1
|
Shimizu K, Inuzuka H, Tokunaga F. The interplay between cell death and senescence in cancer. Semin Cancer Biol 2025; 108:1-16. [PMID: 39557316 DOI: 10.1016/j.semcancer.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Cellular senescence is a state of permanent proliferative arrest that occurs in response to DNA damage-inducing endogenous and exogenous stresses, and is often accompanied by dynamic molecular changes such as a senescence-associated secretory phenotype (SASP). Accumulating evidence indicates that age-associated increases in the upstream and downstream signals of regulated cell death, including apoptosis, necroptosis, pyroptosis, and ferroptosis, are closely related to the induction of cellular senescence and its phenotype. Furthermore, elevated levels of pro-inflammatory SASP factors with aging can be both a cause and consequence of several cell death modes, suggesting the reciprocal effects of cellular senescence and cells undergoing regulated cell death. Here, we review the critical molecular pathways of the regulated cell death forms and describe the crosstalk between aging-related signals and cancer. In addition, we discuss how targeting regulated cell death could be harnessed in therapeutic interventions for cancer. ABBREVIATIONS: Abbreviations that are not standard in this field are defined at their first occurrence in the article and are used consistently throughout the article.
Collapse
Affiliation(s)
- Kouhei Shimizu
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan.
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA02215, USA
| | - Fuminori Tokunaga
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| |
Collapse
|
2
|
Salimi Z, Afsharinasab M, Rostami M, Eshaghi Milasi Y, Mousavi Ezmareh SF, Sakhaei F, Mohammad-Sadeghipour M, Rasooli Manesh SM, Asemi Z. Iron chelators: as therapeutic agents in diseases. Ann Med Surg (Lond) 2024; 86:2759-2776. [PMID: 38694398 PMCID: PMC11060230 DOI: 10.1097/ms9.0000000000001717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/03/2024] [Indexed: 05/04/2024] Open
Abstract
The concentration of iron is tightly regulated, making it an essential element. Various cellular processes in the body rely on iron, such as oxygen sensing, oxygen transport, electron transfer, and DNA synthesis. Iron excess can be toxic because it participates in redox reactions that catalyze the production of reactive oxygen species and elevate oxidative stress. Iron chelators are chemically diverse; they can coordinate six ligands in an octagonal sequence. Because of the ability of chelators to trap essential metals, including iron, they may be involved in diseases caused by oxidative stress, such as infectious diseases, cardiovascular diseases, neurodegenerative diseases, and cancer. Iron-chelating agents, by tightly binding to iron, prohibit it from functioning as a catalyst in redox reactions and transfer iron and excrete it from the body. Thus, the use of iron chelators as therapeutic agents has received increasing attention. This review investigates the function of various iron chelators in treating iron overload in different clinical conditions.
Collapse
Affiliation(s)
- Zohreh Salimi
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan
| | - Mehdi Afsharinasab
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran
| | - Mehdi Rostami
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad
| | - Yaser Eshaghi Milasi
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan
| | - Seyedeh Fatemeh Mousavi Ezmareh
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan
| | - Fariba Sakhaei
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan
| | - Maryam Mohammad-Sadeghipour
- Department of Clinical Biochemistry, Afzalipoor Faculty of Medicine, Kerman University of Medical Sciences, Kerman
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| |
Collapse
|
3
|
Abstract
Regulated cell death mediated by dedicated molecular machines, known as programmed cell death, plays important roles in health and disease. Apoptosis, necroptosis and pyroptosis are three such programmed cell death modalities. The caspase family of cysteine proteases serve as key regulators of programmed cell death. During apoptosis, a cascade of caspase activation mediates signal transduction and cellular destruction, whereas pyroptosis occurs when activated caspases cleave gasdermins, which can then form pores in the plasma membrane. Necroptosis, a form of caspase-independent programmed necrosis mediated by RIPK3 and MLKL, is inhibited by caspase-8-mediated cleavage of RIPK1. Disruption of cellular homeostatic mechanisms that are essential for cell survival, such as normal ionic and redox balance and lysosomal flux, can also induce cell death without invoking programmed cell death mechanisms. Excitotoxicity, ferroptosis and lysosomal cell death are examples of such cell death modes. In this Review, we provide an overview of the major cell death mechanisms, highlighting the latest insights into their complex regulation and execution, and their relevance to human diseases.
Collapse
Affiliation(s)
- Junying Yuan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Shanghai, China.
- Shanghai Key Laboratory of Aging Studies, Shanghai, China.
| | - Dimitry Ofengeim
- Sanofi, Rare and Neurological Diseases Research, Cambridge, MA, USA.
| |
Collapse
|
4
|
Levi S, Ripamonti M, Moro AS, Cozzi A. Iron imbalance in neurodegeneration. Mol Psychiatry 2024; 29:1139-1152. [PMID: 38212377 PMCID: PMC11176077 DOI: 10.1038/s41380-023-02399-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024]
Abstract
Iron is an essential element for the development and functionality of the brain, and anomalies in its distribution and concentration in brain tissue have been found to be associated with the most frequent neurodegenerative diseases. When magnetic resonance techniques allowed iron quantification in vivo, it was confirmed that the alteration of brain iron homeostasis is a common feature of many neurodegenerative diseases. However, whether iron is the main actor in the neurodegenerative process, or its alteration is a consequence of the degenerative process is still an open question. Because the different iron-related pathogenic mechanisms are specific for distinctive diseases, identifying the molecular mechanisms common to the various pathologies could represent a way to clarify this complex topic. Indeed, both iron overload and iron deficiency have profound consequences on cellular functioning, and both contribute to neuronal death processes in different manners, such as promoting oxidative damage, a loss of membrane integrity, a loss of proteostasis, and mitochondrial dysfunction. In this review, with the attempt to elucidate the consequences of iron dyshomeostasis for brain health, we summarize the main pathological molecular mechanisms that couple iron and neuronal death.
Collapse
Affiliation(s)
- Sonia Levi
- Vita-Salute San Raffaele University, Milano, Italy.
- IRCCS San Raffaele Scientific Institute, Milano, Italy.
| | | | - Andrea Stefano Moro
- Vita-Salute San Raffaele University, Milano, Italy
- Department of Psychology, Sigmund Freud University, Milan, Italy
| | - Anna Cozzi
- IRCCS San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
5
|
Jin X, Jiang C, Zou Z, Huang H, Li X, Xu S, Tan R. Ferritinophagy in the etiopathogenic mechanism of related diseases. J Nutr Biochem 2023; 117:109339. [PMID: 37061010 DOI: 10.1016/j.jnutbio.2023.109339] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 04/17/2023]
Abstract
Iron is an essential trace element that is involved in a variety of physiological processes. Ferritinophagy is selective autophagy mediated by nuclear receptor coactivator 4 (NCOA4), which regulates iron homeostasis in the body. Upon iron depletion or starvation, ferritinophagy is activated, releasing large amounts of Fe2+ and increasing reactive oxygen species (ROS), leading to ferroptosis. This plays a significant role in the etiopathogenesis of many diseases, such as metabolic diseases, neurodegenerative diseases, infectious diseases, tumors, cardiomyopathy, and ischemia-reperfusion ischemia-reperfusion injury. Here, we first review the regulation and functions of ferritinophagy and then describe its involvement in different diseases, with hopes of providing new understanding and insights into iron metabolism and iron disorder-related diseases and the therapeutic opportunity for targeting ferritinophagy.
Collapse
Affiliation(s)
- Xuemei Jin
- Department of Preventive Medicine, School of Medicine, Yanbian University, Yanji, China; Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Chunjie Jiang
- Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Zhizhou Zou
- Department of Preventive Medicine, School of Medicine, Yanbian University, Yanji, China; Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - He Huang
- Department of Preventive Medicine, School of Medicine, Yanbian University, Yanji, China; Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Xiaojian Li
- Department of Burn, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Songji Xu
- Department of Preventive Medicine, School of Medicine, Yanbian University, Yanji, China
| | - Rongshao Tan
- Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
6
|
Cheng R, Dhorajia VV, Kim J, Kim Y. Mitochondrial iron metabolism and neurodegenerative diseases. Neurotoxicology 2022; 88:88-101. [PMID: 34748789 PMCID: PMC8748425 DOI: 10.1016/j.neuro.2021.11.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 01/03/2023]
Abstract
Iron is a key element for mitochondrial function and homeostasis, which is also crucial for maintaining the neuronal system, but too much iron promotes oxidative stress. A large body of evidence has indicated that abnormal iron accumulation in the brain is associated with various neurodegenerative diseases such as Huntington's disease, Alzheimer's disease, Parkinson's disease, and Friedreich's ataxia. However, it is still unclear how irregular iron status contributes to the development of neuronal disorders. Hence, the current review provides an update on the causal effects of iron overload in the development and progression of neurodegenerative diseases and discusses important roles of mitochondrial iron homeostasis in these disease conditions. Furthermore, this review discusses potential therapeutic targets for the treatments of iron overload-linked neurodegenerative diseases.
Collapse
Affiliation(s)
- Ruiying Cheng
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, USA
| | | | - Jonghan Kim
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, USA.
| | - Yuho Kim
- Department of Physical Therapy and Kinesiology, University of Massachusetts Lowell, USA.
| |
Collapse
|
7
|
Pujol-Carrion N, Gonzalez-Alfonso A, Puig S, de la Torre-Ruiz MA. Both human and soya bean ferritins highly improve the accumulation of bioavailable iron and contribute to extend the chronological life in budding yeast. Microb Biotechnol 2021; 15:1525-1541. [PMID: 34644442 PMCID: PMC9049602 DOI: 10.1111/1751-7915.13939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/02/2022] Open
Abstract
Ferritin proteins have an enormous capacity to store iron in cells. In search for the best conditions to accumulate and store bioavailable iron, we made use of a double mutant null for the monothiol glutaredoxins GRX3 and GRX4. The strain grx3grx4 accumulates high iron concentrations in the cytoplasm, making the metal easily available for ferritin chelation. Here, we perform a comparative study between human (L and H) and soya bean ferritins (H1 and H2) function in the eukaryotic system Saccharomyces cerevisiae. We demonstrate that the four human and soya bean ferritin chains are successfully expressed in our model system. Upon coexpression of either both human or soya bean ferritin chains, respiratory conditions along with iron supplementation led us to obtain the maximum yields of iron stored in yeast described to date. Human and soya bean ferritin chains are functional and present equivalent properties as promoters of cell survival in iron overload conditions. The best system revealed that the four human and soya bean ferritins possess a novel function as anti‐ageing proteins in conditions of iron excess. In this respect, both ferritin chains with oxidoreductase capacity (human‐H and soya bean‐H2) bear the highest capacity to extend life suggesting the possibility of an evolutionary conservation.
