1
|
Di H, Rong Z, Mao N, Li H, Chen J, Liu R, Wang A. Transcriptomic landscape of Hras12V oncogene-induced hepatocarcinogenesis with gender disparity. BMC Cancer 2025; 25:94. [PMID: 39819515 PMCID: PMC11737189 DOI: 10.1186/s12885-025-13476-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 01/08/2025] [Indexed: 01/19/2025] Open
Abstract
The genesis of hepatocellular carcinoma (HCC) is closely related to male factors and hyper-activated Ras signals. A transcriptomic database was established via RNA-Seq of HCC (T) and the adjacent precancerous liver tissue (P) of Hras12V transgenic mice (Ras-Tg, HCC model) and the normal liver tissue of wild-type mice (W) of both sexes. Comparative analysis within W, P, and T and correlation expression pattern analysis revealed common/unique cluster-enriched items towards HCC between the sexes. Specifically, the numbers of differentially expressed genes (DEGs) were much higher in females than in males, and tumor suppressor genes, such as p21Waf1/Cip1 and C6, were significantly higher in the female P. This finding denotes the higher sensitivity of female hepatocytes to the Ras oncogene and, therefore, the difficulty in developing HCC. Moreover, convergence in HCC between the sexes suggests the underlying mechanisms for the ineffectiveness of sex hormone therapies. Additionally, expression pattern analysis revealed that the DEGs and their relevant pathways were either positively or negatively associated with the HCC/Ras oncogene. Among them, the vital role of glutathione metabolism in HCC was established. This work provides a basis for future research on elucidating the underlying mechanisms, selecting the diagnostic biomarker, and planning the clinical therapy in HCC.
Collapse
Affiliation(s)
- Huaiyuan Di
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Zhuona Rong
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning, 116044, China
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Nan Mao
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Huiling Li
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Jun Chen
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Renwu Liu
- Central Hospital of Dalian, University of Technology, Dalian, Liaoning, 116044, China.
| | - Aiguo Wang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning, 116044, China.
| |
Collapse
|
2
|
Lim AMW, Lim EU, Chen PL, Fann CSJ. Unsupervised clustering identified clinically relevant metabolic syndrome endotypes in UK and Taiwan Biobanks. iScience 2024; 27:109815. [PMID: 39040048 PMCID: PMC11260869 DOI: 10.1016/j.isci.2024.109815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/02/2024] [Accepted: 04/23/2024] [Indexed: 07/24/2024] Open
Abstract
Metabolic syndrome (MetS) is a collection of cardiovascular risk factors; however, the high prevalence and heterogeneity impede effective clinical management. We conducted unsupervised clustering on individuals from UK Biobank to reveal endotypes. Five MetS subgroups were identified: Cluster 1 (C1): non-descriptive, Cluster 2 (C2): hypertensive, Cluster 3 (C3): obese, Cluster 4 (C4): lipodystrophy-like, and Cluster 5 (C5): hyperglycemic. For all of the endotypes, we identified the corresponding cardiometabolic traits and their associations with clinical outcomes. Genome-wide association studies (GWASs) were conducted to identify associated genotypic traits. We then determined endotype-specific genotypic traits and constructed polygenic risk score (PRS) models specific to each endotype. GWAS of each MetS clusters revealed different genotypic traits. C1 GWAS revealed novel findings of TRIM63, MYBPC3, MYLPF, and RAPSN. Intriguingly, C1, C3, and C4 were associated with genes highly expressed in brain tissues. MetS clusters with comparable phenotypic and genotypic traits were identified in Taiwan Biobank.
