1
|
Thörnblom E, Cunningham JL, Gingnell M, Landén M, Bergquist J, Bodén R. Allopregnanolone and progesterone in relation to a single electroconvulsive therapy seizure and subsequent clinical outcome: an observational cohort study. BMC Psychiatry 2024; 24:687. [PMID: 39407178 PMCID: PMC11476534 DOI: 10.1186/s12888-024-06167-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/11/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Electroconvulsive therapy (ECT) is an important treatment for several severe psychiatric conditions, yet its precise mechanism of action remains unknown. Increased inhibition in the brain after ECT seizures, mediated by γ-aminobutyric acid (GABA), has been linked to clinical effectiveness. Case series on epileptic patients report a postictal serum concentration increase of the GABAA receptor agonist allopregnanolone. Serum allopregnanolone remains unchanged after a full ECT series, but possible transient effects directly after a single ECT seizure remain unexplored. The primary aim was to measure serum concentrations of allopregnanolone and its substrate progesterone after one ECT seizure. Secondary aims were to examine whether concentrations at baseline, or postictal changes, either correlate with seizure generalization or predict clinical outcome ratings after ECT. METHODS A total of 130 participants (18-85 years) were included. Generalization parameters comprised peak ictal heart rate, electroencephalographic (EEG) seizure duration, and prolactin increase. Outcome measures were ratings of clinical global improvement, perceived health status and subjective memory impairment. Non-parametric tests were used for group comparisons and correlations. The prediction analyses were conducted with binary logistic and simple linear regression analyses. RESULTS Allopregnanolone and progesterone remained unchanged and correlated neither with seizure generalization nor with clinical outcome. In men (n = 50), progesterone increased and allopregnanolone change correlated negatively with EEG seizure duration. In a subgroup analysis (n = 62), higher baseline allopregnanolone and progesterone correlated with postictal EEG suppression. CONCLUSIONS ECT seizures have different physiologic effects than generalized seizures in epilepsy. Progesterone might have implications for psychiatric illness in men.
Collapse
Affiliation(s)
- Elin Thörnblom
- Department of Medical Sciences, Uppsala University, Entrance 10, Uppsala, 751 85, Sweden.
| | - Janet L Cunningham
- Department of Medical Sciences, Uppsala University, Entrance 10, Uppsala, 751 85, Sweden
| | - Malin Gingnell
- Department of Medical Sciences, Uppsala University, Entrance 10, Uppsala, 751 85, Sweden
| | - Mikael Landén
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Jonas Bergquist
- Department of Chemistry - BMC, Analytical Chemistry and Neurochemistry, Uppsala University, Uppsala, Sweden
| | - Robert Bodén
- Department of Medical Sciences, Uppsala University, Entrance 10, Uppsala, 751 85, Sweden
| |
Collapse
|
2
|
Moores G, Liu K, Pikula A, Bui E. Fertility treatment for people with epilepsy. Pract Neurol 2024; 24:296-301. [PMID: 38408862 DOI: 10.1136/pn-2023-003922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2024] [Indexed: 02/28/2024]
Abstract
Fertility treatment, including assisted reproductive technology (ART), is increasingly used. Sex hormones influence seizure control as well as interacting with antiseizure medications, and so the hormonal manipulation involved in fertility treatments has direct implications for people with epilepsy. Here, we summarise the various fertility treatments and consider their important influences on epilepsy care. While early observations raised concerns about seizure exacerbation associated with ART, there are limited data to guide best practice in people with epilepsy, and further research is needed.
Collapse
Affiliation(s)
- Ginette Moores
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kimberly Liu
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada
| | - Aleksandra Pikula
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Esther Bui
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Mirawati DK, Wiyono N, Ilyas MF, Putra SE, Hafizhan M. Research productivity in catamenial epilepsy: A bibliometric analysis of worldwide scientific literature (1956-2022). Heliyon 2024; 10:e31474. [PMID: 38831810 PMCID: PMC11145500 DOI: 10.1016/j.heliyon.2024.e31474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
OBJECTIVES To perform a bibliometric analysis as a comprehensive review of publications associated with catamenial epilepsy and discuss the current state of knowledge in the field. METHODS Publications published between 1956 and 2022 were retrieved from the Scopus database. Bibliometric analysis was performed using the R package and VOSviewer to show the data and network of journals, organizations, authors, countries, and keywords. The analysis conducted on October 15, 2022, yielded a total of 320 refinement studies. RESULTS The number of publications has escalated significantly, particularly in the last 20 years. Catamenial epilepsy-related publications originated mostly from medicine and other subject areas, with the United States having the largest publication output. Collaboration is low at the author, organizational, and national levels, especially in the Asian continent. Publications remain scarce, particularly on practice guidelines, risk assessment, and medication-related research. Based on a keyword analysis, a bibliometric analysis identified possible themes for future investigation. CONCLUSION Catamenial epilepsy-related literature is crucial but still insufficient, and further studies are required.
Collapse
Affiliation(s)
- Diah Kurnia Mirawati
- Department of Neurology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Nanang Wiyono
- Department of Anatomy, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Muhana Fawwazy Ilyas
- Department of Neurology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Stefanus Erdana Putra
- Department of Neurology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Muhammad Hafizhan
- Department of Neurology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| |
Collapse
|
4
|
Balan I, Grusca A, O’Buckley TK, Morrow AL. Neurosteroid [3α,5α]-3-hydroxy-pregnan-20-one enhances IL-10 production via endosomal TRIF-dependent TLR4 signaling pathway. Front Endocrinol (Lausanne) 2023; 14:1299420. [PMID: 38179300 PMCID: PMC10765172 DOI: 10.3389/fendo.2023.1299420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/24/2023] [Indexed: 01/06/2024] Open
Abstract
Background Previous studies demonstrated the inhibitory effect of allopregnanolone (3α,5α-THP) on the activation of inflammatory toll-like receptor 4 (TLR4) signals in RAW264.7 macrophages and the brains of selectively bred alcohol-preferring (P) rats. In the current study, we investigated the impact of 3α,5α-THP on the levels of IL-10 and activation of the TRIF-dependent endosomal TLR4 pathway. Methods The amygdala and nucleus accumbens (NAc) of P rats, which exhibit innately activated TLR4 pathways as well as RAW264.7 cells, were used. Enzyme-linked immunosorbent assays (ELISA) and immunoblotting assays were used to ascertain the effects of 3α,5α-THP on the TRIF-dependent endosomal TLR4 pathway and endosomes were isolated to examine translocation of TLR4 and TRIF. Additionally, we investigated the effects of 3α,5α-THP and 3α,5α-THDOC (0.1, 0.3, and 1.0 µM) on the levels of IL-10 in RAW264.7 macrophages. Finally, we examined whether inhibiting TRIF (using TRIF siRNA) in RAW264.7 cells altered the levels of IL-10. Results 3α,5α-THP administration facilitated activation of the endosomal TRIF-dependent TLR4 pathway in males, but not female P rats. 3α,5α-THP increased IL-10 levels (+13.2 ± 6.5%) and BDNF levels (+21.1 ± 11.5%) in the male amygdala. These effects were associated with increases in pTRAM (+86.4 ± 28.4%), SP1 (+122.2 ± 74.9%), and PI(3)K-p110δ (+61.6 ± 21.6%), and a reduction of TIRAP (-13.7 ± 6.0%), indicating the activation of the endosomal TRIF-dependent TLR4 signaling pathway. Comparable effects were observed in NAc of these animals. Furthermore, 3α,5α-THP enhanced the accumulation of TLR4 (+43.9 ± 11.3%) and TRIF (+64.8 ± 32.8%) in endosomes, with no significant effect on TLR3 accumulation. Additionally, 3α,5α-THP facilitated the transition from early endosomes to late endosomes (increasing Rab7 levels: +35.8 ± 18.4%). In RAW264.7 cells, imiquimod (30 µg/mL) reduced IL-10 while 3α,5α-THP and 3α,5α-THDOC (0.1, 0.3, and 1.0 µM) restored IL-10 levels. To determine the role of the TRIF-dependent TLR4 signaling pathway in IL-10 production, the downregulation of TRIF (-62.9 ± 28.2%) in RAW264.7 cells led to a reduction in IL-10 levels (-42.3 ± 8.4%). TRIF (-62.9 ± 28.2%) in RAW264.7 cells led to a reduction in IL-10 levels (-42.3 ± 8.4%) and 3α,5α-THP (1.0 µM) no longer restored the reduced IL-10 levels. Conclusion The results demonstrate 3α,5α-THP enhancement of the endosomal TLR4-TRIF anti-inflammatory signals and elevations of IL-10 in male P rat brain that were not detected in female P rat brain. These effects hold significant implications for controlling inflammatory responses in both the brain and peripheral immune cells.
