1
|
Bonetti M, Borsani E, Bonomini F. The Use of Nutraceutical and Pharmacological Strategies in Murine Models of Autism Spectrum Disorder. Cells 2024; 13:2036. [PMID: 39768128 PMCID: PMC11675073 DOI: 10.3390/cells13242036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/29/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Autism spectrum disorder (ASD) is a common neurodevelopmental condition mainly characterized by both a scarce aptitude for social interactions or communication and engagement in repetitive behaviors. These primary symptoms can manifest with variable severity and are often paired with a heterogeneous plethora of secondary complications, among which include anxiety, ADHD (attention deficit hyperactivity disorder), cognitive impairment, sleep disorders, sensory alterations, and gastrointestinal issues. So far, no treatment for the core symptoms of ASD has yielded satisfactory results in a clinical setting. Consequently, medical and psychological support for ASD patients has focused on improving quality of life and treating secondary complications. Despite no single cause being identified for the onset and development of ASD, many genetic mutations and risk factors, such as maternal age, fetal exposure to certain drugs, or infections have been linked to the disorder. In preclinical contexts, these correlations have acted as a valuable basis for the development of various murine models that have successfully mimicked ASD-like symptoms and complications. This review aims to summarize the findings of the extensive literature regarding the pharmacological and nutraceutical interventions that have been tested in the main animal models for ASD, and their effects on core symptoms and the anatomical, physiological, or molecular markers of the disorder.
Collapse
Affiliation(s)
- Matteo Bonetti
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (M.B.); (E.B.)
| | - Elisa Borsani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (M.B.); (E.B.)
- Interdepartmental University Center of Research “Adaptation and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
- Italian Society of Orofacial Pain (Società Italiana Studio Dolore Orofacciale—SISDO), 25123 Brescia, Italy
| | - Francesca Bonomini
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (M.B.); (E.B.)
- Interdepartmental University Center of Research “Adaptation and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
- Italian Society of Orofacial Pain (Società Italiana Studio Dolore Orofacciale—SISDO), 25123 Brescia, Italy
| |
Collapse
|
2
|
Zou Y, Gao B, Lu J, Zhang K, Zhai M, Yuan Z, Aschner M, Chen J, Luo W, Wang L, Zhang J. Long non-coding RNA CASC15 enhances learning and memory in mice by promoting synaptic plasticity in hippocampal neurons. EXPLORATION (BEIJING, CHINA) 2024; 4:20230154. [PMID: 39713210 PMCID: PMC11655312 DOI: 10.1002/exp.20230154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/01/2024] [Indexed: 12/24/2024]
Abstract
Alzheimer's disease (AD) is a debilitating systemic disorder that has a detrimental impact on the overall well-being of individuals. Emerging research suggests that long non-coding RNAs play a role in neural development and function. Nevertheless, the precise relationship between lncRNAs and Alzheimer's disease remains uncertain. The authors' recent discoveries have uncovered an unconventional mechanism involving the regulation of synaptic plasticity and the functioning of the hippocampal fragile X mental retardation protein 1 (FMR1)-neurotrophin 3 (NTF3) pathway, which is mediated by cancer susceptibility candidate 15 (CASC15). Subsequently, functional rescue experiments were performed to illustrate the efficient delivery of exosomes harboring a significant amount of 2610307p16Rik transcripts, which is the murine equivalent of human CASC15, to the hippocampal region of mice. This resulted in significant improvements in synaptic morphological plasticity and cognitive function in APP/PS1 mice. Given the pivotal involvement of CASC15 in synaptic plasticity and the distinctive regulatory mechanisms of the CASC15-FMR1-NTF3 axis, CASC15 emerges as a promising biomarker for Alzheimer's disease and may even possess potential as a feasible therapeutic target.
Collapse
Affiliation(s)
- Yuankang Zou
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public HealthFourth Military Medical UniversityXi'anChina
| | - Bo Gao
- Institute of Orthopaedic SurgeryXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Jiaqiao Lu
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public HealthFourth Military Medical UniversityXi'anChina
| | - Keying Zhang
- Department of UrologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Maodeng Zhai
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public HealthFourth Military Medical UniversityXi'anChina
| | - Ziyan Yuan
- Institute of Medical Information and LibraryChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Michael Aschner
- Department of Molecular PharmacologyAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Jingyuan Chen
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public HealthFourth Military Medical UniversityXi'anChina
| | - Wenjing Luo
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public HealthFourth Military Medical UniversityXi'anChina
| | - Lei Wang
- Department of Medical Research Center, Clinical Medical CollegeYangzhou UniversityYangzhouChina
| | - Jianbin Zhang
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public HealthFourth Military Medical UniversityXi'anChina
| |
Collapse
|
3
|
Ma D, Gu C. Discovering functional interactions among schizophrenia-risk genes by combining behavioral genetics with cell biology. Neurosci Biobehav Rev 2024; 167:105897. [PMID: 39278606 PMCID: PMC12057806 DOI: 10.1016/j.neubiorev.2024.105897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/26/2024] [Accepted: 09/13/2024] [Indexed: 09/18/2024]
Abstract
Despite much progress in identifying risk genes for polygenic brain disorders, their core pathogenic mechanisms remain poorly understood. In particular, functions of many proteins encoded by schizophrenia risk genes appear diverse and unrelated, complicating the efforts to establish the causal relationship between genes and behavior. Using various mouse lines, recent studies indicate that alterations of parvalbumin-positive (PV+) GABAergic interneurons can lead to schizophrenia-like behavior. PV+ interneurons display fast spiking and contribute to excitation-inhibition balance and network oscillations via feedback and feedforward inhibition. Here, we first summarize different lines of genetically modified mice that display motor, cognitive, emotional, and social impairments used to model schizophrenia and related mental disorders. We highlight ten genes, encoding either a nuclear, cytosolic, or membrane protein. Next, we discuss their functional relationship in regulating fast spiking and other aspects of PV+ interneurons and in the context of other domains of schizophrenia. Future investigations combining behavioral genetics and cell biology should elucidate functional relationships among risk genes to identify the core pathogenic mechanisms underlying polygenic brain disorders.
Collapse
Affiliation(s)
- Di Ma
- Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Chen Gu
- Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, OH 43210, USA; Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
4
|
Juárez JCC, Gómez AA, Díaz AES, Arévalo GS. Understanding pathophysiology in fragile X syndrome: a comprehensive review. Neurogenetics 2024; 26:6. [PMID: 39585476 DOI: 10.1007/s10048-024-00794-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
Fragile X syndrome (FXS) is the leading hereditary cause of intellectual disability and the most commonly associated genetic cause of autism. Historically, research into its pathophysiology has focused predominantly on neurons; however, emerging evidence suggests involvement of additional cell types and systems. The objective of this study was to review and synthesize current evidence regarding the pathophysiology of Fragile X syndrome. A comprehensive literature review was conducted using databases such as PubMed and Google Scholar, employing MeSH terms including "Fragile X Syndrome," "FMR1 gene," and "FMRP." Studies on both human and animal models, from inception to 2022, published in recognized journals were included. The evidence supports those neurons, glial cells, stem cells, the immune system, and lipid metabolism pathways contribute to the pathophysiology of Fragile X syndrome. Further research is necessary to explore these fields independently and to elucidate their interactions.
Collapse
Affiliation(s)
| | - Alejandro Aguilar Gómez
- Faculty of Medical Sciences, Universidad of San Carlos of Guatemala, Guatemala City, Guatemala
| | | | - Gabriel Silva Arévalo
- Genetics and Metabolic Clinic Coordinator, Hospital Obras Sociales del Santo Hermano Pedro, Antigua Guatemala City, Guatemala
| |
Collapse
|
5
|
Sharma S, Chawla S, Kumar P, Ahmad R, Kumar Verma P. The chronic unpredictable mild stress (CUMS) Paradigm: Bridging the gap in depression research from bench to bedside. Brain Res 2024; 1843:149123. [PMID: 39025397 DOI: 10.1016/j.brainres.2024.149123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Depression is a complicated neuropsychiatric condition with an incompletely understoodetiology, making the discovery of effective therapies challenging. Animal models have been crucial in improving our understanding of depression and enabling antidepressant medication development. The CUMS model has significant face validity since it induces fundamental depression symptoms in humans, such as anhedonia, behavioral despair, anxiety, cognitive impairments, and changes in sleep, food, and social behavior. Its construct validity is demonstrated by the dysregulation of neurobiological systems involved in depression, including monoaminergic neurotransmission, the hypothalamic-pituitary-adrenal axis, neuroinflammatory processes, and structural brain alterations. Critically, the model's predictive validity is demonstrated by the reversal of CUMS-induced deficits following treatment with clinically effective antidepressants such as selective serotonin reuptake inhibitors, serotonin-norepinephrine reuptake inhibitors, tricyclic antidepressants, and monoamine oxidase inhibitors. This review comprehensivelyassesses the multifarious depressive-like phenotypes in the CUMS model using behavioral paradigms like sucrose preference, forced swim, tail suspension, elevated plus maze, and novel object recognition tests. It investigates the neurobiological mechanisms that underlie CUMS-induced behaviors, including signaling pathways involving tumor necrosis factor-alpha, brain-derived neurotrophic factor and its receptor TrkB, cyclooxygenase-2, glycogen synthase kinase-3 beta, and the kynurenine pathway. This review emphasizes the CUMS model's importance as a translationally relevant tool for unraveling the complex mechanisms underlying depression and facilitating the development of improved and targeted interventions for this debilitating neuropsychiatric disorder by providing a comprehensive overview of its validity, behavioral assessments, and neurobiological underpinnings.
Collapse
Affiliation(s)
- Shweta Sharma
- Department of Pharmacology, School of PharmaceuticalEducation & Research, Jamia Hamdard, New Delhi 110062, India
| | - Shivani Chawla
- Shri Baba Mastnath Institute of Pharmaceutical Sciences and Research, Baba Mastnath University, Rohtak, Haryana 124001, India
| | - Praveen Kumar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Rizwan Ahmad
- Department of Pharmacology, School of PharmaceuticalEducation & Research, Jamia Hamdard, New Delhi 110062, India
| | - Prabhakar Kumar Verma
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana 124001, India.
| |
Collapse
|
6
|
Tambaro S, Mitra S, Gera R, Linderoth B, Wahlberg LU, Darreh-Shori T, Behbahani H, Nilsson P, Eriksdotter M. Feasibility and therapeutical potential of local intracerebral encapsulated cell biodelivery of BDNF to App NL-G-F knock-in Alzheimer mice. Alzheimers Res Ther 2023; 15:137. [PMID: 37596686 PMCID: PMC10436657 DOI: 10.1186/s13195-023-01282-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/29/2023] [Indexed: 08/20/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is an age-related disease characterized by altered cognition, neuroinflammation, and neurodegeneration against which there is presently no effective cure. Brain-derived neurotrophic factor (BDNF) is a key neurotrophin involved in the learning and memory process, with a crucial role in synaptic plasticity and neuronal survival. Several findings support that a reduced BDNF expression in the human brain is associated with AD pathogenesis. BDNF has been proposed as a potential therapy for AD, but BDNF has low brain penetration. In this study, we used an innovative encapsulated cell biodelivery (ECB) device, containing genetically modified cells capable of releasing BDNF and characterized its feasibility and therapeutic effects in the novel App knock-in AD mouse model (AppNL-G-F). METHODS ECB's containing human ARPE-19 cells genetically modified to release BDNF (ECB-BDNF devices) were stereotactically implanted bilaterally into hippocampus of 3-month-old AppNL-G-F mice. The stability of BDNF release and its effect on AD pathology were evaluated after 1, 2-, and 4-months post-implantation by immunohistochemical and biochemical analyses. Exploratory and memory performance using elevated plus maze (EPM) and Y-maze test were performed in the 4-months treatment group. Immunological reaction towards ECB-BDNF devices were studied under ex vivo and in vivo settings. RESULTS The surgery and the ECB-BDNF implants were well tolerated without any signs of unwanted side effects or weight loss. ECB-BDNF devices did not induce host-mediated immune response under ex vivo set-up but showed reduced immune cell attachment when explanted 4-months post-implantation. Elevated BDNF staining around ECB-BDNF device proximity was detected after 1, 2, and 4 months treatment, but the retrieved devices showed variable BDNF release. A reduction of amyloid-β (Aβ) plaque deposition was observed around ECB-BDNF device proximity after 2-months of BDNF delivery. CONCLUSIONS The result of this study supports the use of ECB device as a promising drug-delivery approach to locally administer BBB-impermeable factors for treating neurodegenerative conditions like AD. Optimization of the mouse-sized devices to reduce variability of BDNF release is needed to employ the ECB platform in future pre-clinical research and therapy development studies.