Collapse
Affiliation(s)
- Aylwin Ming Wee Lim
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 112304, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
- ASUS Intelligent Cloud Services (AICS), Taipei 112, Taiwan
| | - Evan Unit Lim
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
- College of Computing, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Pei-Lung Chen
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Cathy Shen Jang Fann
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 112304, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
3
|
Zou X, Hu M, Huang X, Zhou L, Li M, Chen J, Ma L, Gao X, Luo Y, Cai X, Li Y, Zhou X, Li N, Shi Y, Han X, Ji L. Rare Variant in Metallothionein 1E Increases the Risk of Type 2 Diabetes in a Chinese Population. Diabetes Care 2023; 46:2249-2257. [PMID: 37878528 DOI: 10.2337/dc22-2031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 09/18/2023] [Indexed: 10/27/2023]
Abstract
OBJECTIVE To uncover novel targets for the treatment of type 2 diabetes (T2D) by investigating rare variants with large effects in monogenic forms of the disease. RESEARCH DESIGN AND METHODS We performed whole-exome sequencing in a family with diabetes. We validated the identified gene using Sanger sequencing in additional families and diabetes- and community-based cohorts. Wild-type and variant gene transgenic mouse models were used to study the gene function. RESULTS Our analysis revealed a rare variant of the metallothionein 1E (MT1E) gene, p.C36Y, in a three-generation family with diabetes. This risk allele was associated with T2D or prediabetes in a community-based cohort. MT1E p.C36 carriers had higher HbA1c levels and greater BMI than those carrying the wild-type allele. Mice with forced expression of MT1E p.C36Y demonstrated increased weight gain, elevated postchallenge serum glucose and liver enzyme levels, and hepatic steatosis, similar to the phenotypes observed in human carriers of MT1E p.C36Y. In contrast, mice with forced expression of MT1E p.C36C displayed reduced weight and lower serum glucose and serum triglyceride levels. Forced expression of wild-type and variant MT1E demonstrated differential expression of genes related to lipid metabolism. CONCLUSIONS Our results suggest that MT1E could be a promising target for drug development, because forced expression of MT1E p.C36C stabilized glucose metabolism and reduced body weight, whereas MT1E p.C36Y expression had the opposite effect. These findings highlight the importance of considering the impact of rare variants in the development of new T2D treatments.
Collapse
Affiliation(s)
- Xiantong Zou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Mengdie Hu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Xiuting Huang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Lingli Zhou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Meng Li
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Jing Chen
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Liping Ma
- Central Laboratory, Peking University People's Hospital, Beijing, China
| | - Xueying Gao
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Yingying Luo
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Yufeng Li
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
- Department of Endocrinology, Beijing Friendship Hospital Pinggu Campus, Capital Medical University, Beijing, China
| | - Xianghai Zhou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Na Li
- Central Laboratory, Peking University People's Hospital, Beijing, China
| | - Yuanping Shi
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Xueyao Han
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| |
Collapse
|
4
|
Li Y, Lee SH, Piao M, Kim HS, Lee KY. Metallothionein 3 Inhibits 3T3-L1 Adipocyte Differentiation via Reduction of Reactive Oxygen Species. Antioxidants (Basel) 2023; 12:antiox12030640. [PMID: 36978888 PMCID: PMC10045306 DOI: 10.3390/antiox12030640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Metallothionein 3 (MT3), also known as a neuronal growth-inhibitory factor, is a member of the metallothionein family and is involved in a variety of biological functions, including protection against metal toxicity and reactive oxygen species (ROS). However, less is known about the role of MT3 in the differentiation of 3T3-L1 cells into adipocytes. In this study, we observed that MT3 levels were downregulated during 3T3-L1 adipocyte differentiation. Mt3 overexpression inhibited adipocyte differentiation and reduced the levels of the adipogenic transcription factors C/EBPα and PPARγ. Further analyses showed that MT3 also suppressed the transcriptional activity of PPARγ, and this effect was not mediated by a direct interaction between MT3 with PPARγ. In addition, Mt3 overexpression resulted in a decrease in ROS levels during early adipocyte differentiation, while treatment with antimycin A, which induces ROS generation, restored the ROS levels. Mt3 knockdown, on the other hand, elevated ROS levels, which were suppressed upon treatment with the antioxidant N-acetylcysteine. Our findings indicate a previously unknown role of MT3 in the differentiation of 3T3-L1 cells into adipocytes and provide a potential novel target that might facilitate obesity treatment.
Collapse
Affiliation(s)
- Yuankuan Li
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sung Ho Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Meiyu Piao
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- Correspondence: (H.S.K.); (K.Y.L.)
| | - Kwang Youl Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
- Correspondence: (H.S.K.); (K.Y.L.)