Collapse
Affiliation(s)
- Irina Balan
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Adelina Grusca
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Todd K. O’Buckley
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - A. Leslie Morrow
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
5
|
Latchney SE, Ruiz Lopez BR, Womble PD, Blandin KJ, Lugo JN. Neuronal deletion of phosphatase and tensin homolog in mice results in spatial dysregulation of adult hippocampal neurogenesis. Front Mol Neurosci 2023; 16:1308066. [PMID: 38130682 PMCID: PMC10733516 DOI: 10.3389/fnmol.2023.1308066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Adult neurogenesis is a persistent phenomenon in mammals that occurs in select brain structures in both healthy and diseased brains. The tumor suppressor gene, phosphatase and tensin homolog deleted on chromosome 10 (Pten) has previously been found to restrict the proliferation of neural stem/progenitor cells (NSPCs) in vivo. In this study, we aimed to provide a comprehensive picture of how conditional deletion of Pten may regulate the genesis of adult NSPCs in the dentate gyrus of the hippocampus and the subventricular zone bordering the lateral ventricles. Using conventional markers and stereology, we quantified multiple stages of neurogenesis, including proliferating cells, immature neurons (neuroblasts), and apoptotic cells in several regions of the dentate gyrus, including the subgranular zone (SGZ), outer granule cell layer (oGCL), molecular layer, and hilus at 4 and 10 weeks of age. Our data demonstrate that conditional deletion of Pten in mice produces successive increases in dentate gyrus proliferating cells and immature neuroblasts, which confirms the known negative roles Pten has on cell proliferation and maturation. Specifically, we observe a significant increase in Ki67+ proliferating cells in the neurogenic SGZ at 4 weeks of age, but not 10 weeks of age. We also observe a delayed increase in neuroblasts at 10 weeks of age. However, our study expands on previous work by providing temporal, subregional, and neurogenesis-stage resolution. Specifically, we found that Pten deletion initially increases cell proliferation in the neurogenic SGZ, but this increase spreads to non-neurogenic dentate gyrus areas, including the hilus, oGCL, and molecular layer, as mice age. We also observed region-specific increases in apoptotic cells in the dentate gyrus hilar region that paralleled the regional increases in Ki67+ cells. Our work is accordant with the literature showing that Pten serves as a negative regulator of dentate gyrus neurogenesis but adds temporal and spatial components to the existing knowledge.
Collapse
Affiliation(s)
- Sarah E. Latchney
- Department of Biology, St. Mary’s College of Maryland, St. Mary’s City, MD, United States
| | - Brayan R. Ruiz Lopez
- Department of Biology, St. Mary’s College of Maryland, St. Mary’s City, MD, United States
| | - Paige D. Womble
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| | - Katherine J. Blandin
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| | - Joaquin N. Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| |
Collapse
|
6
|
Ziemka-Nalecz M, Pawelec P, Ziabska K, Zalewska T. Sex Differences in Brain Disorders. Int J Mol Sci 2023; 24:14571. [PMID: 37834018 PMCID: PMC10572175 DOI: 10.3390/ijms241914571] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
A remarkable feature of the brain is its sexual dimorphism. Sexual dimorphism in brain structure and function is associated with clinical implications documented previously in healthy individuals but also in those who suffer from various brain disorders. Sex-based differences concerning some features such as the risk, prevalence, age of onset, and symptomatology have been confirmed in a range of neurological and neuropsychiatric diseases. The mechanisms responsible for the establishment of sex-based differences between men and women are not fully understood. The present paper provides up-to-date data on sex-related dissimilarities observed in brain disorders and highlights the most relevant features that differ between males and females. The topic is very important as the recognition of disparities between the sexes might allow for the identification of therapeutic targets and pharmacological approaches for intractable neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
| | | | | | - Teresa Zalewska
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5, A. Pawinskiego Str., 02-106 Warsaw, Poland; (M.Z.-N.); (P.P.); (K.Z.)
| |
Collapse
|
7
|
Reddy DS, Mbilinyi RH, Estes E. Preclinical and clinical pharmacology of brexanolone (allopregnanolone) for postpartum depression: a landmark journey from concept to clinic in neurosteroid replacement therapy. Psychopharmacology (Berl) 2023; 240:1841-1863. [PMID: 37566239 PMCID: PMC10471722 DOI: 10.1007/s00213-023-06427-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/17/2023] [Indexed: 08/12/2023]
Abstract
This article describes the critical role of neurosteroids in postpartum depression (PPD) and outlines the landmark pharmacological journey of brexanolone as a first-in-class neurosteroid antidepressant with significant advantages over traditional antidepressants. PPD is a neuroendocrine disorder that affects about 20% of mothers after childbirth and is characterized by symptoms including persistent sadness, fatigue, dysphoria, as well as disturbances in cognition, emotion, appetite, and sleep. The main pathology behind PPD is the postpartum reduction of neurosteroids, referred to as neurosteroid withdrawal, a concept pioneered by our preclinical studies. We developed neurosteroid replacement therapy (NRT) as a rational approach for treating PPD and other conditions related to neurosteroid deficiency, unveiling the power of neurosteroids as novel anxiolytic-antidepressants. The neurosteroid, brexanolone (BX), is a progesterone-derived allopregnanolone that rapidly relieves anxiety and mood deficits by activating GABA-A receptors, making it a transformational treatment for PPD. In 2019, the FDA approved BX, an intravenous formulation of allopregnanolone, as an NRT to treat PPD. In clinical studies, BX significantly improved PPD symptoms within hours of administration, with tolerable side effects including headache, dizziness, and somnolence. We identified the molecular mechanism of BX in a neuronal PPD-like milieu. The mechanism of BX involves activation of both synaptic and extrasynaptic GABA-A receptors, which promote tonic inhibition and serve as a key target for PPD and related conditions. Neurosteroids offer several advantages over traditional antidepressants, including rapid onset, unique mechanism, and lack of tolerance upon repeated use. Some limitations of BX therapy include lack of aqueous solubility, limited accessibility, hospitalization for treatment, lack of oral product, and serious adverse events at high doses. However, the unmet need for synthetic neurosteroids to address this critical condition supersedes these limitations. Recently, we developed novel hydrophilic neurosteroids with a superior profile and improved drug delivery. Overall, approval of BX is a major milestone in the field of neurotherapeutics, paving the way for the development of novel synthetic neurosteroids to treat depression, epilepsy, and status epilepticus.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX, 77807, USA.
- Institute of Pharmacology and Neurotherapeutics, Texas A&M University Health Science Center, 8447 Riverside Pkwy, Bryan, TX, 77807, USA.
| | - Robert H Mbilinyi
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX, 77807, USA
| | - Emily Estes
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX, 77807, USA
| |
Collapse
|
8
|
Gender and Neurosteroids: Implications for Brain Function, Neuroplasticity and Rehabilitation. Int J Mol Sci 2023; 24:ijms24054758. [PMID: 36902197 PMCID: PMC10003563 DOI: 10.3390/ijms24054758] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Neurosteroids are synthesized de novo in the nervous system; they mainly moderate neuronal excitability, and reach target cells via the extracellular pathway. The synthesis of neurosteroids occurs in peripheral tissues such as gonads tissues, liver, and skin; then, because of their high lipophilia, they cross the blood-brain barrier and are stored in the brain structure. Neurosteroidogenesis occurs in brain regions such as the cortex, hippocampus, and amygdala by enzymes necessary for the in situ synthesis of progesterone from cholesterol. Neurosteroids could be considered the main players in both sexual steroid-induced hippocampal synaptic plasticity and normal transmission in the hippocampus. Moreover, they show a double function of increasing spine density and enhancing long term potentiation, and have been related to the memory-enhancing effects of sexual steroids. Estrogen and progesterone affect neuronal plasticity differently in males and females, especially regarding changes in the structure and function of neurons in different regions of the brain. Estradiol administration in postmenopausal women allowed for improving cognitive performance, and the combination with aerobic motor exercise seems to enhance this effect. The paired association between rehabilitation and neurosteroids treatment could provide a boosting effect in order to promote neuroplasticity and therefore functional recovery in neurological patients. The aim of this review is to investigate the mechanisms of action of neurosteroids as well as their sex-dependent differences in brain function and their role in neuroplasticity and rehabilitation.
