1
|
Izzo NJ, Yuede CM, LaBarbera KM, Limegrover CS, Rehak C, Yurko R, Waybright L, Look G, Rishton G, Safferstein H, Hamby ME, Williams C, Sadlek K, Edwards HM, Davis CS, Grundman M, Schneider LS, DeKosky ST, Chelsky D, Pike I, Henstridge C, Blennow K, Zetterberg H, LeVine H, Spires-Jones TL, Cirrito JR, Catalano SM. Preclinical and clinical biomarker studies of CT1812: A novel approach to Alzheimer's disease modification. Alzheimers Dement 2021; 17:1365-1382. [PMID: 33559354 PMCID: PMC8349378 DOI: 10.1002/alz.12302] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/16/2020] [Accepted: 01/02/2021] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Amyloid beta (Aβ) oligomers are one of the most toxic structural forms of the Aβ protein and are hypothesized to cause synaptotoxicity and memory failure as they build up in Alzheimer's disease (AD) patients' brain tissue. We previously demonstrated that antagonists of the sigma-2 receptor complex effectively block Aβ oligomer toxicity. CT1812 is an orally bioavailable, brain penetrant small molecule antagonist of the sigma-2 receptor complex that appears safe and well tolerated in healthy elderly volunteers. We tested CT1812's effect on Aβ oligomer pathobiology in preclinical AD models and evaluated CT1812's impact on cerebrospinal fluid (CSF) protein biomarkers in mild to moderate AD patients in a clinical trial (ClinicalTrials.gov NCT02907567). METHODS Experiments were performed to measure the impact of CT1812 versus vehicle on Aβ oligomer binding to synapses in vitro, to human AD patient post mortem brain tissue ex vivo, and in living APPSwe /PS1dE9 transgenic mice in vivo. Additional experiments were performed to measure the impact of CT1812 versus vehicle on Aβ oligomer-induced deficits in membrane trafficking rate, synapse number, and protein expression in mature hippocampal/cortical neurons in vitro. The impact of CT1812 on cognitive function was measured in transgenic Thy1 huAPPSwe/Lnd+ and wild-type littermates. A multicenter, double-blind, placebo-controlled parallel group trial was performed to evaluate the safety, tolerability, and impact on protein biomarker expression of CT1812 or placebo given once daily for 28 days to AD patients (Mini-Mental State Examination 18-26). CSF protein expression was measured by liquid chromatography with tandem mass spectrometry or enzyme-linked immunosorbent assay in samples drawn prior to dosing (Day 0) and at end of dosing (Day 28) and compared within each patient and between pooled treated versus placebo-treated dosing groups. RESULTS CT1812 significantly and dose-dependently displaced Aβ oligomers bound to synaptic receptors in three independent preclinical models of AD, facilitated oligomer clearance into the CSF, increased synaptic number and protein expression in neurons, and improved cognitive performance in transgenic mice. CT1812 significantly increased CSF concentrations of Aβ oligomers in AD patient CSF, reduced concentrations of synaptic proteins and phosphorylated tau fragments, and reversed expression of many AD-related proteins dysregulated in CSF. DISCUSSION These preclinical studies demonstrate the novel disease-modifying mechanism of action of CT1812 against AD and Aβ oligomers. The clinical results are consistent with preclinical data and provide evidence of target engagement and impact on fundamental disease-related signaling pathways in AD patients, supporting further development of CT1812.