| |
Collapse
|
5
|
Young JL, Cave MC, Xu Q, Kong M, Xu J, Lin Q, Tan Y, Cai L. Whole Life Exposure to Low Dose Cadmium Alters Diet-Induced NAFLD. Toxicol Appl Pharmacol 2022; 436:115855-115855. [PMID: 34990729 PMCID: PMC8796138 DOI: 10.1016/j.taap.2021.115855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 02/03/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major global public health concern affecting more than 25% of the world’s population. Although obesity and diabetes are major risk factors for NAFLD, they cannot account for all cases, indicating the importance of other factors such as environmental exposures. Cadmium (Cd) exposure is implicated in the development of NAFLD; however, the influence of early-life, in utero Cd exposure on the development of diet-induced NAFLD is poorly understood. Therefore, we developed an in vivo, multiple-hit model to study the effect of whole-life, low dose Cd exposure on high fat diet (HFD)-induced NAFLD. Adult male and female C57BL/6J mice fed normal diets (ND) were exposed to 0, 0.5 or 5 ppm Cd-containing drinking water for 14 weeks before breeding. At weaning, offspring were fed ND or HFD and continued on the same drinking water regimen as their parents for 24 weeks. Cd exposure at different concentrations differentially altered HFD-associated adverse health effects, including liver injury. HFD-induced increased body weight, decreased glucose tolerance. Liver injury and lipid deposition were exacerbated by 5 ppm Cd exposure but attenuated by 0.5 ppm Cd exposure. Further, HFD blunted the response of metallothionein, a major Cd detoxification protein, in mice exposed to 5 ppm Cd but enhanced the response in mice exposed to 0.5 ppm Cd, suggesting a possible mechanism for Cd alteration of HFD-induced NAFLD. These results confirm the multi-hit nature of NAFLD and show whole life, low dose Cd exposure alters HFD-induced NAFLD with outcomes dependent on Cd concentration.
Collapse
Affiliation(s)
- Jamie L. Young
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, the University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Pediatric Research Institute, Departments of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Matthew C. Cave
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, the University of Louisville School of Medicine, Louisville, KY, 40202, USA
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, 40202, USA
- Department of Biochemistry and Molecular Genetics, the University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Superfund Research Center, the University of Louisville, Louisville, KY, 40202, USA
- The Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY, 40202, USA
| | - Qian Xu
- Department of Bioinformatics and Biostatistics, University of Louisville School of Public Health and Information Sciences, Louisville, KY, USA
| | - Maiying Kong
- Department of Bioinformatics and Biostatistics, University of Louisville School of Public Health and Information Sciences, Louisville, KY, USA
| | - Jianxiang Xu
- Pediatric Research Institute, Departments of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Qian Lin
- Pediatric Research Institute, Departments of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Yi Tan
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Pediatric Research Institute, Departments of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Lu Cai
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Pediatric Research Institute, Departments of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, 40202, USA
| |
Collapse
|
6
|
Hao D, Wang X, Wang X, Thomsen B, Qu K, Lan X, Huang Y, Lei C, Huang B, Chen H. Resveratrol stimulates microRNA expression during differentiation of bovine primary myoblasts. Food Nutr Res 2021. [DOI: 10.29219/fnr.v65.5453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
7
|
Yu J, Li J, He S, Xu L, Zhang Y, Jiang H, Gong D, Gu Z. Sirt1 regulates the expression of critical metabolic genes in chicken hepatocytes. ANIMAL PRODUCTION SCIENCE 2020. [DOI: 10.1071/an18606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Studies in mammals show that SIRT1 plays an important role in many biological processes including liver metabolism through histone and non-histone deacetylation. Little is known about the function of Sirt1 in the chicken.
Aims
The current study investigated the expression pattern of Sirt1 mRNA in the chicken and its functions in the chicken liver.
Methods
In this work, we used real-time quantitative polymerase chain reaction to quantify the expression levels of Sirt1 mRNA in major chicken organs and tissue types, siRNA to knock down Sirt1 expression in primary chicken hepatocytes, RNA sequencing to identify gene-expression changes induced by Sirt1 knockdown, and analysed the function of the differentially expressed genes (DEGs) through gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes ontology analysis.
Key results
In total, 86 DEGs were found between Sirt1 knockdown and control chicken hepatocytes, of which 63 genes were downregulated and 23 genes were upregulated by Sirt1 knockdown. The Kyoto Encyclopedia of Genes and Genomes analysis showed that 24 DEGs were involved in metabolism. Seven DEGs were involved in carbohydrate and lipid metabolism.
Conclusions
The present study showed that Sirt1 regulates the expression of genes involved in carbohydrate and lipid metabolism and many other biological processes in the chicken liver.
Implications
The results of the present study imply that Sirt1 has various functions in the chicken liver and that Sirt1 plays a potentially important role in hepatic carbohydrate and lipid metabolism in the chicken.
