life cycle including splicing, polyadenylation, nucleo-cytoplasmic export, translation, and decay. Growing evidence indicates that defects in any of these steps lead to devastating diseases in humans. This chapter reviews the various RNA metabolic mechanisms that are disrupted in Myotonic Dystrophy-a trinucleotide repeat expansion disease-due to dysregulation of RNA-Binding Proteins. We also compare Myotonic Dystrophy to other microsatellite expansion disorders and describe how some of these mechanisms commonly exert direct versus indirect effects toward disease pathologies.
Collapse
|
22
|
Jelsig AM, Diness BR, Kreiborg S, Main KM, Larsen VA, Hove H. A complex phenotype in a family with a pathogenic SOX3 missense variant. Eur J Med Genet 2017; 61:168-172. [PMID: 29175558 DOI: 10.1016/j.ejmg.2017.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/16/2017] [Accepted: 11/21/2017] [Indexed: 01/17/2023]
Abstract
Duplications and deletions of Xq26-27 including SOX3 (Xq27.1) have been associated with X-linked mental retardation and isolated growth hormone deficiency (OMIM 300123) or X-linked panhypopituitarism (OMIM 312000). Yet, pathogenic point mutations seem to be extremely rare. We report a family with three affected males with several clinical features including mild intellectual disability, microphthalmia, coloboma, hypopituitarism, facial dysmorphology and dental anomalies, including microcephaly, retrognathia and a solitary median maxillary central incisor amongst other features. Using Whole Exome Sequencing a missense variant in SOX3, NM_005634.2:c.449C>A; p.(Ser150Tyr) was identified. Segregation analysis in the family demonstrated that the variant was inherited through healthy females with its origin in the maternal grandmother showing germline mosaicism. Thus, we report one of the first cases of a pathogenic variant in SOX3 and germline mosaicism of this variant.
Collapse
Affiliation(s)
- Anne M Jelsig
- Department of Clinical Genetics, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | - Birgitte R Diness
- Department of Clinical Genetics, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Sven Kreiborg
- Department of Pediatric Dentistry and Clinical Genetics, School of Dentistry, University of Copenhagen, Copenhagen N, Denmark
| | - Katharina M Main
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Faculty of Health Sciences, Copenhagen, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, Denmark
| | - Vibeke A Larsen
- Department of Radiology, University of Copenhagen, Rigshospitalet, Denmark
| | - Hanne Hove
- Department of Clinical Genetics, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| |
Collapse
|
23
|
García-Castañeda M, Vega AV, Rodríguez R, Montiel-Jaen MG, Cisneros B, Zarain-Herzberg A, Avila G. Functional impact of an oculopharyngeal muscular dystrophy mutation in PABPN1. J Physiol 2017; 595:4167-4187. [PMID: 28303574 DOI: 10.1113/jp273948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/11/2017] [Indexed: 01/14/2023] Open
Abstract
KEY POINTS Mutations in the gene encoding poly(A)-binding protein nuclear 1 (PABPN1) result in oculopharyngeal muscular dystrophy (OPMD). This disease is of late-onset, but the underlying mechanism is unclear. Ca2+ stimulates muscle growth and contraction and, because OPMD courses with muscle atrophy and weakness, we hypothesized that the homeostasis of Ca2+ is altered in this disorder. C2C12 myotubes were transfected with cDNAs encoding either PABPN1 or the PABPN1-17A OPMD mutation. Subsequently, they were investigated concerning not only excitation-contraction coupling (ECC) and intracellular levels of Ca2+ , but also differentiation stage and nuclear structure. PABPN1-17A gave rise to: inhibition of Ca2+ release during ECC, depletion of sarcoplasmic reticulum Ca2+ content, reduced expression of ryanodine receptors, altered nuclear morphology and incapability to stimulate myoblast fusion. PABPN1-17A failed to inhibit ECC in adult muscle fibres, suggesting that its effects are primarily related to muscle regeneration. ABSTRACT Oculopharyngeal muscular dystrophy (OPMD) is linked to mutations in the gene encoding poly(A)-binding protein nuclear 1 (PABPN1). OPMD mutations consist of an expansion of a tract that contains 10 alanines (to 12-17). This disease courses with muscle weakness that begins in adulthood, but the underlying mechanism is unclear. In the present study, we investigated the functional effects of PABPN1 and an OPMD mutation (PABPN1-17A) using myotubes transfected with cDNAs encoding these proteins (GFP-tagged). PABPN1 stimulated myoblast fusion (100%), whereas PABPN1-17A failed to mimic this effect. Additionally, the OPMD mutation markedly altered nuclear morphology; specifically, it led to nuclei with a more convoluted and ovoid shape. Although PABPN1 and PABPN1-17A modified the expression of sarcoplasmic/endoplasmic reticulum Ca2+ -ATPase and calsequestrin, the corresponding changes did not have a clear impact on [Ca2+ ]. Interestingly, neither L-type Ca2+ channels, nor voltage-gated sarcoplasmic reticulum (SR) Ca2+ release (VGCR) was altered by PABPN1. However, PABPN1-17A produced a selective inhibition of VGCR (50%). This effect probably arises from both lower expression of RyR1 and depletion of SR Ca2+ . The latter, however, was not related to inhibition of store-operated Ca2+ entry. Both PABPN1 constructs promoted a moderated decrease in cytosolic [Ca2+ ], which apparently results from down-regulation of excitation-coupled Ca2+ entry. On the other hand, PABPN1-17A did not alter ECC in muscle fibres, suggesting that adult muscle is less prone to developing deleterious effects. These results demonstrate that PABPN1 proteins regulate essential processes during myotube formation and support the notion that OPMD involves disruption of myogenesis, nuclear structure and homeostasis of Ca2+ .