Collapse
Affiliation(s)
- Simone Tambaro
- Department of Neurobiology, Care Sciences and Society; Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Sumonto Mitra
- Department of Neurobiology, Care Sciences and Society; Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - Ruchi Gera
- Department of Neurobiology, Care Sciences and Society; Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - Bengt Linderoth
- Department of Clinical Neuroscience, Section of Neurosurgery, Karolinska Institutet, Stockholm, Sweden
| | - Lars U. Wahlberg
- Gloriana Therapeutics, Inc., Warren, RI USA
- Sinfonia Biotherapeutics AB, Huddinge, Sweden
| | - Taher Darreh-Shori
- Department of Neurobiology, Care Sciences and Society; Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - Homira Behbahani
- Department of Neurobiology, Care Sciences and Society; Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - Per Nilsson
- Department of Neurobiology, Care Sciences and Society; Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Maria Eriksdotter
- Department of Neurobiology, Care Sciences and Society; Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Huddinge, Sweden
| |
Collapse
|
7
|
Chen YS, Zhang SM, Tan W, Zhu Q, Yue CX, Xiang P, Li JQ, Wei Z, Zeng Y. Early 7,8-Dihydroxyflavone Administration Ameliorates Synaptic and Behavioral Deficits in the Young FXS Animal Model by Acting on BDNF-TrkB Pathway. Mol Neurobiol 2023; 60:2539-2552. [PMID: 36680734 DOI: 10.1007/s12035-023-03226-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/30/2022] [Indexed: 01/22/2023]
Abstract
Fragile X syndrome (FXS) is the leading inherited form of intellectual disability and the most common cause of autism spectrum disorders. FXS patients exhibit severe syndromic features and behavioral alterations, including anxiety, hyperactivity, impulsivity, and aggression, in addition to cognitive impairment and seizures. At present, there are no effective treatments or cures for FXS. Previously, we have found the divergence of BDNF-TrkB signaling trajectories is associated with spine defects in early postnatal developmental stages of Fmr1 KO mice. Here, young fragile X mice were intraperitoneal injection with 7,8-Dihydroxyflavone (7,8-DHF), a high affinity tropomyosin receptor kinase B (TrkB) agonist. 7,8-DHF ameliorated morphological abnormities in dendritic spine and synaptic structure and rescued synaptic and hippocampus-dependent cognitive dysfunction. These observed improvements of 7,8-DHF involved decreased protein levels of BDNF, p-TrkBY816, p-PLCγ, and p-CaMKII in the hippocampus. In addition, 7,8-DHF intervention in primary hippocampal neurons increased p-TrkBY816 and activated the PLCγ1-CaMKII signaling pathway, leading to improvement of neuronal morphology. This study is the first to account for early life synaptic impairments, neuronal morphological, and cognitive delays in FXS in response to the abnormal BDNF-TrkB pathway. Present studies provide novel evidences about the effective early intervention in FXS mice at developmental stages and a strategy to produce powerful impacts on neural development, synaptic plasticity, and behaviors.
Collapse
Affiliation(s)
- Yu-Shan Chen
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, 430065, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Si-Ming Zhang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, 430065, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Wei Tan
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Qiong Zhu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, 430065, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Chao-Xiong Yue
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, 430065, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Peng Xiang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, 430065, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Jin-Quan Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, 430065, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Zhen Wei
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, 430065, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Yan Zeng
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, 430065, China.
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China.
| |
Collapse
|
8
|
Svalina MN, Sullivan R, Restrepo D, Huntsman MM. From circuits to behavior: Amygdala dysfunction in fragile X syndrome. Front Integr Neurosci 2023; 17:1128529. [PMID: 36969493 PMCID: PMC10034113 DOI: 10.3389/fnint.2023.1128529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by a repeat expansion mutation in the promotor region of the FMR1 gene resulting in transcriptional silencing and loss of function of fragile X messenger ribonucleoprotein 1 protein (FMRP). FMRP has a well-defined role in the early development of the brain. Thus, loss of the FMRP has well-known consequences for normal cellular and synaptic development leading to a variety of neuropsychiatric disorders including an increased prevalence of amygdala-based disorders. Despite our detailed understanding of the pathophysiology of FXS, the precise cellular and circuit-level underpinnings of amygdala-based disorders is incompletely understood. In this review, we discuss the development of the amygdala, the role of neuromodulation in the critical period plasticity, and recent advances in our understanding of how synaptic and circuit-level changes in the basolateral amygdala contribute to the behavioral manifestations seen in FXS.
Collapse
Affiliation(s)
- Matthew N. Svalina
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Regina Sullivan
- Brain Institute, Nathan Kline Institute, Orangeburg, NY, United States
- Child and Adolescent Psychiatry, Child Study Center, New York University School of Medicine, New York, NY, United States
| | - Diego Restrepo
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Molly M. Huntsman
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- *Correspondence: Molly M. Huntsman,
| |
Collapse
|
9
|
Purushotham SS, Reddy NMN, D'Souza MN, Choudhury NR, Ganguly A, Gopalakrishna N, Muddashetty R, Clement JP. A perspective on molecular signalling dysfunction, its clinical relevance and therapeutics in autism spectrum disorder. Exp Brain Res 2022; 240:2525-2567. [PMID: 36063192 DOI: 10.1007/s00221-022-06448-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022]
Abstract
Intellectual disability (ID) and autism spectrum disorder (ASD) are neurodevelopmental disorders that have become a primary clinical and social concern, with a prevalence of 2-3% in the population. Neuronal function and behaviour undergo significant malleability during the critical period of development that is found to be impaired in ID/ASD. Human genome sequencing studies have revealed many genetic variations associated with ASD/ID that are further verified by many approaches, including many mouse and other models. These models have facilitated the identification of fundamental mechanisms underlying the pathogenesis of ASD/ID, and several studies have proposed converging molecular pathways in ASD/ID. However, linking the mechanisms of the pathogenic genes and their molecular characteristics that lead to ID/ASD has progressed slowly, hampering the development of potential therapeutic strategies. This review discusses the possibility of recognising the common molecular causes for most ASD/ID based on studies from the available models that may enable a better therapeutic strategy to treat ID/ASD. We also reviewed the potential biomarkers to detect ASD/ID at early stages that may aid in diagnosis and initiating medical treatment, the concerns with drug failure in clinical trials, and developing therapeutic strategies that can be applied beyond a particular mutation associated with ASD/ID.
Collapse
Affiliation(s)
- Sushmitha S Purushotham
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Neeharika M N Reddy
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Michelle Ninochka D'Souza
- Centre for Brain Research, Indian Institute of Science Campus, CV Raman Avenue, Bangalore, 560 012, India.,The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, 560064, India
| | - Nilpawan Roy Choudhury
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Anusa Ganguly
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Niharika Gopalakrishna
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Ravi Muddashetty
- Centre for Brain Research, Indian Institute of Science Campus, CV Raman Avenue, Bangalore, 560 012, India.,The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, 560064, India
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India.
| |
Collapse
|
10
|
D’Incal C, Broos J, Torfs T, Kooy RF, Vanden Berghe W. Towards Kinase Inhibitor Therapies for Fragile X Syndrome: Tweaking Twists in the Autism Spectrum Kinase Signaling Network. Cells 2022; 11:cells11081325. [PMID: 35456004 PMCID: PMC9029738 DOI: 10.3390/cells11081325] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 12/12/2022] Open
Abstract
Absence of the Fragile X Mental Retardation Protein (FMRP) causes autism spectrum disorders and intellectual disability, commonly referred to as the Fragile X syndrome. FMRP is a negative regulator of protein translation and is essential for neuronal development and synapse formation. FMRP is a target for several post-translational modifications (PTMs) such as phosphorylation and methylation, which tightly regulate its cellular functions. Studies have indicated the involvement of FMRP in a multitude of cellular pathways, and an absence of FMRP was shown to affect several neurotransmitter receptors, for example, the GABA receptor and intracellular signaling molecules such as Akt, ERK, mTOR, and GSK3. Interestingly, many of these molecules function as protein kinases or phosphatases and thus are potentially amendable by pharmacological treatment. Several treatments acting on these kinase-phosphatase systems have been shown to be successful in preclinical models; however, they have failed to convincingly show any improvements in clinical trials. In this review, we highlight the different protein kinase and phosphatase studies that have been performed in the Fragile X syndrome. In our opinion, some of the paradoxical study conclusions are potentially due to the lack of insight into integrative kinase signaling networks in the disease. Quantitative proteome analyses have been performed in several models for the FXS to determine global molecular processes in FXS. However, only one phosphoproteomics study has been carried out in Fmr1 knock-out mouse embryonic fibroblasts, and it showed dysfunctional protein kinase and phosphatase signaling hubs in the brain. This suggests that the further use of phosphoproteomics approaches in Fragile X syndrome holds promise for identifying novel targets for kinase inhibitor therapies.
Collapse
Affiliation(s)
- Claudio D’Incal
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (C.D.); (J.B.); (T.T.)
- Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium;
| | - Jitse Broos
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (C.D.); (J.B.); (T.T.)
| | - Thierry Torfs
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (C.D.); (J.B.); (T.T.)
| | - R. Frank Kooy
- Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium;
| | - Wim Vanden Berghe
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (C.D.); (J.B.); (T.T.)
- Correspondence: ; Tel.: +0032-(0)-32-652-657
| |
Collapse
|
11
|
Nolan SO, Hodges SL, Binder MS, Smith GD, Okoh JT, Jefferson TS, Escobar B, Lugo JN. Dietary rescue of adult behavioral deficits in the Fmr1 knockout mouse. PLoS One 2022; 17:e0262916. [PMID: 35089938 PMCID: PMC8797197 DOI: 10.1371/journal.pone.0262916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 01/09/2022] [Indexed: 11/21/2022] Open
Abstract
The current study aimed to further address important questions regarding the therapeutic efficacy of omega-3 fatty acids for various behavioral and neuroimmune aspects of the Fmr1 phenotype. To address these questions, our experimental design utilized two different omega-3 fatty acid administration timepoints, compared to both standard laboratory chow controls ("Standard") and a diet controlling for the increase in fat content ("Control Fat"). In the first paradigm, post-weaning supplementation (after postnatal day 21) with the omega-3 fatty acid diet ("Omega-3") reversed deficits in startle threshold, but not deficits in prepulse inhibition, and the effect on startle threshold was not specific to the Omega-3 diet. However, post-weaning supplementation with both experimental diets also impaired acquisition of a fear response, recall of the fear memory and contextual fear conditioning compared to the Standard diet. The post-weaning Omega-3 diet reduced hippocampal expression of IL-6 and this reduction of IL-6 was significantly associated with diminished performance in the fear conditioning task. In the perinatal experimental paradigm, the Omega-3 diet attenuated hyperactivity and acquisition of a fear response. Additionally, perinatal exposure to the Control Fat diet (similar to a "Western" diet) further diminished nonsocial anxiety in the Fmr1 knockout. This study provides significant evidence that dietary fatty acids throughout the lifespan can significantly impact the behavioral and neuroimmune phenotype of the Fmr1 knockout model.
Collapse
Affiliation(s)
- Suzanne O. Nolan
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, United States of America
| | - Samantha L. Hodges
- Institute of Biomedical Studies, Baylor University, Waco, Texas, United States of America
| | - Matthew S. Binder
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, United States of America
| | - Gregory D. Smith
- Institute of Biomedical Studies, Baylor University, Waco, Texas, United States of America
| | - James T. Okoh
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, United States of America
| | - Taylor S. Jefferson
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, United States of America
| | - Brianna Escobar
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, United States of America
| | - Joaquin N. Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, United States of America
- Institute of Biomedical Studies, Baylor University, Waco, Texas, United States of America
| |
Collapse
|
12
|
Bicker F, Nardi L, Maier J, Vasic V, Schmeisser MJ. Criss-crossing autism spectrum disorder and adult neurogenesis. J Neurochem 2021; 159:452-478. [PMID: 34478569 DOI: 10.1111/jnc.15501] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/05/2021] [Accepted: 08/28/2021] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorder (ASD) comprises a group of multifactorial neurodevelopmental disorders primarily characterized by deficits in social interaction and repetitive behavior. Although the onset is typically in early childhood, ASD poses a lifelong challenge for both patients and caretakers. Adult neurogenesis (AN) is the process by which new functional neurons are created from neural stem cells existing in the post-natal brain. The entire event is based on a sequence of cellular processes, such as proliferation, specification of cell fate, maturation, and ultimately, synaptic integration into the existing neural circuits. Hence, AN is implicated in structural and functional brain plasticity throughout life. Accumulating evidence shows that impaired AN may underlie some of the abnormal behavioral phenotypes seen in ASD. In this review, we approach the interconnections between the molecular pathways related to AN and ASD. We also discuss existing therapeutic approaches targeting such pathways both in preclinical and clinical studies. A deeper understanding of how ASD and AN reciprocally affect one another could reveal important converging pathways leading to the emergence of psychiatric disorders.