Collapse
|
8
|
Mammalian Metallothionein-3: New Functional and Structural Insights. Int J Mol Sci 2017; 18:ijms18061117. [PMID: 28538697 PMCID: PMC5485941 DOI: 10.3390/ijms18061117] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 12/25/2022] Open
Abstract
Metallothionein-3 (MT-3), a member of the mammalian metallothionein (MT) family, is mainly expressed in the central nervous system (CNS). MT-3 possesses a unique neuronal growth inhibitory activity, and the levels of this intra- and extracellularly occurring metalloprotein are markedly diminished in the brain of patients affected by a number of metal-linked neurodegenerative disorders, including Alzheimer’s disease (AD). In these pathologies, the redox cycling of copper, accompanied by the production of reactive oxygen species (ROS), plays a key role in the neuronal toxicity. Although MT-3 shares the metal-thiolate clusters with the well-characterized MT-1 and MT-2, it shows distinct biological, structural and chemical properties. Owing to its anti-oxidant properties and modulator function not only for Zn, but also for Cu in the extra- and intracellular space, MT-3, but not MT-1/MT-2, protects neuronal cells from the toxicity of various Cu(II)-bound amyloids. In recent years, the roles of zinc dynamics and MT-3 function in neurodegeneration are slowly emerging. This short review focuses on the recent developments regarding the chemistry and biology of MT-3.
Collapse
|
9
|
Kadota Y, Toriuchi Y, Aki Y, Mizuno Y, Kawakami T, Nakaya T, Sato M, Suzuki S. Metallothioneins regulate the adipogenic differentiation of 3T3-L1 cells via the insulin signaling pathway. PLoS One 2017; 12:e0176070. [PMID: 28426713 PMCID: PMC5398611 DOI: 10.1371/journal.pone.0176070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/05/2017] [Indexed: 12/18/2022] Open
Abstract
Knockout of metallothionein (MT) genes contributes to a heavier body weight in early life and the potential to become obese through the intake of a high fat diet (HFD) in mice. It has thus been suggested that MT genes regulate the formation of adipose tissue, which would become the base for later HFD-induced obesity. We evaluated the fat pads of mice during the lactation stage. The fat mass and adipocyte size of MT1 and MT2 knockout mice were greater than those of wild type mice. Next, we assayed the ability of small interfering RNA (siRNA) to silence MT genes in the 3T3-L1 cell line. The expressions of MT1 and MT2 genes were transiently upregulated during adipocyte differentiation, and the siRNA pretreatment led to the suppression of the expression of both MT mRNAs and proteins. The MT siRNA promoted lipid accumulation in adipocytes and caused proliferation of post-confluent preadipocytes; these effects were suppressed by an inhibitor of phosphatidylinositol 3-kinase (LY294002). In addition, MT siRNA promoted insulin-stimulated phosphorylation of Akt, a downstream kinase of the insulin signaling pathway. Enhanced lipid accumulation in 3T3-L1 cells resulting from MT-gene silencing was inhibited by pretreatment with an antioxidant, N-acetylcysteine, used as a substitute for antioxidant protein MTs. These results suggest that interference in MT expression enhanced the activation of the insulin signaling pathway, resulting in higher lipid accumulation in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Yoshito Kadota
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Yuriko Toriuchi
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Yuka Aki
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Yuto Mizuno
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Takashige Kawakami
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Tomoko Nakaya
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Masao Sato
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Shinya Suzuki
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| |
Collapse
|
10
|
Adam P, Křížková S, Heger Z, Babula P, Pekařík V, Vaculovičoá M, Gomes CM, Kizek R, Adam V. Metallothioneins in Prion- and Amyloid-Related Diseases. J Alzheimers Dis 2016; 51:637-56. [DOI: 10.3233/jad-150984] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Pavlína Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka, Brno, Czech Republic
| | - Soňa Křížková
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka, Brno, Czech Republic
| | - Zbyněk Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka, Brno, Czech Republic
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice, Brno, Czech Republic
| | - Vladimír Pekařík
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka, Brno, Czech Republic
| | - Markéta Vaculovičoá
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka, Brno, Czech Republic
| | - Cláudio M. Gomes
- Faculdade de Ciências Universidade de Lisboa, Biosystems and Integrative Sciences Institute and Department of Chemistry and Biochemistry, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - René Kizek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka, Brno, Czech Republic
| | - Vojtěch Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka, Brno, Czech Republic
| |
Collapse
|
11
|
