1
|
Iglesias LP, Aguiar DC, Moreira FA. TRPV1 blockers as potential new treatments for psychiatric disorders. Behav Pharmacol 2022; 33:2-14. [PMID: 33136616 DOI: 10.1097/fbp.0000000000000603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The transient receptor potential vanilloid-1 channel (TRPV1) is responsible for decoding physical and chemical stimuli. TRPV1 is activated by capsaicin (a compound from chili peppers), heat (above 43°C) and acid environment, playing a major role in pain, inflammation and body temperature. Molecular and histological studies have suggested TRPV1 expression in specific brain regions, where it can be activated primarily by the endocannabinoid anandamide, fostering studies on its potential role in psychiatric disorders. TRPV1 blockers are effective in various animal models predictive of anxiolytic and antipanic activities, in addition to reducing conditioned fear. In models of antidepressant activity, these compounds reduce behavioral despair and promote active stress-coping behavior. TRPV1 blockers also reduce the effects of certain drugs of abuse and revert behavioral changes in animal models of neurodevelopmental disorders. The main limiting factor in developing TRPV1 blockers as therapeutic agents concerns their effects on body temperature, particularly hyperthermia. New compounds, which block specific states of the channel, could represent an alternative. Moreover, compounds blocking both TRPV1 and the anandamide-hydrolyzing enzyme, fatty acid amide hydrolase (FAAH), termed dual TRPV1/FAAH blockers, have been investigated with promising results. Overall, preclinical studies yield favorable results with TRPV1 blockers in animal models of psychiatric disorders.
Collapse
Affiliation(s)
- Lia P Iglesias
- Department of Pharmacology, Graduate School of Neuroscience
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gera, Brazil
| | - Daniele C Aguiar
- Department of Pharmacology, Graduate School of Neuroscience
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gera, Brazil
| | - Fabrício A Moreira
- Department of Pharmacology, Graduate School of Neuroscience
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gera, Brazil
| |
Collapse
|
2
|
Papa A, Pasquini S, Contri C, Gemma S, Campiani G, Butini S, Varani K, Vincenzi F. Polypharmacological Approaches for CNS Diseases: Focus on Endocannabinoid Degradation Inhibition. Cells 2022; 11:cells11030471. [PMID: 35159280 PMCID: PMC8834510 DOI: 10.3390/cells11030471] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 01/27/2023] Open
Abstract
Polypharmacology breaks up the classical paradigm of “one-drug, one target, one disease” electing multitarget compounds as potential therapeutic tools suitable for the treatment of complex diseases, such as metabolic syndrome, psychiatric or degenerative central nervous system (CNS) disorders, and cancer. These diseases often require a combination therapy which may result in positive but also negative synergistic effects. The endocannabinoid system (ECS) is emerging as a particularly attractive therapeutic target in CNS disorders and neurodegenerative diseases including Parkinson’s disease (PD), Alzheimer’s disease (AD), Huntington’s disease (HD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), stroke, traumatic brain injury (TBI), pain, and epilepsy. ECS is an organized neuromodulatory network, composed by endogenous cannabinoids, cannabinoid receptors type 1 and type 2 (CB1 and CB2), and the main catabolic enzymes involved in the endocannabinoid inactivation such as fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). The multiple connections of the ECS with other signaling pathways in the CNS allows the consideration of the ECS as an optimal source of inspiration in the development of innovative polypharmacological compounds. In this review, we focused our attention on the reported polypharmacological examples in which FAAH and MAGL inhibitors are involved.
Collapse
Affiliation(s)
- Alessandro Papa
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.P.); (S.G.); (G.C.)
| | - Silvia Pasquini
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.); (F.V.)
| | - Chiara Contri
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.); (F.V.)
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.P.); (S.G.); (G.C.)
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.P.); (S.G.); (G.C.)
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.P.); (S.G.); (G.C.)
- Correspondence: ; Tel.: +39-0577-234161
| | - Katia Varani
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.); (F.V.)
| | - Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.); (F.V.)
| |
Collapse
|
3
|
Goldstein Ferber S, Trezza V, Weller A. Early life stress and development of the endocannabinoid system: A bidirectional process in programming future coping. Dev Psychobiol 2021; 63:143-152. [PMID: 31849055 DOI: 10.1002/dev.21944] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/31/2019] [Accepted: 11/21/2019] [Indexed: 01/06/2023]
Abstract
The endocannabinoid system (ECS) critically regulates stress responsivity and emotional behavior throughout development. It regulates anxiety-like behaviors in humans and animal models. In addition, it is sensitive to early life stress at the gene expression level in a sex-dependent and region-dependent manner, and these changes are already evident in the adolescent brain. The ECS modulates the neuroendocrine and behavioral effects of stress, and is also capable of being affected by stress exposure itself. Early life stress interferes with the development of corticolimbic circuits, a major location of endocannabinoid receptors, and increases vulnerability to adult psychopathology. Early life stress alters the ontogeny of the ECS, resulting in a sustained deficit in its function, particularly within the hippocampus. Specifically, exposure to early stress results in bidirectional changes in anandamide and 2-AG tissue levels within the amygdala and hippocampus and reduces hippocampal endocannabinoid function at puberty. CB1 receptor densities across all brain regions are downregulated later in life following exposure to early life stress. Manipulations affecting the glucocorticoid and the endocannabinoid systems persistently adjust individual emotional responses and synaptic plasticity. This review aims to show the bidirectional trajectories of endocannabinoid modulation of emotionality in reaction to early life stress.