Collapse
Affiliation(s)
- Frank Bicker
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Leonardo Nardi
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Jannik Maier
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Verica Vasic
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Michael J Schmeisser
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.,Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
13
|
Reyes ST, Deacon RMJ, Guo SG, Altimiras FJ, Castillo JB, van der Wildt B, Morales AP, Park JH, Klamer D, Rosenberg J, Oberman LM, Rebowe N, Sprouse J, Missling CU, McCurdy CR, Cogram P, Kaufmann WE, Chin FT. Effects of the sigma-1 receptor agonist blarcamesine in a murine model of fragile X syndrome: neurobehavioral phenotypes and receptor occupancy. Sci Rep 2021; 11:17150. [PMID: 34433831 PMCID: PMC8387417 DOI: 10.1038/s41598-021-94079-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/21/2021] [Indexed: 11/08/2022] Open
Abstract
Fragile X syndrome (FXS), a disorder of synaptic development and function, is the most prevalent genetic form of intellectual disability and autism spectrum disorder. FXS mouse models display clinically-relevant phenotypes, such as increased anxiety and hyperactivity. Despite their availability, so far advances in drug development have not yielded new treatments. Therefore, testing novel drugs that can ameliorate FXS' cognitive and behavioral impairments is imperative. ANAVEX2-73 (blarcamesine) is a sigma-1 receptor (S1R) agonist with a strong safety record and preliminary efficacy evidence in patients with Alzheimer's disease and Rett syndrome, other synaptic neurodegenerative and neurodevelopmental disorders. S1R's role in calcium homeostasis and mitochondrial function, cellular functions related to synaptic function, makes blarcamesine a potential drug candidate for FXS. Administration of blarcamesine in 2-month-old FXS and wild type mice for 2 weeks led to normalization in two key neurobehavioral phenotypes: open field test (hyperactivity) and contextual fear conditioning (associative learning). Furthermore, there was improvement in marble-burying (anxiety, perseverative behavior). It also restored levels of BDNF, a converging point of many synaptic regulators, in the hippocampus. Positron emission tomography (PET) and ex vivo autoradiographic studies, using the highly selective S1R PET ligand [18F]FTC-146, demonstrated the drug's dose-dependent receptor occupancy. Subsequent analyses also showed a wide but variable brain regional distribution of S1Rs, which was preserved in FXS mice. Altogether, these neurobehavioral, biochemical, and imaging data demonstrates doses that yield measurable receptor occupancy are effective for improving the synaptic and behavioral phenotype in FXS mice. The present findings support the viability of S1R as a therapeutic target in FXS, and the clinical potential of blarcamesine in FXS and other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Samantha T Reyes
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Robert M J Deacon
- FRAXA-DVI, FRAXA, Santiago, Chile
- IEB, Faculty of Science, University of Chile, Santiago, Chile
- Fraunhofer Chile Research, Center for Systems Biotechnology, Santiago, Chile
| | - Scarlett G Guo
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Francisco J Altimiras
- FRAXA-DVI, FRAXA, Santiago, Chile
- Faculty of Engineering and Business, Universidad de las Américas, Santiago, Chile
| | - Jessa B Castillo
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | | | - Aimara P Morales
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Jun Hyung Park
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Daniel Klamer
- Anavex Life Sciences Corp., New York, NY, 10019, USA
| | - Jarrett Rosenberg
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Lindsay M Oberman
- Center for Neuroscience & Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Nell Rebowe
- Anavex Life Sciences Corp., New York, NY, 10019, USA
| | | | | | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Patricia Cogram
- FRAXA-DVI, FRAXA, Santiago, Chile
- IEB, Faculty of Science, University of Chile, Santiago, Chile
- Fraunhofer Chile Research, Center for Systems Biotechnology, Santiago, Chile
| | - Walter E Kaufmann
- Anavex Life Sciences Corp., New York, NY, 10019, USA.
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Frederick T Chin
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
14
|
Peteri UK, Pitkonen J, de Toma I, Nieminen O, Utami KH, Strandin TM, Corcoran P, Roybon L, Vaheri A, Ethell I, Casarotto P, Pouladi MA, Castrén ML. Urokinase plasminogen activator mediates changes in human astrocytes modeling fragile X syndrome. Glia 2021; 69:2947-2962. [PMID: 34427356 DOI: 10.1002/glia.24080] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/25/2022]
Abstract
The function of astrocytes intertwines with the extracellular matrix, whose neuron and glial cell-derived components shape neuronal plasticity. Astrocyte abnormalities have been reported in the brain of the mouse model for fragile X syndrome (FXS), the most common cause of inherited intellectual disability, and a monogenic cause of autism spectrum disorder. We compared human FXS and control astrocytes generated from human induced pluripotent stem cells and we found increased expression of urokinase plasminogen activator (uPA), which modulates degradation of extracellular matrix. Several pathways associated with uPA and its receptor function were activated in FXS astrocytes. Levels of uPA were also increased in conditioned medium collected from FXS hiPSC-derived astrocyte cultures and correlated inversely with intracellular Ca2+ responses to activation of L-type voltage-gated calcium channels in human astrocytes. Increased uPA augmented neuronal phosphorylation of TrkB within the docking site for the phospholipase-Cγ1 (PLCγ1), indicating effects of uPA on neuronal plasticity. Gene expression changes during neuronal differentiation preceding astrogenesis likely contributed to properties of astrocytes with FXS-specific alterations that showed specificity by not affecting differentiation of adenosine triphosphate (ATP)-responsive astrocyte population. To conclude, our studies identified uPA as an important regulator of astrocyte function and demonstrated that increased uPA in human FXS astrocytes modulated astrocytic responses and neuronal plasticity.
Collapse
Affiliation(s)
- Ulla-Kaisa Peteri
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Juho Pitkonen
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ilario de Toma
- Systems Neurobiology Laboratory, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Otso Nieminen
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kagistia Hana Utami
- Department of Physiology, National University of Singapore (NUS), Singapore, Singapore
| | - Tomas M Strandin
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Padraic Corcoran
- Array and Analysis Facility, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Laurent Roybon
- iPSC Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, BMC D10, and MultiPark and the Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Antti Vaheri
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Iryna Ethell
- Biomedical Sciences, University of California Riverside School of Medicine, Riverside, California, USA
| | | | - Mahmoud A Pouladi
- Department of Physiology, National University of Singapore (NUS), Singapore, Singapore.,British Columbia Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Maija L Castrén
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
15
|
Annamneedi A, del Angel M, Gundelfinger ED, Stork O, Çalışkan G. The Presynaptic Scaffold Protein Bassoon in Forebrain Excitatory Neurons Mediates Hippocampal Circuit Maturation: Potential Involvement of TrkB Signalling. Int J Mol Sci 2021; 22:ijms22157944. [PMID: 34360710 PMCID: PMC8347324 DOI: 10.3390/ijms22157944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/30/2022] Open
Abstract
A presynaptic active zone organizer protein Bassoon orchestrates numerous important functions at the presynaptic active zone. We previously showed that the absence of Bassoon exclusively in forebrain glutamatergic presynapses (BsnEmx1cKO) in mice leads to developmental disturbances in dentate gyrus (DG) affecting synaptic excitability, morphology, neurogenesis and related behaviour during adulthood. Here, we demonstrate that hyperexcitability of the medial perforant path-to-DG (MPP-DG) pathway in BsnEmx1cKO mice emerges during adolescence and is sustained during adulthood. We further provide evidence for a potential involvement of tropomyosin-related kinase B (TrkB), the high-affinity receptor for brain-derived neurotrophic factor (BDNF), mediated signalling. We detect elevated TrkB protein levels in the dorsal DG of adult mice (~3–5 months-old) but not in adolescent (~4–5 weeks-old) mice. Electrophysiological analysis reveals increased field-excitatory-postsynaptic-potentials (fEPSPs) in the DG of the adult, but not in adolescent BsnEmx1cKO mice. In line with an increased TrkB expression during adulthood in BsnEmx1cKO, blockade of TrkB normalizes the increased synaptic excitability in the DG during adulthood, while no such effect was observed in adolescence. Accordingly, neurogenesis, which has previously been found to be increased in adult BsnEmx1cKO mice, was unaffected at adolescent age. Our results suggest that Bassoon plays a crucial role in the TrkB-dependent postnatal maturation of the hippocampus.
Collapse
Affiliation(s)
- Anil Annamneedi
- Institute of Biology, Otto-Von-Guericke University, 39120 Magdeburg, Germany; (M.d.A.); (O.S.)
- Center for Behavioral Brain Sciences (CBBS), 39120 Magdeburg, Germany;
- Leibniz Institute for Neurobiology (LIN), RG Neuroplasticity, 39118 Magdeburg, Germany
- Correspondence: (A.A.); (G.Ç.)
| | - Miguel del Angel
- Institute of Biology, Otto-Von-Guericke University, 39120 Magdeburg, Germany; (M.d.A.); (O.S.)
| | - Eckart D. Gundelfinger
- Center for Behavioral Brain Sciences (CBBS), 39120 Magdeburg, Germany;
- Leibniz Institute for Neurobiology (LIN), RG Neuroplasticity, 39118 Magdeburg, Germany
- Institute of Pharmacology & Toxicology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Oliver Stork
- Institute of Biology, Otto-Von-Guericke University, 39120 Magdeburg, Germany; (M.d.A.); (O.S.)
- Center for Behavioral Brain Sciences (CBBS), 39120 Magdeburg, Germany;
| | - Gürsel Çalışkan
- Institute of Biology, Otto-Von-Guericke University, 39120 Magdeburg, Germany; (M.d.A.); (O.S.)
- Center for Behavioral Brain Sciences (CBBS), 39120 Magdeburg, Germany;
- Correspondence: (A.A.); (G.Ç.)
| |
Collapse
|
16
|
Adenosine A 2A receptor inhibition reduces synaptic and cognitive hippocampal alterations in Fmr1 KO mice. Transl Psychiatry 2021; 11:112. [PMID: 33547274 PMCID: PMC7864914 DOI: 10.1038/s41398-021-01238-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/28/2020] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
In fragile X syndrome (FXS) the lack of the fragile X mental retardation protein (FMRP) leads to exacerbated signaling through the metabotropic glutamate receptors 5 (mGlu5Rs). The adenosine A2A receptors (A2ARs), modulators of neuronal damage, could play a role in FXS. A synaptic colocalization and a strong permissive interaction between A2A and mGlu5 receptors in the hippocampus have been previously reported, suggesting that blocking A2ARs might normalize the mGlu5R-mediated effects of FXS. To study the cross-talk between A2A and mGlu5 receptors in the absence of FMRP, we performed extracellular electrophysiology experiments in hippocampal slices of Fmr1 KO mouse. The depression of field excitatory postsynaptic potential (fEPSPs) slope induced by the mGlu5R agonist CHPG was completely blocked by the A2AR antagonist ZM241385 and strongly potentiated by the A2AR agonist CGS21680, suggesting that the functional synergistic coupling between the two receptors could be increased in FXS. To verify if chronic A2AR blockade could reverse the FXS phenotypes, we treated the Fmr1 KO mice with istradefylline, an A2AR antagonist. We found that hippocampal DHPG-induced long-term depression (LTD), which is abnormally increased in FXS mice, was restored to the WT level. Furthermore, istradefylline corrected aberrant dendritic spine density, specific behavioral alterations, and overactive mTOR, TrkB, and STEP signaling in Fmr1 KO mice. Finally, we identified A2AR mRNA as a target of FMRP. Our results show that the pharmacological blockade of A2ARs partially restores some of the phenotypes of Fmr1 KO mice, both by reducing mGlu5R functioning and by acting on other A2AR-related downstream targets.
Collapse
|
17
|
Colliva A, Tongiorgi E. Distinct role of 5'UTR sequences in dendritic trafficking of BDNF mRNA: additional mechanisms for the BDNF splice variants spatial code. Mol Brain 2021; 14:10. [PMID: 33436052 PMCID: PMC7805101 DOI: 10.1186/s13041-020-00680-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/02/2020] [Indexed: 01/07/2023] Open
Abstract
The neurotrophin Brain-derived neurotrophic factor (BDNF) is encoded by multiple bipartite transcripts. Each BDNF transcript is composed by one out of 11 alternatively spliced exons containing the 5'untranslated region (UTR), and one common exon encompassing the coding sequence (CDS) and the 3'UTR with two variants (short and long). In neurons, BDNF mRNA variants have a distinct subcellular distribution, constituting a "spatial code", with exon 1, 3, 5, 7 and 8 located in neuronal somata, exon 4 extending into proximal dendrites, and exon 2 and 6 reaching distal dendrites. We previously showed that the CDS encodes constitutive dendritic targeting signals (DTS) and that both the 3'UTR-short and the 3'UTR-long contain activity-dependent DTS. However, the role of individual 5'UTR exons in mRNA sorting remains unclear. Here, we tested the ability of each different BDNF 5'UTRs to affect the subcellular localization of the green fluorescent protein (GFP) reporter mRNA. We found that exon 2 splicing isoforms (2a, 2b, and 2c) induced a constitutive dendritic targeting of the GFP reporter mRNA towards distal dendritic segments. The other isoforms did not affect GFP-mRNA dendritic trafficking. Through a bioinformatic analysis, we identified five unique cis-elements in exon 2a, 2b, and 2c which might contribute to building a DTS. This study provides additional information on the mechanism regulating the cellular sorting of BDNF mRNA variants.
Collapse
Affiliation(s)
- Andrea Colliva
- Department of Life Sciences (Q Building), University of Trieste, Via Licio Giorgieri, 5, 34127, Trieste, Italy
| | - Enrico Tongiorgi
- Department of Life Sciences (Q Building), University of Trieste, Via Licio Giorgieri, 5, 34127, Trieste, Italy.
| |
Collapse
|
18
|
Seese RR, Le AA, Wang K, Cox CD, Lynch G, Gall CM. A TrkB agonist and ampakine rescue synaptic plasticity and multiple forms of memory in a mouse model of intellectual disability. Neurobiol Dis 2020; 134:104604. [PMID: 31494285 PMCID: PMC7258745 DOI: 10.1016/j.nbd.2019.104604] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/26/2019] [Accepted: 09/04/2019] [Indexed: 12/20/2022] Open
Abstract
Fragile X syndrome (FXS) is associated with deficits in various types of learning, including those that require the hippocampus. Relatedly, hippocampal long-term potentiation (LTP) is impaired in the Fmr1 knockout (KO) mouse model of FXS. Prior research found that infusion of brain-derived neurotrophic factor (BDNF) rescues LTP in the KOs. Here, we tested if, in Fmr1 KO mice, up-regulating BDNF production or treatment with an agonist for BDNF's TrkB receptor restores synaptic plasticity and improves learning. In hippocampal slices, bath infusion of the TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) completely restored otherwise impaired hippocampal field CA1 LTP of Fmr1 KOs without effect in wild types (WTs). Similarly, acute, semi-chronic, or chronic treatments with 7,8-DHF rescued a simple hippocampus-dependent form of spatial learning (object location memory: OLM) in Fmr1 KOs without effect in WTs. The agonist also restored object recognition memory, which depends on cortical regions. Semi-chronic, but not acute, treatment with the ampakine CX929, which up-regulates BDNF expression, lowered the training threshold for OLM in WT mice and rescued learning in the KOs. Positive results were also obtained in a test for social recognition. An mGluR5 antagonist did not improve learning. Quantification of synaptic immunolabeling demonstrated that 7,8-DHF and CX929 increase levels of activated TrkB at excitatory synapses. Moreover, CX929 induced a robust synaptic activation of the TrkB effector ERK1/2. These results suggest that enhanced synaptic BDNF signaling constitutes a plausible strategy for treating certain aspects of the cognitive disabilities associated with FXS.