Vázquez-Martínez O, Pérez-Mendoza M, Valente-Godínez H, Revueltas-Guillén F, Carmona-Castro A, Díaz-Muñoz M, Miranda-Anaya M. Day-night variations in pro-oxidant reactions of hypothalamic, hepatic and pancreatic tissue in mice with spontaneous obesity (Neotomodon alstoni). BIOL RHYTHM RES 2015. [DOI: 10.1080/09291016.2015.1108061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Lindeque JZ, Jansen van Rensburg PJ, Louw R, van der Westhuizen FH, Florit S, Ramírez L, Giralt M, Hidalgo J. Obesity and metabolomics: metallothioneins protect against high-fat diet-induced consequences in metallothionein knockout mice. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 19:92-103. [PMID: 25683887 DOI: 10.1089/omi.2014.0087] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Obesity continues to rise as an alarming global epidemic. System level mechanisms, diagnostics, and therapeutics are sorely needed so as to identify at risk individuals and design appropriate population scale interventions. The present study evaluated the protective role of metallothioneins (MTs) against obesity and high-fat diet-induced effects such as insulin resistance in both male and female MT-1+2 knockout and MT-3 knockout mice. As the metabolome is closest to the functional phenotype, changes in metabolite levels were also evaluated, and the direct or indirect involvement of MTs in metabolism examined. MT-1+2-, MT-3 knockout, and wild-type mice were given a high-fat diet for 2 months. Variation in body weight gain, tissue weight, and response to oral glucose tolerance test and insulin tolerance test were determined and compared to mice that received the control diet. Effect of the high-fat diet on the knockout mice were investigated on the metabolome level in specific tissues using metabolomics. Both knockout mice strains were more susceptible to high-fat diet-induced effects, such as weight gain and moderate insulin resistance, with the MT-3 knockout mice most susceptible. Brain tissue of the knockout mice showed most metabolic variation and pointed to possible impairment of mitochondrial function. The protective effect of MTs against high-fat diet and obesity-induced effects such as insulin resistance was evident from our observations. The putative role MTs play in mitochondrial function is possibly the main contributor to the lack of these effects in wild-type mice. Considering the expression profiles of the MT isoforms and similarity in brain metabolic variation in the knockout strains, it appears that they promote mitochondrial function in the hypothalamus, thereby limiting weight gain and insulin resistance. Furthermore, metabolomics research in preclinical models of obesity and in the clinic is warranted in the near future.
Collapse
Affiliation(s)
- Jeremie Z Lindeque
- 1 Centre for Human Metabonomics, North-West University (Potchefstroom Campus) , South Africa
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Cesar ASM, Regitano LCA, Koltes JE, Fritz-Waters ER, Lanna DPD, Gasparin G, Mourão GB, Oliveira PSN, Reecy JM, Coutinho LL. Putative regulatory factors associated with intramuscular fat content. PLoS One 2015; 10:e0128350. [PMID: 26042666 PMCID: PMC4456163 DOI: 10.1371/journal.pone.0128350] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 04/26/2015] [Indexed: 01/12/2023] Open
Abstract
Intramuscular fat (IMF) content is related to insulin resistance, which is an important prediction factor for disorders, such as cardiovascular disease, obesity and type 2 diabetes in human. At the same time, it is an economically important trait, which influences the sensorial and nutritional value of meat. The deposition of IMF is influenced by many factors such as sex, age, nutrition, and genetics. In this study Nellore steers (Bos taurus indicus subspecies) were used to better understand the molecular mechanisms involved in IMF content. This was accomplished by identifying differentially expressed genes (DEG), biological pathways and putative regulatory factors. Animals included in this study had extreme genomic estimated breeding value (GEBV) for IMF. RNA-seq analysis, gene set enrichment analysis (GSEA) and co-expression network methods, such as partial correlation coefficient with information theory (PCIT), regulatory impact factor (RIF) and phenotypic impact factor (PIF) were utilized to better understand intramuscular adipogenesis. A total of 16,101 genes were analyzed in both groups (high (H) and low (L) GEBV) and 77 DEG (FDR 10%) were identified between the two groups. Pathway Studio software identified 13 significantly over-represented pathways, functional classes and small molecule signaling pathways within the DEG list. PCIT analyses identified genes with a difference in the number of gene-gene correlations between H and L group and detected putative regulatory factors involved in IMF content. Candidate genes identified by PCIT include: ANKRD26, HOXC5 and PPAPDC2. RIF and PIF analyses identified several candidate genes: GLI2 and IGF2 (RIF1), MPC1 and UBL5 (RIF2) and a host of small RNAs, including miR-1281 (PIF). These findings contribute to a better understanding of the molecular mechanisms that underlie fat content and energy balance in muscle and provide important information for the production of healthier beef for human consumption.