Collapse
|
9
|
Golub V, Ramakrishnan S, Reddy DS. Isobolographic analysis of adjunct antiseizure activity of the FDA-approved cannabidiol with neurosteroids and benzodiazepines in adult refractory focal onset epilepsy. Exp Neurol 2023; 360:114294. [PMID: 36493860 PMCID: PMC9884179 DOI: 10.1016/j.expneurol.2022.114294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/27/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Epilepsy is a serious neurological disorder associated with recurrent and unpredictable seizures and extensive neuropsychiatric comorbidities. There is no cure for epilepsy, and over one third of epileptic patients have been diagnosed with drug-refractory epilepsy, indicating the critical need for novel antiseizure medications (ASMs). Cannabidiol (CBD) has been shown to decrease seizures in pediatric epilepsies, such as Dravet and Lennox-Gastaut syndromes; however, it has not been rigorously tested for adult seizures or in models of refractory focal epilepsy. Although the exact mechanism is unknown, it is likely to act in a way that is unique to certain GABA-A receptor-modulating drugs, such as neurosteroids and benzodiazepines. In this study, we sought to determine the adjunct antiseizure activity of a clinical CBD product in an adult 6-Hz model of focal refractory epilepsy. CBD was evaluated alone in both a dose-response and time-course manner and in an adjunct combination with two ASMs ganaxolone (neurosteroid) and midazolam (benzodiazepine) against 6-Hz-induced refractory focal onset, generalized seizures. In pharmacological studies, CBD produced dose-dependent protection against seizures (ED50, 53 mg/kg, i.p.) without any side effects. CBD significantly reduced both electrographic activity and behavioral ictal responses with no apparent sex differences. CBD was evaluated in an isobologram design in conjunction with ganaxolone or midazolam at three standard ratios (1:1, 1:3, 3:1). Isobolographic analysis shows the combination regimens of CBD + ganaxolone and CBD + midazolam exerted combination index of 0.313 and 0.164, indicating strong synergism for seizure protection, with little to no toxicity. Together, these results demonstrate the therapeutic potential of CBD monotherapy and as an adjunct therapy for adult focal refractory epilepsy in combination with GABAergic ASMs.
Collapse
Affiliation(s)
- Victoria Golub
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Sreevidhya Ramakrishnan
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA; Texas A&M Health Institute of Pharmacology and Neurotherapeutics, Texas A&M University, Bryan, TX, USA
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA; Texas A&M Health Institute of Pharmacology and Neurotherapeutics, Texas A&M University, Bryan, TX, USA.
| |
Collapse
|
10
|
Efficacy of the FDA-approved cannabidiol on the development and persistence of temporal lobe epilepsy and complex focal onset seizures. Exp Neurol 2023; 359:114240. [PMID: 36216124 DOI: 10.1016/j.expneurol.2022.114240] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 11/09/2022]
Abstract
Presently there is no drug therapy for curing epilepsy. Despite many advancements in epilepsy research, nearly 30% of people with epilepsy remain refractory to current antiseizure medications (ASM). Cannabidiol (CBD) has recently been approved as an ASM for pediatric refractory seizures, but it has not been widely tested for adult epileptogenesis and focal onset seizures. In this study, we investigated the efficacy of the FDA-approved CBD in controlling epileptogenesis and complex focal onset seizures using the mouse kindling model of human temporal lobe epilepsy. We also tested combination regimens of CBD with other ASMs. The two primary outcome measures were disease modification and suppression of generalized seizures. In the epileptogenesis study, CBD had a striking effect in attenuating kindling development, with a dose-dependent decrease in behavioral and electrographic seizure activity. In the retention study, mice previously treated with CBD had significantly reduced overall seizure burden, suggesting disease modification. In a fully-kindled seizure study, CBD produced rapid and atypical U-shaped dose-dependent protection against generalized seizures (ED50, 52 mg/kg, i.p.). In a time-course study, CBD showed a maximal protective effect within 1 h of injection, and it declined within 4 h with a biphasic response. In the combination study, CBD produced synergistic/ additive protection when given with midazolam and ganaxolone but not with tiagabine, indicating its strong potential as an adjunct ASM. Finally, the protective effects of CBD were not associated with motor and functional impairments. These preclinical findings demonstrate the potential of adjunct CBD for controlling adult complex focal onset seizure conditions.
Collapse
|
11
|
Hophing L, Kyriakopoulos P, Bui E. Sex and gender differences in epilepsy. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 164:235-276. [PMID: 36038205 DOI: 10.1016/bs.irn.2022.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sex and gender differences in epilepsy are important influencing factors in epilepsy care. In epilepsy, the hormonal differences between the sexes are important as they impact specific treatment considerations for patients at various life stages particularly during early adulthood with establishment of the menstrual cycle, pregnancy, perimenopause and menopause. Choice of antiseizure medication may have direct consequences on hormonal cycles, hormonal contraception, pregnancy and fetal risk of major congenital malformation. Conversely hormones whether intrinsic or extrinsically administered may have direct impact on antiseizure medications and seizure control. This chapter explores these important influences on the management of persons with epilepsy.
Collapse
Affiliation(s)
- Lauren Hophing
- Krembil Brain Institute, University Health Network, University of Toronto, Toronto, Canada
| | | | - Esther Bui
- Krembil Brain Institute, University Health Network, University of Toronto, Toronto, Canada.
| |
Collapse
|
12
|
Medel-Matus JS, Orozco-Suárez S, Escalante RG. Factors not considered in the study of drug-resistant epilepsy: Psychiatric comorbidities, age, and gender. Epilepsia Open 2022. [PMID: 34967149 DOI: 10.1002/epi4.12576.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
In basic research and clinical practice, the control of seizures has been the most important goal, but it should not be the only one. There are factors that remain poorly understood in the study of refractory epilepsy such as the age and gender of patients and the presence of psychiatric comorbidities. It is known that in patients with drug-resistant epilepsy (DRE), the comorbidities contribute to the deterioration of the quality of life, increase the severity, and worsen the prognosis of epilepsy. Some studies have demonstrated that patients diagnosed with a co-occurrence of epilepsy and psychiatric disorders are more likely to present refractory seizures and the probability of seizure remission after pharmacotherapy is reduced. The evidence of this association suggests the presence of shared pathogenic mechanisms that may include endocrine disorders, neuroinflammatory processes, disturbances of neurotransmitters, and mechanisms triggered by stress. Additionally, significant demographic, clinical, and electrographic differences have been observed between women and men with epilepsy. Epilepsy affects the female gender in a greater proportion, although there are no studies that report whether refractoriness affects more females. The reasons behind these sex differences are unclear; however, it is likely that sex hormones and sex brain differences related to chromosomal genes play an important role. On the other hand, it has been shown in industrialized countries that prevalence of DRE is higher in the elderly when compared to youngsters. Conversely, this phenomenon is not observed in developing regions, where more cases are found in children and young adults. The correct identification and management of these factors is crucial in order to improve the quality of life of the patients.
Collapse
Affiliation(s)
- Jesús Servando Medel-Matus
- Department of Pediatrics, Neurology Division, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA
| | - Sandra Orozco-Suárez
- Unit of Medical Research in Neurological Diseases, Specialty Hospital "Dr. Bernardo Sepúlveda", National Medical Center S.XXI, Mexico City, Mexico
| | - Ruby G Escalante
- Department of Pediatrics, Neurology Division, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
13
|
Medel‐Matus JS, Orozco‐Suárez S, Escalante RG. Factors not considered in the study of drug-resistant epilepsy: Psychiatric comorbidities, age, and gender. Epilepsia Open 2022; 7 Suppl 1:S81-S93. [PMID: 34967149 PMCID: PMC9340311 DOI: 10.1002/epi4.12576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 11/10/2022] Open
Abstract
In basic research and clinical practice, the control of seizures has been the most important goal, but it should not be the only one. There are factors that remain poorly understood in the study of refractory epilepsy such as the age and gender of patients and the presence of psychiatric comorbidities. It is known that in patients with drug-resistant epilepsy (DRE), the comorbidities contribute to the deterioration of the quality of life, increase the severity, and worsen the prognosis of epilepsy. Some studies have demonstrated that patients diagnosed with a co-occurrence of epilepsy and psychiatric disorders are more likely to present refractory seizures and the probability of seizure remission after pharmacotherapy is reduced. The evidence of this association suggests the presence of shared pathogenic mechanisms that may include endocrine disorders, neuroinflammatory processes, disturbances of neurotransmitters, and mechanisms triggered by stress. Additionally, significant demographic, clinical, and electrographic differences have been observed between women and men with epilepsy. Epilepsy affects the female gender in a greater proportion, although there are no studies that report whether refractoriness affects more females. The reasons behind these sex differences are unclear; however, it is likely that sex hormones and sex brain differences related to chromosomal genes play an important role. On the other hand, it has been shown in industrialized countries that prevalence of DRE is higher in the elderly when compared to youngsters. Conversely, this phenomenon is not observed in developing regions, where more cases are found in children and young adults. The correct identification and management of these factors is crucial in order to improve the quality of life of the patients.