Collapse
Affiliation(s)
- Ronald R Seese
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, United States of America
| | - Aliza A Le
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, United States of America
| | - Kathleen Wang
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, United States of America
| | - Conor D Cox
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, United States of America
| | - Gary Lynch
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, United States of America; Department of Psychiatry and Human Behavior, University of California, Irvine, CA, United States of America.
| | - Christine M Gall
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, United States of America; Department of Neurobiology and Behavior, University of California, Irvine, CA, United States of America.
| |
Collapse
|
19
|
Cataloguing and Selection of mRNAs Localized to Dendrites in Neurons and Regulated by RNA-Binding Proteins in RNA Granules. Biomolecules 2020; 10:biom10020167. [PMID: 31978946 PMCID: PMC7072219 DOI: 10.3390/biom10020167] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 12/15/2022] Open
Abstract
Spatiotemporal translational regulation plays a key role in determining cell fate and function. Specifically, in neurons, local translation in dendrites is essential for synaptic plasticity and long-term memory formation. To achieve local translation, RNA-binding proteins in RNA granules regulate target mRNA stability, localization, and translation. To date, mRNAs localized to dendrites have been identified by comprehensive analyses. In addition, mRNAs associated with and regulated by RNA-binding proteins have been identified using various methods in many studies. However, the results obtained from these numerous studies have not been compiled together. In this review, we have catalogued mRNAs that are localized to dendrites and are associated with and regulated by the RNA-binding proteins fragile X mental retardation protein (FMRP), RNA granule protein 105 (RNG105, also known as Caprin1), Ras-GAP SH3 domain binding protein (G3BP), cytoplasmic polyadenylation element binding protein 1 (CPEB1), and staufen double-stranded RNA binding proteins 1 and 2 (Stau1 and Stau2) in RNA granules. This review provides comprehensive information on dendritic mRNAs, the neuronal functions of mRNA-encoded proteins, the association of dendritic mRNAs with RNA-binding proteins in RNA granules, and the effects of RNA-binding proteins on mRNA regulation. These findings provide insights into the mechanistic basis of protein-synthesis-dependent synaptic plasticity and memory formation and contribute to future efforts to understand the physiological implications of local regulation of dendritic mRNAs in neurons.
Collapse
|
20
|
Hodges SL, Nolan SO, Tomac LA, Muhammad IDA, Binder MS, Taube JH, Lugo JN. Lipopolysaccharide-induced inflammation leads to acute elevations in pro-inflammatory cytokine expression in a mouse model of Fragile X syndrome. Physiol Behav 2019; 215:112776. [PMID: 31838149 DOI: 10.1016/j.physbeh.2019.112776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by a single genetic mutation in the Fmr1 gene, serving as the largest genetic cause of intellectual disability. Trinucleotide expansion mutations in Fmr1 result in silencing and hypermethylation of the gene, preventing synthesis of the RNA binding protein Fragile X mental retardation protein which functions as a translational repressor. Abnormal immune responses have been demonstrated to play a role in FXS pathophysiology, however, whether these alterations impact how those with FXS respond to an immune insult behaviorally is not entirely known. In the current study, we examine how Fmr1 knockout (KO) and wild type (WT) mice respond to the innate immune stimulus lipopolysaccharide (LPS), both on a molecular and behavioral level, to determine if Fmr1 mutations impact the normal physiological response to an immune insult. In response to LPS, Fmr1 KO mice had elevated hippocampal IL-1β and IL-6 mRNA levels 4 h post-treatment compared to WT mice, with no differences detected in any cytokines at baseline or between genotypes 24 h post-LPS administration. Fmr1 KO mice also had upregulated hippocampal BDNF gene expression 4 h post-treatment compared to WT mice, which was not dependent on LPS administration. There were no differences in hippocampal protein expression between genotypes in microglia (Iba1) or astrocyte (GFAP) reactivity. Further, both genotypes displayed the typical sickness response following LPS stimulation, demonstrated by a significant reduction in food burrowed by LPS-treated mice in a burrowing task. Additional investigation is critical to determine if the transient increases in cytokine expression could lead to long-term changes in downstream molecular signaling in FXS.
Collapse
Affiliation(s)
- Samantha L Hodges
- Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA
| | - Suzanne O Nolan
- Department of Psychology and Neuroscience, Baylor University, One Bear Place # 97334, Waco, TX 76798, USA
| | - Lindsay A Tomac
- Department of Psychology and Neuroscience, Baylor University, One Bear Place # 97334, Waco, TX 76798, USA
| | - Ilyasah D A Muhammad
- Department of Psychology and Neuroscience, Baylor University, One Bear Place # 97334, Waco, TX 76798, USA
| | - Matthew S Binder
- Department of Psychology and Neuroscience, Baylor University, One Bear Place # 97334, Waco, TX 76798, USA
| | - Joseph H Taube
- Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA; Department of Biology, Baylor University, Waco, TX 76798, USA
| | - Joaquin N Lugo
- Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA; Department of Psychology and Neuroscience, Baylor University, One Bear Place # 97334, Waco, TX 76798, USA; Department of Biology, Baylor University, Waco, TX 76798, USA.
| |
Collapse
|
21
|
Isoflurane produces antidepressant effects inducing BDNF-TrkB signaling in CUMS mice. Psychopharmacology (Berl) 2019; 236:3301-3315. [PMID: 31197433 DOI: 10.1007/s00213-019-05287-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 05/27/2019] [Indexed: 12/21/2022]
Abstract
RATIONALE The volatile anesthetic isoflurane is suggested to produce a rapid and robust antidepressive effect in preliminary clinical trials. Recently, isoflurane was found to activate the tropomyosin receptor kinase B (TrkB) signaling which is the underlying mechanism of the rapid antidepressant ketamine. OBJECTIVE Our study investigated the effect of isoflurane anesthesia on chronic unpredictable mild stressed (CUMS) model in mice and verified the role of brain-derived neurotrophic factor (BDNF)/TrkB/ the mammalian target of rapamycin (mTOR) signaling in the antidepressant effect of isoflurane. METHODS We employed the CUMS model of depression to assess the rapid antidepressant effect of isoflurane by the forced swimming test (FST), the sucrose preference test (SPT), and the novelty suppressed feeding test (NSFT). The protein expression of BDNF and TrkB/protein kinase B (PKB or Akt)/mTOR was determined through Western blot. The dendritic spine density in the hippocampus and medial prefrontal cortex (PFC) was measured by the Golgi staining. RESULTS A brief burst-suppressing isoflurane anesthesia rapidly reversed the behavioral deficits caused by CUMS procedure, normalized the expression of BDNF and further activated the TrkB signaling pathway in CUMS-induced stressed mice in both prefrontal cortex (PFC) and hippocampus (HC). All of those behavioral and proteomic effects were blocked by K252a, a selective receptor inhibitor of TrkB. Isoflurane significantly promoted the formation of dendritic spines in both medial prefrontal cortex (mPFC), CA1, CA3, and DG of the hippocampus. CONCLUSION Our study indicates that isoflurane exerts a rapid antidepressant-like effect in CUMS depression animal model, and the activation of BDNF/TrkB signaling pathway plays an indispensable role in the biological and behavioral antidepressant effects of isoflurane. A single exposure to isoflurane could repair synaptic damage caused by chronic stimulation.
Collapse
|
22
|
Li B, Jiang Y, Xu Y, Li Y, Li B. Identification of miRNA-7 as a regulator of brain-derived neurotrophic factor/α-synuclein axis in atrazine-induced Parkinson's disease by peripheral blood and brain microRNA profiling. CHEMOSPHERE 2019; 233:542-548. [PMID: 31185338 DOI: 10.1016/j.chemosphere.2019.05.064] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/05/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
Atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine; ATR) is widely used as an herbicide, and its accumulation in the environment is a health risk to humans; for instance, it has been shown to cause dopaminergic neurotoxicity. MicroRNAs (miRNAs) are endogenous small RNAs that regulate gene expression in diverse physiological contexts; however, the extent of their involvement in the development of Parkinson's disease (PD) is not known. In this study, we carried out miRNA profiling of peripheral blood and brain tissue in a rat model of PD in order to identify factors that mediate PD pathogenesis. The miRNAmiR-7 is known to cause the downregulation of α-synuclein (α-syn), which is linked to the neuropathology of PD. Here we found that miR-7 was upregulated in brain tissue but downregulated in peripheral blood of rats with ATR-induced PD. We also found that miR-7 regulates the expression of brain-derived neurotrophic factor (BDNF) through an auto regulatory mechanism. These findings indicate that miRNA-7 regulates the BDNF/α-syn axis in the early stages of PD and can serve as a biomarker or therapeutic target for disease treatment.
Collapse
Affiliation(s)
- Bingyun Li
- Harbin Medical University, Harbin, China
| | | | - Yaning Xu
- Harbin Medical University, Harbin, China
| | - Yanshu Li
- Harbin Medical University, Harbin, China.
| | | |
Collapse
|
23
|
Cresto N, Pillet LE, Billuart P, Rouach N. Do Astrocytes Play a Role in Intellectual Disabilities? Trends Neurosci 2019; 42:518-527. [PMID: 31300246 DOI: 10.1016/j.tins.2019.05.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/06/2019] [Accepted: 05/31/2019] [Indexed: 11/29/2022]
Abstract
Neurodevelopmental disorders, including those involving intellectual disability, are characterized by abnormalities in formation and functions of synaptic circuits. Traditionally, research on synaptogenesis and synaptic transmission in health and disease focused on neurons, however, a growing number of studies have highlighted the role of astrocytes in this context. Tight structural and functional interactions of astrocytes and synapses indeed play important roles in brain functions, and the repertoire of astroglial regulations of synaptic circuits is large and complex. Recently, genetic studies of intellectual disabilities have underscored potential contributions of astrocytes in the pathophysiology of these disorders. Here we review how alterations of astrocyte functions in disease may interfere with neuronal excitability and the balance of excitatory and inhibitory transmission during development, and contribute to intellectual disabilities.
Collapse
Affiliation(s)
- Noémie Cresto
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, 75005 Paris, France; Université de Paris, Institut de Psychiatrie et de Neuroscience de Paris, INSERM U1266, Paris, France
| | - Laure-Elise Pillet
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, 75005 Paris, France; Université de Paris, Institut de Psychiatrie et de Neuroscience de Paris, INSERM U1266, Paris, France; Doctoral School N°562, Paris Descartes University, Paris 75006, France
| | - Pierre Billuart
- Université de Paris, Institut de Psychiatrie et de Neuroscience de Paris, INSERM U1266, Paris, France.
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, 75005 Paris, France.
| |
Collapse
|
24
|
Zafarullah M, Tassone F. Molecular Biomarkers in Fragile X Syndrome. Brain Sci 2019; 9:E96. [PMID: 31035599 PMCID: PMC6562871 DOI: 10.3390/brainsci9050096] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 01/01/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common inherited form of intellectual disability (ID) and a known monogenic cause of autism spectrum disorder (ASD). It is a trinucleotide repeat disorder, in which more than 200 CGG repeats in the 5' untranslated region (UTR) of the fragile X mental retardation 1 (FMR1) gene causes methylation of the promoter with consequent silencing of the gene, ultimately leading to the loss of the encoded fragile X mental retardation 1 protein, FMRP. FMRP is an RNA binding protein that plays a primary role as a repressor of translation of various mRNAs, many of which are involved in the maintenance and development of neuronal synaptic function and plasticity. In addition to intellectual disability, patients with FXS face several behavioral challenges, including anxiety, hyperactivity, seizures, repetitive behavior, and problems with executive and language performance. Currently, there is no cure or approved medication for the treatment of the underlying causes of FXS, but in the past few years, our knowledge about the proteins and pathways that are dysregulated by the loss of FMRP has increased, leading to clinical trials and to the path of developing molecular biomarkers for identifying potential targets for therapies. In this paper, we review candidate molecular biomarkers that have been identified in preclinical studies in the FXS mouse animal model and are now under validation for human applications or have already made their way to clinical trials.
Collapse
Affiliation(s)
- Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, 95817 CA, USA.
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, 95817 CA, USA.