Collapse
Affiliation(s)
| | | | | | | | - Courtney Rehak
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, USA
| | - Raymond Yurko
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, USA
| | - Lora Waybright
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, USA
| | - Gary Look
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, USA
| | | | | | - Mary E Hamby
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, USA
| | | | - Kelsey Sadlek
- Cognition Therapeutics Inc., Pittsburgh, Pennsylvania, USA
| | | | | | - Michael Grundman
- Global R&D Partners, San Diego, California, USA.,University of California San Diego, San Diego, California, USA
| | - Lon S Schneider
- Keck School of Medicine of USC, Los Angeles, California, USA
| | - Steven T DeKosky
- McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | | | | | | | - Kaj Blennow
- University of Gothenburg, Mölndal, Sweden.,Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- University of Gothenburg, Mölndal, Sweden.,Sahlgrenska University Hospital, Mölndal, Sweden.,UCL Institute of Neurology, London, UK
| | - Harry LeVine
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | |
Collapse
|
2
|
Tan CC, Zhang XY, Tan L, Yu JT. Tauopathies: Mechanisms and Therapeutic Strategies. J Alzheimers Dis 2019; 61:487-508. [PMID: 29278892 DOI: 10.3233/jad-170187] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tauopathies are morphologically, biochemically, and clinically heterogeneous neurodegenerative diseases defined by the accumulation of abnormal tau proteins in the brain. There is no effective method to prevent and reverse the tauopathies, but this gloomy picture has been changed by recent research advances. Evidences from genetic studies, experimental animal models, and molecular and cell biology have shed light on the main mechanisms of the diseases. The development of radiology and biochemistry, especially the development of PET imaging, will provide important biomarkers for the clinical diagnosis and treatment. Given the central role of tau in tauopathies, many treatments have constantly emerged, including targeting phosphorylation, targeting aggregation, increasing microtubule stabilization, tau immunization, clearance of tau, anti-inflammatory treatment, and other therapeutics. There is still a long way to go before we obtain drug therapy targeted at multifactor mechanisms.
Collapse
Affiliation(s)
- Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong, China
| | - Xiao-Yan Zhang
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong, China
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
3
|
Rojo AI, Pajares M, García-Yagüe AJ, Buendia I, Van Leuven F, Yamamoto M, López MG, Cuadrado A. Deficiency in the transcription factor NRF2 worsens inflammatory parameters in a mouse model with combined tauopathy and amyloidopathy. Redox Biol 2018; 18:173-180. [PMID: 30029164 PMCID: PMC6052199 DOI: 10.1016/j.redox.2018.07.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/02/2018] [Accepted: 07/09/2018] [Indexed: 01/13/2023] Open
Abstract
Chronic neuroinflammation is a hallmark of the onset and progression of brain proteinopathies such as Alzheimer disease (AD) and it is suspected to participate in the neurodegenerative process. Transcription factor NRF2, a master regulator of redox homeostasis, controls acute inflammation but its relevance in low-grade chronic inflammation of AD is inconclusive due to lack of good mouse models. We have addressed this question in a transgenic mouse that combines amyloidopathy and tauopathy with either wild type (AT-NRF2-WT) or NRF2-deficiency (AT-NRF2-KO). AT-NRF2-WT mice died prematurely, at around 14 months of age, due to motor deficits and a terminal spinal deformity but AT-NRF2-KO mice died roughly 2 months earlier. NRF2-deficiency correlated with exacerbated astrogliosis and microgliosis, as determined by an increase in GFAP, IBA1 and CD11b levels. The immunomodulatory molecule dimethyl fumarate (DMF), a drug already used for the treatment of multiple sclerosis whose main target is accepted to be NRF2, was tested in this preclinical model. Daily oral gavage of DMF during six weeks reduced glial and inflammatory markers and improved cognition and motor complications in the AT-NRF2-WT mice compared with the vehicle-treated animals. This study demonstrates the relevance of the inflammatory response in experimental AD, tightly regulated by NRF2 activity, and provides a new strategy to fight AD.
Collapse
Affiliation(s)
- Ana I Rojo
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII. Instituto de Investigaciones Biomédicas "Alberto Sols", UAM-CSIC. Instituto de Investigación Sanitaria La Paz (IdiPaz) and Department of Biochemistry, Faculty of Medicine, Autonomous University of MadridMadrid, Spain.