Collapse
Affiliation(s)
- Jesús Servando Medel‐Matus
- Department of PediatricsNeurology DivisionDavid Geffen School of Medicine at University of California Los AngelesLos AngelesCaliforniaUSA
| | - Sandra Orozco‐Suárez
- Unit of Medical Research in Neurological DiseasesSpecialty Hospital “Dr. Bernardo Sepúlveda”National Medical Center S.XXIMexico CityMexico
| | - Ruby G. Escalante
- Department of PediatricsNeurology DivisionDavid Geffen School of Medicine at University of California Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
14
|
Reddy DS. Neurosteroid replacement therapy for catamenial epilepsy, postpartum depression and neuroendocrine disorders in women. J Neuroendocrinol 2022; 34:e13028. [PMID: 34506047 PMCID: PMC9247111 DOI: 10.1111/jne.13028] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/27/2021] [Accepted: 08/05/2021] [Indexed: 12/11/2022]
Abstract
Neurosteroids are involved in the pathophysiology of many neuroendocrine disorders in women. This review describes recent advancements in pharmacology of neurosteroids and emphasizes the benefits of neurosteroid replacement therapy for the management of neuroendocrine disorders such as catamenial epilepsy (CE), postpartum depression (PPD) and premenstrual brain conditions. Neurosteroids are endogenous modulators of neuronal excitability. A variety of neurosteroids are present in the brain including allopregnanolone (AP), allotetrahydro-deoxycorticosterone and androstanediol. Neurosteroids interact with synaptic and extrasynaptic GABAA receptors in the brain. AP and related neurosteroids, which are positive allosteric modulators of GABAA receptors, are powerful anticonvulsants, anxiolytic, antistress and neuroprotectant agents. In CE, seizures are most often clustered around a specific menstrual period in women. Neurosteroid withdrawal-linked plasticity in extrasynaptic receptors has been shown to play a key role in catamenial seizures, anxiety and other mood disorders. Based on our extensive research spanning two decades, we have proposed and championed neurosteroid replacement therapy as a rational strategy for treating disorders marked by neurosteroid-deficiency, such as CE and other related ovarian or menstrual disorders. In 2019, AP (renamed as brexanolone) was approved for treating PPD. A variety of synthetic neurosteroids are in clinical trials for epilepsy, depression and other brain disorders. Recent advancements in our understanding of neurosteroids have entered a new era of drug discovery and one that offers a high therapeutic potential for treating complex brain disorders.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University College of Medicine, Bryan, TX, USA
| |
Collapse
|
15
|
Abstract
BACKGROUND This is an updated version of a Cochrane Review previously published in 2019. Catamenial epilepsy describes worsening seizures in relation to the menstrual cycle and may affect around 40% of women with epilepsy. Vulnerable days of the menstrual cycle for seizures are perimenstrually (C1 pattern), at ovulation (C2 pattern), and during the luteal phase (C3 pattern). A reduction in progesterone levels premenstrually and reduced secretion during the luteal phase is implicated in catamenial C1 and C3 patterns. A reduction in progesterone has been demonstrated to reduce sensitivity to the inhibitory neurotransmitter in preclinical studies, hence increasing risk of seizures. A pre-ovulatory surge in oestrogen has been implicated in the C2 pattern of seizure exacerbation, although the exact mechanism by which this surge increases risk is uncertain. Current treatment practices include the use of pulsed hormonal (e.g. progesterone) and non-hormonal treatments (e.g. clobazam or acetazolamide) in women with regular menses, and complete cessation of menstruation using synthetic hormones (e.g. medroxyprogesterone (Depo-Provera) or gonadotropin-releasing hormone (GnRH) analogues (triptorelin and goserelin)) in women with irregular menses. Catamenial epilepsy and seizure exacerbation is common in women with epilepsy. Women may not receive appropriate treatment for their seizures because of uncertainty regarding which treatment works best and when in the menstrual cycle treatment should be taken, as well as the possible impact on fertility, the menstrual cycle, bone health, and cardiovascular health. This review aims to address these issues to inform clinical practice and future research. OBJECTIVES To evaluate the efficacy and tolerability of hormonal and non-hormonal treatments for seizures exacerbated by the menstrual cycle in women with regular or irregular menses. We synthesised the evidence from randomised and quasi-randomised controlled trials of hormonal and non-hormonal treatments in women with catamenial epilepsy of any pattern. SEARCH METHODS We searched the following databases on 20 July 2021 for the latest update: Cochrane Register of Studies (CRS Web) and MEDLINE Ovid (1946 to 19 July 2021). CRS Web includes randomised controlled trials (RCTs) or quasi-RCTs from PubMed, Embase, ClinicalTrials.gov, the World Health Organization International Clinical Trials Registry Platform, the Cochrane Central Register of Controlled Trials (CENTRAL), and the specialised registers of Cochrane Review Groups including Cochrane Epilepsy. We used no language restrictions. We checked the reference lists of retrieved studies for additional reports of relevant studies. SELECTION CRITERIA We included RCTs and quasi-RCTs of blinded or open-label design that randomised participants individually (i.e. cluster-randomised trials were excluded). We included cross-over trials if each treatment period was at least 12 weeks in length and the trial had a suitable wash-out period. We included the following types of interventions: women with any pattern of catamenial epilepsy who received a hormonal or non-hormonal drug intervention in addition to an existing antiepileptic drug regimen for a minimum treatment duration of 12 weeks. DATA COLLECTION AND ANALYSIS We extracted data on study design factors and participant demographics for the included studies. The primary outcomes of interest were: proportion seizure-free, proportion of responders (at least 50% decrease in seizure frequency from baseline), and change in seizure frequency. Secondary outcomes included: number of withdrawals, number of women experiencing adverse events of interest (seizure exacerbation, cardiac events, thromboembolic events, osteoporosis and bone health, mood disorders, sedation, menstrual cycle disorders, and fertility issues), and quality of life outcomes. MAIN RESULTS Following title, abstract, and full-text screening, we included eight full-text articles reporting on four double-blind, placebo-controlled RCTs. We included two cross-over RCTs of pulsed norethisterone, and two parallel RCTs of pulsed progesterone recruiting a total of 192 women aged between 13 and 45 years with catamenial epilepsy. We found no RCTs for non-hormonal treatments of catamenial epilepsy or for women with irregular menses. Meta-analysis was not possible for the primary outcomes, therefore we undertook a narrative synthesis. For the two RCTs evaluating norethisterone versus placebo (24 participants), there were no reported treatment differences for change in seizure frequency. Outcomes for the proportion seizure-free and 50% responders were not reported. For the two RCTs evaluating progesterone versus placebo (168 participants), the studies reported conflicting results for the primary outcomes. One progesterone RCT reported no significant difference between progesterone 600 mg/day taken on day 14 to 28 and placebo with respect to 50% responders, seizure freedom rates, and change in seizure frequency for any seizure type. The other progesterone RCT reported a decrease in seizure frequency from baseline in the progesterone group that was significantly higher than the decrease in seizure frequency from baseline in the placebo group. The results of secondary efficacy outcomes showed no significant difference between groups in the pooled progesterone RCTs in terms of treatment withdrawal for any reason (pooled risk ratio (RR) 1.56, 95% confidence interval (CI) 0.81 to 3.00, P = 0.18, I2 = 0%) or treatment withdrawals due to adverse events (pooled RR 2.91, 95% CI 0.53 to 16.17, P = 0.22, I2 = 0%). No treatment withdrawals were reported from the norethisterone RCTs. The RCTs reported limited information on adverse events, although one progesterone RCT reported no significant difference in the number of women experiencing adverse events (diarrhoea, dyspepsia, nausea, vomiting, fatigue, nasopharyngitis, dizziness, headache, and depression). No studies reported on quality of life. We judged the evidence for outcomes related to the included progesterone RCTs to be of low to moderate certainty due to risk of bias, and for outcomes related to the included norethisterone RCTs to be of very low certainty due to serious imprecision and risk of bias. AUTHORS' CONCLUSIONS This review provides very low-certainty evidence of no treatment difference between norethisterone and placebo, and moderate- to low-certainty evidence of no treatment difference between progesterone and placebo for catamenial epilepsy. However, as all the included studies were underpowered, important clinical effects cannot be ruled out. Our review highlights an overall deficiency in the literature base on the effectiveness of a wide range of other hormonal and non-hormonal interventions currently being used in practice, particularly for those women who do not have regular menses. Further clinical trials are needed in this area.
Collapse
Affiliation(s)
| | - Sarah J Nevitt
- Department of Health Data Science, University of Liverpool, Liverpool, UK
| |
Collapse
|
16
|
Reddy DS. Brain structural and neuroendocrine basis of sex differences in epilepsy. HANDBOOK OF CLINICAL NEUROLOGY 2021; 175:223-233. [PMID: 33008527 DOI: 10.1016/b978-0-444-64123-6.00016-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This chapter reviews the current information about sex differences in epilepsy and potential mechanisms underlying sex differences in seizure susceptibility and epilepsy. The susceptibility to and occurrence of seizures are generally higher in men than women. There is gender-specific epilepsies such as catamenial epilepsy, a neuroendocrine condition in which seizures are most often clustered around the perimenstrual or periovulatory period in adult women. Structural differences in cerebral morphology, the structural and functional circuits may render men and women differentially vulnerable to seizure disorders and epileptogenic processes. Changes in seizure sensitivity are evident at puberty, pregnancy, and menopause, often attributed to circulating steroid hormones and neurosteroids as well as neuroplasticity in receptor systems. An improved understanding of the sexual dimorphism in neural circuits and the neuroendocrine basis of sex differences or resistance to protective drugs is essential to develop sex-specific therapies for seizure conditions.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, United States.