Collapse
Affiliation(s)
- Sari Goldstein Ferber
- Psychology Department and Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | | | - Aron Weller
- Psychology Department and Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
4
|
Cavarec F, Krauss P, Witkowski T, Broisat A, Ghezzi C, De Gois S, Giros B, Depaulis A, Deransart C. Early reduced dopaminergic tone mediated by D3 receptor and dopamine transporter in absence epileptogenesis. Epilepsia 2019; 60:2128-2140. [DOI: 10.1111/epi.16342] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Fanny Cavarec
- Grenoble Alpes University National Institute of Health and Medical Research U1216, Grenoble Alpes University Hospital Center Grenoble Institute of Neurosciences Grenoble France
| | - Philipp Krauss
- Grenoble Alpes University National Institute of Health and Medical Research U1216, Grenoble Alpes University Hospital Center Grenoble Institute of Neurosciences Grenoble France
- Department of Neurosurgery Rechts der Isar Hospital Munich Germany
| | - Tiffany Witkowski
- Grenoble Alpes University National Institute of Health and Medical Research U1216, Grenoble Alpes University Hospital Center Grenoble Institute of Neurosciences Grenoble France
- Clermont Auvergne University National Institute of Health and Medical Research U1240 Molecular Imaging and Theranostic Strategies Clermont‐Ferrand France
| | - Alexis Broisat
- National Institute of Health and Medical Research Mixed Unit of Research U1039 Bioclinical Radiopharmaceuticals Grenoble France
| | - Catherine Ghezzi
- National Institute of Health and Medical Research Mixed Unit of Research U1039 Bioclinical Radiopharmaceuticals Grenoble France
| | - Stéphanie De Gois
- Neuroscience Paris Seine National Institute of Health and Medical Research Mixed Unit of Research 1130/National Center for Scientific Research Mixed Unit of Research 8246 Sorbonne University Paris France
| | - Bruno Giros
- Neuroscience Paris Seine National Institute of Health and Medical Research Mixed Unit of Research 1130/National Center for Scientific Research Mixed Unit of Research 8246 Sorbonne University Paris France
- Department of Psychiatry Douglas Hospital McGill University Montreal Quebec Canada
| | - Antoine Depaulis
- Grenoble Alpes University National Institute of Health and Medical Research U1216, Grenoble Alpes University Hospital Center Grenoble Institute of Neurosciences Grenoble France
| | - Colin Deransart
- Grenoble Alpes University National Institute of Health and Medical Research U1216, Grenoble Alpes University Hospital Center Grenoble Institute of Neurosciences Grenoble France
| |
Collapse
|
5
|
Neuropsychiatric implications of transient receptor potential vanilloid (TRPV) channels in the reward system. Neurochem Int 2019; 131:104545. [PMID: 31494132 DOI: 10.1016/j.neuint.2019.104545] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 11/22/2022]
Abstract
Neuropsychiatric disorders (NPDs) exert a devastating impact on an individual's personal and social well-being, encompassing various conditions and brain anomalies that influence affect, cognition, and behavior. Because the pathophysiology of NPDs is multifactorial, the precise mechanisms underlying the development of such disorders remain unclear, representing a unique challenge in current neuropsychopharmacotherapy. Transient receptor potential vanilloid (TRPV) type channels are a family of ligand-gated ion channels that mainly include sensory receptors that respond to thermal, mechanical and chemical stimuli. TRPV channels are abundantly present in dopaminergic neurons, thus playing a pivotal role in the modulation of the reward system and in pathophysiology of diseases such as stress, anxiety, depression, schizophrenia, neurodegenerative disorders and substance abuse/addiction. Recent evidence has highlighted TRPV channels as potential targets for understanding modulation of the reward system and various forms of addiction (opioids, cocaine, amphetamines, alcohol, nicotine, cannabis). In this review, we discuss the distribution, physiological roles, ligands and therapeutic importance of TRPV channels with regard to NPDs and addiction biology.
Collapse
|
6
|
Seizures in patients with a phaeochromocytoma/paraganglioma (PPGL): A review of clinical cases and postulated pathological mechanisms. Rev Neurol (Paris) 2019; 175:495-505. [PMID: 31133278 DOI: 10.1016/j.neurol.2018.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/30/2018] [Accepted: 11/05/2018] [Indexed: 11/24/2022]
Abstract
The purpose of this work was to expound on the postulated pathological mechanisms through which pheochromocytoma/paraganglioma (PPGL) can cause seizures by conducting a comprehensive review of ten cases and several pathogenic mechanisms. The goal was to enhance awareness amongst doctors and researchers about patients with PPGL presenting with seizures. This would help decrease the risk of misdiagnosis and mismanagement in future clinics. Additionally, this review was written with the purpose to attract more attention to etiological explorations, particularly concerning rare causes of seizures, which is consistent with the idea that League Against Epilepsy (ILAE) has emphasized in the new version of the ILAE position paper published in 2017. It is of great importance to keep in mind the fact that seizures can constitute an atypical presentation of PPGL and to establish early diagnosis and accurate cure for these patients, especially in the presence of paroxysmal hypertension or other suggestive symptoms of PPGL.