Collapse
Affiliation(s)
| | - Ana Victoria Vega
- UBIMED FES-Iztacala, National Autonomous University of Mexico, Mexico City, México
| | - Rocío Rodríguez
- Department of Molecular Biology, Cinvestav-IPN AP 14-740, México City, México
| | | | - Bulmaro Cisneros
- Department of Molecular Biology, Cinvestav-IPN AP 14-740, México City, México
| | - Angel Zarain-Herzberg
- Department of Biochemistry, School of Medicine, National Autonomous University of Mexico, Mexico City, México
| | - Guillermo Avila
- Department of Biochemistry, Cinvestav-IPN AP 14-740, México City, México
| |
Collapse
|
24
|
Asakura T, Horiguchi K, Aoki A, Tasei Y, Naito A. Parallel β-Sheet Structure of Alanine Tetrapeptide in the Solid State As Studied by Solid-State NMR Spectroscopy. J Phys Chem B 2016; 120:8932-41. [PMID: 27482868 DOI: 10.1021/acs.jpcb.6b06292] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structural analysis of alanine oligopeptides is important for understanding the crystalline region in silks from spiders and wild silkworms and also the mechanism of cellular toxicity of human diseases arising from expansion in polyalanine sequences. The atomic-level structures of alanine tripeptide and tetrapeptide with antiparallel β-sheet structures (AP-Ala3 and AP-Ala4, respectively) together with alanine tripeptide with parallel β-sheet structures (P-Ala3) have been determined, but alanine tetrapeptide with a parallel β-sheet structure (P-Ala4) has not been reported yet. In this article, first, we established the preparation protocol of P-Ala4 from more stable AP-Ala4. Second, complete assignments of the (13)C, (15)N, and (1)H solid-state NMR spectra were performed with (13)C- and (15)N-labeled Ala4 samples using several solid-state NMR techniques. Then, the structural constraints were obtained, for example, the amide proton peaks of P-Ala4 in the (1)H double-quantum magic-angle spinning NMR spectrum were heavily overlapped and observed at about 7.4 ppm, which was a much higher field than that of 8.7-9.1 ppm observed for AP-Ala4, indicating that the intermolecular hydrogen-bond lengths across strands (N-H···O═C) were considerably longer for P-Ala4, that is, 2.21-2.34 Å, than those reported for AP-Ala4, that is, 1.8-1.9 Å. The structural model was proposed for P-Ala4 by NMR results and MD calculations.
Collapse
Affiliation(s)
- Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology , 2-24-16 Koganei, Tokyo 184-8588, Japan
| | - Kumiko Horiguchi
- Department of Biotechnology, Tokyo University of Agriculture and Technology , 2-24-16 Koganei, Tokyo 184-8588, Japan
| | - Akihiro Aoki
- Department of Biotechnology, Tokyo University of Agriculture and Technology , 2-24-16 Koganei, Tokyo 184-8588, Japan
| | - Yugo Tasei
- Department of Biotechnology, Tokyo University of Agriculture and Technology , 2-24-16 Koganei, Tokyo 184-8588, Japan
| | - Akira Naito
- Department of Biotechnology, Tokyo University of Agriculture and Technology , 2-24-16 Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
25
|
Di Lascio S, Belperio D, Benfante R, Fornasari D. Alanine Expansions Associated with Congenital Central Hypoventilation Syndrome Impair PHOX2B Homeodomain-mediated Dimerization and Nuclear Import. J Biol Chem 2016; 291:13375-93. [PMID: 27129232 PMCID: PMC4933246 DOI: 10.1074/jbc.m115.679027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Indexed: 11/30/2022] Open
Abstract
Heterozygous mutations of the human PHOX2B gene, a key regulator of autonomic nervous system development, lead to congenital central hypoventilation syndrome (CCHS), a neurodevelopmental disorder characterized by a failure in the autonomic control of breathing. Polyalanine expansions in the 20-residues region of the C terminus of PHOX2B are the major mutations responsible for CCHS. Elongation of the alanine stretch in PHOX2B leads to a protein with altered DNA binding, transcriptional activity, and nuclear localization and the possible formation of cytoplasmic aggregates; furthermore, the findings of various studies support the idea that CCHS is not due to a pure loss of function mechanism but also involves a dominant negative effect and/or toxic gain of function for PHOX2B mutations. Because PHOX2B forms homodimers and heterodimers with its paralogue PHOX2A in vitro, we tested the hypothesis that the dominant negative effects of the mutated proteins are due to non-functional interactions with the wild-type protein or PHOX2A using a co-immunoprecipitation assay and the mammalian two-hybrid system. Our findings show that PHOX2B forms homodimers and heterodimerizes weakly with mutated proteins, exclude the direct involvement of the polyalanine tract in dimer formation, and indicate that mutated proteins retain partial ability to form heterodimers with PHOX2A. Moreover, in this study, we investigated the effects of the longest polyalanine expansions on the homeodomain-mediated nuclear import, and our data clearly show that the expanded C terminus interferes with this process. These results provide novel insights into the effects of the alanine tract expansion on PHOX2B folding and activity.
Collapse
Affiliation(s)
- Simona Di Lascio
- From the Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129 Milan, Italy and
| | - Debora Belperio
- From the Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129 Milan, Italy and
| | - Roberta Benfante
- From the Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129 Milan, Italy and the National Research Council (CNR) Neuroscience Institute, 20129 Milan, Italy
| | - Diego Fornasari
- From the Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129 Milan, Italy and the National Research Council (CNR) Neuroscience Institute, 20129 Milan, Italy
| |
Collapse
|
26
|
Protein aggregation and ER stress. Brain Res 2016; 1648:658-666. [PMID: 27037184 DOI: 10.1016/j.brainres.2016.03.044] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/26/2016] [Accepted: 03/28/2016] [Indexed: 12/12/2022]
Abstract
Protein aggregation is a common feature of the protein misfolding or conformational diseases, among them most of the neurodegenerative diseases. These disorders are a major scourge, with scarce if any effective therapies at present. Recent research has identified ER stress as a major mechanism implicated in cytotoxicity in these diseases. Whether amyloid-β or tau in Alzheimer's, α-synuclein in Parkinson's, huntingtin in Huntington's disease or other aggregation-prone proteins in many other neurodegenerative diseases, there is a shared pathway of oligomerization and aggregation into amyloid fibrils. There is increasing evidence in recent years that the toxic species, and those that evoke ER stress, are the intermediate oligomeric forms and not the final amyloid aggregates. This review focuses on recent findings on the mechanisms and importance of the development of ER stress upon protein aggregation, especially in neurodegenerative diseases, and possible therapeutic approaches that are being examined. This article is part of a Special Issue entitled SI:ER stress.