| |
Collapse
|
17
|
Reddy DS, Thompson W, Calderara G. Molecular mechanisms of sex differences in epilepsy and seizure susceptibility in chemical, genetic and acquired epileptogenesis. Neurosci Lett 2021; 750:135753. [PMID: 33610673 PMCID: PMC7994197 DOI: 10.1016/j.neulet.2021.135753] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/03/2021] [Accepted: 02/14/2021] [Indexed: 02/07/2023]
Abstract
This article provides a succinct overview of sex differences in epilepsy and putative molecular mechanisms underlying sex differences in seizure susceptibility in chemical, genetic, and acquired epileptogenesis. The susceptibility to excitability episodes and occurrence of epileptic seizures are generally higher in men than women. The precise molecular mechanisms remain unclear, but differences in regional morphology and neural circuits in men and women may explain differential vulnerability to seizures and epileptogenic cascades. Changes in seizure sensitivity can be attributed to steroid hormones, including fluctuations in neurosteroids as well as neuroplasticity in their receptor signaling systems. Other potential neurobiological bases for sex differences in epilepsies include differences in brain development, neurogenesis, neuronal chloride homeostasis, and neurotrophic and glial responses. In catamenial epilepsy, a gender-specific neuroendocrine condition, epileptic seizures are most often clustered around a specific menstrual period in adult women. A deeper understanding of the molecular and neural network basis of sex differences in seizures and response to antiepileptic drugs is highly warranted for designing effective, sex-specific therapies for epilepsy, epileptogenesis, and seizure disorders.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University College of Medicine, Bryan, TX, United States.
| | - Wesley Thompson
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University College of Medicine, Bryan, TX, United States
| | - Gianmarco Calderara
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University College of Medicine, Bryan, TX, United States
| |
Collapse
|
18
|
Singh S, Singh TG, Rehni AK. An Insight into Molecular Mechanisms and Novel Therapeutic Approaches in Epileptogenesis. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 19:750-779. [PMID: 32914725 DOI: 10.2174/1871527319666200910153827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022]
Abstract
Epilepsy is the second most common neurological disease with abnormal neural activity involving the activation of various intracellular signalling transduction mechanisms. The molecular and system biology mechanisms responsible for epileptogenesis are not well defined or understood. Neuroinflammation, neurodegeneration and Epigenetic modification elicit epileptogenesis. The excessive neuronal activities in the brain are associated with neurochemical changes underlying the deleterious consequences of excitotoxicity. The prolonged repetitive excessive neuronal activities extended to brain tissue injury by the activation of microglia regulating abnormal neuroglia remodelling and monocyte infiltration in response to brain lesions inducing axonal sprouting contributing to neurodegeneration. The alteration of various downstream transduction pathways resulted in intracellular stress responses associating endoplasmic reticulum, mitochondrial and lysosomal dysfunction, activation of nucleases, proteases mediated neuronal death. The recently novel pharmacological agents modulate various receptors like mTOR, COX-2, TRK, JAK-STAT, epigenetic modulators and neurosteroids are used for attenuation of epileptogenesis. Whereas the various molecular changes like the mutation of the cell surface, nuclear receptor and ion channels focusing on repetitive episodic seizures have been explored by preclinical and clinical studies. Despite effective pharmacotherapy for epilepsy, the inadequate understanding of precise mechanisms, drug resistance and therapeutic failure are the current fundamental problems in epilepsy. Therefore, the novel pharmacological approaches evaluated for efficacy on experimental models of epilepsy need to be identified and validated. In addition, we need to understand the downstream signalling pathways of new targets for the treatment of epilepsy. This review emphasizes on the current state of novel molecular targets as therapeutic approaches and future directions for the management of epileptogenesis. Novel pharmacological approaches and clinical exploration are essential to make new frontiers in curing epilepsy.
Collapse
Affiliation(s)
- Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Ashish Kumar Rehni
- Cerebral Vascular Disease Research Laboratories, Department of Neurology and Neuroscience Program, University of Miami School of Medicine, Miami, Florida 33101, United States
| |
Collapse
|
19
|
Accioly NE, Guedes RCA. Topical cortical application of ovarian hormones and modulation of brain electrical activity: analysis of spreading depression in well-nourished and malnourished female rats. Nutr Neurosci 2020; 23:887-895. [DOI: 10.1080/1028415x.2019.1575574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Abstract
A first step towards personalized medicine is to consider whether, for some disorders, the safest and most effective treatment of women needs to differ from standard guideline recommendations developed on the basis of clinical trials conducted, for the most part, in men. A second step is to consider how women’s reproductive stages—pre-pubertal years, menstrual phases, pregnancy trimesters, lactation and postpartum periods, menopausal and postmenopausal/aging status—affect the optimal choice of treatment. This review focuses on these two steps in the treatment of psychosis, specifically schizophrenia. It discusses genetics, precursors and symptoms of schizophrenia, reproductive and associated ethical issues, antipsychotic drug response and adverse effects, substance abuse, victimization and perpetration of violence, and issues of immigration and of co-morbidity. The conclusions, while often based on clinical experience and theoretical considerations rather than strictly on the evidence of randomized controlled trials, are that clinical recommendations need to consider clinical and role differences that exist between men and women and make appropriate correction for age and reproductive status.
Collapse
|
21
|
Miziak B, Chrościńska-Krawczyk M, Czuczwar SJ. Neurosteroids and Seizure Activity. Front Endocrinol (Lausanne) 2020; 11:541802. [PMID: 33117274 PMCID: PMC7561372 DOI: 10.3389/fendo.2020.541802] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022] Open
Abstract
Still circa 25% to 30% of patients with epilepsy cannot be efficiently controlled with available antiepileptic drugs so newer pharmacological treatment options have been continuously searched for. In this context, a group of endogenous or exogenous neurosteroids allosterically positively modulating GABA-A receptors may offer a promising approach. Among endogenous neurosteroids synthesized in the brain, allopregnanolone or allotetrahydrodeoxycorticosterone have been documented to exert anticonvulsant activity in a number of experimental models of seizures-pentylenetetrazol-, bicuculline- pilocarpine-, or 6 Hz-induced convulsions in rodents. Neurosteroids can also inhibit fully kindled seizures and some of them have been reported to counteract maximal electroshock-induced convulsions. An exogenous neurosteroid, alphaxalone, significantly elevated the threshold for maximal electroconvulsions in mice but it did not potentiate the anticonvulsive action of a number of conventional antiepileptic drugs against maximal electroshock-induced seizures. Androsterone not only elevated the threshold but significantly enhanced the protective action of carbamazepine, gabapentin and phenobarbital against maximal electroshock in mice, as well. Ganaxolone (a 3beta-methylated analog of allopregnanolone) needs special consideration for two reasons. First, it performed better than conventional antiepileptic drugs, diazepam or valproate, in suppressing convulsive and lethal effects of pentylenetetrazol in pentylenetetrazol-kindled mice. Second, ganaxolone has been evaluated in the randomized, double-blind, placebo-controlled phase 2 trial in patients with intractable partial seizures, taking maximally 3 antiepileptic drugs. The initial results indicate that add-on therapy with ganaxolone resulted in reduced seizure frequency with adverse effect being mainly mild to moderate. Possibly, ganaxolone may be also considered against catamenial seizures. Some positive effects of ganaxolone as an adjuvant were also observed in children with refractory seizures and its use may also prove efficient for the management of neonatal seizures associated with hypoxic injury. Neurosteroids positively modulating GABA-A receptor complex exert anticonvulsive activity in many experimental models of seizures. Their interactions with antiepileptic drugs seem ambiguous in mice. Initial clinical data indicate that ganaxolone may provide a better seizure control in patients with drug-resistant epilepsy.
Collapse
Affiliation(s)
- Barbara Miziak
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | | | - Stanisław J. Czuczwar
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
- *Correspondence: Stanisław J. Czuczwar,
| |
Collapse
|
22
|
Palaniyappan L. Inefficient neural system stabilization: a theory of spontaneous resolutions and recurrent relapses in psychosis. J Psychiatry Neurosci 2019; 44:367-383. [PMID: 31245961 PMCID: PMC6821513 DOI: 10.1503/jpn.180038] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 02/07/2019] [Accepted: 03/05/2019] [Indexed: 12/21/2022] Open
Abstract
A striking feature of psychosis is its heterogeneity. Presentations of psychosis vary from transient symptoms with no functional consequence in the general population to a tenacious illness at the other extreme, with a wide range of variable trajectories in between. Even among patients with schizophrenia, who are diagnosed on the basis of persistent deterioration, marked variation is seen in response to treatment, frequency of relapses and degree of eventual recovery. Existing theoretical accounts of psychosis focus almost exclusively on how symptoms are initially formed, with much less emphasis on explaining their variable course. In this review, I present an account that links several existing notions of the biology of psychosis with the variant clinical trajectories. My aim is to incorporate perspectives of systems neuroscience in a staging framework to explain the individual variations in illness course that follow the onset of psychosis.