- MIND Institute, University of California Davis Medical Center, Sacramento, 95817 CA, USA.
| |
Collapse
|
25
|
Modeling FXS with Mouse Neural Progenitors. Methods Mol Biol 2019. [PMID: 30900176 DOI: 10.1007/978-1-4939-9080-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The neurosphere assay is a widely used method to culture neural precursor cells (NPCs), which include mixed populations of neural stem and progenitor cells, from the mammalian central nervous system. Fmr1-knockout (KO) mice generated to model fragile X syndrome (FXS) recapitulate the major phenotype of FXS. Neurosphere differentiation of cortical progenitors derived from brains of Fmr1-KO mice has been shown to reflect disordered mechanisms during cortical development in FXS in vivo. The cellular composition of neurospheres is heterogeneous, but robust FXS-specific alterations can be identified when culturing conditions are kept constant.
Collapse
|
26
|
Telias M. Molecular Mechanisms of Synaptic Dysregulation in Fragile X Syndrome and Autism Spectrum Disorders. Front Mol Neurosci 2019; 12:51. [PMID: 30899214 PMCID: PMC6417395 DOI: 10.3389/fnmol.2019.00051] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 02/12/2019] [Indexed: 12/21/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common form of monogenic hereditary cognitive impairment. FXS patient exhibit a high comorbidity rate with autism spectrum disorders (ASDs). This makes FXS a model disease for understanding how synaptic dysregulation alters neuronal excitability, learning and memory, social behavior, and more. Since 1991, with the discovery of fragile X mental retardation 1 (FMR1) as the sole gene that is mutated in FXS, thousands of studies into the function of the gene and its encoded protein FMR1 protein (FMRP), have been conducted, yielding important information regarding the pathophysiology of the disease, as well as insight into basic synaptic mechanisms that control neuronal networking and circuitry. Among the most important, are molecular mechanisms directly involved in plasticity, including glutamate and γ-aminobutyric acid (GABA) receptors, which can control synaptic transmission and signal transduction, including short- and long-term plasticity. More recently, several novel mechanisms involving growth factors, enzymatic cascades and transcription factors (TFs), have been proposed to have the potential of explaining some of the synaptic dysregulation in FXS. In this review article, I summarize the main mechanisms proposed to underlie synaptic disruption in FXS and ASDs. I focus on studies conducted on the Fmr1 knock-out (KO) mouse model and on FXS-human pluripotent stem cells (hPSCs), emphasizing the differences and even contradictions between mouse and human, whenever possible. As FXS and ASDs are both neurodevelopmental disorders that follow a specific time-course of disease progression, I highlight those studies focusing on the differential developmental regulation of synaptic abnormalities in these diseases.
Collapse
Affiliation(s)
- Michael Telias
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
27
|
Danesi C, Achuta VS, Corcoran P, Peteri UK, Turconi G, Matsui N, Albayrak I, Rezov V, Isaksson A, Castrén ML. Increased Calcium Influx through L-type Calcium Channels in Human and Mouse Neural Progenitors Lacking Fragile X Mental Retardation Protein. Stem Cell Reports 2018; 11:1449-1461. [PMID: 30503263 PMCID: PMC6294261 DOI: 10.1016/j.stemcr.2018.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 02/07/2023] Open
Abstract
The absence of FMR1 protein (FMRP) causes fragile X syndrome (FXS) and disturbed FMRP function is implicated in several forms of human psychopathology. We show that intracellular calcium responses to depolarization are augmented in neural progenitors derived from human induced pluripotent stem cells and mouse brain with FXS. Increased calcium influx via nifedipine-sensitive voltage-gated calcium (Cav) channels contributes to the exaggerated responses to depolarization and type 1 metabotropic glutamate receptor activation. The ratio of L-type/T-type Cav channel expression is increased in FXS progenitors and correlates with enhanced progenitor differentiation to glutamate-responsive cells. Genetic reduction of brain-derived neurotrophic factor in FXS mouse progenitors diminishes the expression of Cav channels and activity-dependent responses, which are associated with increased phosphorylation of the phospholipase C-γ1 site within TrkB receptors and changes of differentiating progenitor subpopulations. Our results show developmental effects of increased calcium influx via L-type Cav channels in FXS neural progenitors. Responses to activity are augmented in neural progenitors in fragile X syndrome (FXS). Increased Ca2+ influx contributes to the exaggerated FXS progenitor responses L-type voltage-gated channels are abnormally activated in FXS progenitors Reduced BDNF diminishes Ca2+ influx and modulates FXS progenitor differentiation
Collapse
Affiliation(s)
- Claudia Danesi
- Faculty of Medicine, Physiology, University of Helsinki, PO Box 63, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Venkat Swaroop Achuta
- Faculty of Medicine, Physiology, University of Helsinki, PO Box 63, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Padraic Corcoran
- Array and Analysis Facility, Department of Medical Sciences, Uppsala University, PO Box 3056, 75003 Uppsala, Sweden
| | - Ulla-Kaisa Peteri
- Faculty of Medicine, Physiology, University of Helsinki, PO Box 63, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Giorgio Turconi
- Faculty of Medicine, Physiology, University of Helsinki, PO Box 63, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Nobuaki Matsui
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Ilyas Albayrak
- Faculty of Medicine, Physiology, University of Helsinki, PO Box 63, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Veronika Rezov
- Faculty of Medicine, Physiology, University of Helsinki, PO Box 63, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Anders Isaksson
- Array and Analysis Facility, Department of Medical Sciences, Uppsala University, PO Box 3056, 75003 Uppsala, Sweden
| | - Maija L Castrén
- Faculty of Medicine, Physiology, University of Helsinki, PO Box 63, FIN-00014 University of Helsinki, Helsinki, Finland.
| |
Collapse
|
28
|
Delayed Maturation of Fast-Spiking Interneurons Is Rectified by Activation of the TrkB Receptor in the Mouse Model of Fragile X Syndrome. J Neurosci 2017; 37:11298-11310. [PMID: 29038238 DOI: 10.1523/jneurosci.2893-16.2017] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 09/27/2017] [Accepted: 10/03/2017] [Indexed: 11/21/2022] Open
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder that is a leading cause of inherited intellectual disability, and the most common known cause of autism spectrum disorder. FXS is broadly characterized by sensory hypersensitivity and several developmental alterations in synaptic and circuit function have been uncovered in the sensory cortex of the mouse model of FXS (Fmr1 KO). GABA-mediated neurotransmission and fast-spiking (FS) GABAergic interneurons are central to cortical circuit development in the neonate. Here we demonstrate that there is a delay in the maturation of the intrinsic properties of FS interneurons in the sensory cortex, and a deficit in the formation of excitatory synaptic inputs on to these neurons in neonatal Fmr1 KO mice. Both these delays in neuronal and synaptic maturation were rectified by chronic administration of a TrkB receptor agonist. These results demonstrate that the maturation of the GABAergic circuit in the sensory cortex is altered during a critical developmental period due in part to a perturbation in BDNF-TrkB signaling, and could contribute to the alterations in cortical development underlying the sensory pathophysiology of FXS.SIGNIFICANCE STATEMENT Fragile X (FXS) individuals have a range of sensory related phenotypes, and there is growing evidence of alterations in neuronal circuits in the sensory cortex of the mouse model of FXS (Fmr1 KO). GABAergic interneurons are central to the correct formation of circuits during cortical critical periods. Here we demonstrate a delay in the maturation of the properties and synaptic connectivity of interneurons in Fmr1 KO mice during a critical period of cortical development. The delays both in cellular and synaptic maturation were rectified by administration of a TrkB receptor agonist, suggesting reduced BDNF-TrkB signaling as a contributing factor. These results provide evidence that the function of fast-spiking interneurons is disrupted due to a deficiency in neurotrophin signaling during early development in FXS.
Collapse
|
29
|
Sungur AÖ, Schwarting RKW, Wöhr M. Behavioral phenotypes and neurobiological mechanisms in the Shank1 mouse model for autism spectrum disorder: A translational perspective. Behav Brain Res 2017; 352:46-61. [PMID: 28963042 DOI: 10.1016/j.bbr.2017.09.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 09/11/2017] [Accepted: 09/25/2017] [Indexed: 11/27/2022]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous group of neurodevelopmental disorders, characterized by early-onset deficits in social behavior and communication across multiple contexts, together with restricted, repetitive patterns of behavior, interests, or activities. ASD is among the most heritable neuropsychiatric conditions with heritability estimates higher than 80%, and while available evidence points to a complex set of genetic factors, the SHANK (also known as ProSAP) gene family has emerged as one of the most promising candidates. Several genetic Shank mouse models for ASD were generated, including Shank1 knockout mice. Behavioral studies focusing on the Shank1 knockout mouse model for ASD included assays for detecting ASD-relevant behavioral phenotypes in the following domains: (I) social behavior, (II) communication, and (III) repetitive and stereotyped patterns of behavior. In addition, assays for detecting behavioral phenotypes with relevance to comorbidities in ASD were performed, including but not limited to (IV) cognitive functioning. Here, we summarize and discuss behavioral and neuronal findings obtained in the Shank1 knockout mouse model for ASD. We identify open research questions by comparing such findings with the symptoms present in humans diagnosed with ASD and carrying SHANK1 deletions. We conclude by discussing the implications of the behavioral and neuronal phenotypes displayed by the Shank1 knockout mouse model for the development of future pharmacological interventions in ASD.
Collapse
Affiliation(s)
- A Özge Sungur
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Marburg, Germany
| | - Rainer K W Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Marburg, Germany
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Marburg, Germany.
| |
Collapse
|
30
|
Sungur AÖ, Jochner MCE, Harb H, Kılıç A, Garn H, Schwarting RKW, Wöhr M. Aberrant cognitive phenotypes and altered hippocampal BDNF expression related to epigenetic modifications in mice lacking the post-synaptic scaffolding protein SHANK1: Implications for autism spectrum disorder. Hippocampus 2017; 27:906-919. [PMID: 28500650 DOI: 10.1002/hipo.22741] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/05/2017] [Accepted: 05/03/2017] [Indexed: 12/29/2022]
Abstract
Autism spectrum disorder (ASD) is a class of neurodevelopmental disorders characterized by persistent deficits in social communication/interaction, together with restricted/repetitive patterns of behavior. ASD is among the most heritable neuropsychiatric conditions, and while available evidence points to a complex set of genetic factors, the SHANK gene family has emerged as one of the most promising candidates. Here, we assessed ASD-related phenotypes with particular emphasis on social behavior and cognition in Shank1 mouse mutants in comparison to heterozygous and wildtype littermate controls across development in both sexes. While social approach behavior was evident in all experimental conditions and social recognition was only mildly affected by genotype, Shank1-/- null mutant mice were severely impaired in object recognition memory. This effect was particularly prominent in juveniles, not due to impairments in object discrimination, and replicated in independent mouse cohorts. At the neurobiological level, object recognition deficits were paralleled by increased brain-derived neurotrophic factor (BDNF) protein expression in the hippocampus of Shank1-/- mice; yet BDNF levels did not differ under baseline conditions. We therefore investigated changes in the epigenetic regulation of hippocampal BDNF expression and detected an enrichment of histone H3 acetylation at the Bdnf promoter1 in Shank1-/- mice, consistent with increased learning-associated BDNF. Together, our findings indicate that Shank1 deletions lead to an aberrant cognitive phenotype characterized by severe impairments in object recognition memory and increased hippocampal BDNF levels, possibly due to epigenetic modifications. This result supports the link between ASD and intellectual disability, and suggests epigenetic regulation as a potential therapeutic target.
Collapse
Affiliation(s)
- A Özge Sungur
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Marburg, Germany
| | - Magdalena C E Jochner
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Marburg, Germany
| | - Hani Harb
- Institute of Laboratory Medicine and Pathobiochemistry-Molecular Diagnostics, Philipps-University of Marburg, Marburg, Germany
| | - Ayşe Kılıç
- Institute of Laboratory Medicine and Pathobiochemistry-Molecular Diagnostics, Philipps-University of Marburg, Marburg, Germany
| | - Holger Garn
- Institute of Laboratory Medicine and Pathobiochemistry-Molecular Diagnostics, Philipps-University of Marburg, Marburg, Germany
| | - Rainer K W Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Marburg, Germany
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Marburg, Germany
| |
Collapse
|
31
|
Ardhanareeswaran K, Mariani J, Coppola G, Abyzov A, Vaccarino FM. Human induced pluripotent stem cells for modelling neurodevelopmental disorders. Nat Rev Neurol 2017; 13:265-278. [PMID: 28418023 DOI: 10.1038/nrneurol.2017.45] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We currently have a poor understanding of the pathogenesis of neurodevelopmental disorders, owing to the fact that postmortem and imaging studies can only measure the postnatal status quo and offer little insight into the processes that give rise to the observed outcomes. Human induced pluripotent stem cells (hiPSCs) should, in principle, prove powerful for elucidating the pathways that give rise to neurodevelopmental disorders. hiPSCs are embryonic-stem-cell-like cells that can be derived from somatic cells. They retain the unique genetic signature of the individual from whom they were derived, and thus enable researchers to recapitulate that individual's idiosyncratic neural development in a dish. In the case of individuals with disease, we can re-enact the disease-altered trajectory of brain development and examine how and why phenotypic and molecular abnormalities arise in these diseased brains. Here, we review hiPSC biology and possible experimental designs when using hiPSCs to model disease. We then discuss existing hiPSC models of neurodevelopmental disorders. Our hope is that, as some studies have already shown, hiPSCs will illuminate the pathophysiology of developmental disorders of the CNS and lead to therapeutic options for the millions that are affected by these conditions.