Collapse
Affiliation(s)
- Aline S. M. Cesar
- Department of Animal Science, University of São Paulo, Piracicaba, SP, 13418–900, Brazil
| | | | - James E. Koltes
- Department of Animal Science, Iowa State University, Ames, IA, 50011, United States of America
| | - Eric R. Fritz-Waters
- Department of Animal Science, Iowa State University, Ames, IA, 50011, United States of America
| | - Dante P. D. Lanna
- Department of Animal Science, University of São Paulo, Piracicaba, SP, 13418–900, Brazil
| | - Gustavo Gasparin
- Department of Animal Science, University of São Paulo, Piracicaba, SP, 13418–900, Brazil
| | - Gerson B. Mourão
- Department of Animal Science, University of São Paulo, Piracicaba, SP, 13418–900, Brazil
| | - Priscila S. N. Oliveira
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, 13565–905, Brazil
| | - James M. Reecy
- Department of Animal Science, Iowa State University, Ames, IA, 50011, United States of America
| | - Luiz L. Coutinho
- Department of Animal Science, University of São Paulo, Piracicaba, SP, 13418–900, Brazil
- * E-mail:
| |
Collapse
|
14
|
Byun HR, Choi JA, Koh JY. The role of metallothionein-3 in streptozotocin-induced beta-islet cell death and diabetes in mice. Metallomics 2015; 6:1748-57. [PMID: 25054451 DOI: 10.1039/c4mt00143e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Metallothionein-3 (Mt3), a zinc (Zn)-regulatory protein mainly expressed in the central nervous system, may contribute to oxidative cell death. In the present study, we examined the possible role of Mt3 in streptozotocin (STZ)-induced islet cell death and consequent hyperglycemia. Quantitative real-time polymerase chain reaction (RT-PCR) confirmed that islet cells expressed Mt3 mRNA. In all cases, wild-type (WT) mice injected with STZ exhibited hyperglycemia 7-21 days later. In stark contrast, all Mt3-null mice remained normoglycemic following STZ injection. STZ treatment increased free Zn levels in islet cells and induced their death in WT mice, but failed to do so in Mt3-null mice. Consistent with this, cultured Mt3-null islet cells exhibited striking resistance to STZ toxicity. Notably, PDE3a (phosphodiesterase 3A) was downregulated in islets of Mt3-null mice compared to those of WT mice, and was not induced by STZ treatment. Moreover, the PDE3 inhibitor cilostazol reduced islet cell death, likely by increasing cAMP levels, further supporting a role for PDE3 in STZ-induced islet cell death. Collectively, these results demonstrate that Mt3 may act through PDE3a to play a key role in Zn dyshomeostasis and cell death in STZ-treated islets.
Collapse
Affiliation(s)
- Hyae-Ran Byun
- Neural Injury Research Center, Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul, Korea
| | | | | |
Collapse
|
15
|
High level expression, efficient purification, and bioactivity of recombinant human metallothionein 3 (rhMT3) from methylotrophic yeast Pichia pastoris. Protein Expr Purif 2014; 101:121-6. [DOI: 10.1016/j.pep.2014.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/10/2014] [Accepted: 06/17/2014] [Indexed: 11/21/2022]
|
16
|
Lago N, Quintana A, Carrasco J, Giralt M, Hidalgo J, Molinero A. Absence of metallothionein-3 produces changes on MT-1/2 regulation in basal conditions and alters hypothalamic-pituitary-adrenal (HPA) axis. Neurochem Int 2014; 74:65-73. [PMID: 24969724 DOI: 10.1016/j.neuint.2014.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 06/05/2014] [Accepted: 06/16/2014] [Indexed: 12/31/2022]
Abstract
Metallothioneins (MTs) are multipurpose proteins with clear antioxidant, anti-inflammatory and metal homeostasis properties. The roles of brain MT-1 and MT-2 are similar to those described in the periphery, and are inducible by metals, inflammatory and stress stimuli. MT-3, originally named growth inhibitory factor, exists mainly in the central nervous system, is hardly ever inducible and its functional role and regulation are poorly understood and controversial. In the present study we examined how absence of MT-3 affects phenotypic characteristics and its effects on MT1/2 expression in basal situation and after induction. Hyperactive behavior was found only in young male Mt-3 KO mice and disappeared in the older ones. Absence of MT-3 was associated with a significant increase of MT-1/2 protein levels in several brain areas but decreased MT-1 mRNA levels, which might be related to lower corticosterone levels. The response to stress or inflammation on corticosterone plasma levels was similar in wild type and Mt-3 KO mice, suggesting that the relevant MT-3 role as MT-1/2 regulator in basal conditions is lost when other important regulatory factors such as glucocorticoids or cytokines appear.