Collapse
Affiliation(s)
- Lena Palaniyappan
- From the Department of Psychiatry and Robarts Research Institute, University of Western Ontario and Lawson Health Research Institute, London, Ont., Canada
| |
Collapse
|
23
|
Maguire MJ, Nevitt SJ, Cochrane Epilepsy Group. Treatments for seizures in catamenial (menstrual-related) epilepsy. Cochrane Database Syst Rev 2019; 10:CD013225. [PMID: 31608992 PMCID: PMC6953347 DOI: 10.1002/14651858.cd013225.pub2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Catamenial epilepsy describes a worsening of seizures in relation to the menstrual cycle and may affect around 40% of women with epilepsy. Vulnerable days of the menstrual cycle for seizures are perimenstrually (C1 pattern), at ovulation (C2 pattern), and during the luteal phase (C3 pattern). A reduction in progesterone levels premenstrually and reduced secretion during the luteal phase is implicated in catamenial C1 and C3 patterns. A reduction in progesterone has been demonstrated to reduce sensitivity to the inhibitory neurotransmitter in preclinical studies, hence increasing risk of seizures. A pre-ovulatory surge in oestrogen has been implicated in the C2 pattern of seizure exacerbation, although the exact mechanism by which this surge increases risk is uncertain. Current treatment practices include the use of pulsed hormonal (e.g. progesterone) and non-hormonal treatments (e.g. clobazam or acetazolamide) in women with regular menses, and complete cessation of menstruation using synthetic hormones (e.g. medroxyprogesterone (Depo-Provera) or gonadotropin-releasing hormone (GnRH) analogues (triptorelin and goserelin)) in women with irregular menses.Catamenial epilepsy and seizure exacerbation is common in women with epilepsy, and may have a significant negative impact on quality of life. Women may not be receiving appropriate treatment for their seizures because of uncertainty regarding which treatment works best and when in the menstrual cycle treatment should be taken, as well as the possible impact on fertility, the menstrual cycle, bone health, and cardiovascular health. This review aimed to address these issues in order to inform clinical practice and future research. OBJECTIVES To evaluate the efficacy and tolerability of hormonal and non-hormonal treatments for seizures exacerbated by the menstrual cycle in women with regular or irregular menses. We synthesised the evidence from randomised controlled trials of hormonal and non-hormonal treatments in women with catamenial epilepsy of any pattern. SEARCH METHODS We searched the following databases to 10 January 2019: Cochrane Register of Studies (CRS Web; includes the Cochrane Epilepsy Group Specialized Register and the Cochrane Central Register of Controlled Trials (CENTRAL)), MEDLINE (Ovid: 1946 to 9 January 2019), ClinicalTrials.gov, and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP). We used no language restrictions. We checked the reference lists of retrieved studies for additional reports of relevant studies. SELECTION CRITERIA We included randomised and quasi-randomised controlled trials (RCTs) of blinded or opeṉlabel design that randomised participants individually (i.e. cluster-randomised trials were excluded). We included cross-over trials if each treatment period was at least 12 weeks in length and the trial had a suitable wash-out period. Types of interventions included: women with any pattern of catamenial epilepsy who received a hormonal or non-hormonal drug intervention in addition to an existing antiepileptic drug regimen for a minimum treatment duration of 12 weeks. DATA COLLECTION AND ANALYSIS We extracted data on study design factors and participant demographics for the included studies. The primary outcomes of interest were: proportion seizure-free, proportion of responders (at least 50% decrease in seizure frequency from baseline), and mean change in seizure frequency. Secondary outcomes included: number of withdrawals, number of women experiencing adverse events of interest (seizure exacerbation, cardiac events, thromboembolic events, osteoporosis and bone health, mood disorders, sedation, menstrual cycle disorders, and fertility issues), and quality of life outcomes. MAIN RESULTS We identified 62 records from the databases and search strategies. Following title, abstract, and full-text screening, we included eight full-text articles reporting on four double-blind, placebo-controlled RCTs. We included two cross-over RCTs of pulsed norethisterone and two parallel RCTs of pulsed progesterone recruiting a total of 192 women aged between 13 and 45 years with catamenial epilepsy. We found no RCTs for non-hormonal treatments of catamenial epilepsy or for women with irregular menses.Meta-analysis was not possible for the primary outcomes, therefore we undertook a narrative synthesis. For the two RCTs evaluating norethisterone versus placebo (24 participants), there were no reported treatment differences for mean change in seizure frequency. Outcomes for the proportion seizure-free and 50% responders were not reported. For the RCTs evaluating progesterone versus placebo (168 participants), the studies reported conflicting results on the primary outcomes. One progesterone RCT reported no significant difference between progesterone 600 mg/day taken on day 14 to 28 and placebo with respect to 50% responders, seizure freedom rates, and change in seizure frequency for any seizure type. The other progesterone RCT reported that the decrease in seizure frequency from baseline in the progesterone group was significantly higher than the decrease in seizure frequency from baseline in the placebo group.Results of secondary efficacy outcomes showed no significant difference in terms of treatment withdrawal for any reason in the pooled progesterone RCTs when compared to placebo (pooled risk ratio (RR) 1.56, 95% confidence interval (CI) 0.81 to 3.00, P = 0.18, I2 = 0%) or for treatment withdrawals due to adverse events (pooled RR 2.91, 95% CI 0.53 to 16.17, P = 0.22, I2 = 0%). No treatment withdrawals from the norethisterone RCTs were reported. The RCTs reported limited information on adverse events, although one progesterone RCT reported no significant difference in the number of women experiencing adverse events (diarrhoea, dyspepsia, nausea, vomiting, fatigue, nasopharyngitis, dizziness, headache, and depression). No studies reported on quality of life.We judged the evidence from the included progesterone RCTs to be of low to moderate certainty due to risk of bias and from the included norethisterone RCTs to be of very low certainty due to serious imprecision and risk of bias. AUTHORS' CONCLUSIONS This review provides very low-certainty evidence of no treatment difference between norethisterone and placebo, and moderate- to low-certainty evidence of no treatment difference between progesterone and placebo for catamenial epilepsy. However, as all the included studies were underpowered, important clinical effects cannot be ruled out.Our review highlighted an overall deficiency in the literature base on the effectiveness of a wide range of other hormonal and non-hormonal interventions currently being used in practice, particularly for those patients who do not have regular menses. Further clinical trials are needed in this area.
Collapse
Affiliation(s)
- Melissa J Maguire
- Leeds General InfirmaryDepartment of NeurologyGreat George StreetLeedsUK
| | - Sarah J Nevitt
- University of LiverpoolDepartment of BiostatisticsBlock F, Waterhouse Building1‐5 Brownlow HillLiverpoolUKL69 3GL
| | | |
Collapse
|
24
|
|
25
|
Koverech A, Cicione C, Lionetto L, Maestri M, Passariello F, Sabbatini E, Capi M, De Marco CM, Guglielmetti M, Negro A, Di Menna L, Simmaco M, Nicoletti F, Martelletti P. Migraine and cluster headache show impaired neurosteroids patterns. J Headache Pain 2019; 20:61. [PMID: 31132992 PMCID: PMC6734521 DOI: 10.1186/s10194-019-1005-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/24/2019] [Indexed: 12/12/2022] Open
Abstract
Background Perturbation of neuronal excitability contributes to migraine. Neurosteroids modulate the activity of γ-aminobutyric acid A and N-methyl-d-aspartate receptors, and might be involved in the pathogenesis of migraine. Here, we measured plasma levels of four neurosteroids, i.e., allopregnanolone, epiallopregnanolone, dehydroepiandrosterone and deydroepiandrosterone sulfate, in patients affected by episodic migraine, chronic migraine, or cluster headache. Methods Nineteen female patients affected by episodic migraine, 51 female patients affected by chronic migraine, and 18 male patients affected by cluster headache were recruited to the study. Sex- and age-matched healthy control subjects (31 females and 16 males) were also recruited. Patients were clinically characterized by using validated questionnaires. Plasma neurosteroid levels were measured by liquid chromatography-tandem mass spectrometry. Results We found disease-specific changes in neurosteroid levels in our study groups. For example, allopregnanolone levels were significantly increased in episodic migraine and chronic migraine patients than in control subjects, whereas they were reduced in patients affected by cluster headache. Dehydroepiandrosterone and dehydroepiandrosterone sulfate levels were reduced in patients affected by chronic migraine, but did not change in patients affected by cluster headache. Conclusion We have shown for the first time that large and disease-specific changes in circulating neurosteroid levels are associated with chronic headache disorders, raising the interesting possibility that fluctuations of neurosteroids at their site of action might shape the natural course of migraine and cluster headache. Whether the observed changes in neurosteroids are genetically determined or rather result from exposure to environmental or intrinsic stressors is unknown. This might also be matter for further investigation because stress is a known triggering factor for headache attacks in both migraineurs and cluster headache patients.