Collapse
Affiliation(s)
- Nuria Pujol-Carrion
- Cell Signalling in Yeast Unit, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLleida), University of Lleida, Lleida, 25198, Spain
| | - Alma Gonzalez-Alfonso
- Cell Signalling in Yeast Unit, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLleida), University of Lleida, Lleida, 25198, Spain
| | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, E-46980, Spain
| | - Maria Angeles de la Torre-Ruiz
- Cell Signalling in Yeast Unit, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLleida), University of Lleida, Lleida, 25198, Spain
| |
Collapse
|
8
|
Neurodegeneration with Brain Iron Accumulation and a Brief Report of the Disease in Iran. Can J Neurol Sci 2021; 49:338-351. [PMID: 34082843 DOI: 10.1017/cjn.2021.124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neurodegeneration with brain iron accumulation (NBIA) is a term used for a group of hereditary neurological disorders with abnormal accumulation of iron in basal ganglia. It is clinically and genetically heterogeneous with symptoms such as dystonia, dysarthria, Parkinsonism, intellectual disability, and spasticity. The age at onset and rate of progression are variable among individuals. Current therapies are exclusively symptomatic and unable to hinder the disease progression. Approximately 16 genes have been identified and affiliated to such condition with different functions such as iron metabolism (only two genes: Ferritin Light Chain (FTL) Ceruloplasmin (CP)), lipid metabolism, lysosomal functions, and autophagy process, but some functions have remained unknown so far. Subgroups of NBIA are categorized based on the mutant genes. Although in the last 10 years, the development of whole-exome sequencing (WES) technology has promoted the identification of disease-causing genes, there seem to be some unknown genes and our knowledge about the molecular aspects and pathogenesis of NBIA is not complete yet. There is currently no comprehensive study about the NBIA in Iran; however, one of the latest discovered NBIA genes, GTP-binding protein 2 (GTPBP2), has been identified in an Iranian family, and there are some patients who have genetically remained unknown.
Collapse
|
9
|
Variation in the concentration and regional distribution of magnetic nanoparticles in human brains, with and without Alzheimer's disease, from the UK. Sci Rep 2021; 11:9363. [PMID: 33931662 PMCID: PMC8087805 DOI: 10.1038/s41598-021-88725-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/15/2021] [Indexed: 02/08/2023] Open
Abstract
The presence of magnetic nanoparticles (MNPs) in the human brain was attributed until recently to endogenous formation; associated with a putative navigational sense, or with pathological mishandling of brain iron within senile plaques. Conversely, an exogenous, high-temperature source of brain MNPs has been newly identified, based on their variable sizes/concentrations, rounded shapes/surface crystallites, and co-association with non-physiological metals (e.g., platinum, cobalt). Here, we examined the concentration and regional distribution of brain magnetite/maghemite, by magnetic remanence measurements of 147 samples of fresh/frozen tissues, from Alzheimer's disease (AD) and pathologically-unremarkable brains (80-98 years at death) from the Manchester Brain Bank (MBB), UK. The magnetite/maghemite concentrations varied between individual cases, and different brain regions, with no significant difference between the AD and non-AD cases. Similarly, all the elderly MBB brains contain varying concentrations of non-physiological metals (e.g. lead, cerium), suggesting universal incursion of environmentally-sourced particles, likely across the geriatric blood-brain barrier (BBB). Cerebellar Manchester samples contained significantly lower (~ 9×) ferrimagnetic content compared with those from a young (29 years ave.), neurologically-damaged Mexico City cohort. Investigation of younger, variably-exposed cohorts, prior to loss of BBB integrity, seems essential to understand early brain impacts of exposure to exogenous magnetite/maghemite and other metal-rich pollution particles.
Collapse
|
10
|
Cozzi A, Santambrogio P, Ripamonti M, Rovida E, Levi S. Pathogenic mechanism and modeling of neuroferritinopathy. Cell Mol Life Sci 2021; 78:3355-3367. [PMID: 33439270 PMCID: PMC11072144 DOI: 10.1007/s00018-020-03747-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/26/2022]
Abstract
Neuroferritinopathy is a rare autosomal dominant inherited movement disorder caused by alteration of the L-ferritin gene that results in the production of a ferritin molecule that is unable to properly manage iron, leading to the presence of free redox-active iron in the cytosol. This form of iron has detrimental effects on cells, particularly severe for neuronal cells, which are highly sensitive to oxidative stress. Although very rare, the disorder is notable for two reasons. First, neuroferritinopathy displays features also found in a larger group of disorders named Neurodegeneration with Brain Iron Accumulation (NBIA), such as iron deposition in the basal ganglia and extrapyramidal symptoms; thus, the elucidation of its pathogenic mechanism may contribute to clarifying the incompletely understood aspects of NBIA. Second, neuroferritinopathy shows the characteristic signs of an accelerated process of aging; thus, it can be considered an interesting model to study the progress of aging. Here, we will review the clinical and neurological features of neuroferritinopathy and summarize biochemical studies and data from cellular and animal models to propose a pathogenic mechanism of the disorder.
Collapse
Affiliation(s)
- Anna Cozzi
- Proteomic of Iron Metabolism Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Paolo Santambrogio
- Proteomic of Iron Metabolism Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Maddalena Ripamonti
- Proteomic of Iron Metabolism Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Ermanna Rovida
- Institute for Genetic and Biomedical Research, National Research Council, 20138, Milan, Italy
| | - Sonia Levi
- Proteomic of Iron Metabolism Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy.
- Vita-Salute San Raffaele University and San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy.
| |
Collapse
|
11
|
Santana-Codina N, Gikandi A, Mancias JD. The Role of NCOA4-Mediated Ferritinophagy in Ferroptosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1301:41-57. [PMID: 34370287 DOI: 10.1007/978-3-030-62026-4_4] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear receptor coactivator 4 (NCOA4) is a selective cargo receptor that mediates the autophagic degradation of ferritin, the cytosolic iron storage complex, in a process known as ferritinophagy. NCOA4-mediated ferritinophagy is required to maintain intracellular and systemic iron homeostasis and thereby iron-dependent physiologic processes such as erythropoiesis. Given this role of ferritinophagy in regulating iron homeostasis, modulating NCOA4-mediated ferritinophagic flux alters sensitivity to ferroptosis, a non-apoptotic iron-dependent form of cell death triggered by peroxidation of polyunsaturated fatty acids (PUFAs). A role for ferroptosis has been established in the pathophysiology of cancer and neurodegeneration; however, the importance of ferritinophagy in these pathologies remains largely unknown. Here, we review the available evidence on biochemical regulation of NCOA4-mediated ferritinophagy and its role in modulating sensitivity to innate and induced ferroptosis in neurodegenerative diseases and cancer. Finally, we evaluate the potential of modulating ferritinophagy in combination with ferroptosis inducers as a therapeutic strategy.
Collapse
Affiliation(s)
- Naiara Santana-Codina
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ajami Gikandi
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Joseph D Mancias
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
12
|
D’Mello SR, Kindy MC. Overdosing on iron: Elevated iron and degenerative brain disorders. Exp Biol Med (Maywood) 2020; 245:1444-1473. [PMID: 32878460 PMCID: PMC7553095 DOI: 10.1177/1535370220953065] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
IMPACT STATEMENT Brain degenerative disorders, which include some neurodevelopmental disorders and age-associated diseases, cause debilitating neurological deficits and are generally fatal. A large body of emerging evidence indicates that iron accumulation in neurons within specific regions of the brain plays an important role in the pathogenesis of many of these disorders. Iron homeostasis is a highly complex and incompletely understood process involving a large number of regulatory molecules. Our review provides a description of what is known about how iron is obtained by the body and brain and how defects in the homeostatic processes could contribute to the development of brain diseases, focusing on Alzheimer's disease and Parkinson's disease as well as four other disorders belonging to a class of inherited conditions referred to as neurodegeneration based on iron accumulation (NBIA) disorders. A description of potential therapeutic approaches being tested for each of these different disorders is provided.
Collapse
Affiliation(s)
| | - Mark C Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
- James A. Haley Veterans Affairs Medical Center, Tampa, FL 33612, USA
| |
Collapse
|
13
|
Biochemistry of mammalian ferritins in the regulation of cellular iron homeostasis and oxidative responses. SCIENCE CHINA. LIFE SCIENCES 2020; 64:352-362. [PMID: 32974854 DOI: 10.1007/s11427-020-1795-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/11/2020] [Indexed: 02/08/2023]
Abstract
Ferritin, an iron-storage protein, regulates cellular iron metabolism and oxidative stress. The ferritin structure is characterized as a spherical cage, inside which large amounts of iron are deposited in a safe, compact and bioavailable form. All ferritins readily catalyze Fe(II) oxidation by peroxides at the ferroxidase center to prevent free Fe(II) from participating in oxygen free radical formation via Fenton chemistry. Thus, ferritin is generally recognized as a cytoprotective stratagem against intracellular oxidative damage The expression of cytosolic ferritins is usually regulated by iron status and oxidative stress at both the transcriptional and post-transcriptional levels. The mechanism of ferritin-mediated iron recycling is far from clarified, though nuclear receptor co-activator 4 (NCOA4) was recently identified as a cargo receptor for ferritin-based lysosomal degradation. Cytosolic ferritins are heteropolymers assembled by H- and L-chains in different proportions. The mitochondrial ferritins are homopolymers and distributed in restricted tissues. They play protective roles in mitochondria where heme- and Fe/S-enzymes are synthesized and high levels of ROS are produced. Genetic ferritin disorders are mainly related to the L-chain mutations, which generally cause severe movement diseases. This review is focused on the biochemistry and function of mammalian intracellular ferritin as the major iron-storage and anti-oxidation protein.