| | - Marta Pajares
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII. Instituto de Investigaciones Biomédicas "Alberto Sols", UAM-CSIC. Instituto de Investigación Sanitaria La Paz (IdiPaz) and Department of Biochemistry, Faculty of Medicine, Autonomous University of MadridMadrid, Spain
| | - Angel J García-Yagüe
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII. Instituto de Investigaciones Biomédicas "Alberto Sols", UAM-CSIC. Instituto de Investigación Sanitaria La Paz (IdiPaz) and Department of Biochemistry, Faculty of Medicine, Autonomous University of MadridMadrid, Spain
| | - Izaskun Buendia
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina. Universidad Autónoma de Madrid, 28029. Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28029. Madrid, Spain
| | - Fred Van Leuven
- Experimental Genetics Group-LEGTEGG, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Manuela G López
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina. Universidad Autónoma de Madrid, 28029. Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28029. Madrid, Spain
| | - Antonio Cuadrado
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII. Instituto de Investigaciones Biomédicas "Alberto Sols", UAM-CSIC. Instituto de Investigación Sanitaria La Paz (IdiPaz) and Department of Biochemistry, Faculty of Medicine, Autonomous University of MadridMadrid, Spain; Cellular and Molecular Medicine Department, Radiobiology Laboratory, "Victor Babes" National Institute of Pathology, Bucharest, Romania.
| |
Collapse
|
4
|
Theunis C, Adolfsson O, Crespo-Biel N, Piorkowska K, Pihlgren M, Hickman DT, Gafner V, Borghgraef P, Devijver H, Pfeifer A, Van Leuven F, Muhs A. Novel Phospho-Tau Monoclonal Antibody Generated Using a Liposomal Vaccine, with Enhanced Recognition of a Conformational Tauopathy Epitope. J Alzheimers Dis 2018; 56:585-599. [PMID: 28035925 PMCID: PMC5271481 DOI: 10.3233/jad-160695] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The microtubule-associated protein Tau is an intrinsically unfolded, very soluble neuronal protein. Under still unknown circumstances, Tau protein forms soluble oligomers and insoluble aggregates that are closely linked to the cause and progression of various brain pathologies, including Alzheimer's disease. Previously we reported the development of liposome-based vaccines and their efficacy and safety in preclinical mouse models for tauopathy. Here we report the use of a liposomal vaccine for the generation of a monoclonal antibody with particular characteristics that makes it a valuable tool for fundamental studies as well as a candidate antibody for diagnostic and therapeutic applications. The specificity and affinity of antibody ACI-5400 were characterized by a panel of methods: (i) measuring the selectivity for a specific phospho-Tau epitope known to be associated with tauopathy, (ii) performing a combination of peptide and protein binding assays, (iii) staining of brain sections from mouse preclinical tauopathy models and from human subjects representing six different tauopathies, and (iv) evaluating the selective binding to pathological epitopes on extracts from tauopathy brains in non-denaturing sandwich assays. We conclude that the ACI-5400 antibody binds to protein Tau phosphorylated at S396 and favors a conformation that is typically present in the brain of tauopathy patients, including Alzheimer's disease.
Collapse
Affiliation(s)
- Clara Theunis
- Experimental Genetics Group - LEGTEGG, Department of Human Genetics, KULeuven, Leuven, Belgium
| | - Oskar Adolfsson
- AC Immune SA, EPFL Innovation Park, Building B, Lausanne, Switzerland
| | - Natalia Crespo-Biel
- Experimental Genetics Group - LEGTEGG, Department of Human Genetics, KULeuven, Leuven, Belgium
| | - Kasia Piorkowska
- AC Immune SA, EPFL Innovation Park, Building B, Lausanne, Switzerland
| | - Maria Pihlgren
- AC Immune SA, EPFL Innovation Park, Building B, Lausanne, Switzerland
| | - David T Hickman
- AC Immune SA, EPFL Innovation Park, Building B, Lausanne, Switzerland
| | - Valérie Gafner
- AC Immune SA, EPFL Innovation Park, Building B, Lausanne, Switzerland
| | - Peter Borghgraef
- Experimental Genetics Group - LEGTEGG, Department of Human Genetics, KULeuven, Leuven, Belgium
| | - Herman Devijver
- Experimental Genetics Group - LEGTEGG, Department of Human Genetics, KULeuven, Leuven, Belgium
| | - Andrea Pfeifer
- AC Immune SA, EPFL Innovation Park, Building B, Lausanne, Switzerland
| | - Fred Van Leuven
- Experimental Genetics Group - LEGTEGG, Department of Human Genetics, KULeuven, Leuven, Belgium
| | - Andreas Muhs
- AC Immune SA, EPFL Innovation Park, Building B, Lausanne, Switzerland
| |
Collapse
|
5
|
Rojo AI, Pajares M, Rada P, Nuñez A, Nevado-Holgado AJ, Killik R, Van Leuven F, Ribe E, Lovestone S, Yamamoto M, Cuadrado A. NRF2 deficiency replicates transcriptomic changes in Alzheimer's patients and worsens APP and TAU pathology. Redox Biol 2017; 13:444-451. [PMID: 28704727 PMCID: PMC5508523 DOI: 10.1016/j.redox.2017.07.006] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/28/2017] [Accepted: 07/03/2017] [Indexed: 01/12/2023] Open