Collapse
|
27
|
Large-scale screening in sporadic amyotrophic lateral sclerosis identifies genetic modifiers in C9orf72 repeat carriers. Neurobiol Aging 2015; 39:220.e9-15. [PMID: 26777436 DOI: 10.1016/j.neurobiolaging.2015.12.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/18/2015] [Accepted: 12/20/2015] [Indexed: 12/11/2022]
Abstract
Sporadic amyotrophic lateral sclerosis (ALS) is considered to be a complex disease with multiple genetic risk factors contributing to the pathogenesis. Identification of genetic risk factors that co-occur frequently could provide relevant insight into underlying mechanisms of motor neuron degeneration. To dissect the genetic architecture of sporadic ALS, we undertook a large sequencing study in 755 apparently sporadic ALS cases and 959 controls, analyzing 10 ALS genes: SOD1, C9orf72, TARDBP, FUS, ANG, CHMP2B, ATXN2, NIPA1, SMN1, and UNC13A. We observed sporadic cases with multiple genetic risk variants in 4.1% compared with 1.3% in controls. The overall difference was not in excess of what is to be expected by chance (binomial test, p = 0.59). We did, however, observe a higher frequency than expected of C9orf72 repeat carriers with co-occurring susceptibility variants (ATXN2, NIPA1, and SMN1; p = 0.001), which is mainly because of the co-occurrence of NIPA1 repeats in 15% of C9orf72 repeat carriers (p = 0.006).
Collapse
|
28
|
Murphy RM. Q&A: repeat-containing proteins. Nat Struct Mol Biol 2015; 22:943-5. [DOI: 10.1038/nsmb.3135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Polling S, Ormsby AR, Wood RJ, Lee K, Shoubridge C, Hughes JN, Thomas PQ, Griffin MDW, Hill AF, Bowden Q, Böcking T, Hatters DM. Polyalanine expansions drive a shift into α-helical clusters without amyloid-fibril formation. Nat Struct Mol Biol 2015; 22:1008-15. [DOI: 10.1038/nsmb.3127] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 10/20/2015] [Indexed: 12/17/2022]
|
30
|
Randolph ME, Pavlath GK. A muscle stem cell for every muscle: variability of satellite cell biology among different muscle groups. Front Aging Neurosci 2015; 7:190. [PMID: 26500547 PMCID: PMC4595652 DOI: 10.3389/fnagi.2015.00190] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/21/2015] [Indexed: 12/22/2022] Open
Abstract
The human body contains approximately 640 individual skeletal muscles. Despite the fact that all of these muscles are composed of striated muscle tissue, the biology of these muscles and their associated muscle stem cell populations are quite diverse. Skeletal muscles are affected differentially by various muscular dystrophies (MDs), such that certain genetic mutations specifically alter muscle function in only a subset of muscles. Additionally, defective muscle stem cells have been implicated in the pathology of some MDs. The biology of muscle stem cells varies depending on the muscles with which they are associated. Here we review the biology of skeletal muscle stem cell populations of eight different muscle groups. Understanding the biological variation of skeletal muscles and their resident stem cells could provide valuable insight into mechanisms underlying the susceptibility of certain muscles to myopathic disease.
Collapse
|
31
|
Radó-Trilla N, Arató K, Pegueroles C, Raya A, de la Luna S, Albà MM. Key Role of Amino Acid Repeat Expansions in the Functional Diversification of Duplicated Transcription Factors. Mol Biol Evol 2015; 32:2263-72. [PMID: 25931513 PMCID: PMC4540963 DOI: 10.1093/molbev/msv103] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The high regulatory complexity of vertebrates has been related to two rounds of whole genome duplication (2R-WGD) that occurred before the divergence of the major vertebrate groups. Following these events, many developmental transcription factors (TFs) were retained in multiple copies and subsequently specialized in diverse functions, whereas others reverted to their singleton state. TFs are known to be generally rich in amino acid repeats or low-complexity regions (LCRs), such as polyalanine or polyglutamine runs, which can evolve rapidly and potentially influence the transcriptional activity of the protein. Here we test the hypothesis that LCRs have played a major role in the diversification of TF gene duplicates. We find that nearly half of the TF gene families originated during the 2R-WGD contains LCRs. The number of gene duplicates with LCRs is 155 out of 550 analyzed (28%), about twice as many as the number of single copy genes with LCRs (15 out of 115, 13%). In addition, duplicated TFs preferentially accumulate certain LCR types, the most prominent of which are alanine repeats. We experimentally test the role of alanine-rich LCRs in two different TF gene families, PHOX2A/PHOX2B and LHX2/LHX9. In both cases, the presence of the alanine-rich LCR in one of the copies (PHOX2B and LHX2) significantly increases the capacity of the TF to activate transcription. Taken together, the results provide strong evidence that LCRs are important driving forces of evolutionary change in duplicated genes.
Collapse
Affiliation(s)
- Núria Radó-Trilla
- Evolutionary Genomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Krisztina Arató
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain Centre for Genomic Regulation (CRG), Barcelona, Spain Centro de Investigación Biomèdica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Cinta Pegueroles
- Evolutionary Genomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Research Institute (IMIM), Barcelona, Spain Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Alicia Raya
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain Centre for Genomic Regulation (CRG), Barcelona, Spain Centro de Investigación Biomèdica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Susana de la Luna
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain Centre for Genomic Regulation (CRG), Barcelona, Spain Centro de Investigación Biomèdica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - M Mar Albà
- Evolutionary Genomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Research Institute (IMIM), Barcelona, Spain Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
32
|
Shibata A, Machida J, Yamaguchi S, Kimura M, Tatematsu T, Miyachi H, Matsushita M, Kitoh H, Ishiguro N, Nakayama A, Higashi Y, Shimozato K, Tokita Y. Characterisation of novel RUNX2 mutation with alanine tract expansion from Japanese cleidocranial dysplasia patient. Mutagenesis 2015. [PMID: 26220009 DOI: 10.1093/mutage/gev057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cleidocranial dysplasia (CCD; MIM 119600) is an autosomal dominant skeletal dysplasia characterised by hypopalstic and/or aplastic clavicles, midface hypoplasia, absent or delayed closure of cranial sutures, moderately short stature, delayed eruption of permanent dentition and supernumerary teeth. The molecular pathogenesis can be explained in about two-thirds of CCD patients by haploinsufficiency of the RUNX2 gene. In our current study, we identified a novel and rare variant of the RUNX2 gene (c.181_189dupGCGGCGGCT) in a Japanese patient with phenotypic features of CCD. The insertion led an alanine tripeptide expansion (+3Ala) in the polyalanine tract. To date, a RUNX2 variant with alanine decapeptide expansion (+10Ala) is the only example of a causative variant of RUNX2 with polyalanine tract expansion to be reported, whilst RUNX2 (+1Ala) has been isolated from the healthy population. Thus, precise analyses of the RUNX2 (+3Ala) variant were needed to clarify whether the tripeptide expanded RUNX2 is a second disease-causing mutant with alanine tract expansion. We therefore investigated the biochemical properties of the mutant RUNX2 (+3Ala), which contains 20 alanine residues in the polyalanine tract. When transfected in COS7 cells, RUNX2 (+3Ala) formed intracellular ubiquitinated aggregates after 24h, and exerted a dominant negative effect in vitro. At 24h after gene transfection, whereas slight reduction was observed in RUNX2 (+10Ala), all of these mutants significantly activated osteoblast-specific element-2, a cis-acting sequence in the promoter of the RUNX2 target gene osteocalcin. The aggregation growth of RUNX2 (+3Ala) was clearly lower and slower than that of RUNX2 (+10Ala). Furthermore, we investigated several other RUNX2 variants with various alanine tract lengths, and found that the threshold for aggregation may be RUNX2 (+3Ala). We conclude that RUNX2 (+3Ala) is the cause of CCD in our current case, and that the accumulation of intracellular aggregates in vitro is related to the length of the alanine tract.