Collapse
|
7
|
Endocannabinoid system, stress and HPA axis. Eur J Pharmacol 2018; 834:230-239. [DOI: 10.1016/j.ejphar.2018.07.039] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 07/19/2018] [Indexed: 11/19/2022]
|
8
|
Do psychoactive drugs have a therapeutic role in compulsivity? Studies on schedule-induced polydipsia. Psychopharmacology (Berl) 2018; 235:419-432. [PMID: 29313138 DOI: 10.1007/s00213-017-4819-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 12/21/2017] [Indexed: 12/13/2022]
Abstract
RATIONALE Clinical studies have shown that some psychoactive recreational drugs have therapeutic applications in anxiety, depression, and schizophrenia. However, to date, there are few studies on the therapeutic potential efficacy of recreational drugs in compulsive neuropsychiatric disorders. OBJECTIVES We explored the therapeutic potential of different psychoactive and psychedelic drugs in a preclinical model of compulsive behavior. METHODS Outbred male Wistar rats were selected as either high (HD) or low (LD) drinkers according to their behavior in schedule-induced polydipsia (SIP). Subsequently, we assessed the effects of acute administration of scopolamine (0.125, 0.25, and 0.5 mg/kg), methamphetamine (0.25, 0.5, 1.25, and 2.5 mg/kg), ketamine (1.25, 2.5, 5, and 10 mg/kg), cannabidiol (1 and 3 mg/kg), WIN21255-2 (0.5, 075, and 1 mg/kg), and AM404 (0.25 and 0.5 mg/kg) on compulsive drinking in SIP. RESULTS Scopolamine reduced dose-dependent compulsive drinking in HD compared with LD rats in SIP. Methamphetamine induced a dose-dependent inverted U-curve effect in both groups, in which lower doses increased and higher doses reduced compulsive drinking in SIP. Ketamine, cannabidiol, WIN21255-2, and AM404 did not have any relevant effects in SIP. CONCLUSIONS These data provide new evidence that low doses of scopolamine and intermediate doses of methamphetamine might therapeutically reduce compulsive behaviors and suggest that there is not a direct participation of the endocannabinoid system in compulsive behavior on SIP. The research in the underlying neurochemical mechanisms of these psychoactive drugs might provide an additional insight on new therapeutic targets in compulsive neuropsychiatric disorders.
Collapse
|
9
|
Extinction of avoidance behavior by safety learning depends on endocannabinoid signaling in the hippocampus. J Psychiatr Res 2017; 90:46-59. [PMID: 28222356 DOI: 10.1016/j.jpsychires.2017.02.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/24/2017] [Accepted: 02/02/2017] [Indexed: 12/29/2022]
Abstract
The development of exaggerated avoidance behavior is largely responsible for the decreased quality of life in patients suffering from anxiety disorders. Studies using animal models have contributed to the understanding of the neural mechanisms underlying the acquisition of avoidance responses. However, much less is known about its extinction. Here we provide evidence in mice that learning about the safety of an environment (i.e., safety learning) rather than repeated execution of the avoided response in absence of negative consequences (i.e., response extinction) allowed the animals to overcome their avoidance behavior in a step-down avoidance task. This process was context-dependent and could be blocked by pharmacological (3 mg/kg, s.c.; SR141716) or genetic (lack of cannabinoid CB1 receptors in neurons expressing dopamine D1 receptors) inactivation of CB1 receptors. In turn, the endocannabinoid reuptake inhibitor AM404 (3 mg/kg, i.p.) facilitated safety learning in a CB1-dependent manner and attenuated the relapse of avoidance behavior 28 days after conditioning. Safety learning crucially depended on endocannabinoid signaling at level of the hippocampus, since intrahippocampal SR141716 treatment impaired, whereas AM404 facilitated safety learning. Other than AM404, treatment with diazepam (1 mg/kg, i.p.) impaired safety learning. Drug effects on behavior were directly mirrored by drug effects on evoked activity propagation through the hippocampal trisynaptic circuit in brain slices: As revealed by voltage-sensitive dye imaging, diazepam impaired whereas AM404 facilitated activity propagation to CA1 in a CB1-dependent manner. In line with this, systemic AM404 enhanced safety learning-induced expression of Egr1 at level of CA1. Together, our data render it likely that AM404 promotes safety learning by enhancing information flow through the trisynaptic circuit to CA1.
Collapse
|
10
|
Babaie J, Sayyah M, Fard-Esfahani P, Golkar M, Gharagozli K. Contribution of dopamine neurotransmission in proconvulsant effect of Toxoplasma gondii infection in male mice. J Neurosci Res 2017; 95:1894-1905. [PMID: 28266723 DOI: 10.1002/jnr.24036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/18/2017] [Accepted: 01/18/2017] [Indexed: 12/19/2022]
Abstract
Epilepsy is one of the most common neurologic disorders worldwide with no distinguishable cause in 60% of patients. One-third of world's population is infected with Toxoplasma gondii (T. gondii). This intracellular parasite has high tendency to excitable cells including neurons. We assessed seizure susceptibility and involvement of dopaminergic system in male mice with acute and chronic T. gondii infection. Mice were infected by intraperitoneal injection of T. gondii cysts. Acute and chronic stages of infection were determined by quantification of SAG1/BAG1 transcripts and level of repetitive REP-529 sequence in the brain of mice by real-time PCR. Threshold of clonic seizures was measured by tail vein infusion of pentylenetetrazole. The infected mice were pretreated with D1 and D2 dopamine receptor antagonists, and seizure threshold was measured. Moreover, seizure threshold was determined after treatment of toxoplasmosis by sulfamethoxazole and trimethoprim. SAG1 level reached the maximum at week 2 after infection and then declined. The maximum level of BAG1 was observed at the week 3 and preserved till the week 8. REP-529 was detected at first week after infection, reached maximum at the week 3 and kept at this level till the eighth week. Threshold of seizures significantly decreased in both acute and chronic phases of infection. D1 and D2 receptors antagonists inhibited proconvulsant effect of toxoplasmosis. Chemotherapy inhibited parasite growth and multiplication, and returned seizure susceptibility to the level of non-infected mice. Dopaminergic neurotransmission participates in proconvulsant effect of T. gondii. The effect of parasite is eliminated by antibiotic therapy. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jalal Babaie