Abstract
Failure to translate successful neuroprotective preclinical data to a clinical setting in Alzheimer's disease (AD) indicates that amyloidopathy and tauopathy alone provide an incomplete view of disease. We have tested here the relevance of additional homeostatic deviations that result from loss of activity of transcription factor NRF2, a crucial regulator of multiple stress responses whose activity declines with ageing. A transcriptomic analysis demonstrated that NRF2-KO mouse brains reproduce 7 and 10 of the most dysregulated pathways of human ageing and AD brains, respectively. Then, we generated a mouse that combines amyloidopathy and tauopathy with either wild type (AT-NRF2-WT) or NRF2-deficiency (AT-NRF2-KO). AT-NRF2-KO brains presented increased markers of oxidative stress and neuroinflammation as well as higher levels of insoluble phosphorylated-TAU and Aβ*56 compared to AT-NRF2-WT mice. Young adult AT-NRF2-KO mice exhibited deficits in spatial learning and memory and reduced long term potentiation in the perforant pathway. This study demonstrates the relevance of normal homeostatic responses that decline with ageing, such as NRF2 activity, in the protection against proteotoxic, inflammatory and oxidative stress and provide a new strategy to fight AD.
Collapse
Affiliation(s)
- Ana I Rojo
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII. Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC. Instituto de Investigación Sanitaria La Paz (IdiPaz), and Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain.
| | - Marta Pajares
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII. Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC. Instituto de Investigación Sanitaria La Paz (IdiPaz), and Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Patricia Rada
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain. Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC. Instituto de Investigación Sanitaria La Paz (IdiPaz); and Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Angel Nuñez
- Department of Anatomy, Histology and Neuroscience, Autonomous University of Madrid, Madrid, Spain
| | | | - Richard Killik
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Camberwell, London, UK
| | - Fred Van Leuven
- Experimental Genetics Group-LEGTEGG, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Elena Ribe
- Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX UK
| | - Simon Lovestone
- Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX UK
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Antonio Cuadrado
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII. Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC. Instituto de Investigación Sanitaria La Paz (IdiPaz), and Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain; Cellular and Molecular Medicine Department, Radiobiology Laboratory, "Victor Babes" National Institute of Pathology, Bucharest, Romania.
| |
Collapse
|
6
|
Li A, Hooli B, Mullin K, Tate RE, Bubnys A, Kirchner R, Chapman B, Hofmann O, Hide W, Tanzi RE. Silencing of the Drosophila ortholog of SOX5 leads to abnormal neuronal development and behavioral impairment. Hum Mol Genet 2017; 26:1472-1482. [PMID: 28186563 DOI: 10.1093/hmg/ddx051] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/07/2017] [Indexed: 01/27/2023] Open
Abstract
SOX5 encodes a transcription factor that is expressed in multiple tissues including heart, lung and brain. Mutations in SOX5 have been previously found in patients with amyotrophic lateral sclerosis (ALS) and developmental delay, intellectual disability and dysmorphic features. To characterize the neuronal role of SOX5, we silenced the Drosophila ortholog of SOX5, Sox102F, by RNAi in various neuronal subtypes in Drosophila. Silencing of Sox102F led to misorientated and disorganized michrochaetes, neurons with shorter dendritic arborization (DA) and reduced complexity, diminished larval peristaltic contractions, loss of neuromuscular junction bouton structures, impaired olfactory perception, and severe neurodegeneration in brain. Silencing of SOX5 in human SH-SY5Y neuroblastoma cells resulted in a significant repression of WNT signaling activity and altered expression of WNT-related genes. Genetic association and meta-analyses of the results in several large family-based and case-control late-onset familial Alzheimer's disease (LOAD) samples of SOX5 variants revealed several variants that show significant association with AD disease status. In addition, analysis for rare and highly penetrate functional variants revealed four novel variants/mutations in SOX5, which taken together with functional prediction analysis, suggests a strong role of SOX5 causing AD in the carrier families. Collectively, these findings indicate that SOX5 is a novel candidate gene for LOAD with an important role in neuronal function. The genetic findings warrant further studies to identify and characterize SOX5 variants that confer risk for AD, ALS and intellectual disability.