Collapse
Affiliation(s)
- Angela Koverech
- Department of Clinical and Molecular Medicine, Sapienza University and Regional Referral Headache Centre, Sant'Andrea Hospital, via di Grottarossa 1035-1039, 00189, Rome, Italy.,Residency Program of Internal Medicine, School of Medicine and Psychology, Sapienza University, 00189, Rome, Italy.,Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University, 00189, Rome, Italy
| | - Claudia Cicione
- Laboratory of Advanced Molecular Diagnostics, IRCSS Istituto Dermopatico dell'Immacolata, 00167, Rome, Italy
| | - Luana Lionetto
- Laboratory of Advanced Molecular Diagnostics, IRCSS Istituto Dermopatico dell'Immacolata, 00167, Rome, Italy.,Advanced Molecular Diagnostics Unit, Sant'Andrea Hospital, 00189, Rome, Italy
| | - Marta Maestri
- Department of Clinical and Molecular Medicine, Sapienza University and Regional Referral Headache Centre, Sant'Andrea Hospital, via di Grottarossa 1035-1039, 00189, Rome, Italy
| | - Francesco Passariello
- Department of Clinical and Molecular Medicine, Sapienza University and Regional Referral Headache Centre, Sant'Andrea Hospital, via di Grottarossa 1035-1039, 00189, Rome, Italy
| | - Elisabetta Sabbatini
- Department of Clinical and Molecular Medicine, Sapienza University and Regional Referral Headache Centre, Sant'Andrea Hospital, via di Grottarossa 1035-1039, 00189, Rome, Italy
| | - Matilde Capi
- Laboratory of Experimental Immunology, IRCSS Istituto Dermopatico dell'Immacolata, 00167, Rome, Italy.,Advanced Molecular Diagnostics Unit, Sant'Andrea Hospital, 00189, Rome, Italy
| | | | - Martina Guglielmetti
- Regional Referral Headache Centre, Sant'Andrea Hospital, 00189, Rome, Italy.,Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Andrea Negro
- Department of Clinical and Molecular Medicine, Sapienza University and Regional Referral Headache Centre, Sant'Andrea Hospital, via di Grottarossa 1035-1039, 00189, Rome, Italy.,Regional Referral Headache Centre, Sant'Andrea Hospital, 00189, Rome, Italy
| | | | - Maurizio Simmaco
- Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University, 00189, Rome, Italy.,Advanced Molecular Diagnostics Unit, Sant'Andrea Hospital, 00189, Rome, Italy
| | - Ferdinando Nicoletti
- IRCCS Neuromed, 86077, Pozzilli (IS), Italy.,Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University, 00189, Rome, Italy
| | - Paolo Martelletti
- Department of Clinical and Molecular Medicine, Sapienza University and Regional Referral Headache Centre, Sant'Andrea Hospital, via di Grottarossa 1035-1039, 00189, Rome, Italy. .,Residency Program of Internal Medicine, School of Medicine and Psychology, Sapienza University, 00189, Rome, Italy. .,Regional Referral Headache Centre, Sant'Andrea Hospital, 00189, Rome, Italy.
| |
Collapse
|
26
|
Accioly NE, Guedes RCA. Neonatal treatment with ovarian hormones and suckling among distinct litter sizes: Differential effects on recognition memory and spreading depression at adulthood. Nutr Neurosci 2019; 22:174-184. [PMID: 28891432 DOI: 10.1080/1028415x.2017.1358472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Ovarian hormones (OH) and early malnutrition may affect the developing brain, with repercussions on behavioral and excitability-dependent processes. However, the possible synergistic effects of both factors have not been analyzed. In this study, we investigated the effect of treatment in early life with OH and suckling among distinct litter sizes on recognition memory, anxiety behavior, and the excitability-dependent phenomenon known as cortical spreading depression (CSD). METHODS Female Wistar rats were suckled under favorable and unfavorable lactation, corresponding to litters with 9 and 15 pups (L9 and L15 groups, respectively). From postnatal days (P) 7 to 21, the animals received 50 µg/kg of β-estradiol or progesterone. From P80 to P84, we tested behavioral reactions. From P90 to P120, we analyzed CSD parameters. RESULTS Compared with the corresponding L9 groups, the OH-treated L15 groups performed worse in recognition memory tasks. No intergroup difference in the anxiety parameters was observed. Compared with naive and vehicle-treated controls, OH-treated groups displayed higher CSD velocities and amplitudes and shorter CSD durations. DISCUSSION Early treatment with OH facilitates recognition memory and CSD, and in association with unfavorable lactation (L15) impaired recognition memory, but not anxiety behavior, in the adult brain. OH treatment and L15 lactation condition seem to interact regarding OH action on memory, but not on CSD. Data suggest a long-lasting differential effect that might be related to the lasting hormonal action on brain excitability. We postulate and discuss the possibility that these findings may be implicated in human neurological diseases.
Collapse
|
27
|
Amengual-Gual M, Sánchez Fernández I, Wainwright MS. Novel drugs and early polypharmacotherapy in status epilepticus. Seizure 2018; 68:79-88. [PMID: 30473267 DOI: 10.1016/j.seizure.2018.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/05/2018] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Rescue medications for status epilepticus (SE) have a relatively high rate of failure. The purpose of this review is to summarize the evidence for the efficacy of novel drugs and early polypharmacotherapy for SE. METHOD Literature review. RESULTS New drugs and treatment strategies aim to target the pathophysiology of SE in order to improve seizure control and outcomes. Changes at the synapse level during SE include a progressive decrease in synaptic GABAA receptors and increase in synaptic NMDA receptors. These changes tend to promote self-sustaining seizures. Current SE guidelines recommend a rapid stepwise treatment using benzodiazepines in monotherapy as the first-line treatment, targeting GABAA synaptic receptors. Novel treatment approaches target GABAA synaptic and extrasynaptic receptors with allopregnanolone, and NMDA receptors with ketamine. Novel rescue treatments used for SE include topiramate, brivaracetam, and perampanel, which are already marketed in epilepsy. Some available drugs not marketed for use in epilepsy have been used in the treatment of SE, and other agents are being studied for this purpose. Early polytherapy, most frequently combining a benzodiazepine with a second-line drug or an NMDA receptor antagonist, might potentially increase seizure control with relatively minor increase in side effects. Although many preclinical studies support novel drugs and early polytherapy in SE, human studies are scarce and inconclusive. Currently, evidence is lacking to recommend specific combinations of these new agents. CONCLUSIONS Novel drugs and strategies target the underlying pathophysiology of SE with the intent to improve seizure control and outcomes.
Collapse
Affiliation(s)
- Marta Amengual-Gual
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Pediatric Neurology Unit, Department of Pediatrics, Hospital Universitari Son Espases, Universitat de les Illes Balears, Palma, Spain.
| | - Iván Sánchez Fernández
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Child Neurology, Hospital Sant Joan de Déu, Universidad de Barcelona, Spain
| | - Mark S Wainwright
- Department of Neurology, Division of Pediatric Neurology. University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
28
|
Is Adjunctive Progesterone Effective in Reducing Seizure Frequency in Patients With Intractable Catamenial Epilepsy? A Critically Appraised Topic. Neurologist 2018; 23:108-112. [DOI: 10.1097/nrl.0000000000000167] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
29
|
Chuang SH, Reddy DS. Genetic and Molecular Regulation of Extrasynaptic GABA-A Receptors in the Brain: Therapeutic Insights for Epilepsy. J Pharmacol Exp Ther 2018; 364:180-197. [PMID: 29142081 PMCID: PMC5771312 DOI: 10.1124/jpet.117.244673] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/13/2017] [Indexed: 12/18/2022] Open
Abstract
GABA-A receptors play a pivotal role in many brain diseases. Epilepsy is caused by acquired conditions and genetic defects in GABA receptor channels regulating neuronal excitability in the brain. The latter is referred to as GABA channelopathies. In the last two decades, major advances have been made in the genetics of epilepsy. The presence of specific GABAergic genetic abnormalities leading to some of the classic epileptic syndromes has been identified. Advances in molecular cloning and recombinant systems have helped characterize mutations in GABA-A receptor subunit genes in clinical neurology. GABA-A receptors are the prime targets for neurosteroids (NSs). However, GABA-A receptors are not static but undergo rapid changes in their number or composition in response to the neuroendocrine milieu. This review describes the recent advances in the genetic and neuroendocrine control of extrasynaptic and synaptic GABA-A receptors in epilepsy and its impact on neurologic conditions. It highlights the current knowledge of GABA genetics in epilepsy, with an emphasis on the neuroendocrine regulation of extrasynaptic GABA-A receptors in network excitability and seizure susceptibility. Recent advances in molecular regulation of extrasynaptic GABA-A receptor-mediated tonic inhibition are providing unique new therapeutic approaches for epilepsy, status epilepticus, and certain brain disorders. The discovery of an extrasynaptic molecular mechanism represents a milestone for developing novel therapies such as NS replacement therapy for catamenial epilepsy.