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran.,Molecular Parasitology Laboratory, Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Sayyah
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Majid Golkar
- Molecular Parasitology Laboratory, Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Kourosh Gharagozli
- Department of Neurology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
|
12
|
Androvicova R, Horacek J, Stark T, Drago F, Micale V. Endocannabinoid system in sexual motivational processes: Is it a novel therapeutic horizon? Pharmacol Res 2016; 115:200-208. [PMID: 27884725 DOI: 10.1016/j.phrs.2016.11.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 11/20/2016] [Accepted: 11/20/2016] [Indexed: 12/23/2022]
Abstract
The endocannabinoid system (ECS), which is composed of the cannabinoid receptors types 1 and 2 (CB1 and CB2) for marijuana's psychoactive ingredient Δ9-tetrahydrocannabinol (Δ9-THC), the endogenous ligands (AEA and 2-AG) and the enzymatic systems involved in their biosynthesis and degradation, recently emerged as important modulator of emotional and non-emotional behaviors. For centuries, in addition to its recreational actions, several contradictory claims regarding the effects of Cannabis use in sexual functioning and behavior (e.g. aphrodisiac vs anti-aphrodisiac) of both sexes have been accumulated. The identification of Δ9-THC and later on, the discovery of the ECS have opened a potential therapeutic target for sexual dysfunctions, given the partial efficacy of current pharmacological treatment. In agreement with the bidirectional modulation induced by cannabinoids on several behavioral responses, the endogenous cannabinoid AEA elicited biphasic effects on sexual behavior as well. The present article reviews current available knowledge on herbal, synthetic and endogenous cannabinoids with respect to the modulation of several aspects of sexuality in preclinical and human studies, highlighting their therapeutic potential.
Collapse
Affiliation(s)
- Renata Androvicova
- National Institute of Mental Health, Klecany, Czech Republic; 3rd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jiri Horacek
- National Institute of Mental Health, Klecany, Czech Republic; 3rd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tibor Stark
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy; CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
13
|
Svob Strac D, Pivac N, Smolders IJ, Fogel WA, De Deurwaerdere P, Di Giovanni G. Monoaminergic Mechanisms in Epilepsy May Offer Innovative Therapeutic Opportunity for Monoaminergic Multi-Target Drugs. Front Neurosci 2016; 10:492. [PMID: 27891070 PMCID: PMC5102907 DOI: 10.3389/fnins.2016.00492] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 10/13/2016] [Indexed: 12/22/2022] Open
Abstract
A large body of experimental and clinical evidence has strongly suggested that monoamines play an important role in regulating epileptogenesis, seizure susceptibility, convulsions, and comorbid psychiatric disorders commonly seen in people with epilepsy (PWE). However, neither the relative significance of individual monoamines nor their interaction has yet been fully clarified due to the complexity of these neurotransmitter systems. In addition, epilepsy is diverse, with many different seizure types and epilepsy syndromes, and the role played by monoamines may vary from one condition to another. In this review, we will focus on the role of serotonin, dopamine, noradrenaline, histamine, and melatonin in epilepsy. Recent experimental, clinical, and genetic evidence will be reviewed in consideration of the mutual relationship of monoamines with the other putative neurotransmitters. The complexity of epileptic pathogenesis may explain why the currently available drugs, developed according to the classic drug discovery paradigm of "one-molecule-one-target," have turned out to be effective only in a percentage of PWE. Although, no antiepileptic drugs currently target specifically monoaminergic systems, multi-target directed ligands acting on different monoaminergic proteins, present on both neurons and glia cells, may represent a new approach in the management of seizures, and their generation as well as comorbid neuropsychiatric disorders.
Collapse
Affiliation(s)
| | - Nela Pivac
- Division of Molecular Medicine, Rudjer Boskovic InstituteZagreb, Croatia
| | - Ilse J. Smolders
- Department of Pharmaceutical Chemistry and Drug Analysis, Vrije Universiteit BrusselBrussels, Belgium
| | - Wieslawa A. Fogel
- Department of Hormone Biochemistry, Medical University of LodzLodz, Poland
| | | | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, University of MaltaMsida, Malta
| |
Collapse
|
14
|
Abstract
Psychiatric and neurological disorders are mostly associated with the changes in neural calcium ion signaling pathways required for activity-triggered cellular events. One calcium channel family is the TRP cation channel family, which contains seven subfamilies. Results of recent papers have discovered that calcium ion influx through TRP channels is important. We discuss the latest advances in calcium ion influx through TRP channels in the etiology of psychiatric disorders. Activation of TRPC4, TRPC5, and TRPV1 cation channels in the etiology of psychiatric disorders such as anxiety, fear-associated responses, and depression modulate calcium ion influx. Evidence substantiates that anandamide and its analog (methanandamide) induce an anxiolytic-like effect via CB1 receptors and TRPV1 channels. Intracellular calcium influx induced by oxidative stress has an significant role in the etiology of bipolar disorders (BDs), and studies recently reported the important role of TRP channels such as TRPC3, TRPM2, and TRPV1 in converting oxidant or nitrogen radical signaling to cytosolic calcium ion homeostasis in BDs. The TRPV1 channel also plays a function in morphine tolerance and hyperalgesia. Among psychotropic drugs, amitriptyline and capsazepine seem to have protective effects on psychiatric disorders via the TRP channels. Some drugs such as cocaine and methamphetamine also seem to have an important role in alcohol addiction and substance abuse via activation of the TRPV1 channel. Thus, we explore the relationships between the etiology of psychiatric disorders and TRP channel-regulated mechanisms. Investigation of the TRP channels in psychiatric disorders holds the promise of the development of new drug treatments.