Collapse
Affiliation(s)
- Airong Li
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, MassGeneral Institute for Neurodegenerative Diseases, Charlestown, MA 02129, USA
| | - Basavaraj Hooli
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, MassGeneral Institute for Neurodegenerative Diseases, Charlestown, MA 02129, USA
| | - Kristina Mullin
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, MassGeneral Institute for Neurodegenerative Diseases, Charlestown, MA 02129, USA
| | - Rebecca E Tate
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, MassGeneral Institute for Neurodegenerative Diseases, Charlestown, MA 02129, USA
| | - Adele Bubnys
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, MassGeneral Institute for Neurodegenerative Diseases, Charlestown, MA 02129, USA
| | - Rory Kirchner
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Brad Chapman
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Oliver Hofmann
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA.,Center for Cancer Research, University of Melbourne, Melbourne 3000, Australia and
| | - Winston Hide
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA.,Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, MassGeneral Institute for Neurodegenerative Diseases, Charlestown, MA 02129, USA
| |
Collapse
|
7
|
Wang Z, Xiong L, Wan W, Duan L, Bai X, Zu H. Intranasal BMP9 Ameliorates Alzheimer Disease-Like Pathology and Cognitive Deficits in APP/PS1 Transgenic Mice. Front Mol Neurosci 2017; 10:32. [PMID: 28228716 PMCID: PMC5296319 DOI: 10.3389/fnmol.2017.00032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/27/2017] [Indexed: 01/01/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common type of dementia and has no effective therapies. Previous studies showed that bone morphogenetic protein 9 (BMP9), an important factor in the differentiation and phenotype maintenance of cholinergic neurons, ameliorated the cholinergic defects resulting from amyloid deposition. These findings suggest that BMP9 has potential as a therapeutic agent for AD. However, the effects of BMP9 on cognitive function in AD and its underlying mechanisms remain elusive. In the present study, BMP9 was delivered intranasally to 7-month-old APP/PS1 mice for 4 weeks. Our data showed that intranasal BMP9 administration significantly improved the spatial and associative learning and memory of APP/PS1 mice. We also found that intranasal BMP9 administration significantly reduced the amyloid β (Aβ) plaques overall, inhibited tau hyperphosphorylation, and suppressed neuroinflammation in the transgenic mouse brain. Furthermore, intranasal BMP9 administration significantly promoted the expression of low-density lipoprotein receptor-related protein 1 (LRP1), an important membrane receptor involved in the clearance of amyloid β via the blood-brain barrier (BBB), and elevated the phosphorylation levels of glycogen synthase kinase-3β (Ser9), which is considered the main kinase involved in tau hyperphosphorylation. Our results suggest that BMP9 may be a promising candidate for treating AD by targeting multiple key pathways in the disease pathogenesis.