Collapse
Affiliation(s)
- Akio Shibata
- Department of Maxillofacial Surgery, Aichi-Gakuin University School of Dentistry, Nagoya 464-8651, Japan, Department of Perinatology, Institute for Developmental Research, Aichi Human Service Center, Kasugai 480-0392, Japan, Department of Oral and Maxillofacial Surgery, Ogaki Municipal Hospital, Ogaki 503-0864, Japan
| | - Junichiro Machida
- Department of Maxillofacial Surgery, Aichi-Gakuin University School of Dentistry, Nagoya 464-8651, Japan, Department of Oral and Maxillofacial Surgery, Toyota Memorial Hospital, Toyota 471-0821, Japan
| | - Seishi Yamaguchi
- Department of Maxillofacial Surgery, Aichi-Gakuin University School of Dentistry, Nagoya 464-8651, Japan, Department of Dentistry and Oral Surgery, Aichi Children's Health and Medical Center, Obu 474-8710, Japan
| | - Masashi Kimura
- Department of Maxillofacial Surgery, Aichi-Gakuin University School of Dentistry, Nagoya 464-8651, Japan, Department of Oral and Maxillofacial Surgery, Ogaki Municipal Hospital, Ogaki 503-0864, Japan
| | - Tadashi Tatematsu
- Department of Maxillofacial Surgery, Aichi-Gakuin University School of Dentistry, Nagoya 464-8651, Japan, Department of Perinatology, Institute for Developmental Research, Aichi Human Service Center, Kasugai 480-0392, Japan
| | - Hitoshi Miyachi
- Department of Maxillofacial Surgery, Aichi-Gakuin University School of Dentistry, Nagoya 464-8651, Japan
| | - Masaki Matsushita
- Department of Orthopaedic Surgery, Nagoya University, Graduate School of Medicine, Nagoya 466-8550, Aichi, Japan
| | - Hiroshi Kitoh
- Department of Orthopaedic Surgery, Nagoya University, Graduate School of Medicine, Nagoya 466-8550, Aichi, Japan
| | - Naoki Ishiguro
- Department of Orthopaedic Surgery, Nagoya University, Graduate School of Medicine, Nagoya 466-8550, Aichi, Japan
| | - Atsuo Nakayama
- Department of Embryology, Institute for Developmental Research, Aichi Human Service Center, Kasugai 480-0392, Japan
| | - Yujiro Higashi
- Department of Perinatology, Institute for Developmental Research, Aichi Human Service Center, Kasugai 480-0392, Japan
| | - Kazuo Shimozato
- Department of Maxillofacial Surgery, Aichi-Gakuin University School of Dentistry, Nagoya 464-8651, Japan
| | - Yoshihito Tokita
- Department of Maxillofacial Surgery, Aichi-Gakuin University School of Dentistry, Nagoya 464-8651, Japan, Department of Perinatology, Institute for Developmental Research, Aichi Human Service Center, Kasugai 480-0392, Japan,
| |
Collapse
|
33
|
Abstract
DNA repair normally protects the genome against mutations that threaten genome integrity and thus cell viability. However, growing evidence suggests that in the case of the Repeat Expansion Diseases, disorders that result from an increase in the size of a disease-specific microsatellite, the disease-causing mutation is actually the result of aberrant DNA repair. A variety of proteins from different DNA repair pathways have thus far been implicated in this process. This review will summarize recent findings from patients and from mouse models of these diseases that shed light on how these pathways may interact to cause repeat expansion.
Collapse
Affiliation(s)
- Xiao-Nan Zhao
- Section on Genomic Structure and Function Laboratory of Cell and Molecular Biology National Institute of Diabetes, Digestive and Kidney Diseases National Institutes of Health, Bethesda, MD 20892-0830, USA
| | - Karen Usdin
- Section on Genomic Structure and Function Laboratory of Cell and Molecular Biology National Institute of Diabetes, Digestive and Kidney Diseases National Institutes of Health, Bethesda, MD 20892-0830, USA.
| |
Collapse
|
34
|
Conformational behavior of polyalanine peptides with and without protecting groups of varying chain lengths: population of PP-II structure! J Mol Model 2015; 21:123. [PMID: 25903302 DOI: 10.1007/s00894-015-2671-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/31/2015] [Indexed: 10/23/2022]
Abstract
Oculopharyngeal muscular dystrophy (OPMD), a polyalanine myopathy, occurs due to expansion of homo-polyalanine stretch in normal polyadenylating binding protein nuclear 1 (PABPN1) protein from Ala10 to Ala11-17. Therefore, the conformational behavior of polyalanine peptides with n = 10-17, with and without terminal protecting groups, have been investigated with different starting geometries in water by molecular dynamics simulation studies. Alanine peptides are shown to give rise to unordered structure irrespective of starting geometry and not more than two residues at a stretch have the same/similar set of φ, ψ values. However, the final structure with terminal protecting groups look like β-strand. Unprotected poly-Ala peptides adopt twisted β-hairpin/multi hairpin like structure with increasing chain length. The number of residues having φ, ψ values in collagen region is found to be less in peptides with unprotected termini as compared to peptides with protected termini of same chain length. The results have been supported by recent synchrotron radiation circular dichroism spectroscopy of polyproline II and unordered secondary structures. Opening of the helical structure in poly-Ala peptides with protecting groups has been shown to take place from C-terminal and in peptides without protecting groups opening of helix starts from both terminals. Further, opening of helix takes more time in poly-Ala peptides without terminal protecting groups. The deviations in amide bond planarity have been discussed and compared with available experimental and computational results.