Collapse
|
14
|
Kurzawa-Akanbi M, Keogh M, Tsefou E, Ramsay L, Johnson M, Keers S, Wsa Ochieng L, McNair A, Singh P, Khan A, Pyle A, Hudson G, Ince PG, Attems J, Burn J, Chinnery PF, Morris CM. Neuropathological and biochemical investigation of Hereditary Ferritinopathy cases with ferritin light chain mutation: Prominent protein aggregation in the absence of major mitochondrial or oxidative stress. Neuropathol Appl Neurobiol 2020; 47:26-42. [PMID: 32464705 DOI: 10.1111/nan.12634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 04/17/2020] [Accepted: 05/19/2020] [Indexed: 01/19/2023]
Abstract
AIMS Neuroferritinopathy (NF) or hereditary ferritinopathy (HF) is an autosomal dominant movement disorder due to mutation in the light chain of the iron storage protein ferritin (FTL). HF is the only late-onset neurodegeneration with brain iron accumulation disorder and study of HF offers a unique opportunity to understand the role of iron in more common neurodegenerative syndromes. METHODS We carried out pathological and biochemical studies of six individuals with the same pathogenic FTL mutation. RESULTS CNS pathological changes were most prominent in the basal ganglia and cerebellar dentate, echoing the normal pattern of brain iron accumulation. Accumulation of ferritin and iron was conspicuous in cells with a phenotype suggesting oligodendrocytes, with accompanying neuronal pathology and neuronal loss. Neurons still survived, however, despite extensive adjacent glial iron deposition, suggesting neuronal loss is a downstream event. Typical age-related neurodegenerative pathology was not normally present. Uniquely, the extensive aggregates of ubiquitinated ferritin identified indicate that abnormal FTL can aggregate, reflecting the intrinsic ability of FTL to self-assemble. Ferritin aggregates were seen in neuronal and glial nuclei showing parallels with Huntington's disease. There was neither evidence of oxidative stress activation nor any significant mitochondrial pathology in the affected basal ganglia. CONCLUSIONS HF shows hallmarks of a protein aggregation disorder, in addition to iron accumulation. Degeneration in HF is not accompanied by age-related neurodegenerative pathology and the lack of evidence of oxidative stress and mitochondrial damage suggests that these are not key mediators of neurodegeneration in HF, casting light on other neurodegenerative diseases characterized by iron deposition.
Collapse
Affiliation(s)
- M Kurzawa-Akanbi
- Biosciences Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK.,Wolfson Building, Newcastle University, Newcastle upon Tyne, UK
| | - M Keogh
- Biosciences Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK.,Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne, UK.,MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, Cambridge Biomedical Campus, Cambridge University, Cambridge, UK
| | - E Tsefou
- Wolfson Building, Newcastle University, Newcastle upon Tyne, UK
| | - L Ramsay
- Newcastle Brain Tissue Resource, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,Academic Unit of Pathology, Royal Hallamshire Hospital, Sheffield, UK
| | - M Johnson
- Newcastle Brain Tissue Resource, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - S Keers
- Newcastle Brain Tissue Resource, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - L Wsa Ochieng
- Wolfson Building, Newcastle University, Newcastle upon Tyne, UK
| | - A McNair
- Wolfson Building, Newcastle University, Newcastle upon Tyne, UK
| | - P Singh
- Wolfson Building, Newcastle University, Newcastle upon Tyne, UK
| | - A Khan
- Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - A Pyle
- Biosciences Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK
| | - G Hudson
- Biosciences Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK
| | - P G Ince
- Academic Unit of Pathology, Royal Hallamshire Hospital, Sheffield, UK
| | - J Attems
- Cellular Pathology, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - J Burn
- Biosciences Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK.,Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, International Centre for Life, Newcastle upon Tyne, UK
| | - P F Chinnery
- Biosciences Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK.,MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, Cambridge Biomedical Campus, Cambridge University, Cambridge, UK
| | - C M Morris
- Wolfson Building, Newcastle University, Newcastle upon Tyne, UK.,Newcastle Brain Tissue Resource, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
15
|
Huang R, Chen Z, Li W, Fan C, Liu J. Immune system‑associated genes increase malignant progression and can be used to predict clinical outcome in patients with hepatocellular carcinoma. Int J Oncol 2020; 56:1199-1211. [PMID: 32319580 PMCID: PMC7115743 DOI: 10.3892/ijo.2020.4998] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/07/2020] [Indexed: 02/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most malignant types of cancer, and is associated with high recurrence rates and a poor response to chemotherapy. Immune signatures in the microenvironment of HCC have not been well explored systematically. The aim of the present study was to identify prognostic immune signatures and build a nomogram for use in clinical evaluation. Using bioinformatics analysis, RNA‑seq data and overall survival (OS) information on 370 HCC cases from TCGA and 232 HCC cases from ICGC were analyzed. The differential expression of select immune genes, based on previously published studies, between HCC and adjacent tissue were analyzed using the limma package in R. Enrichment of pathways and gene ontology analysis was performed using clusterProfiler. Subsequently, univariate Cox regression analysis, Lasso penalty linear regression and multivariate Cox regression models were used to construct a model for immune risk score (IRS). The R packages, survival and survivalROC, were used to plot survival and the associated receiver operating characteristic curves. Infiltration of immune cells was calculated using Tumor IMmune Estimation Resource, with significance examined using a Pearson's correlation test. P<0.05 was considered significant. Based on the analysis, expression of 200 immune genes were upregulated and 47 immune genes were downregulated immune genes. In the multivariate Cox model, 5 genes (enhancer of zest homology 2, ferritin light chain, complement factor H related 3, isthmin 2, cyclin dependent kinase 5) were used to generate the IRS. By stratifying according to the median IRS, it was shown that patients with a high IRS had poor OS rates after 1, 2, 3 and 5 years, and this result was consistent across the testing, training and independent validation cohorts. Additionally, the IRS was correlated with the abundance of infiltrating immune cells. The nomogram built using IRS and clinical characteristics, was able to predict 1, 3 and 5 year OS with area under the curve values of >0.8. These results suggest that the model developed to calculate the IRS may be used to monitor the effectiveness of treatment strategies and for prognostic prediction.
Collapse
Affiliation(s)
- Rongfu Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, Fujian 362000
| | - Zheng Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200000
| | | | - Chunmei Fan
- Department of Clinical Laboratory, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, Fujian 362000
| | - Jun Liu
- Department of Clinical Laboratory, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan, Guangdong 512026, P.R. China
| |
Collapse
|
16
|
Oxidative Stress, a Crossroad Between Rare Diseases and Neurodegeneration. Antioxidants (Basel) 2020; 9:antiox9040313. [PMID: 32326494 PMCID: PMC7222183 DOI: 10.3390/antiox9040313] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/06/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress is an imbalance between production and accumulation of oxygen reactive species and/or reactive nitrogen species in cells and tissues, and the capacity of detoxifying these products, using enzymatic and non-enzymatic components, such as glutathione. Oxidative stress plays roles in several pathological processes in the nervous system, such as neurotoxicity, neuroinflammation, ischemic stroke, and neurodegeneration. The concepts of oxidative stress and rare diseases were formulated in the eighties, and since then, the link between them has not stopped growing. The present review aims to expand knowledge in the pathological processes associated with oxidative stress underlying some groups of rare diseases: Friedreich’s ataxia, diseases with neurodegeneration with brain iron accumulation, Charcot-Marie-Tooth as an example of rare neuromuscular disorders, inherited retinal dystrophies, progressive myoclonus epilepsies, and pediatric drug-resistant epilepsies. Despite the discrimination between cause and effect may not be easy on many occasions, all these conditions are Mendelian rare diseases that share oxidative stress as a common factor, and this may represent a potential target for therapies.
Collapse
|
17
|
Liu ZH, Shang J, Yan L, Wei T, Xiang L, Wang HL, Cheng J, Xiao G. Oxidative stress caused by lead (Pb) induces iron deficiency in Drosophila melanogaster. CHEMOSPHERE 2020; 243:125428. [PMID: 31995880 DOI: 10.1016/j.chemosphere.2019.125428] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Toxic elements exposure disturbs the homeostasis of essential elements in organisms, but the mechanism remains elusive. In this study, we demonstrated that Drosophila melanogaster exposed to Lead (Pb, a pervasive environmental threat to human health) exhibited various health defects, including retarded development, decreased survival rate, impaired mobility and reduced egg production. These phenotypes could be significantly modulated by either intervention of dietary iron levels or altering expression of genes involved in iron metabolism. Further study revealed that Pb exposure leads to systemic iron deficiency. Strikingly, reactive oxygen species (ROS) clearance significantly increased iron uptake by restoring the expression of iron metabolism genes in the midgut and subsequently attenuated Pb toxicity. This study highlights the role of ROS in Pb induced iron dyshomeostasis and provides unique insights into understanding the mechanism of Pb toxicity and suggests ideal ways to attenuate Pb toxicity by iron supplementation therapy or ROS clearance.