Collapse
Affiliation(s)
- Karthikeyan Ardhanareeswaran
- Child Study Center, Yale University School of Medicine, 230 South Frontage Road, New Haven, Connecticut 06520, USA
| | - Jessica Mariani
- Child Study Center, Yale University School of Medicine, 230 South Frontage Road, New Haven, Connecticut 06520, USA
| | - Gianfilippo Coppola
- Child Study Center, Yale University School of Medicine, 230 South Frontage Road, New Haven, Connecticut 06520, USA
| | - Alexej Abyzov
- Department of Health Sciences Research, Center for Individualized Medicine, 200 First Street SW, Rochester, Minnesota 55905, USA
| | - Flora M Vaccarino
- Child Study Center, Yale University School of Medicine, 230 South Frontage Road, New Haven, Connecticut 06520, USA.,Department of Neuroscience, Yale Kavli Institute for Neuroscience, Yale University School of Medicine, 200 South Frontage Road, New Haven, Connecticut 06510, USA
| |
Collapse
|
32
|
Neurotrophic Factors in Mouse Models of Autism Spectrum Disorder: Focus on BDNF and IGF-1. TRANSLATIONAL ANATOMY AND CELL BIOLOGY OF AUTISM SPECTRUM DISORDER 2017; 224:121-134. [DOI: 10.1007/978-3-319-52498-6_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
33
|
Ilie A, Gao AYL, Reid J, Boucher A, McEwan C, Barrière H, Lukacs GL, McKinney RA, Orlowski J. A Christianson syndrome-linked deletion mutation (∆(287)ES(288)) in SLC9A6 disrupts recycling endosomal function and elicits neurodegeneration and cell death. Mol Neurodegener 2016; 11:63. [PMID: 27590723 PMCID: PMC5010692 DOI: 10.1186/s13024-016-0129-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 08/27/2016] [Indexed: 01/19/2023] Open
Abstract
Background Christianson Syndrome, a recently identified X-linked neurodevelopmental disorder, is caused by mutations in the human gene SLC9A6 encoding the recycling endosomal alkali cation/proton exchanger NHE6. The patients have pronounced limitations in cognitive ability, motor skills and adaptive behaviour. However, the mechanistic basis for this disorder is poorly understood as few of the more than 20 mutations identified thus far have been studied in detail. Methods Here, we examined the molecular and cellular consequences of a 6 base-pair deletion of amino acids Glu287 and Ser288 (∆ES) in the predicted seventh transmembrane helix of human NHE6 expressed in established cell lines (CHO/AP-1, HeLa and neuroblastoma SH-SY5Y) and primary cultures of mouse hippocampal neurons by measuring levels of protein expression, stability, membrane trafficking, endosomal function and cell viability. Results In the cell lines, immunoblot analyses showed that the nascent mutant protein was properly synthesized and assembled as a homodimer, but its oligosaccharide maturation and half-life were markedly reduced compared to wild-type (WT) and correlated with enhanced ubiquitination leading to both proteasomal and lysosomal degradation. Despite this instability, a measurable fraction of the transporter was correctly sorted to the plasma membrane. However, the rates of clathrin-mediated endocytosis of the ∆ES mutant as well as uptake of companion vesicular cargo, such as the ligand-bound transferrin receptor, were significantly reduced and correlated with excessive endosomal acidification. Notably, ectopic expression of ∆ES but not WT induced apoptosis when examined in AP-1 cells. Similarly, in transfected primary cultures of mouse hippocampal neurons, membrane trafficking of the ∆ES mutant was impaired and elicited marked reductions in total dendritic length, area and arborization, and triggered apoptotic cell death. Conclusions These results suggest that loss-of-function mutations in NHE6 disrupt recycling endosomal function and trafficking of cargo which ultimately leads to neuronal degeneration and cell death in Christianson Syndrome. Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0129-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alina Ilie
- Department of Physiology, McGill University, Bellini Life Sciences Bldg., Rm, 166, 3649 Promenade Sir-William-Osler, Montreal, QC, H3G 0B1, Canada
| | - Andy Y L Gao
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Jonathan Reid
- Department of Physiology, McGill University, Bellini Life Sciences Bldg., Rm, 166, 3649 Promenade Sir-William-Osler, Montreal, QC, H3G 0B1, Canada
| | - Annie Boucher
- Department of Physiology, McGill University, Bellini Life Sciences Bldg., Rm, 166, 3649 Promenade Sir-William-Osler, Montreal, QC, H3G 0B1, Canada
| | - Cassandra McEwan
- Department of Physiology, McGill University, Bellini Life Sciences Bldg., Rm, 166, 3649 Promenade Sir-William-Osler, Montreal, QC, H3G 0B1, Canada
| | - Hervé Barrière
- Department of Physiology, McGill University, Bellini Life Sciences Bldg., Rm, 166, 3649 Promenade Sir-William-Osler, Montreal, QC, H3G 0B1, Canada
| | - Gergely L Lukacs
- Department of Physiology, McGill University, Bellini Life Sciences Bldg., Rm, 166, 3649 Promenade Sir-William-Osler, Montreal, QC, H3G 0B1, Canada
| | - R Anne McKinney
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - John Orlowski
- Department of Physiology, McGill University, Bellini Life Sciences Bldg., Rm, 166, 3649 Promenade Sir-William-Osler, Montreal, QC, H3G 0B1, Canada.
| |
Collapse
|
34
|
Webb SJ, Garrison MM, Bernier R, McClintic AM, King BH, Mourad PD. Severity of ASD symptoms and their correlation with the presence of copy number variations and exposure to first trimester ultrasound. Autism Res 2016; 10:472-484. [PMID: 27582229 DOI: 10.1002/aur.1690] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 04/07/2016] [Accepted: 07/21/2016] [Indexed: 01/13/2023]
Abstract
Current research suggests that incidence and heterogeneity of autism spectrum disorder (ASD) symptoms may arise through a variety of exogenous and/or endogenous factors. While subject to routine clinical practice and generally considered safe, there exists speculation, though no human data, that diagnostic ultrasound may also contribute to ASD severity, supported by experimental evidence that exposure to ultrasound early in gestation could perturb brain development and alter behavior. Here we explored a modified triple hit hypothesis [Williams & Casanova, ] to assay for a possible relationship between the severity of ASD symptoms and (1) ultrasound exposure (2) during the first trimester of pregnancy in fetuses with a (3) genetic predisposition to ASD. We did so using retrospective analysis of data from the SSC (Simon's Simplex Collection) autism genetic repository funded by the Simons Foundation Autism Research Initiative. We found that male children with ASD, copy number variations (CNVs), and exposure to first trimester ultrasound had significantly decreased non-verbal IQ and increased repetitive behaviors relative to male children with ASD, with CNVs, and no ultrasound. These data suggest that heterogeneity in ASD symptoms may result, at least in part, from exposure to diagnostic ultrasound during early prenatal development of children with specific genetic vulnerabilities. These results also add weight to on-going concerns expressed by the FDA about non-medical use of diagnostic ultrasound during pregnancy. Autism Res 2017, 10: 472-484. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sara Jane Webb
- Center on Child Health, Behavior and Development, Seattle Children's Research Institute, Seattle, Washington.,Departments of Psychiatry & Behavioral Science, Neurological Surgery, Seattle, Washington
| | - Michelle M Garrison
- Center on Child Health, Behavior and Development, Seattle Children's Research Institute, Seattle, Washington.,Departments of Psychiatry & Behavioral Science, Neurological Surgery, Seattle, Washington
| | - Raphael Bernier
- Departments of Psychiatry & Behavioral Science, Neurological Surgery, Seattle, Washington
| | - Abbi M McClintic
- Departments of Psychiatry & Behavioral Science, Neurological Surgery, Seattle, Washington
| | - Bryan H King
- Center on Child Health, Behavior and Development, Seattle Children's Research Institute, Seattle, Washington
| | - Pierre D Mourad
- Departments of Psychiatry & Behavioral Science, Neurological Surgery, Seattle, Washington.,Division of Engineering and Mathematics, University of Washington, Seattle, Washington
| |
Collapse
|
35
|
Yoo MH, Kim TY, Yoon YH, Koh JY. Autism phenotypes in ZnT3 null mice: Involvement of zinc dyshomeostasis, MMP-9 activation and BDNF upregulation. Sci Rep 2016; 6:28548. [PMID: 27352957 PMCID: PMC4926223 DOI: 10.1038/srep28548] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/06/2016] [Indexed: 11/30/2022] Open
Abstract
To investigate the role of synaptic zinc in the ASD pathogenesis, we examined zinc transporter 3 (ZnT3) null mice. At 4–5 weeks of age, male but not female ZnT3 null mice exhibited autistic-like behaviors. Cortical volume and neurite density were significantly greater in male ZnT3 null mice than in WT mice. In male ZnT3 null mice, consistent with enhanced neurotrophic stimuli, the level of BDNF as well as activity of MMP-9 was increased. Consistent with known roles for MMPs in BDNF upregulation, 2.5-week treatment with minocycline, an MMP inhibitor, significantly attenuated BDNF levels as well as megalencephaly and autistic-like behaviors. Although the ZnT3 null state removed synaptic zinc, it rather increased free zinc in the cytosol of brain cells, which appeared to increase MMP-9 activity and BDNF levels. The present results suggest that zinc dyshomeostasis during the critical period of brain development may be a possible contributing mechanism for ASD.
Collapse
Affiliation(s)
- Min Heui Yoo
- Neural Injury Research Lab, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Tae-Youn Kim
- Neural Injury Research Lab, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Young Hee Yoon
- Department of Ophthalmology, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Jae-Young Koh
- Neural Injury Research Lab, University of Ulsan College of Medicine, Seoul 138-736, Korea.,Department of Neurology, University of Ulsan College of Medicine, Seoul 138-736, Korea
| |
Collapse
|
36
|
Zunino G, Messina A, Sgadò P, Baj G, Casarosa S, Bozzi Y. Brain-derived neurotrophic factor signaling is altered in the forebrain of Engrailed-2 knockout mice. Neuroscience 2016; 324:252-61. [PMID: 26987954 DOI: 10.1016/j.neuroscience.2016.03.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 11/17/2022]
Abstract
Engrailed-2 (En2), a homeodomain transcription factor involved in regionalization and patterning of the midbrain and hindbrain regions has been associated to autism spectrum disorders (ASDs). En2 knockout (En2(-/-)) mice show ASD-like features accompanied by a significant loss of GABAergic subpopulations in the hippocampus and neocortex. Brain-derived neurotrophic factor (BDNF) is a crucial factor for the postnatal development of forebrain GABAergic neurons, and altered GABA signaling has been hypothesized to underlie the symptoms of ASD. Here we sought to determine whether interneuron loss in the En2(-/-) forebrain might be related to altered expression of BDNF and its signaling receptors. We first evaluated the expression of different BDNF mRNA isoforms in the neocortex and hippocampus of wild-type (WT) and En2(-/-) mice. Quantitative RT-PCR showed a marked down-regulation of several splicing variants of BDNF mRNA in the neocortex but not hippocampus of adult En2(-/-) mice, as compared to WT controls. Accordingly, levels of mature BDNF protein were lower in the neocortex but not hippocampus of En2(-/-) mice, as compared to WT. Increased levels of phosphorylated TrkB and decreased levels of p75 receptor were also detected in the neocortex of mutant mice. Accordingly, the expression of low density lipoprotein receptor (LDLR) and RhoA, two genes regulated via p75 was significantly altered in forebrain areas of mutant mice. These data indicate that BDNF signaling alterations might be involved in the anatomical changes observed in the En2(-/-) forebrain and suggest a pathogenic role of altered BDNF signaling in this mouse model of ASD.
Collapse
Affiliation(s)
- G Zunino
- Laboratory of Molecular Neuropathology, Centre for Integrative Biology, University of Trento, Italy
| | - A Messina
- Laboratory of Developmental Neurobiology, Centre for Integrative Biology, University of Trento, Italy
| | - P Sgadò
- Laboratory of Molecular Neuropathology, Centre for Integrative Biology, University of Trento, Italy
| | - G Baj
- Laboratory of Cellular and Developmental Neurobiology, Department of Life Sciences, University of Trieste, Italy
| | - S Casarosa
- Laboratory of Developmental Neurobiology, Centre for Integrative Biology, University of Trento, Italy; CNR Institute of Neuroscience, CNR, Pisa, Italy
| | - Y Bozzi
- Laboratory of Molecular Neuropathology, Centre for Integrative Biology, University of Trento, Italy; CNR Institute of Neuroscience, CNR, Pisa, Italy.
| |
Collapse
|
37
|
Sun MK, Hongpaisan J, Alkon DL. Rescue of Synaptic Phenotypes and Spatial Memory in Young Fragile X Mice. J Pharmacol Exp Ther 2016; 357:300-10. [PMID: 26941170 DOI: 10.1124/jpet.115.231100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/02/2016] [Indexed: 01/01/2023] Open
Abstract
Fragile X syndrome (FXS) is characterized by synaptic immaturity, cognitive impairment, and behavioral changes. The disorder is caused by transcriptional shutdown in neurons of thefragile X mental retardation 1gene product, fragile X mental retardation protein. Fragile X mental retardation protein is a repressor of dendritic mRNA translation and its silencing leads to dysregulation of synaptically driven protein synthesis and impairments of intellect, cognition, and behavior, and FXS is a disorder that currently has no effective therapeutics. Here, young fragile X mice were treated with chronic bryostatin-1, a relatively selective protein kinase Cεactivator, which induces synaptogenesis and synaptic maturation/repair. Chronic treatment with bryostatin-1 rescues young fragile X mice from the disorder phenotypes, including normalization of most FXS abnormalities in 1) hippocampal brain-derived neurotrophic factor expression, 2) postsynaptic density-95 levels, 3) transformation of immature dendritic spines to mature synapses, 4) densities of the presynaptic and postsynaptic membranes, and 5) spatial learning and memory. The therapeutic effects were achieved without downregulation of metabotropic glutamate receptor (mGluR) 5 in the hippocampus and are more dramatic than those of a late-onset treatment in adult fragile X mice. mGluR5 expression was in fact lower in fragile X mice and its expression was restored with the bryostatin-1 treatment. Our results show that synaptic and cognitive function of young FXS mice can be normalized through pharmacological treatment without downregulation of mGluR5 and that bryostatin-1-like agents may represent a novel class of drugs to treat fragile X mental retardation at a young age and in adults.