Collapse
Affiliation(s)
- Zigao Wang
- Department of Neurology, Jinshan Hospital, Fudan University Shanghai, China
| | - Lu Xiong
- Department of Anesthesiology, Tinglin Hospital Shanghai, China
| | - Wenbin Wan
- Department of Neurology, Zhongshan Hospital, Fudan University Shanghai, China
| | - Lijie Duan
- Department of Neurology, Jinshan Hospital, Fudan University Shanghai, China
| | - Xiaojing Bai
- Department of Neurology, Jinshan Hospital, Fudan University Shanghai, China
| | - Hengbing Zu
- Department of Neurology, Jinshan Hospital, Fudan University Shanghai, China
| |
Collapse
|
8
|
Hansen HH, Barkholt P, Fabricius K, Jelsing J, Terwel D, Pyke C, Knudsen LB, Vrang N. The GLP-1 receptor agonist liraglutide reduces pathology-specific tau phosphorylation and improves motor function in a transgenic hTauP301L mouse model of tauopathy. Brain Res 2016; 1634:158-170. [DOI: 10.1016/j.brainres.2015.12.052] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/18/2015] [Accepted: 12/22/2015] [Indexed: 01/10/2023]
|
9
|
Brendel M, Jaworska A, Probst F, Overhoff F, Korzhova V, Lindner S, Carlsen J, Bartenstein P, Harada R, Kudo Y, Haass C, Van Leuven F, Okamura N, Herms J, Rominger A. Small-Animal PET Imaging of Tau Pathology with 18F-THK5117 in 2 Transgenic Mouse Models. J Nucl Med 2016; 57:792-8. [PMID: 26912432 DOI: 10.2967/jnumed.115.163493] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 01/21/2016] [Indexed: 11/16/2022] Open
Abstract
Abnormal accumulation of tau aggregates in the brain is one of the hallmarks of Alzheimer disease neuropathology. We visualized tau deposition in vivo with the previously developed 2-arylquinoline derivative (18)F-THK5117 using small-animal PET in conjunction with autoradiography and immunohistochemistry gold standard assessment in 2 transgenic mouse models expressing hyperphosphorylated tau. Small-animal PET recordings were obtained in groups of P301S (n = 11) and biGT mice (n = 16) of different ages, with age-matched wild-type (WT) serving as controls. After intravenous administration of 16 ± 2 MBq of (18)F-THK5117, a dynamic 90-min emission recording was initiated for P301S mice and during 20-50 min after injection for biGT mice, followed by a 15-min transmission scan. After coregistration to the MRI atlas and scaling to the cerebellum, we performed volume-of-interest-based analysis (SUV ratio [SUVR]) and statistical parametric mapping. Small-animal PET results were compared with autoradiography ex vivo and in vitro and further validated with AT8 staining for neurofibrillary tangles. SUVRs calculated from static recordings during the interval of 20-50 min after tracer injection correlated highly with estimates of binding potential based on the entire dynamic emission recordings (R = 0.85). SUVR increases were detected in the brain stem of aged P301S mice (+11%; P < 0.001) and in entorhinal/amygdaloidal areas (+15%; P < 0.001) of biGT mice when compared with WT, whereas aged WT mice did not show increased tracer uptake. Immunohistochemical tau loads correlated with small-animal PET SUVR for both P301S (R = 0.8; P < 0.001) and biGT (R = 0.7; P < 0.001) mice, and distribution patterns of AT8-positive neurons matched voxelwise statistical parametric mapping analysis. Saturable binding of the tracer was verified by autoradiographic blocking studies. In the first dedicated small-animal PET study in 2 different transgenic tauopathy mouse models using the tau tracer (18)F-THK5117, the temporal and spatial progression could be visualized in good correlation with gold standard assessments of tau accumulation. The serial small-animal PET method could afford the means for preclinical testing of novel therapeutic approaches by accommodating interanimal variability at baseline, while detection thresholds in young animals have to be considered.