Collapse
|
35
|
Pawar AB, Deshpande SA, Gopal SM, Wassenaar TA, Athale CA, Sengupta D. Thermodynamic and kinetic characterization of transmembrane helix association. Phys Chem Chem Phys 2015; 17:1390-8. [DOI: 10.1039/c4cp03732d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The transient dimerization of transmembrane proteins is an important event in several cellular processes and here we use coarse-grain and meso-scale modeling methods to quantify their underlying dynamics.
Collapse
Affiliation(s)
| | | | | | - Tsjerk A. Wassenaar
- Department of Biology
- Computational Biology
- University of Erlangen-Nürnberg
- 91058 Erlangen
- Germany
| | | | | |
Collapse
|
36
|
Involvement of non-polyalanine (polyA) residues in aggregation of polyA proteins: Clue for inhibition of aggregation. Comput Biol Chem 2014; 53PB:318-323. [PMID: 25462338 DOI: 10.1016/j.compbiolchem.2014.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 11/11/2014] [Accepted: 11/11/2014] [Indexed: 11/21/2022]
Abstract
Presence of polyalanine (polyA) stretches in some proteins is found to be associated with their aggregation, which causes disorders in various developmental processes. In this work, inherent propensities towards aggregation of some residues, which are not part of the polyA stretches, have been identified by using the primary sequences of seven polyA proteins with the help of Betascan, PASTA and Tango programs and explored unambiguously. This provides a basis for proposing molecular mechanism of this type of aggregation. Reported suppression of aggregation of polyA proteins by chaperones like HSP40 and HSP70 is substantiated through molecular docking. The hydrophobic residues of identified aggregating region are found to be interacting with hydrophobic surface of chaperones. This suggests a crucial clue for possible way to inhibit the aggregation of such proteins.
Collapse
|
37
|
Cowan J, Tariq M, Ware SM. Genetic and functional analyses of ZIC3 variants in congenital heart disease. Hum Mutat 2014; 35:66-75. [PMID: 24123890 DOI: 10.1002/humu.22457] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 09/06/2013] [Accepted: 09/23/2013] [Indexed: 12/13/2022]
Abstract
Mutations in zinc-finger in cerebellum 3 (ZIC3) result in heterotaxy or isolated congenital heart disease (CHD). The majority of reported mutations cluster in zinc-finger domains. We previously demonstrated that many of these lead to aberrant ZIC3 subcellular trafficking. A relative paucity of N- and C-terminal mutations has, however, prevented similar analyses in these regions. Notably, an N-terminal polyalanine expansion was recently identified in a patient with VACTERL, suggesting a potentially distinct function for this domain. Here we report ZIC3 sequencing results from 440 unrelated patients with heterotaxy and CHD, the largest cohort yet examined. Variants were identified in 5.2% of sporadic male cases. This rate exceeds previous estimates of 1% and has important clinical implications for genetic testing and risk-based counseling. Eight of 11 were novel, including 5 N-terminal variants. Subsequent functional analyses included four additional reported but untested variants. Aberrant cytoplasmic localization and decreased luciferase transactivation were observed for all zinc-finger variants, but not for downstream or in-frame upstream variants, including both analyzed polyalanine expansions. Collectively, these results expand the ZIC3 mutational spectrum, support a higher than expected prevalence in sporadic cases, and suggest alternative functions for terminal mutations, highlighting a need for further study of these domains.
Collapse
|
38
|
Pelassa I, Corà D, Cesano F, Monje FJ, Montarolo PG, Fiumara F. Association of polyalanine and polyglutamine coiled coils mediates expansion disease-related protein aggregation and dysfunction. Hum Mol Genet 2014; 23:3402-20. [PMID: 24497578 PMCID: PMC4049302 DOI: 10.1093/hmg/ddu049] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The expansion of homopolymeric glutamine (polyQ) or alanine (polyA) repeats in certain proteins owing to genetic mutations induces protein aggregation and toxicity, causing at least 18 human diseases. PolyQ and polyA repeats can also associate in the same proteins, but the general extent of their association in proteomes is unknown. Furthermore, the structural mechanisms by which their expansion causes disease are not well understood, and these repeats are generally thought to misfold upon expansion into aggregation-prone β-sheet structures like amyloids. However, recent evidence indicates a critical role for coiled-coil (CC) structures in triggering aggregation and toxicity of polyQ-expanded proteins, raising the possibility that polyA repeats may as well form these structures, by themselves or in association with polyQ. We found through bioinformatics screenings that polyA, polyQ and polyQA repeats have a phylogenetically graded association in human and non-human proteomes and associate/overlap with CC domains. Circular dichroism and cross-linking experiments revealed that polyA repeats can form—alone or with polyQ and polyQA—CC structures that increase in stability with polyA length, forming higher-order multimers and polymers in vitro. Using structure-guided mutagenesis, we studied the relevance of polyA CCs to the in vivo aggregation and toxicity of RUNX2—a polyQ/polyA protein associated with cleidocranial dysplasia upon polyA expansion—and found that the stability of its polyQ/polyA CC controls its aggregation, localization and toxicity. These findings indicate that, like polyQ, polyA repeats form CC structures that can trigger protein aggregation and toxicity upon expansion in human genetic diseases.
Collapse
Affiliation(s)
| | - Davide Corà
- Center for Molecular Systems Biology, University of Torino, Torino 10123, Italy
| | - Federico Cesano
- Department of Chemistry, University of Torino, Torino 10125, Italy
| | - Francisco J. Monje
- Department of Neurophysiology and Neuropharmacology,Medical University of Vienna, Vienna 1090, Austria
| | - Pier Giorgio Montarolo
- Department of Neuroscience and
- National Institute of Neuroscience (INN), Torino 10125, Italy
| | - Ferdinando Fiumara
- Department of Neuroscience and
- To whom correspondence should be addressed at: Department of Neuroscience, University of Torino, Corso Raffaello 30, Torino 10125, Italy. Tel: +39-0116708486;
| |
Collapse
|
39
|
Goodwin M, Swanson MS. RNA-binding protein misregulation in microsatellite expansion disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:353-88. [PMID: 25201111 PMCID: PMC4483269 DOI: 10.1007/978-1-4939-1221-6_10] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RNA-binding proteins (RBPs) play pivotal roles in multiple cellular pathways from transcription to RNA turnover by interacting with RNA sequence and/or structural elements to form distinct RNA-protein complexes. Since these complexes are required for the normal regulation of gene expression, mutations that alter RBP functions may result in a cascade of deleterious events that lead to severe disease. Here, we focus on a group of hereditary disorders, the microsatellite expansion diseases, which alter RBP activities and result in abnormal neurological and neuromuscular phenotypes. While many of these diseases are classified as adult-onset disorders, mounting evidence indicates that disruption of normal RNA-protein interaction networks during embryogenesis modifies developmental pathways, which ultimately leads to disease manifestations later in life. Efforts to understand the molecular basis of these disorders has already uncovered novel pathogenic mechanisms, including RNA toxicity and repeat-associated non-ATG (RAN) translation, and current studies suggest that additional surprising insights into cellular regulatory pathways will emerge in the future.