Collapse
Affiliation(s)
- Zhi-Hua Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China; School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| | - Jin Shang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| | - Lailai Yan
- Department of Laboratorial Science and Technology, School of Public Health, Beijing, 100191, China.
| | - Tian Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| | - Ling Xiang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| | - Hui-Li Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| | - Jigui Cheng
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| | - Guiran Xiao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| |
Collapse
|
18
|
Cozzi A, Orellana DI, Santambrogio P, Rubio A, Cancellieri C, Giannelli S, Ripamonti M, Taverna S, Di Lullo G, Rovida E, Ferrari M, Forni GL, Fiorillo C, Broccoli V, Levi S. Stem Cell Modeling of Neuroferritinopathy Reveals Iron as a Determinant of Senescence and Ferroptosis during Neuronal Aging. Stem Cell Reports 2019; 13:832-846. [PMID: 31587993 PMCID: PMC6893074 DOI: 10.1016/j.stemcr.2019.09.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 01/02/2023] Open
Abstract
Neuroferritinopathy (NF) is a movement disorder caused by alterations in the L-ferritin gene that generate cytosolic free iron. NF is a unique pathophysiological model for determining the direct consequences of cell iron dysregulation. We established lines of induced pluripotent stem cells from fibroblasts from two NF patients and one isogenic control obtained by CRISPR/Cas9 technology. NF fibroblasts, neural progenitors, and neurons exhibited the presence of increased cytosolic iron, which was also detectable as: ferritin aggregates, alterations in the iron parameters, oxidative damage, and the onset of a senescence phenotype, particularly severe in the neurons. In this spontaneous senescence model, NF cells had impaired survival and died by ferroptosis. Thus, non-ferritin-bound iron is sufficient per se to cause both cell senescence and ferroptotic cell death in human fibroblasts and neurons. These results provide strong evidence supporting the primary role of iron in neuronal aging and degeneration.
Collapse
Affiliation(s)
- Anna Cozzi
- Proteomic of Iron Metabolism Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Daniel I Orellana
- Proteomic of Iron Metabolism Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Paolo Santambrogio
- Proteomic of Iron Metabolism Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alicia Rubio
- Stem Cells and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy; Institute of Neuroscience, National Research Council, 20129 Milan, Italy
| | - Cinzia Cancellieri
- Stem Cells and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Serena Giannelli
- Stem Cells and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Maddalena Ripamonti
- Neuroimmunology Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Stefano Taverna
- Neuroimmunology Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giulia Di Lullo
- Tumour Immunology, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ermanna Rovida
- Institute for Genetic and Biomedical Research, National Research Council, 20138 Milan, Italy
| | - Maurizio Ferrari
- Genomic Unit for the Diagnosis of Human Pathologies, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
| | - Gian Luca Forni
- Centre for Congenital Anaemias, Iron Dysmetabolism Galliera Hospital Genoa, Genoa, Italy
| | - Chiara Fiorillo
- Unit of Paediatric Neurology, Gaslini Institute, DINOGMI, University of Genoa, Genoa, Italy
| | - Vania Broccoli
- Stem Cells and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy; Institute of Neuroscience, National Research Council, 20129 Milan, Italy
| | - Sonia Levi
- Proteomic of Iron Metabolism Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy.
| |
Collapse
|
19
|
Neurodegeneration with Brain Iron Accumulation Disorders: Valuable Models Aimed at Understanding the Pathogenesis of Iron Deposition. Pharmaceuticals (Basel) 2019; 12:ph12010027. [PMID: 30744104 PMCID: PMC6469182 DOI: 10.3390/ph12010027] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 02/07/2023] Open
Abstract
Neurodegeneration with brain iron accumulation (NBIA) is a set of neurodegenerative disorders, which includes very rare monogenetic diseases. They are heterogeneous in regard to the onset and the clinical symptoms, while the have in common a specific brain iron deposition in the region of the basal ganglia that can be visualized by radiological and histopathological examinations. Nowadays, 15 genes have been identified as causative for NBIA, of which only two code for iron-proteins, while all the other causative genes codify for proteins not involved in iron management. Thus, how iron participates to the pathogenetic mechanism of most NBIA remains unclear, essentially for the lack of experimental models that fully recapitulate the human phenotype. In this review we reported the recent data on new models of these disorders aimed at highlight the still scarce knowledge of the pathogenesis of iron deposition.
Collapse
|
20
|
Iron Pathophysiology in Neurodegeneration with Brain Iron Accumulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1173:153-177. [DOI: 10.1007/978-981-13-9589-5_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Abstract
Brain iron is tightly regulated by a multitude of proteins to ensure homeostasis. Iron dyshomeostasis has become a molecular signature associated with aging which is accompanied by progressive decline in cognitive processes. A common theme in neurodegenerative diseases where age is the major risk factor, iron dyshomeostasis coincides with neuroinflammation, abnormal protein aggregation, neurodegeneration, and neurobehavioral deficits. There is a great need to determine the mechanisms governing perturbations in iron metabolism, in particular to distinguish between physiological and pathological aging to generate fruitful therapeutic targets for neurodegenerative diseases. The aim of the present review is to focus on the age-related alterations in brain iron metabolism from a cellular and molecular biology perspective, alongside genetics, and neuroimaging aspects in man and rodent models, with respect to normal aging and neurodegeneration. In particular, the relationship between iron dyshomeostasis and neuroinflammation will be evaluated, as well as the effects of systemic iron overload on the brain. Based on the evidence discussed here, we suggest a synergistic use of iron-chelators and anti-inflammatories as putative anti-brain aging therapies to counteract pathological aging in neurodegenerative diseases.
Collapse
Affiliation(s)
- Azhaar Ashraf
- Institute of Psychiatry, Psychology and Neuroscience, Department of Neuroimaging, King's College London, London, United Kingdom
| | - Maryam Clark
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Po-Wah So
- Institute of Psychiatry, Psychology and Neuroscience, Department of Neuroimaging, King's College London, London, United Kingdom
| |
Collapse
|
22
|
Di Meo I, Tiranti V. Classification and molecular pathogenesis of NBIA syndromes. Eur J Paediatr Neurol 2018; 22:272-284. [PMID: 29409688 DOI: 10.1016/j.ejpn.2018.01.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 12/06/2017] [Accepted: 01/08/2018] [Indexed: 12/14/2022]
Abstract
Brain iron accumulation is the hallmark of a group of seriously invalidating and progressive rare diseases collectively denominated Neurodegeneration with Brain Iron Accumulation (NBIA), characterized by movement disorder, painful dystonia, parkinsonism, mental disability and early death. Currently there is no established therapy available to slow down or reverse the progression of these conditions. Several genes have been identified as responsible for NBIA but only two encode for proteins playing a direct role in iron metabolism. The other genes encode for proteins either with various functions in lipid metabolism, lysosomal activity and autophagic processes or with still unknown roles. The different NBIA subtypes have been classified and denominated on the basis of the mutated genes and, despite genetic heterogeneity, some of them code for proteins, which share or converge on common metabolic pathways. In the last ten years, the implementation of genetic screening based on Whole Exome Sequencing has greatly accelerated gene discovery, nevertheless our knowledge of the pathogenic mechanisms underlying the NBIA syndromes is still largely incomplete.
Collapse
Affiliation(s)
- Ivano Di Meo
- Unit of Molecular Neurogenetics, Pierfranco and Luisa Mariani Centre for the Study of Mitochondrial Disorders in Children, Foundation IRCCS Neurological Institute C. Besta, Via Temolo 4, 20126, Milan, Italy
| | - Valeria Tiranti
- Unit of Molecular Neurogenetics, Pierfranco and Luisa Mariani Centre for the Study of Mitochondrial Disorders in Children, Foundation IRCCS Neurological Institute C. Besta, Via Temolo 4, 20126, Milan, Italy.
| |
Collapse
|
23
|
Gryzik M, Srivastava A, Longhi G, Bertuzzi M, Gianoncelli A, Carmona F, Poli M, Arosio P. Expression and characterization of the ferritin binding domain of Nuclear Receptor Coactivator-4 (NCOA4). Biochim Biophys Acta Gen Subj 2017; 1861:2710-2716. [DOI: 10.1016/j.bbagen.2017.07.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/22/2017] [Accepted: 07/24/2017] [Indexed: 11/24/2022]
|
24
|
Tello C, Darling A, Lupo V, Pérez-Dueñas B, Espinós C. On the complexity of clinical and molecular bases of neurodegeneration with brain iron accumulation. Clin Genet 2017; 93:731-740. [PMID: 28542792 DOI: 10.1111/cge.13057] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/04/2017] [Accepted: 05/18/2017] [Indexed: 02/06/2023]
Abstract
Neurodegeneration with brain iron accumulation (NBIA) is a group of inherited heterogeneous neurodegenerative rare disorders. These patients present with dystonia, spasticity, parkinsonism and neuropsychiatric disturbances, along with brain magnetic resonance imaging (MRI) evidence of iron accumulation. In sum, they are devastating disorders and to date, there is no specific treatment. Ten NBIA genes are accepted: PANK2, PLA2G6, C19orf12, COASY, FA2H, ATP13A2, WDR45, FTL, CP, and DCAF17; and nonetheless, a relevant percentage of patients remain without genetic diagnosis, suggesting that other novel NBIA genes remain to be discovered. Overlapping complex clinical pictures render an accurate differential diagnosis difficult. Little is known about the pathophysiology of NBIAs. The reported NBIA genes take part in a variety of pathways: CoA synthesis, lipid and iron metabolism, autophagy, and membrane remodeling. The next-generation sequencing revolution has achieved relevant advances in genetics of Mendelian diseases and provide new genes for NBIAs, which are investigated according to 2 main strategies: genes involved in disorders with similar phenotype and genes that play a role in a pathway of interest. To achieve an effective therapy for NBIA patients, a better understanding of the biological process underlying disease is crucial, moving toward a new age of precision medicine.
Collapse
Affiliation(s)
- C Tello
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - A Darling
- Department of Neuropediatrics, Hospital Sant Joan de Déu, Barcelona, Spain.,Unit U703, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - V Lupo
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - B Pérez-Dueñas
- Department of Neuropediatrics, Hospital Sant Joan de Déu, Barcelona, Spain.,Unit U703, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - C Espinós
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| |
Collapse
|
25
|
Gorobets O, Gorobets S, Koralewski M. Physiological origin of biogenic magnetic nanoparticles in health and disease: from bacteria to humans. Int J Nanomedicine 2017; 12:4371-4395. [PMID: 28652739 PMCID: PMC5476634 DOI: 10.2147/ijn.s130565] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The discovery of biogenic magnetic nanoparticles (BMNPs) in the human brain gives a strong impulse to study and understand their origin. Although knowledge of the subject is increasing continuously, much remains to be done for further development to help our society fight a number of pathologies related to BMNPs. This review provides an insight into the puzzle of the physiological origin of BMNPs in organisms of all three domains of life: prokaryotes, archaea, and eukaryotes, including humans. Predictions based on comparative genomic studies are presented along with experimental data obtained by physical methods. State-of-the-art understanding of the genetic control of biomineralization of BMNPs and their properties are discussed in detail. We present data on the differences in BMNP levels in health and disease (cancer, neurodegenerative disorders, and atherosclerosis), and discuss the existing hypotheses on the biological functions of BMNPs, with special attention paid to the role of the ferritin core and apoferritin.