Collapse
Affiliation(s)
- Mustafa Nazıroğlu
- Neuroscience Research Center, Süleyman Demirel University, Dekanlık Binası, TR-32260, Isparta, Turkey.
| | | |
Collapse
|
15
|
Iannotti FA, Di Marzo V, Petrosino S. Endocannabinoids and endocannabinoid-related mediators: Targets, metabolism and role in neurological disorders. Prog Lipid Res 2016; 62:107-28. [DOI: 10.1016/j.plipres.2016.02.002] [Citation(s) in RCA: 266] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/25/2016] [Accepted: 02/26/2016] [Indexed: 12/19/2022]
|
16
|
The dual blocker of FAAH/TRPV1 N-arachidonoylserotonin reverses the behavioral despair induced by stress in rats and modulates the HPA-axis. Pharmacol Res 2014; 87:151-9. [DOI: 10.1016/j.phrs.2014.04.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 04/25/2014] [Accepted: 04/27/2014] [Indexed: 02/06/2023]
|
17
|
Heng LJ, Huang B, Guo H, Ma LT, Yuan WX, Song J, Wang P, Xu GZ, Gao GD. Blocking TRPV1 in nucleus accumbens inhibits persistent morphine conditioned place preference expression in rats. PLoS One 2014; 9:e104546. [PMID: 25118895 PMCID: PMC4131889 DOI: 10.1371/journal.pone.0104546] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/14/2014] [Indexed: 01/27/2023] Open
Abstract
The function of TRPV1 (transient receptor potential vanilloid subfamily, member 1) in the central nervous system is gradually elucidated. It has been recently proved to be expressed in nucleus accumbens (NAc), a region playing an essential role in mediating opioid craving and taking behaviors. Based on the general role of TRPV1 antagonist in blocking neural over-excitability by both pre- and post-synaptic mechanisms, TRPV1 antagonist capsazepine (CPZ) was tested for its ability to prohibit persistent opioid craving in rats. In the present study, we assessed the expression of TRPV1 in nucleus accumbens and investigated the effect of CPZ in bilateral nucleus accumbens on persistent morphine conditioned place preference (mCPP) in rats. We also evaluated the side-effect of CPZ on activity by comparing cross-beam times between groups. We found that morphine conditioned place preference increased the TRPV1 expression and CPZ attenuated morphine conditioned place preference in a dose-dependent and target-specific manner after both short- and long-term spontaneous withdrawal, reflected by the reduction of the increased time in morphine-paired side. CPZ (10 nM) could induce prolonged and stable inhibition of morphine conditioned place preference expression. More importantly, CPZ did not cause dysfunction of activity in the subjects tested, which indicates the inhibitory effect was not obtained at the sacrifice of regular movement. Collectively, these results indicated that injection of TRPV1 antagonist in nucleus accumbens is capable of attenuating persistent morphine conditioned place preference without affecting normal activity. Thus, TRPV1 antagonist is one of the promising therapeutic drugs for the treatment of opioid addiction.
Collapse
Affiliation(s)
- Li-Jun Heng
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Neurosurgery, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei, China
| | - Bo Huang
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Heng Guo
- Department of Neurosurgery, PLA Chengdu General Hospital, Chengdu, Sichuan, China
| | - Lian-Ting Ma
- Department of Neurosurgery, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei, China
| | - Wei-Xin Yuan
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jian Song
- Department of Neurosurgery, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei, China
| | - Peng Wang
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Neurosurgery, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei, China
| | - Guo-Zheng Xu
- Department of Neurosurgery, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei, China
- * E-mail: (GDG); (GZX)
| | - Guo-Dong Gao
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi'an, Shaanxi, China
- * E-mail: (GDG); (GZX)
| |
Collapse
|
18
|
Vilela LR, Medeiros DC, de Oliveira ACP, Moraes MF, Moreira FA. Anticonvulsant effects of N-arachidonoyl-serotonin, a dual fatty acid amide hydrolase enzyme and transient receptor potential vanilloid type-1 (TRPV1) channel blocker, on experimental seizures: the roles of cannabinoid CB1 receptors and TRPV1 channels. Basic Clin Pharmacol Toxicol 2014; 115:330-4. [PMID: 24674273 DOI: 10.1111/bcpt.12232] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/04/2014] [Indexed: 01/21/2023]
Abstract
Selective blockade of anandamide hydrolysis, through the inhibition of the FAAH enzyme, has anticonvulsant effects, which are mediated by CB1 receptors. Anandamide, however, also activates TRPV1 channels, generally with an opposite outcome on neuronal modulation. Thus, we suggested that the dual FAAH and TRPV1 blockade with N-arachidonoyl-serotonin (AA-5-HT) would be efficacious in inhibiting pentylenetetrazole (PTZ)-induced seizures in mice. We also investigated the contribution of CB1 activation and TRPV1 blockade to the overt effect of AA-5-HT. In the first experiment, injection of AA-5-HT (0.3-3.0 mg/kg) delayed the onset and reduced the duration of PTZ (60 mg)-induced seizures in mice. These effects were reversed by pre-treatment with the CB1 antagonist, AM251 (1.0-3.0 mg/kg). Finally, we observed that administration of the selective TRPV1 antagonist, SB366791 (0.1-1 mg/kg), did not entirely mimic AA-5-HT effects. In conclusion, AA-5-HT alleviates seizures in mice, an effect inhibited by CB1 antagonism, but not completely mimicked by TRPV1 blockage, indicating that the overall effect of AA-5-HT seems to depend mainly on CB1 receptors. This may represent a new strategy for the development of drugs against seizures, epilepsies and related syndromes.