Collapse
Affiliation(s)
- Marianne Goodwin
- Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine, Cancer Genetics Research Complex, 2033 Mowry Road, Gainesville, FL, 32610-3610, USA
| | | |
Collapse
|
40
|
Almeida B, Fernandes S, Abreu IA, Macedo-Ribeiro S. Trinucleotide repeats: a structural perspective. Front Neurol 2013; 4:76. [PMID: 23801983 PMCID: PMC3687200 DOI: 10.3389/fneur.2013.00076] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 06/04/2013] [Indexed: 11/29/2022] Open
Abstract
Trinucleotide repeat (TNR) expansions are present in a wide range of genes involved in several neurological disorders, being directly involved in the molecular mechanisms underlying pathogenesis through modulation of gene expression and/or the function of the RNA or protein it encodes. Structural and functional information on the role of TNR sequences in RNA and protein is crucial to understand the effect of TNR expansions in neurodegeneration. Therefore, this review intends to provide to the reader a structural and functional view of TNR and encoded homopeptide expansions, with a particular emphasis on polyQ expansions and its role at inducing the self-assembly, aggregation and functional alterations of the carrier protein, which culminates in neuronal toxicity and cell death. Detail will be given to the Machado-Joseph Disease-causative and polyQ-containing protein, ataxin-3, providing clues for the impact of polyQ expansion and its flanking regions in the modulation of ataxin-3 molecular interactions, function, and aggregation.
Collapse
Affiliation(s)
- Bruno Almeida
- Instituto de Biologia Molecular e Celular, Universidade do Porto , Porto , Portugal
| | | | | | | |
Collapse
|
41
|
Polyalanine tract disorders and neurocognitive phenotypes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 769:185-203. [PMID: 23560312 DOI: 10.1007/978-1-4614-5434-2_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Expansion of polyalanine tracts cause at least 9 inherited human diseases. Eight of these nine diseases are due to expansions in transcription factors and give rise to congenital disorders, many with neurocognitive phenotypes. Disease-causing expansions vary in length dependingupon the gene in question, with the severity of the associated clinical phenotype generally increasing with length of the polyalanine tract. The past decade has seen considerable progress in the understanding on how these mutations may arise and the functional effect of expanded polyalanine tracts on the resulting protein. Despite this progress, the pathogenic mechanism of expanded polyalanine tracts contributing to the associated disease states remains poorly understood. Gaining insights into the mechanisms that underlie the pathogenesis of different expanded polyalanine tract mutations will be a necessary step on the path to the design of potential treatment strategies for the associated diseases.
Collapse
|
42
|
Buttstedt A, Wostradowski T, Ihling C, Hause G, Sinz A, Schwarz E. Different morphology of amyloid fibrils originating from agitated and non-agitated conditions. Amyloid 2013; 20:86-92. [PMID: 23570235 DOI: 10.3109/13506129.2013.784962] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In vitro amyloid formation has been suggested to be a common property of any polypeptide chain depending on particular environmental conditions although in vivo amyloid fibril formation can be promoted by point mutations or triplet expansions. Here, we explored the influence of agitation on fibril formation of amyloidogenic alanine segments fused to Cold Shock Protein B (CspB) of Bacillus subtilis. While without agitation fibril formation was clearly dependent on the presence of an amyloidogenic alanine segment, fibril formation was independent of the amyloidogenic segment under agitation. Agitation even led to fibrillation of native CspB lacking the amyloidogenic segment. Furthermore, agitation not only influenced the kinetics of fibril formation, but also resulted in completely different fibril morphologies. These results indicate that experimental conditions can alter the region that undergoes a conformational change during in vitro fibrillation. Moreover, the data show that deductions from in vitro assays on in vivo fibril formation mechanisms are afflicted with a certain degree of uncertainty and therefore need to be cautiously discussed.
Collapse
Affiliation(s)
- Anja Buttstedt
- Facultatea de Zootehnie şi Biotehnologii, Universitatea de Ştiinţe Agricole şi Medicină Veterinară, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania.
| | | | | | | | | | | |
Collapse
|
43
|
Budworth H, McMurray CT. Bidirectional transcription of trinucleotide repeats: roles for excision repair. DNA Repair (Amst) 2013; 12:672-84. [PMID: 23669397 DOI: 10.1016/j.dnarep.2013.04.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Genomic instability at repetitive DNA regions in cells of the nervous system leads to a number of neurodegenerative and neuromuscular diseases, including those with an expanded trinucleotide repeat (TNR) tract at or nearby an expressed gene. Expansion causes disease when a particular base sequence is repeated beyond the normal range, interfering with the expression or properties of a gene product. Disease severity and onset depend on the number of repeats. As the length of the repeat tract grows, so does the size of the successive expansions and the likelihood of another unstable event. In fragile X syndrome, for example, CGG repeat instability and pathogenesis are not typically observed below tracts of roughly 50 repeats, but occur frequently at or above 55 repeats, and are virtually certain above 100-300 repeats. Recent evidence points to bidirectional transcription as a new aspect of TNR instability and pathophysiology. Bidirectional transcription of TNR genes produces novel proteins and/or regulatory RNAs that influence both toxicity and epigenetic changes in TNR promoters. Bidirectional transcription of the TNR tract appears to influence aspects of its stability, gene processing, splicing, gene silencing, and chemical modification of DNAs. Paradoxically, however, some of the same effects are observed on both the expanded TNR gene and on its normal gene counterpart. In this review, we discuss the possible normal and abnormal effects of bidirectional transcription on trinucleotide repeat instability, the role of DNA repair in causing, preventing, or maintaining methylation, and chromatin environment of TNR genes.