Collapse
Affiliation(s)
- Natalia Lago
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain
| | - Albert Quintana
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain
| | - Javier Carrasco
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain
| | - Mercedes Giralt
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain
| | - Juan Hidalgo
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain
| | - Amalia Molinero
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain.
| |
Collapse
|
17
|
Feng H, Zheng L, Feng Z, Zhao Y, Zhang N. The role of leptin in obesity and the potential for leptin replacement therapy. Endocrine 2013; 44:33-9. [PMID: 23274948 DOI: 10.1007/s12020-012-9865-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 12/15/2012] [Indexed: 12/13/2022]
Abstract
Leptin (from the Greek word "lepto'' meaning "thin") is a 167-amino acid peptide hormone encoded by the obesity (ob) gene and secreted by white adipocytes. Blood leptin concentrations are increased in obese individuals. Leptin is a satiety hormone that provides negative feedback to the hypothalamus, controlling appetite and energy expenditure. Leptin binds to presynaptic GABAergic neurons to produce its effect, raising the distinct possibility that GABAergic axon terminals are the ultimate subcellular site of action for its effects. Released into the circulation, leptin crosses the blood-brain barrier and binds to leptin receptors, influencing the activity of various hypothalamic neurons, as well as encoding orexigenic and anorexigenic neuropeptides. Moreover, leptin affects a wide range of metabolic functions in the peripheral tissue. In this review, we discuss some physiologic functions of leptin, including effects on obesity and some effects of leptin replacement therapy.
Collapse
Affiliation(s)
- Helin Feng
- Department of Orthopedics, The Fourth Affiliated Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, 050011, China.
| | | | | | | | | |
Collapse
|
18
|
Paternain L, Batlle MA, De la Garza AL, Milagro FI, Martínez JA, Campión J. Transcriptomic and epigenetic changes in the hypothalamus are involved in an increased susceptibility to a high-fat-sucrose diet in prenatally stressed female rats. Neuroendocrinology 2012; 96:249-60. [PMID: 22986707 DOI: 10.1159/000341684] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 07/08/2012] [Indexed: 11/19/2022]
Abstract
Disturbances in the prenatal period are linked to metabolic disorders in adulthood, implying the hypothalamic systems of appetite and energy balance regulation. In order to analyze the central effects of a high-fat-sucrose (HFS) diet in prenatally stressed (PNS) female adult rats, Wistar dams were exposed to chronic-mild-stress during the third week of gestation and were then compared with unstressed controls. Adult female offspring were fed a chow or HFS diet for 10 weeks. Changes in body weight, adiposity as well as expression and methylation levels of selected hypothalamic genes were analyzed. PNS induced lower birthweight and body length with no changes in body fat mass. After the HFS diet, the expected overweight model was observed accompanied by higher adiposity and insulin resistance, which was worsened by PNS. The stress model induced higher energy intake in adulthood. Hypothalamic gene expression analysis revealed that the HFS diet decreased Slc6a3 (dopamine active transporter), NPY (neuropeptide Y) and IR (insulin receptor) and increased POMC (pro-opiomelanocortin). Hypothalamic DNA methylation levels in the promoter region of Slc6a3 revealed that Slc6a3 was hypermethylated by the HFS diet in CpG site -53 bp to the transcription start site. HFS diet also hypermethylated CpG site -167 bp of the POMC promoter only in nonstressed animals. No correlations were found between gene expression and DNA methylation levels. These results imply that early-life stress in females increased predisposition to diet-induced obesity in adulthood.
Collapse
Affiliation(s)
- L Paternain
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, Pamplona, Spain.
| | | | | | | | | | | |
Collapse
|