Collapse
Affiliation(s)
- Luciano R Vilela
- Graduate School in Neuroscience, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | |
Collapse
|
19
|
McPartland JM, Guy GW, Di Marzo V. Care and feeding of the endocannabinoid system: a systematic review of potential clinical interventions that upregulate the endocannabinoid system. PLoS One 2014; 9:e89566. [PMID: 24622769 PMCID: PMC3951193 DOI: 10.1371/journal.pone.0089566] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 01/21/2014] [Indexed: 12/31/2022] Open
Abstract
Background The “classic” endocannabinoid (eCB) system includes the cannabinoid receptors CB1 and CB2, the eCB ligands anandamide (AEA) and 2-arachidonoylglycerol (2-AG), and their metabolic enzymes. An emerging literature documents the “eCB deficiency syndrome” as an etiology in migraine, fibromyalgia, irritable bowel syndrome, psychological disorders, and other conditions. We performed a systematic review of clinical interventions that enhance the eCB system—ways to upregulate cannabinoid receptors, increase ligand synthesis, or inhibit ligand degradation. Methodology/Principal Findings We searched PubMed for clinical trials, observational studies, and preclinical research. Data synthesis was qualitative. Exclusion criteria limited the results to 184 in vitro studies, 102 in vivo animal studies, and 36 human studies. Evidence indicates that several classes of pharmaceuticals upregulate the eCB system, including analgesics (acetaminophen, non-steroidal anti-inflammatory drugs, opioids, glucocorticoids), antidepressants, antipsychotics, anxiolytics, and anticonvulsants. Clinical interventions characterized as “complementary and alternative medicine” also upregulate the eCB system: massage and manipulation, acupuncture, dietary supplements, and herbal medicines. Lifestyle modification (diet, weight control, exercise, and the use of psychoactive substances—alcohol, tobacco, coffee, cannabis) also modulate the eCB system. Conclusions/Significance Few clinical trials have assessed interventions that upregulate the eCB system. Many preclinical studies point to other potential approaches; human trials are needed to explore these promising interventions.
Collapse
Affiliation(s)
- John M. McPartland
- GW Pharmaceuticals, Porton Down Science Park, Salisbury, Wiltshire, United Kingdom
- Department of Family Medicine, University of Vermont, Burlington, Vermont, United States of America
- * E-mail:
| | - Geoffrey W. Guy
- GW Pharmaceuticals, Porton Down Science Park, Salisbury, Wiltshire, United Kingdom
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomoleculare, CNR, Via Campi Flegrei, Pozzuoli, Napoli, Italy
| |
Collapse
|
20
|
Burattini C, Battistini G, Tamagnini F, Aicardi G. Low-frequency stimulation evokes serotonin release in the nucleus accumbens and induces long-term depression via production of endocannabinoid. J Neurophysiol 2014; 111:1046-55. [DOI: 10.1152/jn.00498.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The nucleus accumbens (NAc), a major component of the mesolimbic system, is involved in the mediation of reinforcing and addictive properties of many dependence-producing drugs. Glutamatergic synapses within the NAc can express plasticity, including a form of endocannabinoid (eCB)-long-term depression (LTD). Recent evidences demonstrate cross talk between eCB signaling pathways and those of other receptor systems, including serotonin (5-HT); the extensive colocalization of CB1 and 5-HT receptors within the NAc suggests the potential for interplay between them. In the present study, we found that 20-min low-frequency (4 Hz) stimulation (LFS-4Hz) of glutamatergic afferences in rat brain slices induces a novel form of eCB-LTD in the NAc core, which requires 5-HT2 and CB1 receptor activation and L-type voltage-gated Ca2+ channel opening. Moreover, we found that exogenous 5-HT application (5 μM, 20 min) induces an analogous LTD (5-HT-LTD) at the same synapses, requiring the activation of the same receptors and the opening of the same Ca2+ channels; LFS-4Hz-LTD and 5-HT-LTD were mutually occlusive. Present results suggest that LFS-4Hz induces the release of 5-HT, which acts at 5-HT2 postsynaptic receptors, increasing Ca2+ influx through L-type voltage-gated channels and 2-arachidonoylglycerol production and release; the eCB travels retrogradely and binds to presynaptic CB1 receptors, causing a long-lasting decrease of glutamate release, resulting in LTD. These observations might be helpful to understand the neurophysiological mechanisms underlying drug addiction, major depression, and other psychiatric disorders characterized by dysfunction of 5-HT neurotransmission in the NAc.