Collapse
Affiliation(s)
- Helen Budworth
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | |
Collapse
|
44
|
Helle JR, Barøy T, Misceo D, Braaten Ø, Fannemel M, Frengen E. Hyperphagia, mild developmental delay but apparently no structural brain anomalies in a boy without SOX3 expression. Am J Med Genet A 2013; 161A:1137-42. [PMID: 23463539 DOI: 10.1002/ajmg.a.35823] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 11/26/2012] [Indexed: 11/10/2022]
Abstract
The transcription factor SOX3 is widely expressed in early vertebrate brain development. In humans, duplication of SOX3 and polyalanine expansions at its C-terminus may cause intellectual disability and hypopituitarism. Sox3 knock-out mice show a variable phenotype including structural and functional anomalies affecting the branchial arches and midline cerebral structures such as the optic chiasm and the hypothalamo-pituitary axis. SOX3 is claimed to be required in normal brain development and function in mice and humans, as well as in pituitary and craniofacial development. We report on an 8-year-old boy with a 2.1 Mb deletion in Xq27.1q27.2, which was found to be inherited from his healthy mother. To our knowledge, this is the smallest deletion including the entire SOX3 gene in a male reported to date. He is mildly intellectually disabled with language delay, dysarthria, behavior problems, minor facial anomalies, and hyperphagia. Hormone levels including growth, adrenocorticotropic and thyroid stimulating hormones are normal. Magnetic resonance imaging (MRI) at age 6 years showed no obvious brain anomalies. Genetic redundancy between the three members of the B1 subfamily of SOX proteins during early human brain development likely explains the apparently normal development of brain structures in our patient who is nullisomic for SOX3.
Collapse
Affiliation(s)
- Johan Robert Helle
- Faculty of Medicine, Department of Medical Genetics, University of Oslo, Blindern, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
45
|
Bhattacharjee RB, Bag J. Depletion of nuclear poly(A) binding protein PABPN1 produces a compensatory response by cytoplasmic PABP4 and PABP5 in cultured human cells. PLoS One 2012; 7:e53036. [PMID: 23300856 PMCID: PMC3534090 DOI: 10.1371/journal.pone.0053036] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 11/22/2012] [Indexed: 12/03/2022] Open
Abstract
Background In vertebrates, poly(A) binding protein (PABP) is known to exist in five different isoforms. PABPs are primarily cytosolic with the exception of the nuclear PABP (PABPN1), which is located in the nucleus. Within the nucleus, PABPN1 is believed to bind to the poly(A) tail of nascent mRNA and along with cleavage and polyadenylation specificity factor (CPSF) define the length of the newly synthesized poly(A) tail. Methodology/Principal Findings The cellular role of PABP1 has been extensively studied over the years; however, the function of other PABPs remains poorly defined. In order to understand the role of PABPN1 in cellular mRNA metabolism and it’s interrelation with other PABPs, we depleted PABPN1 using RNAi in HeLa and HEK293 cells. Our results show that PABPN1 depletion did not have any effect on the poly(A) tail length, nuclear export of mRNA, mRNA translation, and transcription. Rather, PABPN1 depletion resulted in a compensatory response as observed by increased level of PABP5 and nuclear accumulation of PABP4. In addition, PABP4 was associated with the poly(A) tract of pre-mRNA and CPSF in PABPN1 depleted cells. Nevertheless, PABPN1 depletion significantly affected cell survival as evidenced by an increase in apoptosis markers: phosphorylated p53 and PUMA and as judged by the expression of ER stress marker GRP78. Conclusion Our results suggest that although function of PABPN1 may be compensated by nuclear translocation of PABP4 and perhaps by increase in the cytoplasmic abundance of PABP5, these were not sufficient to prevent apoptosis of cells. Thus PABPN1 may have a novel anti apoptotic role in mammalian cells.
Collapse
Affiliation(s)
| | - Jnanankur Bag
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
- * E-mail:
| |
Collapse
|
46
|
Gracanin A, van Wolferen ME, Sartorius CA, Brenkman AB, Schoonen WG, Mol JA. Canid progesterone receptors lack activation function 3 domain-dependent activity. Endocrinology 2012; 153:6104-13. [PMID: 23041671 DOI: 10.1210/en.2012-1793] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Progesterone regulates multiple behavioral, physiological, and pathological aspects of female reproductive biology through its two progesterone receptors (PRs), PR-B and the truncated PR-A. PR-B is necessary for mammary gland development in mice and, compared with PR-A, is overall a stronger transactivator of target genes due to an additional activation function 3 (AF3) domain. In dogs, known for their high sensitivity to progesterone-induced mammary cancer, the PR-B function was studied. Canine PR (cPR)-B appeared to contain multiple mutations within AF3 core sequence motifs and lacks N-terminal ligand-independent posttranslational modifications. Consequently, cPR-B has a weak transactivation potential on progesterone-responsive mouse mammary tumor virus-luc and progesterone response element 2-luc reporters transiently transfected in hamster, human, or canine cells and also on known target genes FKBP5 and SGK in doxycycline-inducible, stable transfected cPR-B in canine mammary cells. The cPR-B function was restored to the level of human PR-B by the replacement of canine AF3 domain with the human one. The lack of AF3 domain-dependent transcriptional activity was unique for canids (gray wolf, red fox, and raccoon dog) and not present in closely related caniform species (brown bear, gray seal, and domestic ferret). Despite the limited transactivation potential, canids develop normal mammary glands and frequently mammary tumors. Therefore, these results question the role of PR-B in breast cancer development and may explain unique features of canid reproduction.
Collapse
Affiliation(s)
- Ana Gracanin
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
47
|
Braun RJ. Mitochondrion-mediated cell death: dissecting yeast apoptosis for a better understanding of neurodegeneration. Front Oncol 2012; 2:182. [PMID: 23226681 PMCID: PMC3508457 DOI: 10.3389/fonc.2012.00182] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 11/12/2012] [Indexed: 01/29/2023] Open
Abstract
Mitochondrial damage and dysfunction are common hallmarks for neurodegenerative disorders, including Alzheimer, Parkinson, Huntington diseases, and the motor neuron disorder amyotrophic lateral sclerosis. Damaged mitochondria pivotally contribute to neurotoxicity and neuronal cell death in these disorders, e.g., due to their inability to provide the high energy requirements for neurons, their generation of reactive oxygen species (ROS), and their induction of mitochondrion-mediated cell death pathways. Therefore, in-depth analyses of the underlying molecular pathways, including cellular mechanisms controlling the maintenance of mitochondrial function, is a prerequisite for a better understanding of neurodegenerative disorders. The yeast Saccharomyces cerevisiae is an established model for deciphering mitochondrial quality control mechanisms and the distinct mitochondrial roles during apoptosis and programmed cell death. Cell death upon expression of various human neurotoxic proteins has been characterized in yeast, revealing neurotoxic protein-specific differences. This review summarizes how mitochondria are affected in these neurotoxic yeast models, and how they are involved in the execution and prevention of cell death. I will discuss to which extent this mimics the situation in other neurotoxic model systems, and how this may contribute to a better understanding of the mitochondrial roles in the human disorders.