Collapse
Affiliation(s)
- Oksana Gorobets
- National Technical University of Ukraine (Igor Sikorsky Kyiv Polytechnic Institute)
- Institute of Magnetism, National Academy of Sciences, Kiev, Ukraine
| | - Svitlana Gorobets
- National Technical University of Ukraine (Igor Sikorsky Kyiv Polytechnic Institute)
| | | |
Collapse
|
26
|
Arber CE, Li A, Houlden H, Wray S. Review: Insights into molecular mechanisms of disease in neurodegeneration with brain iron accumulation: unifying theories. Neuropathol Appl Neurobiol 2016; 42:220-41. [PMID: 25870938 PMCID: PMC4832581 DOI: 10.1111/nan.12242] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/18/2015] [Indexed: 12/14/2022]
Abstract
Neurodegeneration with brain iron accumulation (NBIA) is a group of disorders characterized by dystonia, parkinsonism and spasticity. Iron accumulates in the basal ganglia and may be accompanied by Lewy bodies, axonal swellings and hyperphosphorylated tau depending on NBIA subtype. Mutations in 10 genes have been associated with NBIA that include Ceruloplasmin (Cp) and ferritin light chain (FTL), both directly involved in iron homeostasis, as well as Pantothenate Kinase 2 (PANK2), Phospholipase A2 group 6 (PLA2G6), Fatty acid hydroxylase 2 (FA2H), Coenzyme A synthase (COASY), C19orf12, WDR45 and DCAF17 (C2orf37). These genes are involved in seemingly unrelated cellular pathways, such as lipid metabolism, Coenzyme A synthesis and autophagy. A greater understanding of the cellular pathways that link these genes and the disease mechanisms leading to iron dyshomeostasis is needed. Additionally, the major overlap seen between NBIA and more common neurodegenerative diseases may highlight conserved disease processes. In this review, we will discuss clinical and pathological findings for each NBIA-related gene, discuss proposed disease mechanisms such as mitochondrial health, oxidative damage, autophagy/mitophagy and iron homeostasis, and speculate the potential overlap between NBIA subtypes.
Collapse
Affiliation(s)
- C E Arber
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - A Li
- Reta Lila Weston Institute, Institute of Neurology, University College London, London, UK
| | - H Houlden
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - S Wray
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| |
Collapse
|
27
|
Dev S, Kumari S, Singh N, Kumar Bal S, Seth P, Mukhopadhyay CK. Role of extracellular Hydrogen peroxide in regulation of iron homeostasis genes in neuronal cells: Implication in iron accumulation. Free Radic Biol Med 2015; 86:78-89. [PMID: 26006106 DOI: 10.1016/j.freeradbiomed.2015.05.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 05/16/2015] [Accepted: 05/18/2015] [Indexed: 11/29/2022]
Abstract
Iron accumulation and oxidative stress are associated with neurodegenerative disease. Labile iron is known to catalyze free radical generation and subsequent neuronal damage, whereas the role of oxidative stress in neuronal iron accumulation is less well understood. Here, we examined the effect of hydrogen peroxide (H2O2) treatment on cellular iron-uptake, -storage, and -release proteins in the neuroblastoma cell line SH-SY5Y. We found no detectable change in the iron-uptake proteins transferrin receptor-1 and divalent metal ion transporter. In contrast, H2O2 treatment resulted in significant degradation of the iron-exporter ferroportin (Fpn). A decrease in Fpn is expected to increase the labile iron pool (LIP), reducing the iron-regulatory protein (IRP)-iron-responsive element interaction and increasing the expression of ferritin-H (Ft-H) for iron storage. Instead, we detected IRP1 activation, presumably due to oxidative stress, and a decrease in Ft-H translation. A reduction in Ft-H mRNA was also observed, probably dependent on an antioxidant-response element present in the Ft-H enhancer. The decrease in Fpn and Ft-H upon H2O2 treatment led to a time-dependent increase in the cellular LIP. Our study reveals a complex regulation of neuronal iron-release and iron-storage components in response to H2O2 that may explain iron accumulation detected in neurodegenerative diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Som Dev
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110 067, India
| | - Sanju Kumari
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110 067, India
| | - Neena Singh
- Department of Pathology, Case Western Reserve University, Cleveland,OH 44106, USA
| | - Saswat Kumar Bal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110 067, India
| | - Pankaj Seth
- National Brain Research Centre, Manesar, Haryana, India
| | - Chinmay K Mukhopadhyay
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110 067, India.
| |
Collapse
|
28
|
Meyer E, Kurian MA, Hayflick SJ. Neurodegeneration with Brain Iron Accumulation: Genetic Diversity and Pathophysiological Mechanisms. Annu Rev Genomics Hum Genet 2015; 16:257-79. [PMID: 25973518 DOI: 10.1146/annurev-genom-090314-025011] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neurodegeneration with brain iron accumulation (NBIA) comprises a heterogeneous group of progressive disorders with the common feature of excessive iron deposition in the brain. Over the last decade, advances in sequencing technologies have greatly facilitated rapid gene discovery, and several single-gene disorders are now included in this group. Identification of the genetic bases of the NBIA disorders has advanced our understanding of the disease processes caused by reduced coenzyme A synthesis, impaired lipid metabolism, mitochondrial dysfunction, and defective autophagy. The contribution of iron to disease pathophysiology remains uncertain, as does the identity of a putative final common pathway by which the iron accumulates. Ongoing elucidation of the pathogenesis of each NBIA disorder will have significant implications for the identification and design of novel therapies to treat patients with these disorders.
Collapse
Affiliation(s)
- Esther Meyer
- Molecular Neurosciences, Developmental Neurosciences Programme, Institute of Child Health, University College London, London WC1N 1EH, United Kingdom; ,
| | | | | |
Collapse
|
29
|
Neuroferritinopathy: From ferritin structure modification to pathogenetic mechanism. Neurobiol Dis 2015; 81:134-43. [PMID: 25772441 PMCID: PMC4642653 DOI: 10.1016/j.nbd.2015.02.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/20/2015] [Accepted: 02/05/2015] [Indexed: 12/23/2022] Open
Abstract
Neuroferritinopathy is a rare, late-onset, dominantly inherited movement disorder caused by mutations in L-ferritin gene. It is characterized by iron and ferritin aggregate accumulation in brain, normal or low serum ferritin levels and high variable clinical feature. To date, nine causative mutations have been identified and eight of them are frameshift mutations determined by nucleotide(s) insertion in the exon 4 of L-ferritin gene altering the structural conformation of the C-terminus of the L-ferritin subunit. Acting in a dominant negative manner, mutations are responsible for an impairment of the iron storage efficiency of ferritin molecule. Here, we review the main characteristics of neuroferritinopathy and present a computational analysis of some representative recently defined mutations with the purpose to gain new information about the pathogenetic mechanism of the disorder. This is particularly important as neuroferritinopathy can be considered an interesting model to study the relationship between iron, oxidative stress and neurodegeneration.
Collapse
|
30
|
Honarmand Ebrahimi K, Hagedoorn PL, Hagen WR. Unity in the Biochemistry of the Iron-Storage Proteins Ferritin and Bacterioferritin. Chem Rev 2014; 115:295-326. [DOI: 10.1021/cr5004908] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Kourosh Honarmand Ebrahimi
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628
BC Delft, The Netherlands
| | - Peter-Leon Hagedoorn
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628
BC Delft, The Netherlands
| | - Wilfred R. Hagen
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628
BC Delft, The Netherlands
| |
Collapse
|
31
|
Bernacchioni C, Ghini V, Pozzi C, Di Pisa F, Theil EC, Turano P. Loop electrostatics modulates the intersubunit interactions in ferritin. ACS Chem Biol 2014; 9:2517-25. [PMID: 25148224 DOI: 10.1021/cb500431r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Functional ferritins are 24-mer nanocages that self-assemble with extended contacts between pairs of 4-helix bundle subunits coupled in an antiparallel fashion along the C2 axes. The largest intersubunit interaction surface in the ferritin nanocage involves helices, but contacts also occur between groups of three residues midway in the long, solvent-exposed L-loops of facing subunits. The anchor points between intersubunit L-loop pairs are the salt bridges between the symmetry-related, conserved residues Asp80 and Lys82. The resulting quaternary structure of the cage is highly soluble and thermostable. Substitution of negatively charged Asp80 with a positively charged Lys in homopolymeric M ferritin introduces electrostatic repulsions that inhibit the oligomerization of the ferritin subunits. D80K ferritin was present in inclusion bodies under standard overexpressing conditions in E. coli, contrasting with the wild type protein. Small amounts of fully functional D80K nanocages formed when expression was slowed. The more positively charged surface results in a different solubility profile and D80K crystallized in a crystal form with a low density packing. The 3D structure of D80K variant is the same as wild type except for the side chain orientations of Lys80 and facing Lys82. When three contiguous Lys groups are introduced in D80KI81K ferritin variant the nanocage assembly is further inhibited leading to lower solubility and reduced thermal stability. Here, we demonstrate that the electrostatic pairing at the center of the L-loops has a specific kinetic role in the self-assembly of ferritin nanocages.