Collapse
Affiliation(s)
- Miao-Kun Sun
- Blanchette Rockefeller Neurosciences Institute, Morgantown, West Virginia
| | - Jarin Hongpaisan
- Blanchette Rockefeller Neurosciences Institute, Morgantown, West Virginia
| | - Daniel L Alkon
- Blanchette Rockefeller Neurosciences Institute, Morgantown, West Virginia
| |
Collapse
|
38
|
Vicario A, Colliva A, Ratti A, Davidovic L, Baj G, Gricman Ł, Colombrita C, Pallavicini A, Jones KR, Bardoni B, Tongiorgi E. Dendritic targeting of short and long 3' UTR BDNF mRNA is regulated by BDNF or NT-3 and distinct sets of RNA-binding proteins. Front Mol Neurosci 2015; 8:62. [PMID: 26578876 PMCID: PMC4624863 DOI: 10.3389/fnmol.2015.00062] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 10/12/2015] [Indexed: 11/13/2022] Open
Abstract
Sorting of mRNAs in neuronal dendrites relies upon inducible transport mechanisms whose molecular bases are poorly understood. We investigated here the mechanism of inducible dendritic targeting of rat brain-derived neurotrophic factor (BDNF) mRNAs as a paradigmatic example. BDNF encodes multiple mRNAs with either short or long 3' UTR, both hypothesized to harbor inducible dendritic targeting signals. However, the mechanisms of sorting of the two 3' UTR isoforms are controversial. We found that dendritic localization of BDNF mRNAs with short 3' UTR was induced by depolarization and NT3 in vitro or by seizures in vivo and required CPEB-1, -2 and ELAV-2, -4. Dendritic targeting of long 3' UTR was induced by activity or BDNF and required CPEB-1 and the relief of soma-retention signals mediated by ELAV-1, -3, -4, and FXR proteins. Thus, long and short 3' UTRs, by using different sets of RNA-binding proteins provide a mechanism of selective targeting in response to different stimuli which may underlay distinct roles of BDNF variants in neuronal development and plasticity.
Collapse
Affiliation(s)
- Annalisa Vicario
- Department of Life Sciences, University of Trieste Trieste, Italy
| | - Andrea Colliva
- Department of Life Sciences, University of Trieste Trieste, Italy
| | - Antonia Ratti
- Laboratory of Neuroscience - IRCCS Istituto Auxologico Italiano Milano, Italy ; Department of Pathophysiology and Transplantation, "Dino Ferrari Center", Università degli Studi di Milano Milano, Italy
| | | | - Gabriele Baj
- Department of Life Sciences, University of Trieste Trieste, Italy
| | - Łukasz Gricman
- Department of Life Sciences, University of Trieste Trieste, Italy
| | - Claudia Colombrita
- Laboratory of Neuroscience - IRCCS Istituto Auxologico Italiano Milano, Italy ; Department of Pathophysiology and Transplantation, "Dino Ferrari Center", Università degli Studi di Milano Milano, Italy
| | | | - Kevin R Jones
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder CO, USA
| | | | - Enrico Tongiorgi
- Department of Life Sciences, University of Trieste Trieste, Italy
| |
Collapse
|
39
|
Subramanian M, Timmerman CK, Schwartz JL, Pham DL, Meffert MK. Characterizing autism spectrum disorders by key biochemical pathways. Front Neurosci 2015; 9:313. [PMID: 26483618 PMCID: PMC4586332 DOI: 10.3389/fnins.2015.00313] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 08/20/2015] [Indexed: 12/29/2022] Open
Abstract
The genetic and phenotypic heterogeneity of autism spectrum disorders (ASD) presents a substantial challenge for diagnosis, classification, research, and treatment. Investigations into the underlying molecular etiology of ASD have often yielded mixed and at times opposing findings. Defining the molecular and biochemical underpinnings of heterogeneity in ASD is crucial to our understanding of the pathophysiological development of the disorder, and has the potential to assist in diagnosis and the rational design of clinical trials. In this review, we propose that genetically diverse forms of ASD may be usefully parsed into entities resulting from converse patterns of growth regulation at the molecular level, which lead to the correlates of general synaptic and neural overgrowth or undergrowth. Abnormal brain growth during development is a characteristic feature that has been observed both in children with autism and in mouse models of autism. We review evidence from syndromic and non-syndromic ASD to suggest that entities currently classified as autism may fundamentally differ by underlying pro- or anti-growth abnormalities in key biochemical pathways, giving rise to either excessive or reduced synaptic connectivity in affected brain regions. We posit that this classification strategy has the potential not only to aid research efforts, but also to ultimately facilitate early diagnosis and direct appropriate therapeutic interventions.
Collapse
Affiliation(s)
- Megha Subramanian
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Christina K Timmerman
- Department of Biological Chemistry, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Joshua L Schwartz
- Department of Biological Chemistry, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Daniel L Pham
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Mollie K Meffert
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Biological Chemistry, Johns Hopkins University School of Medicine Baltimore, MD, USA
| |
Collapse
|
40
|
Kumari D, Bhattacharya A, Nadel J, Moulton K, Zeak NM, Glicksman A, Dobkin C, Brick DJ, Schwartz PH, Smith CB, Klann E, Usdin K. Identification of fragile X syndrome specific molecular markers in human fibroblasts: a useful model to test the efficacy of therapeutic drugs. Hum Mutat 2015; 35:1485-94. [PMID: 25224527 DOI: 10.1002/humu.22699] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/04/2014] [Indexed: 11/06/2022]
Abstract
Fragile X syndrome (FXS) is the most frequent cause of inherited intellectual disability and autism. It is caused by the absence of the fragile X mental retardation 1 (FMR1) gene product, fragile X mental retardation protein (FMRP), an RNA-binding protein involved in the regulation of translation of a subset of brain mRNAs. In Fmr1 knockout mice, the absence of FMRP results in elevated protein synthesis in the brain as well as increased signaling of many translational regulators. Whether protein synthesis is also dysregulated in FXS patients is not firmly established. Here, we demonstrate that fibroblasts from FXS patients have significantly elevated rates of basal protein synthesis along with increased levels of phosphorylated mechanistic target of rapamycin (p-mTOR), phosphorylated extracellular signal regulated kinase 1/2, and phosphorylated p70 ribosomal S6 kinase 1 (p-S6K1). The treatment with small molecules that inhibit S6K1 and a known FMRP target, phosphoinositide 3-kinase (PI3K) catalytic subunit p110β, lowered the rates of protein synthesis in both control and patient fibroblasts. Our data thus demonstrate that fibroblasts from FXS patients may be a useful in vitro model to test the efficacy and toxicity of potential therapeutics prior to clinical trials, as well as for drug screening and designing personalized treatment approaches.
Collapse
Affiliation(s)
- Daman Kumari
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Tian M, Zeng Y, Hu Y, Yuan X, Liu S, Li J, Lu P, Sun Y, Gao L, Fu D, Li Y, Wang S, McClintock SM. 7, 8-Dihydroxyflavone induces synapse expression of AMPA GluA1 and ameliorates cognitive and spine abnormalities in a mouse model of fragile X syndrome. Neuropharmacology 2015; 89:43-53. [DOI: 10.1016/j.neuropharm.2014.09.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 08/28/2014] [Accepted: 09/04/2014] [Indexed: 01/20/2023]
|
42
|
Louhivuori LM, Jansson L, Turunen PM, Jäntti MH, Nordström T, Louhivuori V, Åkerman KE. Transient receptor potential channels and their role in modulating radial glial-neuronal interaction: a signaling pathway involving mGluR5. Stem Cells Dev 2014; 24:701-13. [PMID: 25347706 DOI: 10.1089/scd.2014.0209] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The guidance of developing neurons to the right position in the central nervous system is of central importance in brain development. Canonical transient receptor potential (TRPC) channels are thought to mediate turning responses of growth cones to guidance cues through fine control of calcium transients. Proliferating and 1- to 5-day-differentiated neural progenitor cells (NPCs) showed expression of Trpc1 and Trpc3 mRNA, while Trpc4-7 was not clearly detected. Time-lapse imaging showed that the motility pattern of neuronal cells was phasic with bursts of rapid movement (>60 μm/h), changes in direction, and intermittent slow phases or stallings (<40 μm/h), which frequently occurred in close contact with radial glial processes. Genetic interference with the TRPC3 and TRPC1 channel enhanced the motility of NPCs (burst frequency/stalling frequency). TRPC3-deficient cells or cells treated with the TRPC3 blocker pyr3 infrequently changed direction and seldom contacted radial glial processes. TRPC channels are also activated by group I metabotropic glutamate receptors (mGluR1 and mGluR5). As shown here, pyr3 blocked the calcium response mediated through mGluR5 in radial glial processes. Furthermore, 2-methyl-6-(phenylethynyl)pyridine, a blocker of mGluR5, affected the motility pattern in a similar way as TRPC3/6 double knockout or pyr3. The results suggest that radial glial cells exert attractant signals to migrating neuronal cells, which alter their motility pattern. Our results suggest that mGluR5 acting through TRPC3 is of central importance in radial glial-mediated neuronal guidance.
Collapse
Affiliation(s)
- Lauri M Louhivuori
- Biomedicum Helsinki, Institute of Biomedicine/Physiology, University of Helsinki , Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
43
|
Lozano R, Rosero CA, Hagerman RJ. Fragile X spectrum disorders. Intractable Rare Dis Res 2014; 3:134-46. [PMID: 25606363 PMCID: PMC4298643 DOI: 10.5582/irdr.2014.01022] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 11/28/2014] [Indexed: 12/13/2022] Open
Abstract
The fragile X mental retardation 1 gene (FMR1), which codes for the fragile X mental retardation 1 protein (FMRP), is located at Xp27.3. The normal allele of the FMR1 gene typically has 5 to 40 CGG repeats in the 5' untranslated region; abnormal alleles of dynamic mutations include the full mutation (> 200 CGG repeats), premutation (55-200 CGG repeats) and the gray zone mutation (45-54 CGG repeats). Premutation carriers are common in the general population with approximately 1 in 130-250 females and 1 in 250-810 males, whereas the full mutation and Fragile X syndrome (FXS) occur in approximately 1 in 4000 to 1 in 7000. FMR1 mutations account for a variety of phenotypes including the most common monogenetic cause of inherited intellectual disability (ID) and autism (FXS), the most common genetic form of ovarian failure, the fragile X-associated primary ovarian insufficiency (FXPOI, premutation); and fragile X-associated tremor/ataxia syndrome (FXTAS, premutation). The premutation can also cause developmental problems including ASD and ADHD especially in boys and psychopathology including anxiety and depression in children and adults. Some premutation carriers can have a deficit of FMRP and some unmethylated full mutation individuals can have elevated FMR1 mRNA that is considered a premutation problem. Therefore the term "Fragile X Spectrum Disorder" (FXSD) should be used to include the wide range of overlapping phenotypes observed in affected individuals with FMR1 mutations. In this review we focus on the phenotypes and genotypes of children with FXSD.
Collapse
Affiliation(s)
- Reymundo Lozano
- UC Davis MIND Institute and Department of Pediatrics, UC Davis Medical Center, Sacramento, CA, USA
- Address correspondence to: Dr. Reymundo Lozano, UC Davis MIND Institute and Department of Pediatrics, UC Davis Medical Center, Sacramento, CA, USA. E-mail:
| | - Carolina Alba Rosero
- Instituto Colombiano del Sistema Nervioso, Clínica Montserrat, Bogotá D.C, Colombia
| | - Randi J Hagerman
- UC Davis MIND Institute and Department of Pediatrics, UC Davis Medical Center, Sacramento, CA, USA
| |
Collapse
|
44
|
Hanson AC, Hagerman RJ. Serotonin dysregulation in Fragile X Syndrome: implications for treatment. Intractable Rare Dis Res 2014; 3:110-7. [PMID: 25606361 PMCID: PMC4298641 DOI: 10.5582/irdr.2014.01027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 11/28/2014] [Indexed: 12/29/2022] Open
Abstract
Fragile X Syndrome (FXS) is a trinucleotide repeat disorder that results in the silencing of the Fragile X Mental Retardation 1 gene (FMR1), leading to a lack of the FMR1 protein (FMRP). FMRP is an mRNA-binding protein that regulates the translation of hundreds of mRNAs important for synaptic plasticity. Several of these pathways have been identified and have guided the development of targeted treatments for FXS. Here we present evidence that serotonin is dysregulated in FXS and treatment with the selective serotonin reuptake inhibitor (SSRI) sertraline may be beneficial for individuals with FXS, particularly in early childhood.