Collapse
Affiliation(s)
- Ralf J Braun
- Institut für Zellbiologie, Universität Bayreuth Bayreuth, Germany
| |
Collapse
|
48
|
Di Lascio S, Bachetti T, Saba E, Ceccherini I, Benfante R, Fornasari D. Transcriptional dysregulation and impairment of PHOX2B auto-regulatory mechanism induced by polyalanine expansion mutations associated with congenital central hypoventilation syndrome. Neurobiol Dis 2012; 50:187-200. [PMID: 23103552 DOI: 10.1016/j.nbd.2012.10.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 10/09/2012] [Accepted: 10/20/2012] [Indexed: 11/26/2022] Open
Abstract
The PHOX2B transcription factor plays a crucial role in autonomic nervous system development. In humans, heterozygous mutations of the PHOX2B gene lead to congenital central hypoventilation syndrome (CCHS), a rare disorder characterized by a broad variety of symptoms of autonomic nervous system dysfunction including inadequate control of breathing. The vast majority of patients with CCHS are heterozygous for a polyalanine repeat expansion mutation involving a polyalanine tract of twenty residues in the C-terminus of PHOX2B. Although several lines of evidence support a dominant-negative mechanism for PHOX2B mutations in CCHS, the molecular effects of PHOX2B mutant proteins on the transcriptional activity of the wild-type protein have not yet been elucidated. As one of the targets of PHOX2B is the PHOX2B gene itself, we tested the transcriptional activity of wild-type and mutant proteins on the PHOX2B gene promoter, and found that the transactivation ability of proteins with polyalanine expansions decreased as a function of the length of the expansion, whereas DNA binding was severely affected only in the case of the mutant with the longest polyalanine tract (+13 alanine). Co-transfection experiments using equimolar amounts of PHOX2B wild-type and mutant proteins in order to simulate a heterozygous state in vitro and four different PHOX2B target gene regulatory regions (PHOX2B, PHOX2A, DBH, TLX2) clearly showed that the polyalanine expanded proteins alter the transcriptional activity of wild-type protein in a promoter-specific manner, without any clear correlation with the length of the expansion. Moreover, although reduced transactivation may be caused by retention of the wild-type protein in the cytoplasm or in nuclear aggregates, this mechanism can only be partially responsible for the pathogenesis of CCHS because of the reduction in cytoplasmic and nuclear accumulation when the +13 alanine mutant is co-expressed with wild-type protein, and the fact that the shortest polyalanine expansions do not form visible cytoplasmic aggregates. Deletion of the C-terminal of PHOX2B leads to a protein that correctly localizes in the nucleus but impairs PHOX2B wild-type transcriptional activity, thus suggesting that protein mislocalization is not the only mechanism leading to CCHS. The results of this study provide novel in vitro experimental evidence of a transcriptional dominant-negative effect of PHOX2B polyalanine mutant proteins on wild-type protein on two different PHOX2B target genes.
Collapse
Affiliation(s)
- Simona Di Lascio
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | | | |
Collapse
|
49
|
Cer RZ, Bruce KH, Donohue DE, Temiz NA, Mudunuri US, Yi M, Volfovsky N, Bacolla A, Luke BT, Collins, Stephens RM. Searching for non-B DNA-forming motifs using nBMST (non-B DNA motif search tool). CURRENT PROTOCOLS IN HUMAN GENETICS 2012; Chapter 18:Unit 18.7.1-22. [PMID: 22470144 PMCID: PMC3350812 DOI: 10.1002/0471142905.hg1807s73] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This unit describes basic protocols on using the non-B DNA Motif Search Tool (nBMST) to search for sequence motifs predicted to form alternative DNA conformations that differ from the canonical right-handed Watson-Crick double-helix, collectively known as non-B DNA, and on using the associated PolyBrowse, a GBrowse-based genomic browser. The nBMST is a Web-based resource that allows users to submit one or more DNA sequences to search for inverted repeats (cruciform DNA), mirror repeats (triplex DNA), direct/tandem repeats (slipped/hairpin structures), G4 motifs (tetraplex, G-quadruplex DNA), alternating purine-pyrimidine tracts (left-handed Z-DNA), and A-phased repeats (static bending). The nBMST is versatile, simple to use, does not require bioinformatics skills, and can be applied to any type of DNA sequences, including viral and bacterial genomes, up to an aggregate of 20 megabasepairs (Mbp).
Collapse
Affiliation(s)
- RZ Cer
- Advanced Biomedical Computing Center, Information Systems Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick MD 21702, USA
| | - KH Bruce
- Advanced Biomedical Computing Center, Information Systems Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick MD 21702, USA
| | - DE Donohue
- Advanced Biomedical Computing Center, Information Systems Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick MD 21702, USA
| | - NA Temiz
- Advanced Biomedical Computing Center, Information Systems Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick MD 21702, USA
| | - US Mudunuri
- Advanced Biomedical Computing Center, Information Systems Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick MD 21702, USA
| | - M Yi
- Advanced Biomedical Computing Center, Information Systems Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick MD 21702, USA
| | - N Volfovsky
- Advanced Biomedical Computing Center, Information Systems Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick MD 21702, USA
| | - A Bacolla
- Advanced Biomedical Computing Center, Information Systems Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick MD 21702, USA
- The Dell Pediatric Research Institute, Division of Toxicology and Pharmacology, The University of Texas at Austin, Austin TX 78723, USA
| | - BT Luke
- Advanced Biomedical Computing Center, Information Systems Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick MD 21702, USA
| | - Collins
- Advanced Biomedical Computing Center, Information Systems Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick MD 21702, USA
| | - RM Stephens
- Advanced Biomedical Computing Center, Information Systems Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick MD 21702, USA
| |
Collapse
|
50
|
Structural and functional insights into the heme-binding domain of the human soluble guanylate cyclase α2 subunit and heterodimeric α2β1. J Biol Inorg Chem 2012; 17:719-30. [DOI: 10.1007/s00775-012-0891-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Accepted: 03/05/2012] [Indexed: 10/28/2022]
|