Collapse
Affiliation(s)
- Caterina Bernacchioni
- Magnetic
Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Veronica Ghini
- Magnetic
Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Cecilia Pozzi
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Flavio Di Pisa
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Elizabeth C. Theil
- CHORI (Children’s
Hospital Oakland Research Institute), 5700 Martin Luther King, Jr. Way, Oakland, California 94609, United States
- Department
of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 29695-7622, United States
| | - Paola Turano
- Magnetic
Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
- Department
of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
32
|
Virel A, Faergemann E, Orädd G, Strömberg I. Magnetic resonance imaging (MRI) to study striatal iron accumulation in a rat model of Parkinson's disease. PLoS One 2014; 9:e112941. [PMID: 25398088 PMCID: PMC4232582 DOI: 10.1371/journal.pone.0112941] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 10/22/2014] [Indexed: 12/12/2022] Open
Abstract
Abnormal accumulation of iron is observed in neurodegenerative disorders. In Parkinson's disease, an excess of iron has been demonstrated in different structures of the basal ganglia and is suggested to be involved in the pathogenesis of the disease. Using the 6-hydroxydopamine (6-OHDA) rat model of Parkinson's disease, the edematous effect of 6-OHDA and its relation with striatal iron accumulation was examined utilizing in vivo magnetic resonance imaging (MRI). The results revealed that in comparison with control animals, injection of 6-OHDA into the rat striatum provoked an edematous process, visible in T2-weighted images that was accompanied by an accumulation of iron clearly detectable in T2*-weighted images. Furthermore, Prussian blue staining to detect iron in sectioned brains confirmed the existence of accumulated iron in the areas of T2* hypointensities. The presence of ED1-positive microglia in the lesioned striatum overlapped with this accumulation of iron, indicating areas of toxicity and loss of dopamine nerve fibers. Correlation analyses demonstrated a direct relation between the hyperintensities caused by the edema and the hypointensities caused by the accumulation of iron.
Collapse
Affiliation(s)
- Ana Virel
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Erik Faergemann
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Greger Orädd
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Ingrid Strömberg
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
33
|
Maccarinelli F, Pagani A, Cozzi A, Codazzi F, Di Giacomo G, Capoccia S, Rapino S, Finazzi D, Politi LS, Cirulli F, Giorgio M, Cremona O, Grohovaz F, Levi S. A novel neuroferritinopathy mouse model (FTL 498InsTC) shows progressive brain iron dysregulation, morphological signs of early neurodegeneration and motor coordination deficits. Neurobiol Dis 2014; 81:119-33. [PMID: 25447222 PMCID: PMC4642750 DOI: 10.1016/j.nbd.2014.10.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/01/2014] [Accepted: 10/29/2014] [Indexed: 02/05/2023] Open
Abstract
Neuroferritinopathy is a rare genetic disease with a dominant autosomal transmission caused by mutations of the ferritin light chain gene (FTL). It belongs to Neurodegeneration with Brain Iron Accumulation, a group of disorders where iron dysregulation is tightly associated with neurodegeneration. We studied the 498–499InsTC mutation which causes the substitution of the last 9 amino acids and an elongation of extra 16 amino acids at the C-terminus of L-ferritin peptide. An analysis with cyclic voltammetry on the purified protein showed that this structural modification severely reduces the ability of the protein to store iron. In order to analyze the impact of the mutation in vivo, we generated mouse models for the some pathogenic human FTL gene in FVB and C57BL/6J strains. Transgenic mice in the FVB background showed high accumulation of the mutated ferritin in brain where it correlated with increased iron deposition with age, as scored by magnetic resonance imaging. Notably, the accumulation of iron–ferritin bodies was accompanied by signs of oxidative damage. In the C57BL/6 background, both the expression of the mutant ferritin and the iron levels were lower than in the FVB strain. Nevertheless, also these mice showed oxidative alterations in the brain. Furthermore, post-natal hippocampal neurons obtained from these mice experienced a marked increased cell death in response to chronic iron overload and/or acute oxidative stress, in comparison to wild-type neurons. Ultrastructural analyses revealed an accumulation of lipofuscin granules associated with iron deposits, particularly enriched in the cerebellum and striatum of our transgenic mice. Finally, experimental subjects were tested throughout development and aging at 2-, 8- and 18-months for behavioral phenotype. Rotarod test revealed a progressive impaired motor coordination building up with age, FTL mutant old mice showing a shorter latency to fall from the apparatus, according to higher accumulation of iron aggregates in the striatum. Our data show that our 498–499InsTC mouse models recapitulate early pathological and clinical traits of the human neuroferritinopathy, thus providing a valuable model for the study of the disease. Finally, we propose a mechanistic model of lipofuscine formation that can account for the etiopathogenesis of human neuroferritinopathy. We developed two new neuroferritinopathy mice models (NF). NF brains are characterized by iron/ferritin accumulation and oxidative damage. NF brains show granules of lipofuscine associated with iron. A mechanism of lipofuscine formation is proposed. NF mice show impaired motor coordination increasing with age.
Collapse
Affiliation(s)
| | - Antonella Pagani
- San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
| | - Anna Cozzi
- San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy; Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milano, Italy
| | - Franca Codazzi
- San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
| | | | - Sara Capoccia
- Section of Behavioral Neuroscience, Department of Cell Biology, Istituto Superiore di Sanità, Rome, Italy
| | - Stefania Rapino
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Dario Finazzi
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | | | - Francesca Cirulli
- Section of Behavioral Neuroscience, Department of Cell Biology, Istituto Superiore di Sanità, Rome, Italy
| | - Marco Giorgio
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Ottavio Cremona
- San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy; Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milano, Italy
| | - Fabio Grohovaz
- San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy; Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milano, Italy.
| | - Sonia Levi
- San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy; Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milano, Italy.
| |
Collapse
|
34
|
Biology of ferritin in mammals: an update on iron storage, oxidative damage and neurodegeneration. Arch Toxicol 2014; 88:1787-802. [PMID: 25119494 DOI: 10.1007/s00204-014-1329-0] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 08/04/2014] [Indexed: 12/12/2022]
Abstract
Iron is an abundant transition metal that is essential for life, being associated with many enzyme and oxygen carrier proteins involved in a variety of fundamental cellular processes. At the same time, the metal is potentially toxic due to its capacity to engage in the catalytic production of noxious reactive oxygen species. The control of iron availability in the cells is largely dependent on ferritins, ubiquitous proteins with storage and detoxification capacity. In mammals, cytosolic ferritins are composed of two types of subunits, the H and the L chain, assembled to form a 24-mer spherical cage. Ferritin is present also in mitochondria, in the form of a complex with 24 identical chains. Even though the proteins have been known for a long time, their study is a very active and interesting field yet. In this review, we will focus our attention to mammalian cytosolic and mitochondrial ferritins, describing the most recent advancement regarding their storage and antioxidant function, the effects of their genetic mutations in human pathology, and also the possible involvement in non-iron-related activities. We will also discuss recent evidence connecting ferritins and the toxicity of iron in a set of neurodegenerative disorder characterized by focal cerebral siderosis.
Collapse
|
35
|
Abstract
SIGNIFICANCE Iron is the most abundant transition metal in biology and an essential cofactor for many cellular enzymes. Iron homeostasis impairment is also a component of peripheral neuropathies. RECENT ADVANCES During the past years, much effort has been paid to understand the molecular mechanism involved in maintaining systemic iron homeostasis in mammals. This has been stimulated by the evidence that iron dyshomeostasis is an initial cause of several disorders, including genetic and sporadic neurodegenerative disorders. CRITICAL ISSUES However, very little has been done to investigate the physiological role of iron in peripheral nervous system (PNS), despite the development of suitable cellular and animal models. FUTURE DIRECTIONS To stimulate research on iron metabolism and peripheral neuropathy, we provide a summary of the knowledge on iron homeostasis in the PNS, on its transport across the blood-nerve barrier, its involvement in myelination, and we identify unresolved questions. Furthermore, we comment on the role of iron in iron-related disorder with peripheral component, in demyelinating and metabolic peripheral neuropathies.
Collapse
Affiliation(s)
- Sonia Levi
- 1 University Vita-Salute San Raffaele , Milan, Italy
| | | |
Collapse
|
36
|
Lovejoy DB, Guillemin GJ. The potential for transition metal-mediated neurodegeneration in amyotrophic lateral sclerosis. Front Aging Neurosci 2014; 6:173. [PMID: 25100994 PMCID: PMC4107949 DOI: 10.3389/fnagi.2014.00173] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/01/2014] [Indexed: 12/12/2022] Open
Abstract
Modulations of the potentially toxic transition metals iron (Fe) and copper (Cu) are implicated in the neurodegenerative process in a variety of human disease states including amyotrophic lateral sclerosis (ALS). However, the precise role played by these metals is still very much unclear, despite considerable clinical and experimental data suggestive of a role for these elements in the neurodegenerative process. The discovery of mutations in the antioxidant enzyme Cu/Zn superoxide dismutase 1 (SOD-1) in ALS patients established the first known cause of ALS. Recent data suggest that various mutations in SOD-1 affect metal-binding of Cu and Zn, in turn promoting toxic protein aggregation. Copper homeostasis is also disturbed in ALS, and may be relevant to ALS pathogenesis. Another set of interesting observations in ALS patients involves the key nutrient Fe. In ALS patients, Fe loading can be inferred by studies showing increased expression of serum ferritin, an Fe-storage protein, with high serum ferritin levels correlating to poor prognosis. Magnetic resonance imaging of ALS patients shows a characteristic T2 shortening that is attributed to the presence of Fe in the motor cortex. In mutant SOD-1 mouse models, increased Fe is also detected in the spinal cord and treatment with Fe-chelating drugs lowers spinal cord Fe, preserves motor neurons, and extends lifespan. Inflammation may play a key causative role in Fe accumulation, but this is not yet conclusive. Excess transition metals may enhance induction of endoplasmic reticulum (ER) stress, a system that is already under strain in ALS. Taken together, the evidence suggests a role for transition metals in ALS progression and the potential use of metal-chelating drugs as a component of future ALS therapy.