Collapse
Affiliation(s)
- Costanza Burattini
- Department for Life Quality Studies, University of Bologna, Bologna, Italy; and
| | - Giulia Battistini
- Department for Life Quality Studies, University of Bologna, Bologna, Italy; and
| | - Francesco Tamagnini
- Department for Life Quality Studies, University of Bologna, Bologna, Italy; and
| | - Giorgio Aicardi
- Department for Life Quality Studies, University of Bologna, Bologna, Italy; and
- Interdepartmental Center “Luigi Galvani” for the Study of Biophysics, Bioinformatics and Biocomplexity, University of Bologna, Bologna, Italy
| |
Collapse
|
21
|
Leggio GM, Salomone S, Bucolo C, Platania C, Micale V, Caraci F, Drago F. Dopamine D3 receptor as a new pharmacological target for the treatment of depression. Eur J Pharmacol 2013; 719:25-33. [DOI: 10.1016/j.ejphar.2013.07.022] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 06/05/2013] [Accepted: 07/01/2013] [Indexed: 12/12/2022]
|
22
|
Shinjyo N, Piscitelli F, Verde R, Di Marzo V. Impact of omega-6 polyunsaturated fatty acid supplementation and γ-aminobutyric acid on astrogliogenesis through the endocannabinoid system. J Neurosci Res 2013; 91:943-53. [PMID: 23633391 DOI: 10.1002/jnr.23231] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 03/04/2013] [Accepted: 03/11/2013] [Indexed: 01/18/2023]
Abstract
Neural stem cells express cannabinoid CB1 and CB2 receptors and the enzymes for the biosynthesis and metabolism of endocannabinoids (eCBs). Here we have studied the role of neural stem cell-derived eCBs as autonomous regulatory factors during differentiation. First, we examined the effect of an indirect eCB precursor linoleic acid (LA), a major dietary omega-6 fatty acid, on the eCB system in neural stem/progenitor cells (NSPCs) cultured in DMEM/F12 supplemented with N2 (N2/DF) as monolayer cells. LA upregulated eCB system-related genes and 2-arachidonoylglycerol (2-AG), but not anandamide (AEA), levels. Glial fibrillary acidic protein (GFAP) was significantly higher under LA-enriched conditions, and this effect was inhibited by the cannabinoid receptor type-1 (CB1) antagonist AM251. Second, the levels of AEA and 2-AG, as well as of the mRNA of eCB system-related genes, were measured in NSPCs after γ-aminobutyric acid (GABA) treatment. GABA upregulated AEA levels significantly in LA-enriched cultures and increased the mRNA expression of the 2-AG-degrading enzyme monoacylglycerol lipase. These effects of GABA were reproduced under culture conditions using neurobasal media supplemented with B27, which is commonly used for neurosphere culture. GABA stimulated astroglial differentiation in this medium as indicated by increased GFAP levels. This effect was abolished by AM251, suggesting the involvement of AEA and CB1 in GABA-induced astrogliogenesis. This study highlights the importance of eCB biosynthesis and CB1 signalling in the autonomous regulation of NSPCs and the influence of the eCB system on astrogliogenesis induced by nutritional factors or neurotransmitters, such as LA and GABA.
Collapse
Affiliation(s)
- Noriko Shinjyo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, C.N.R., Pozzuoli, Italy
| | | | | | | |
Collapse
|
23
|
Micale V, Di Marzo V, Sulcova A, Wotjak CT, Drago F. Endocannabinoid system and mood disorders: Priming a target for new therapies. Pharmacol Ther 2013; 138:18-37. [DOI: 10.1016/j.pharmthera.2012.12.002] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
24
|
Fernandes AR, Easton AC, De Souza Silva MA, Schumann G, Müller CP, Desrivières S. Lentiviral-mediated gene delivery reveals distinct roles of nucleus accumbens dopamine D2 and D3 receptors in novelty- and light-induced locomotor activity. Eur J Neurosci 2012; 35:1344-53. [DOI: 10.1111/j.1460-9568.2012.08028.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Adhikari A, Topiwala MA, Gordon JA. Single units in the medial prefrontal cortex with anxiety-related firing patterns are preferentially influenced by ventral hippocampal activity. Neuron 2011; 71:898-910. [PMID: 21903082 DOI: 10.1016/j.neuron.2011.07.027] [Citation(s) in RCA: 221] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2011] [Indexed: 10/17/2022]
Abstract
The medial prefrontal cortex (mPFC) and ventral hippocampus (vHPC) functionally interact during innate anxiety tasks. To explore the consequences of this interaction, we examined task-related firing of single units from the mPFC of mice exploring standard and modified versions of the elevated plus maze (EPM), an innate anxiety paradigm. Hippocampal local field potentials (LFPs) were simultaneously monitored. The population of mPFC units distinguished between safe and aversive locations within the maze, regardless of the nature of the anxiogenic stimulus. Strikingly, mPFC units with stronger task-related activity were more strongly coupled to theta-frequency activity in the vHPC LFP. Lastly, task-related activity was inversely correlated with behavioral measures of anxiety. These results clarify the role of the vHPC-mPFC circuit in innate anxiety and underscore how specific inputs may be involved in the generation of behaviorally relevant neural activity within the mPFC.
Collapse
Affiliation(s)
- Avishek Adhikari
- Department of Biological Sciences, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
26
|
Akirav I, Fattore L. Cannabinoid CB1 and Dopamine D1 Receptors Partnership in the Modulation of Emotional Neural Processing. Front Behav Neurosci 2011; 5:67. [PMID: 22016727 PMCID: PMC3192322 DOI: 10.3389/fnbeh.2011.00067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 09/28/2011] [Indexed: 11/24/2022] Open
Affiliation(s)
- Irit Akirav
- Department of Psychology, University of Haifa Haifa, Israel
| | | |
Collapse
|
27
|
Inhibition of fatty acid amide hydrolase modulates anxiety-like behavior in PCP-treated rats. Pharmacol Biochem Behav 2011; 98:583-6. [DOI: 10.1016/j.pbb.2011.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 03/08/2011] [Accepted: 03/13/2011] [Indexed: 01/07/2023]
|
28
|
Sensitization to cocaine is inhibited after intra-accumbal GR103691 or rimonabant, but it is enhanced after co-infusion indicating functional interaction between accumbens D(3) and CB1 receptors. Psychopharmacology (Berl) 2011; 214:949-59. [PMID: 21128069 DOI: 10.1007/s00213-010-2104-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 11/17/2010] [Indexed: 10/18/2022]
Abstract
RATIONALE Dopamine D(3) receptors and cannabinoid CB(1) receptors are both expressed in the nucleus accumbens, and they have been involved in motor sensitization to cocaine. The objectives were: (1) to study the effects of blockade of these receptors on sensitization to repeated cocaine, by using GR103691, D(3) receptor blocker, and rimonabant, CB(1) receptor ligand, and (2) to discern if both receptors interact by co-infusing them. MATERIALS AND METHODS Cocaine (10 mg/kg) was injected daily for 3 days (induction phase) and later on day 8 (expression phase), and locomotor activity was measured during 2 h after cocaine. GR103691 and rimonabant were bilaterally injected (0.5 μl volume of each infusion) in the nucleus accumbens through cannulae (GR103691, 0, 4.85, and 9.7 μg/μl; rimonabant, 0, 0.5, and 1.5 μg/μl), before cocaine, during either induction or expression phases of sensitization. RESULTS The findings indicated that sensitizing effects of cocaine were abolished after D(3) receptor blocking during both induction and expression phases, as well as rimonabant infusion during the expression (not induction) phase. A functional interaction between both receptors was also observed, because if GR103691 was injected during induction and rimonabant during expression, sensitizing effects of cocaine were observed to be normal or further enhanced. CONCLUSION Dopamine D(3) receptors within the nucleus accumbens are critical for the development and consolidation of sensitization, and cannabinoid CB(1) receptors are critical for the expression of sensitization. Co-blockade of D(3) and CB(1) receptors exert opposite effects to blockade of these receptors separately, revealing the existence of a functional interaction between them.