Collapse
Affiliation(s)
| | - Randi J Hagerman
- UC Davis MIND Institute and Department of Pediatrics, UC Davis Medical Center, Sacramento, CA, USA
- Address correspondence to: Dr. Randi J. Hagerman, UC Davis MIND Institute and Department of Pediatrics, UC Davis Medical Center, Sacramento, CA 95817, USA. E-mail:
| |
Collapse
|
45
|
Genetic removal of matrix metalloproteinase 9 rescues the symptoms of fragile X syndrome in a mouse model. J Neurosci 2014; 34:9867-79. [PMID: 25057190 DOI: 10.1523/jneurosci.1162-14.2014] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fmr1 knock-out (ko) mice display key features of fragile X syndrome (FXS), including delayed dendritic spine maturation and FXS-associated behaviors, such as poor socialization, obsessive-compulsive behavior, and hyperactivity. Here we provide conclusive evidence that matrix metalloproteinase-9 (MMP-9) is necessary to the development of FXS-associated defects in Fmr1 ko mice. Genetic disruption of Mmp-9 rescued key aspects of Fmr1 deficiency, including dendritic spine abnormalities, abnormal mGluR5-dependent LTD, as well as aberrant behaviors in open field and social novelty tests. Remarkably, MMP-9 deficiency also corrected non-neural features of Fmr1 deficiency-specifically macroorchidism-indicating that MMP-9 dysregulation contributes to FXS-associated abnormalities outside the CNS. Further, MMP-9 deficiency suppressed elevations of Akt, mammalian target of rapamycin, and eukaryotic translation initiation factor 4E phosphorylation seen in Fmr1 ko mice, which are also associated with other autistic spectrum disorders. These findings establish that MMP-9 is critical to the mechanisms responsible for neural and non-neural aspects of the FXS phenotype.
Collapse
|
46
|
Koh JY, Lim JS, Byun HR, Yoo MH. Abnormalities in the zinc-metalloprotease-BDNF axis may contribute to megalencephaly and cortical hyperconnectivity in young autism spectrum disorder patients. Mol Brain 2014; 7:64. [PMID: 25182223 PMCID: PMC4237964 DOI: 10.1186/s13041-014-0064-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/23/2014] [Indexed: 12/20/2022] Open
Abstract
Whereas aberrant brain connectivity is likely the core pathology of autism-spectrum disorder (ASD), studies do not agree as to whether hypo- or hyper-connectivity is the main underlying problem. Recent functional imaging studies have shown that, in most young ASD patients, cerebral cortical regions appear hyperconnected, and cortical thickness/brain size is increased. Collectively, these findings indicate that developing ASD brains may exist in an altered neurotrophic milieu. Consistently, some ASD patients, as well as some animal models of ASD, show increased levels of brain-derived neurotrophic factor (BDNF). However, how BDNF is upregulated in ASD is unknown. To address this question, we propose the novel hypothesis that a putative zinc-metalloprotease-BDNF (ZMB) axis in the forebrain plays a pivotal role in the development of hyperconnectivity and megalencephaly in ASD. We have previously demonstrated that extracellular zinc at micromolar concentrations can rapidly increase BDNF levels and phosphorylate the receptor tyrosine kinase TrkB via the activation of metalloproteases. The role of metalloproteases in ASD is still uncertain, but in fragile X syndrome, a monogenic disease with an autistic phenotype, the levels of MMP are increased. Early exposure to lipopolysaccharides (LPS) and other MMP activators such as organic mercurials also have been implicated in ASD pathogenesis. The resultant increases in BDNF levels at synapses, especially those involved in the zinc-containing, associative glutamatergic system may produce abnormal brain circuit development. Various genetic mutations that lead to ASD are also known to affect BDNF signaling: some down-regulate, and others up-regulate it. We hypothesize that, although both up- and down-regulation of BDNF may induce autism symptoms, only BDNF up-regulation is associated with the hyperconnectivity and large brain size observed in most young idiopathic ASD patients. To test this hypothesis, we propose to examine the ZMB axis in animal models of ASD. Synaptic zinc can be examined by fluorescence zinc staining. MMP activation can be measured by in situ zymography and Western blot analysis. Finally, regional levels of BDNF can be measured. Validating this hypothesis may shed light on the central pathogenic mechanism of ASD and aid in the identification of useful biomarkers and the development of preventive/therapeutic strategies.
Collapse
Affiliation(s)
- Jae-Young Koh
- Neural Injury Research Lab, Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul, Korea
- Department of Neurology, University of Ulsan College of Medicine, 388-1 Poongnap-Dong Songpa-Gu, Seoul 138-736, Korea
| | - Joon Seo Lim
- Neural Injury Research Lab, Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyae-Ran Byun
- Neural Injury Research Lab, Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul, Korea
| | - Min-Heui Yoo
- Neural Injury Research Lab, Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
47
|
Kim SW, Cho KJ. Activity-dependent alterations in the sensitivity to BDNF-TrkB signaling may promote excessive dendritic arborization and spinogenesis in fragile X syndrome in order to compensate for compromised postsynaptic activity. Med Hypotheses 2014; 83:429-35. [PMID: 25113167 DOI: 10.1016/j.mehy.2014.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 07/11/2014] [Indexed: 12/20/2022]
Abstract
Fragile X syndrome (FXS), the most common cause of inherited human mental retardation, results from the loss of function of fragile X mental retardation protein (FMRP). To date, most researchers have thought that FXS neural pathologies are primarily caused by extreme dendritic branching and spine formation. With this rationale, several researchers attempted to prune dendritic branches and reduce the number of spines in FXS animal models. We propose that increased dendritic arborization and spinogenesis in FXS are developed rather as secondary compensatory responses to counteract the compromised postsynaptic activity during uncontrollable metabotropic glutamate receptor (mGluR)-dependent long-term depression (LTD). When postsynaptic and electrical activities become dampened in FXS, dendritic trees can increase their sensitivity to brain-derived neurotrophic factor (BDNF) by using the molecular sensor called eukaryotic elongation factor 2 (eEF2) and taking advantage of the tight coupling of mGluR and BDNF-TrkB signaling pathways. Then, this activity-dependent elevation of the BDNF signaling can strategically alter dendritic morphologies to foster branching and develop spine structures in order to improve the postsynaptic response in FXS. Our model suggests a new therapeutic rationale for FXS: correcting the postsynaptic and electrical activity first, and then repairing structural abnormalities of dendrites. Then, it may be possible to successfully fix the dendritic morphologies without affecting the survival of neurons. Our theory may also be generalized to explain aberrant dendritic structures observed in other neurobehavioral diseases, such as tuberous sclerosis, Rett syndrome, schizophrenia, and channelopathies, which accompany high postsynaptic and electrical activity.
Collapse
Affiliation(s)
- Sang Woo Kim
- Department of Neuroscience, Brown University, Providence, RI 02912, United States.
| | - Kyoung Joo Cho
- Department of Anatomy, BK 21 PLUS for Medical Science, College of Medicine, Yonsei University, Seoul, South Korea.
| |
Collapse
|
48
|
Li Y, Zhao X. Concise review: Fragile X proteins in stem cell maintenance and differentiation. Stem Cells 2014; 32:1724-33. [PMID: 24648324 PMCID: PMC4255947 DOI: 10.1002/stem.1698] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 02/18/2014] [Accepted: 03/01/2014] [Indexed: 12/15/2022]
Abstract
Fragile X syndrome (FXS), the most common genetic form of autism spectrum disorder, is caused by deficiency of the fragile X mental retardation protein (FMRP). Despite extensive research and scientific progress, understanding how FMRP regulates brain development and function remains a major challenge. FMRP is a neuronal RNA-binding protein that binds about a third of messenger RNAs in the brain and controls their translation, stability, and cellular localization. The absence of FMRP results in increased protein synthesis, leading to enhanced signaling in a number of intracellular pathways, including the mTOR, mGLuR5, ERK, Gsk3β, PI3K, and insulin pathways. Until recently, FXS was largely considered a deficit of mature neurons; however, a number of new studies have shown that FMRP may also play important roles in stem cells, among them neural stem cells, germline stem cells, and pluripotent stem cells. In this review, we will cover these newly discovered functions of FMRP, as well as the other two fragile X-related proteins, in stem cells. We will also discuss the literature on the use of stem cells, particularly neural stem cells and induced pluripotent stem cells, as model systems for studying the functions of FMRP in neuronal development.
Collapse
Affiliation(s)
- Yue Li
- Waisman Center and Department of Neuroscience, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | | |
Collapse
|
49
|
Li J, Tang Y, Wang Y, Tang R, Jiang W, Yang GY, Gao WQ. Neurovascular recovery via co-transplanted neural and vascular progenitors leads to improved functional restoration after ischemic stroke in rats. Stem Cell Reports 2014; 3:101-14. [PMID: 25068125 PMCID: PMC4110773 DOI: 10.1016/j.stemcr.2014.05.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 05/15/2014] [Accepted: 05/15/2014] [Indexed: 12/23/2022] Open
Abstract
The concept of the “neurovascular unit,” emphasizing the interactions between neural and vascular components in the brain, raised the notion that neural progenitor cell (NPC) transplantation therapy aimed at neural repair may be insufficient for the treatment of ischemic stroke. Here, we demonstrate that enhanced neurovascular recovery via cotransplantation of NPCs and embryonic stem cell-derived vascular progenitor cells (VPCs) in a rat stroke model is correlated with improved functional recovery after stroke. We found that cotransplantation promoted the survival, migration, differentiation, and maturation of neuronal and vascular cells derived from the cotransplanted progenitors. Furthermore, it triggered an increased generation of VEGF-, BDNF-, and IGF1-expressing neural cells derived from the grafted NPCs. Consistently, compared with transplantation of NPCs alone, cotransplantation more effectively improved the neurobehavioral deficits and attenuated the infarct volume. Thus, cotransplantation of NPCs and VPCs represents a more effective therapeutic strategy for the treatment of stroke than transplantation of NPCs alone. Neural and vascular progenitor cell cotransplantation therapy for ischemic stroke Better neurovascular recovery by cotransplanted progenitor cells in the infarct area Better infarction reduction and functional restoration by cotransplantation Neurovascular recovery likely mediated by neural production of growth/trophic factors
Collapse
Affiliation(s)
- Jia Li
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China ; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yaohui Tang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yongting Wang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Rongbiao Tang
- Department of Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Weifang Jiang
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200030, China
| | - Guo-Yuan Yang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China ; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
50
|
Uutela M, Lindholm J, Rantamäki T, Umemori J, Hunter K, Võikar V, Castrén ML. Distinctive behavioral and cellular responses to fluoxetine in the mouse model for Fragile X syndrome. Front Cell Neurosci 2014; 8:150. [PMID: 24904293 PMCID: PMC4036306 DOI: 10.3389/fncel.2014.00150] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 05/09/2014] [Indexed: 11/13/2022] Open
Abstract
Fluoxetine is used as a therapeutic agent for autism spectrum disorder (ASD), including Fragile X syndrome (FXS). The treatment often associates with disruptive behaviors such as agitation and disinhibited behaviors in FXS. To identify mechanisms that increase the risk to poor treatment outcome, we investigated the behavioral and cellular effects of fluoxetine on adult Fmr1 knockout (KO) mice, a mouse model for FXS. We found that fluoxetine reduced anxiety-like behavior of both wild-type and Fmr1 KO mice seen as shortened latency to enter the center area in the open field test. In Fmr1 KO mice, fluoxetine normalized locomotor hyperactivity but abnormally increased exploratory activity. Reduced brain-derived neurotrophic factor (BDNF) and increased TrkB receptor expression levels in the hippocampus of Fmr1 KO mice associated with inappropriate coping responses under stressful condition and abolished antidepressant activity of fluoxetine. Fluoxetine response in the cell proliferation was also missing in the hippocampus of Fmr1 KO mice when compared with wild-type controls. The postnatal mRNA expression of serotonin transporter (SERT) was reduced in the thalamic nuclei of Fmr1 KO mice during the time of transient innervation of somatosensory neurons suggesting that developmental changes of SERT expression were involved in the differential cellular and behavioral responses to fluoxetine in wild-type and Fmr1 mice. The results indicate that changes of BDNF/TrkB signaling contribute to differential behavioral responses to fluoxetine among individuals with ASD.
Collapse
Affiliation(s)
- Marko Uutela
- Institute of Biomedicine/Physiology, University of Helsinki Helsinki, Finland
| | - Jesse Lindholm
- Neuroscience Center, University of Helsinki Helsinki, Finland
| | - Tomi Rantamäki
- Neuroscience Center, University of Helsinki Helsinki, Finland
| | - Juzoh Umemori
- Neuroscience Center, University of Helsinki Helsinki, Finland
| | - Kerri Hunter
- Institute of Biomedicine/Physiology, University of Helsinki Helsinki, Finland
| | - Vootele Võikar
- Neuroscience Center, University of Helsinki Helsinki, Finland
| | - Maija L Castrén
- Institute of Biomedicine/Physiology, University of Helsinki Helsinki, Finland ; Department of Child Neurology, Hospital for Children and Adolescents, University Hospital of Helsinki Helsinki, Finland
| |
Collapse
|