Collapse
Affiliation(s)
- Matthias Brendel
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Anna Jaworska
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Federico Probst
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Felix Overhoff
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Viktoria Korzhova
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Janette Carlsen
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | | | | | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany Munich Cluster for Systems Neurology (SyNergy), Munich, Germany Biomedical Center (BMC), Ludwig-Maximilians-University of Munich, Munich, Germany; and
| | | | | | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Axel Rominger
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
10
|
Ahmed T, Blum D, Burnouf S, Demeyer D, Buée-Scherrer V, D'Hooge R, Buée L, Balschun D. Rescue of impaired late-phase long-term depression in a tau transgenic mouse model. Neurobiol Aging 2014; 36:730-9. [PMID: 25443285 DOI: 10.1016/j.neurobiolaging.2014.09.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/01/2014] [Accepted: 09/17/2014] [Indexed: 12/18/2022]
Abstract
Cognitive decline, the hallmark of Alzheimer's disease, and accompanying neuropsychiatric symptoms share dysfunctions of synaptic processes as a common cellular pathomechanism. Long-term potentiation has proven to be a sensitive tool for the "diagnosis" of such synaptic dysfunctions. Much less, however, is known about how long-term depression (LTD), an alternative mechanism for the storage of memory, is affected by Alzheimer's disease progression. Here, we demonstrate that impaired late LTD (>3 hours) in THY-Tau22 mice can be rescued by either inhibition of glycogen synthase kinase-3 (GSK3β) activity or by application of the protein-phosphatase 2A agonist selenate. In line with these findings, we observed increased phosphorylation of GSK3β at Y216 and reduced total phosphatase activity in biochemical assays of hippocampal tissue of THY-Tau22 mice. Interestingly, LTD induction and pharmacologic inhibition of GSK3β appeared to downregulate GSK3ß activity via a marked upregulation of phosphorylation at the inhibitory Ser9 residue. Our results point to alterations in phosphorylation and/or dephosphorylation homeostasis as key mechanisms underlying the deficits in LTD and hippocampus-dependent learning found in THY-Tau22 mice.
Collapse
Affiliation(s)
- Tariq Ahmed
- Laboratory of Biological Psychology, University of Leuven, Leuven, Belgium
| | - David Blum
- Université Lille-Nord de France, UDSL, Lille, France; Inserm UMR837, Jean-Pierre Aubert Research Centre, Lille, France; CHRU-Lille, Lille, France
| | - Sylvie Burnouf
- Université Lille-Nord de France, UDSL, Lille, France; Inserm UMR837, Jean-Pierre Aubert Research Centre, Lille, France; Max-Planck Institute for Biology of Ageing, Köln, Germany
| | - Dominique Demeyer
- Université Lille-Nord de France, UDSL, Lille, France; Inserm UMR837, Jean-Pierre Aubert Research Centre, Lille, France
| | - Valérie Buée-Scherrer
- Université Lille-Nord de France, UDSL, Lille, France; Inserm UMR837, Jean-Pierre Aubert Research Centre, Lille, France; CHRU-Lille, Lille, France
| | - Rudi D'Hooge
- Laboratory of Biological Psychology, University of Leuven, Leuven, Belgium
| | - Luc Buée
- Université Lille-Nord de France, UDSL, Lille, France; Inserm UMR837, Jean-Pierre Aubert Research Centre, Lille, France; CHRU-Lille, Lille, France
| | - Detlef Balschun
- Laboratory of Biological Psychology, University of Leuven, Leuven, Belgium.
| |
Collapse
|
11
|
Maurin H, Lechat B, Borghgraef P, Devijver H, Jaworski T, Van Leuven F. Terminal hypothermic Tau.P301L mice have increased Tau phosphorylation independently of glycogen synthase kinase 3α/β. Eur J Neurosci 2014; 40:2442-53. [DOI: 10.1111/ejn.12595] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/20/2014] [Accepted: 03/23/2014] [Indexed: 01/28/2023]
Affiliation(s)
- Hervé Maurin
- Experimental Genetics Group LEGTEGG; Department of Human Genetics; KU Leuven; Campus Gasthuisberg ON1 06.602 Herestraat 49 B-3000 Leuven Belgium
| | - Benoit Lechat
- Experimental Genetics Group LEGTEGG; Department of Human Genetics; KU Leuven; Campus Gasthuisberg ON1 06.602 Herestraat 49 B-3000 Leuven Belgium
| | - Peter Borghgraef
- Experimental Genetics Group LEGTEGG; Department of Human Genetics; KU Leuven; Campus Gasthuisberg ON1 06.602 Herestraat 49 B-3000 Leuven Belgium
| | - Herman Devijver
- Experimental Genetics Group LEGTEGG; Department of Human Genetics; KU Leuven; Campus Gasthuisberg ON1 06.602 Herestraat 49 B-3000 Leuven Belgium
| | | | - Fred Van Leuven
- Experimental Genetics Group LEGTEGG; Department of Human Genetics; KU Leuven; Campus Gasthuisberg ON1 06.602 Herestraat 49 B-3000 Leuven Belgium
| |
Collapse
|