Collapse
|
29
|
Zarrindast MR, Mahboobi S, Sadat-Shirazi MS, Ahmadi S. Anxiolytic-like effect induced by the cannabinoid CB1 receptor agonist, arachydonilcyclopropylamide (ACPA), in the rat amygdala is mediated through the D1 and D2 dopaminergic systems. J Psychopharmacol 2011; 25:131-40. [PMID: 20685770 DOI: 10.1177/0269881110376688] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the present study the influence of the dopaminergic system(s) of the amygdala on the anxiolytic-like effect of the cannabinoid CB1 receptor agonist, arachydonilcyclopropylamide (ACPA), in male Wistar rats was investigated. An elevated plus-maze test of anxiety was used to assess anxiety-like behaviors. The results showed that bilateral intra-amygdala injections of ACPA (0.125, 1.25 and 5 ng/rat) and the mixed dopamine D1/D2 receptor agonist, apomorphine, at different doses (0.001, 0.01 and 0.1 µg/rat) increased percentage open arm time (%OAT) and percentage open arm entries (%OAE), indicating an anxiolytic-like effect for both of the drugs. In contrast, intra-amygdala administration of the dopamine D1 receptor antagonist SCH23390 (0.5 and 1 µg/rat) and the dopamine D2 receptor antagonist, sulpiride (2 and 3 µg/rat) decreased %OAT and %OAE, suggesting an anxiogenic-like effect for both of the drugs. Interestingly, pretreatment with a sub-effective dose of apomorphine (0.0005 µg/rat) increased, while SCH23390 (0.25 µg/rat) and sulpiride (1.5 µg/rat) decreased the anxiolytic-like effect of ACPA. It can be concluded that the dopaminergic system of the amygdala may be involved, at least partly, in the anxiolytic-like effects induced by ACPA in the rat amygdala.
Collapse
Affiliation(s)
- Mohammad Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | | | |
Collapse
|
30
|
Zavitsanou K, Dalton VS, Wang H, Newson P, Chahl LA. Receptor changes in brain tissue of rats treated as neonates with capsaicin. J Chem Neuroanat 2010; 39:248-55. [DOI: 10.1016/j.jchemneu.2010.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 01/19/2010] [Accepted: 01/19/2010] [Indexed: 02/03/2023]
|
31
|
Enhanced cognitive performance of dopamine D3 receptor “knock-out” mice in the step-through passive-avoidance test: Assessing the role of the endocannabinoid/endovanilloid systems. Pharmacol Res 2010; 61:531-6. [DOI: 10.1016/j.phrs.2010.02.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 02/02/2010] [Accepted: 02/02/2010] [Indexed: 02/03/2023]
|
32
|
Cannabinoid-dopamine interaction in the pathophysiology and treatment of CNS disorders. CNS Neurosci Ther 2010; 16:e72-91. [PMID: 20406253 DOI: 10.1111/j.1755-5949.2010.00144.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Endocannabinoids and their receptors, mainly the CB(1) receptor type, function as a retrograde signaling system in many synapses within the CNS, particularly in GABAergic and glutamatergic synapses. They also play a modulatory function on dopamine (DA) transmission, although CB(1) receptors do not appear to be located in dopaminergic terminals, at least in the major brain regions receiving dopaminergic innervation, e.g., the caudate-putamen and the nucleus accumbens/prefrontal cortex. Therefore, the effects of cannabinoids on DA transmission and DA-related behaviors are generally indirect and exerted through the modulation of GABA and glutamate inputs received by dopaminergic neurons. Recent evidence suggest, however, that certain eicosanoid-derived cannabinoids may directly activate TRPV(1) receptors, which have been found in some dopaminergic pathways, thus allowing a direct regulation of DA function. Through this direct mechanism or through indirect mechanisms involving GABA or glutamate neurons, cannabinoids may interact with DA transmission in the CNS and this has an important influence in various DA-related neurobiological processes (e.g., control of movement, motivation/reward) and, particularly, on different pathologies affecting these processes like basal ganglia disorders, schizophrenia, and drug addiction. The present review will address the current literature supporting these cannabinoid-DA interactions, with emphasis in aspects dealing with the neurochemical, physiological, and pharmacological/therapeutic bases of these interactions.
Collapse
|