Collapse
Affiliation(s)
- David B Lovejoy
- Australian School of Advanced Medicine, Macquarie University , Sydney, NSW , Australia
| | - Gilles J Guillemin
- Australian School of Advanced Medicine, Macquarie University , Sydney, NSW , Australia
| |
Collapse
|
37
|
Stayte S, Vissel B. Advances in non-dopaminergic treatments for Parkinson's disease. Front Neurosci 2014; 8:113. [PMID: 24904259 PMCID: PMC4033125 DOI: 10.3389/fnins.2014.00113] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 04/30/2014] [Indexed: 01/05/2023] Open
Abstract
Since the 1960's treatments for Parkinson's disease (PD) have traditionally been directed to restore or replace dopamine, with L-Dopa being the gold standard. However, chronic L-Dopa use is associated with debilitating dyskinesias, limiting its effectiveness. This has resulted in extensive efforts to develop new therapies that work in ways other than restoring or replacing dopamine. Here we describe newly emerging non-dopaminergic therapeutic strategies for PD, including drugs targeting adenosine, glutamate, adrenergic, and serotonin receptors, as well as GLP-1 agonists, calcium channel blockers, iron chelators, anti-inflammatories, neurotrophic factors, and gene therapies. We provide a detailed account of their success in animal models and their translation to human clinical trials. We then consider how advances in understanding the mechanisms of PD, genetics, the possibility that PD may consist of multiple disease states, understanding of the etiology of PD in non-dopaminergic regions as well as advances in clinical trial design will be essential for ongoing advances. We conclude that despite the challenges ahead, patients have much cause for optimism that novel therapeutics that offer better disease management and/or which slow disease progression are inevitable.
Collapse
Affiliation(s)
- Sandy Stayte
- Neuroscience Department, Neurodegenerative Disorders Laboratory, Garvan Institute of Medical Research, Sydney NSW, Australia ; Faculty of Medicine, University of New South Wales, Sydney NSW, Australia
| | - Bryce Vissel
- Neuroscience Department, Neurodegenerative Disorders Laboratory, Garvan Institute of Medical Research, Sydney NSW, Australia ; Faculty of Medicine, University of New South Wales, Sydney NSW, Australia
| |
Collapse
|
38
|
Levi S, Finazzi D. Neurodegeneration with brain iron accumulation: update on pathogenic mechanisms. Front Pharmacol 2014; 5:99. [PMID: 24847269 PMCID: PMC4019866 DOI: 10.3389/fphar.2014.00099] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/17/2014] [Indexed: 12/21/2022] Open
Abstract
Perturbation of iron distribution is observed in many neurodegenerative disorders, including Alzheimer’s and Parkinson’s disease, but the comprehension of the metal role in the development and progression of such disorders is still very limited. The combination of more powerful brain imaging techniques and faster genomic DNA sequencing procedures has allowed the description of a set of genetic disorders characterized by a constant and often early accumulation of iron in specific brain regions and the identification of the associated genes; these disorders are now collectively included in the category of neurodegeneration with brain iron accumulation (NBIA). So far 10 different genetic forms have been described but this number is likely to increase in short time. Two forms are linked to mutations in genes directly involved in iron metabolism: neuroferritinopathy, associated to mutations in the FTL gene and aceruloplasminemia, where the ceruloplasmin gene product is defective. In the other forms the connection with iron metabolism is not evident at all and the genetic data let infer the involvement of other pathways: Pank2, Pla2G6, C19orf12, COASY, and FA2H genes seem to be related to lipid metabolism and to mitochondria functioning, WDR45 and ATP13A2 genes are implicated in lysosomal and autophagosome activity, while the C2orf37 gene encodes a nucleolar protein of unknown function. There is much hope in the scientific community that the study of the NBIA forms may provide important insight as to the link between brain iron metabolism and neurodegenerative mechanisms and eventually pave the way for new therapeutic avenues also for the more common neurodegenerative disorders. In this work, we will review the most recent findings in the molecular mechanisms underlining the most common forms of NBIA and analyze their possible link with brain iron metabolism.
Collapse
Affiliation(s)
- Sonia Levi
- Proteomic of Iron Metabolism, Vita-Salute San Raffaele University Milano, Italy ; San Raffaele Scientific Institute Milano, Italy
| | - Dario Finazzi
- Department of Molecular and Translational Medicine, University of Brescia Brescia, Italy ; Spedali Civili di Brescia Brescia, Italy
| |
Collapse
|
39
|
Cozzi A, Santambrogio P, Privitera D, Broccoli V, Rotundo LI, Garavaglia B, Benz R, Altamura S, Goede JS, Muckenthaler MU, Levi S. Human L-ferritin deficiency is characterized by idiopathic generalized seizures and atypical restless leg syndrome. ACTA ACUST UNITED AC 2013; 210:1779-91. [PMID: 23940258 PMCID: PMC3754865 DOI: 10.1084/jem.20130315] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Human L-ferritin deficiency causes reduced cellular iron availability and increased ROS production with enhanced oxidized proteins, which results in idiopathic generalized seizures and atypical restless leg syndrome. The ubiquitously expressed iron storage protein ferritin plays a central role in maintaining cellular iron homeostasis. Cytosolic ferritins are composed of heavy (H) and light (L) subunits that co-assemble into a hollow spherical shell with an internal cavity where iron is stored. The ferroxidase activity of the ferritin H chain is critical to store iron in its Fe3+ oxidation state, while the L chain shows iron nucleation properties. We describe a unique case of a 23-yr-old female patient affected by a homozygous loss of function mutation in the L-ferritin gene, idiopathic generalized seizures, and atypical restless leg syndrome (RLS). We show that L chain ferritin is undetectable in primary fibroblasts from the patient, and thus ferritin consists only of H chains. Increased iron incorporation into the FtH homopolymer leads to reduced cellular iron availability, diminished levels of cytosolic catalase, SOD1 protein levels, enhanced ROS production and higher levels of oxidized proteins. Importantly, key phenotypic features observed in fibroblasts are also mirrored in reprogrammed neurons from the patient’s fibroblasts. Our results demonstrate for the first time the pathophysiological consequences of L-ferritin deficiency in a human and help to define the concept for a new disease entity hallmarked by idiopathic generalized seizure and atypical RLS.
Collapse
Affiliation(s)
- Anna Cozzi
- San Raffaele Scientific Institute, Division of Neuroscience and 2 University Vita-Salute San Raffaele, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Invernizzi R, Travaglino E, Della Porta MG, Gallì A, Malcovati L, Rosti V, Bergamaschi G, Erba BG, Bellistri F, Bastia R, Santambrogio P, Levi S, Cazzola M. Effects of mitochondrial ferritin overexpression in normal and sideroblastic erythroid progenitors. Br J Haematol 2013; 161:726-737. [PMID: 23573868 DOI: 10.1111/bjh.12316] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/04/2013] [Indexed: 01/06/2023]
Abstract
In myelodysplastic syndromes with ring sideroblasts (MDS-RS), the iron deposited in the mitochondria of RS is present in the form of mitochondrial ferritin (FTMT), but it is unknown whether FTMT overexpression is the cause or the result of mitochondrial iron deposition. Lentivirus FTMT-transduced CD34(+) bone marrow cells from seven healthy donors and CD34(+) cells from 24 patients with MDS-RS were cultured according to a procedure that allowed the expansion of high numbers of erythroid progenitors. These cells were used to investigate the possible influence of experimentally-induced FTMT overexpression on normal erythropoiesis and the functional effects of FTMT in sideroblastic erythropoiesis. In MDS-RS progenitors, FTMT overexpression was associated with reduced cytosolic ferritin levels, increased surface transferrin receptor expression and reduced cell proliferation; FTMT effects were independent of SF3B1 mutation status. Similarly, FTMT overexpressing normal erythroid progenitors were characterized by reduced cytosolic ferritin content and increased CD71 expression, and also by higher apoptotic rate in comparison with the FTMT- controls. Significantly lower levels of STAT5 phosphorylation following erythropoietin stimulation were found in both sideroblastic and normal FTMT(+) erythroid cells compared to the FTMT- cells. In conclusion, experimental overexpression of FTMT may modify mitochondrial iron availability and lead to ineffective erythropoiesis.
Collapse
Affiliation(s)
- Rosangela Invernizzi
- Department of Internal Medicine, University of Pavia Medical School and Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Erica Travaglino
- Department of Haematology Oncology, University of Pavia Medical School and Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Matteo G Della Porta
- Department of Haematology Oncology, University of Pavia Medical School and Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Anna Gallì
- Department of Haematology Oncology, University of Pavia Medical School and Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Luca Malcovati
- Department of Haematology Oncology, University of Pavia Medical School and Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Vittorio Rosti
- Unit of Clinical Epidemiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Gaetano Bergamaschi
- Department of Internal Medicine, University of Pavia Medical School and Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Benedetta G Erba
- Proteomics of Iron Metabolism Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| | - Francesca Bellistri
- Department of Internal Medicine, University of Pavia Medical School and Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Raffaella Bastia
- Department of Internal Medicine, University of Pavia Medical School and Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Paolo Santambrogio
- Proteomics of Iron Metabolism Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| | - Sonia Levi
- Proteomics of Iron Metabolism Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
| | - Mario Cazzola
- Department of Haematology Oncology, University of Pavia Medical School and Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
41
|
Keogh MJ, Morris CM, Chinnery PF. Neuroferritinopathy. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 110:91-123. [DOI: 10.1016/b978-0-12-410502-7.00006-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
42
|
Schneider SA, Dusek P, Hardy J, Westenberger A, Jankovic J, Bhatia KP. Genetics and Pathophysiology of Neurodegeneration with Brain Iron Accumulation (NBIA). Curr Neuropharmacol 2013; 11:59-79. [PMID: 23814539 PMCID: PMC3580793 DOI: 10.2174/157015913804999469] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 06/06/2012] [Accepted: 07/03/2012] [Indexed: 01/19/2023] Open
Abstract
Our understanding of the syndromes of Neurodegeneration with Brain Iron Accumulation (NBIA) continues to grow considerably. In addition to the core syndromes of pantothenate kinase-associated neurodegeneration (PKAN, NBIA1) and PLA2G6-associated neurodegeneration (PLAN, NBIA2), several other genetic causes have been identified (including FA2H, C19orf12, ATP13A2, CP and FTL). In parallel, the clinical and pathological spectrum has broadened and new age-dependent presentations are being described. There is also growing recognition of overlap between the different NBIA disorders and other diseases including spastic paraplegias, leukodystrophies and neuronal ceroid lipofuscinosis which makes a diagnosis solely based on clinical findings challenging. Autopsy examination of genetically-confirmed cases demonstrates Lewy bodies, neurofibrillary tangles, and other hallmarks of apparently distinct neurodegenerative disorders such as Parkinson's disease (PD) and Alzheimer's disease. Until we disentangle the various NBIA genes and their related pathways and move towards pathogenesis-targeted therapies, the treatment remains symptomatic. Our aim here is to provide an overview of historical developments of research into iron metabolism and its relevance in neurodegenerative disorders. We then focus on clinical features and investigational findings in NBIA and summarize therapeutic results reviewing reports of iron chelation therapy and deep brain stimulation. We also discuss genetic and molecular underpinnings of the NBIA syndromes.
Collapse
Affiliation(s)
- Susanne A Schneider
- Department of Neurology; University of Kiel, 24105 Kiel, Germany
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, UCL, Queen Square, London WC1N 3BG, UK
| | - Petr Dusek
- Department of Neurology and Center of Clinical Neuroscience, Charles University in Prague, 1st Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - John Hardy
- Department of Molecular Neuroscience, Institute of Neurology, UCL, Queen Square, London WC1N 3BG, England
| | - Ana Westenberger
- Schilling Section of Clinical and Molecular Neurogenetics at the Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kailash P Bhatia
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, UCL, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
43
|
Campanella A, Santambrogio P, Fontana F, Frenquelli M, Cenci S, Marcatti M, Sitia R, Tonon G, Camaschella C. Iron increases the susceptibility of multiple myeloma cells to bortezomib. Haematologica 2012; 98:971-9. [PMID: 23242599 DOI: 10.3324/haematol.2012.074872] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multiple myeloma is a malignant still incurable plasma cell disorder. Pharmacological treatment based on proteasome inhibition has improved patient outcome; however, bortezomib-resistance remains a major clinical problem. Inhibition of proteasome functionality affects cellular iron homeostasis and iron is a potent inducer of reactive oxygen species and cell death, unless safely stored in ferritin. We explored the potential role of iron in bortezomib-resistance. We analyzed iron proteins, oxidative status and cell viability in 7 multiple myeloma cell lines and in plasma cells from 5 patients. Cells were treated with increasing bortezomib concentrations with or without iron supplementation. We reduced ferritin levels by both shRNA technology and by drug-induced iron starvation. Multiple myeloma cell lines are characterized by distinct ferritin levels, which directly correlate with bortezomib resistance. We observed that iron supplementation upon bortezomib promotes protein oxidation and cell death, and that iron toxicity inversely correlates with basal ferritin levels. Bortezomib prevents ferritin upregulation in response to iron, thus limiting the ability to buffer reactive oxygen species. Consequently, reduction of basal ferritin levels increases both bortezomib sensitivity and iron toxicity. In patients' cells, we confirmed that bortezomib prevents ferritin increase, that iron supplementation upon bortezomib increases cell death and that ferritin reduction overcomes bortezomib resistance. Bortezomib affects iron homeostasis, sensitizing cells to oxidative damage. Modulation of iron status is a strategy worth exploring to improve the efficacy of proteasome inhibition therapies.
Collapse
Affiliation(s)
- Alessandro Campanella
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Storti E, Cortese F, Di Fabio R, Fiorillo C, Pierallini A, Tessa A, Valleriani A, Pierelli F, Santorelli FM, Casali C. De novo FTL mutation: a clinical, neuroimaging, and molecular study. Mov Disord 2012; 28:252-3. [PMID: 23239021 DOI: 10.1002/mds.25275] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 09/12/2012] [Accepted: 10/17/2012] [Indexed: 11/07/2022] Open
|
45
|
Lehn A, Boyle R, Brown H, Airey C, Mellick G. Neuroferritinopathy. Parkinsonism Relat Disord 2012; 18:909-15. [PMID: 22818529 DOI: 10.1016/j.parkreldis.2012.06.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 06/19/2012] [Accepted: 06/26/2012] [Indexed: 11/25/2022]
Abstract
Neuroferritinopathy is an autosomal dominantly inherited disorder caused by mutations in the gene encoding the ferritin light chain polypeptide. It leads to iron deposition particularly in the cerebellum, basal ganglia and motor cortex. The disease becomes clinically apparent in adulthood mainly with extrapyramidal signs and progresses slowly over decades. Patients usually have intact cognition until the very late stages of this disorder. Neuroimaging is the most helpful investigation and shows a very distinctive picture. So far no medication has been shown to have a disease-modifying effect. We present five new cases of this condition and review the current understanding of the pathogenesis and its clinical findings.
Collapse
Affiliation(s)
- Alexander Lehn
- Department of Neurology, Princess Alexandra Hospital, Brisbane, Queensland, Australia.
| | | | | | | | | |
Collapse
|
46
|
Iron dysregulation in movement disorders. Neurobiol Dis 2012; 46:1-18. [DOI: 10.1016/j.nbd.2011.12.054] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 12/22/2011] [Accepted: 12/31/2011] [Indexed: 01/04/2023] Open
|
47
|
Ceruloplasmin oxidation, a feature of Parkinson's disease CSF, inhibits ferroxidase activity and promotes cellular iron retention. J Neurosci 2012; 31:18568-77. [PMID: 22171055 DOI: 10.1523/jneurosci.3768-11.2011] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Parkinson's disease is a neurodegenerative disorder characterized by oxidative stress and CNS iron deposition. Ceruloplasmin is an extracellular ferroxidase that regulates cellular iron loading and export, and hence protects tissues from oxidative damage. Using two-dimensional electrophoresis, we investigated ceruloplasmin patterns in the CSF of human Parkinson's disease patients. Parkinson's disease ceruloplasmin profiles proved more acidic than those found in healthy controls and in other human neurological diseases (peripheral neuropathies, amyotrophic lateral sclerosis, and Alzheimer's disease); degrees of acidity correlated with patients' pathological grading. Applying an unsupervised pattern recognition procedure to the two-dimensional electrophoresis images, we identified representative pathological clusters. In vitro oxidation of CSF in two-dimensional electrophoresis generated a ceruloplasmin shift resembling that observed in Parkinson's disease and co-occurred with an increase in protein carbonylation. Likewise, increased protein carbonylation was observed in Parkinson's disease CSF, and the same modification was directly identified in these samples on ceruloplasmin. These results indicate that ceruloplasmin oxidation contributes to pattern modification in Parkinson's disease. From the functional point of view, ceruloplasmin oxidation caused a decrease in ferroxidase activity, which in turn promotes intracellular iron retention in neuronal cell lines as well as in primary neurons, which are more sensitive to iron accumulation. Accordingly, the presence of oxidized ceruloplasmin in Parkinson's disease CSF might be used as a marker for oxidative damage and might provide new insights into the underlying pathological mechanisms.
Collapse
|
48
|
Li XP, Xie WJ, Zhang Z, Kansara S, Jankovic J, Le WD. A mechanistic study of proteasome inhibition-induced iron misregulation in dopamine neuron degeneration. Neurosignals 2012; 20:223-36. [PMID: 22269801 DOI: 10.1159/000332954] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 08/30/2011] [Indexed: 12/30/2022] Open
Abstract
Ubiquitin proteasome system (UPS) impairment and iron misregulation have been implicated in dopamine (DA) neuron degeneration in Parkinson's disease. As previously shown, proteasome inhibition in a rodent model can cause nigral neuron degeneration accompanied by iron accumulation. To investigate the involvement of iron in DA neuron degeneration, we generated an in vitro model by applying proteasome inhibitor lactacystin in DAergic cell line MES23.5 culture. We found that lactacystin caused marked increase in labile iron, reactive oxygen species and ubiquitin-conjugated protein aggregation prior to cell injury. These effects were attenuated by iron chelators or antioxidants. Furthermore, we demonstrated that the iron regulatory protein (IRP)/iron response element system contributed to UPS impairment-mediated DA neuron injury. We documented that IRP2 disruption resulted in an increase in transferrin receptor 1 (TfR1), a decrease in ferritin heavy chain (H-Frt), and eventually cell death. These findings provide insight into the mechanistic interplay between UPS impairment and iron misregulation and suggest that the disturbances in IRP2, TfR1 and H-Frt may contribute to DA neuron degeneration.
Collapse
Affiliation(s)
- Xu-ping Li
- Parkinson Disease Research Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | | | |
Collapse
|
49
|
MRI findings in neuroferritinopathy. Neurol Res Int 2011; 2012:197438. [PMID: 21808735 PMCID: PMC3142777 DOI: 10.1155/2012/197438] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 05/10/2011] [Accepted: 05/23/2011] [Indexed: 01/19/2023] Open
Abstract
Neuroferritinopathy is a neurodegenerative disease which
demonstrates brain iron accumulation caused by the mutations in
the ferritin light chain gene. On brain MRI in
neuroferritinopathy, iron deposits are observed as low-intensity
areas on T2WI and as signal loss on T2∗WI. On T2WI, hyperintense
abnormalities reflecting tissue edema and gliosis are also seen.
Another characteristic finding is the presence of symmetrical
cystic changes in the basal ganglia, which are seen in the
advanced stages of this disorder. Atrophy is sometimes noted in
the cerebellar and cerebral cortices. The variety in the MRI
findings is specific to neuroferritinopathy. Based on observations
of an excessive iron content in patients with chronic neurologic
disorders, such as Parkinson disease and Alzheimer disease, the
presence of excess iron is therefore recognized as a major risk
factor for neurodegenerative diseases. The future development of
multimodal and advanced MRI techniques is thus expected to play an
important role in accurately measuring the brain iron content and
thereby further elucidating the neurodegenerative process.
Collapse
|
50
|
Friedman A, Arosio P, Finazzi D, Koziorowski D, Galazka-Friedman J. Ferritin as an important player in neurodegeneration. Parkinsonism Relat Disord 2011; 17:423-30. [DOI: 10.1016/j.parkreldis.2011.03.016] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Revised: 03/24/2011] [Accepted: 03/25/2011] [Indexed: 01/22/2023]
|