Collapse
Affiliation(s)
- Shu-Hui Chuang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
30
|
Scharfman HE, MacLusky NJ. Sex differences in hippocampal area CA3 pyramidal cells. J Neurosci Res 2017; 95:563-575. [PMID: 27870399 DOI: 10.1002/jnr.23927] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 08/14/2016] [Accepted: 08/24/2016] [Indexed: 11/07/2022]
Abstract
Numerous studies have demonstrated differences between males and females in hippocampal structure, function, and plasticity. There also are many studies about the different predisposition of a males and females for disorders where the hippocampus plays an important role. Many of these reports focus on area CA1, but other subfields are also very important, and unlikely to be the same as area CA1 based on what is known. Here we review basic studies of male and female structure, function, and plasticity of area CA3 pyramidal cells of adult rats. The data suggest that the CA3 pyramidal cells of males and females are distinct in structure, function, and plasticity. These sex differences cannot be simply explained by the effects of circulating gonadal hormones. This view agrees with previous studies showing that there are substantial sex differences in the brain that cannot be normalized by removing the gonads and depleting peripheral gonadal hormones. Implications of these comparisons for understanding sex differences in hippocampal function and dysfunction are discussed. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Helen E Scharfman
- Department of Child and Adolescent Psychiatry, Physiology and Neuroscience, and Psychiatry, New York University Langone Medical Center, New York, New York.,Department of Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York
| | - Neil J MacLusky
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
31
|
Samba Reddy D. Sex differences in the anticonvulsant activity of neurosteroids. J Neurosci Res 2017; 95:661-670. [PMID: 27870400 DOI: 10.1002/jnr.23853] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/21/2016] [Accepted: 07/06/2016] [Indexed: 12/11/2022]
Abstract
Epilepsy is one of the leading causes of chronic neurological morbidity worldwide. Acquired epilepsy may result from a number of conditions, such as brain injury, anoxia, tumors, stroke, neurotoxicity, and prolonged seizures. Sex differences have been observed in many seizure types; however, some sex-specific seizure disorders are much more prevalent in women. Despite some inconsistencies, substantial data indicates that sensitivity to seizure stimuli differs between the sexes. Men generally exhibit greater seizure susceptibility than women, whereas many women with epilepsy experience a cyclical occurrence of seizures that tends to center around the menstrual period, which has been termed catamenial epilepsy. Some epilepsy syndromes show gender differences with female predominance or male predominance. Steroid hormones, endogenous neurosteroids, and sexually dimorphic neural networks appear to play a key role in sex differences in seizure susceptibility. Neurosteroids, such as allopregnanolone, reflect sex differences in their anticonvulsant activity. This Review provides a brief overview of the evidence for sex differences in epilepsy and how sex differences influence the use of neurosteroids in epilepsy and epileptogenesis. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Sciences Center, College of Medicine, Bryan, Texas
| |
Collapse
|
32
|
Abstract
This article highlights the emerging therapeutic potential of specific epigenetic modulators as promising antiepileptogenic or disease-modifying agents for curing epilepsy. Currently, there is an unmet need for antiepileptogenic agents that truly prevent the development of epilepsy in people at risk. There is strong evidence that epigenetic signaling, which exerts high fidelity regulation of gene expression, plays a crucial role in the pathophysiology of epileptogenesis and chronic epilepsy. These modifications are not hard-wired into the genome and are constantly reprogrammed by environmental influences. The potential epigenetic mechanisms, including histone modifications, DNA methylation, microRNA-based transcriptional control, and bromodomain reading activity, can drastically alter the neuronal gene expression profile by exerting their summative effects in a coordinated fashion. Such an epigenetic intervention appears more rational strategy for preventing epilepsy because it targets the primary pathway that initially triggers the numerous downstream cellular and molecular events mediating epileptogenesis. Among currently approved epigenetic drugs, the majority are anticancer drugs with well-established profiles in clinical trials and practice. Evidence from preclinical studies supports the premise that these drugs may be applied to a wide range of brain disorders. Targeting histone deacetylation by inhibiting histone deacetylase enzymes appears to be one promising epigenetic therapy since certain inhibitors have been shown to prevent epileptogenesis in animal models. However, developing neuronal specific epigenetic modulators requires rational, pathophysiology-based optimization to efficiently intercept the upstream pathways in epileptogenesis. Overall, epigenetic agents have been well positioned as new frontier tools towards the national goal of curing epilepsy.
Collapse
Affiliation(s)
- Iyan Younus
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
33
|
Atif F, Prunty MC, Turan N, Stein DG, Yousuf S. Progesterone modulates diabetes/hyperglycemia-induced changes in the central nervous system and sciatic nerve. Neuroscience 2017; 350:1-12. [DOI: 10.1016/j.neuroscience.2017.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 12/21/2022]
|
34
|
Abstract
INTRODUCTION Hormonal contraceptives are used by over 100 million people worldwide. Recently, there has been an emerging interest in studying the potential impact of oral contraceptives (OCs) on certain neurological conditions. It has been suspected for some time that hormonal birth control increases seizure activity in women with epilepsy, but there is little supportive data. Areas covered: Literature from PubMed and online sources was analyzed with respect to hormonal contraception and epilepsy or seizures. New evidence indicates that OCs can cause an increase in seizures in women with epilepsy. The epilepsy birth control registry, which surveyed women with epilepsy, found that those using hormonal contraceptives self-reported 4.5 times more seizures than those that did not use such contraceptives. A preclinical study confirmed these outcomes wherein epileptic animals given ethinyl estradiol, the primary component of OCs, had more frequent seizures that are more likely to be resistant. Expert commentary: OC pills may increase seizures in women with epilepsy and such refractory seizures are more likely to cause neuronal damage in the brain. Thus, women of child bearing age with epilepsy should consider using non-hormonal forms of birth control to avoid risks from OC pills. Additional research into the mechanisms and prospective clinical investigation are needed.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- a Department of Neuroscience and Experimental Therapeutics, College of Medicine , Texas A&M University Health Science Center , Bryan , TX , USA
| |
Collapse
|
35
|
Heischmann S, Quinn K, Cruickshank-Quinn C, Liang LP, Reisdorph R, Reisdorph N, Patel M. Exploratory Metabolomics Profiling in the Kainic Acid Rat Model Reveals Depletion of 25-Hydroxyvitamin D3 during Epileptogenesis. Sci Rep 2016; 6:31424. [PMID: 27526857 PMCID: PMC4985632 DOI: 10.1038/srep31424] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/20/2016] [Indexed: 12/02/2022] Open
Abstract
Currently, no reliable markers are available to evaluate the epileptogenic potential of a brain injury. The electroencephalogram is the standard method of diagnosis of epilepsy; however, it is not used to predict the risk of developing epilepsy. Biomarkers that indicate an individual's risk to develop epilepsy, especially those measurable in the periphery are urgently needed. Temporal lobe epilepsy (TLE), the most common form of acquired epilepsy, is characterized by spontaneous recurrent seizures following brain injury and a seizure-free "latent" period. Elucidation of mechanisms at play during epilepsy development (epileptogenesis) in animal models of TLE could enable the identification of predictive biomarkers. Our pilot study using liquid chromatography-mass spectrometry metabolomics analysis revealed changes (p-value ≤ 0.05, ≥1.5-fold change) in lipid, purine, and sterol metabolism in rat plasma and hippocampus during epileptogenesis and chronic epilepsy in the kainic acid model of TLE. Notably, disease development was associated with dysregulation of vitamin D3 metabolism at all stages and plasma 25-hydroxyvitamin D3 depletion in the acute and latent phase of injury-induced epileptogenesis. These data suggest that plasma VD3 metabolites reflect the severity of an epileptogenic insult and that a panel of plasma VD3 metabolites may be able to serve as a marker of epileptogenesis.
Collapse
Affiliation(s)
- Svenja Heischmann
- Department of Pharmaceutical Sciences, University of Colorado, School of Pharmacy, 12850 East Montview Boulevard, Aurora, CO 80045, USA
- Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Kevin Quinn
- Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | | | - Li-Ping Liang
- Department of Pharmaceutical Sciences, University of Colorado, School of Pharmacy, 12850 East Montview Boulevard, Aurora, CO 80045, USA
| | - Rick Reisdorph
- Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Nichole Reisdorph
- Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado, School of Pharmacy, 12850 East Montview Boulevard, Aurora, CO 80045, USA
| |
Collapse
|
36
|
Panzica G, Melcangi RC. Structural and molecular brain sexual differences: A tool to understand sex differences in health and disease. Neurosci Biobehav Rev 2016; 67:2-8. [DOI: 10.1016/j.neubiorev.2016.04.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 02/07/2023]
|
37
|
Reddy DS. The neuroendocrine basis of sex differences in epilepsy. Pharmacol Biochem Behav 2016; 152:97-104. [PMID: 27424276 DOI: 10.1016/j.pbb.2016.07.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/25/2016] [Accepted: 07/12/2016] [Indexed: 01/22/2023]
Abstract
Epilepsy affects people of all ages and both genders. Sex differences are well known in epilepsy. Seizure susceptibility and the incidence of epilepsy are generally higher in men than women. In addition, there are gender-specific epilepsies such as catamenial epilepsy, a neuroendocrine condition in which seizures are most often clustered around the perimenstrual or periovulatory period in adult women with epilepsy. Changes in seizure sensitivity are also evident at puberty, pregnancy, and menopause. Sex differences in seizure susceptibility and resistance to antiseizure drugs can be studied in experimental models. An improved understanding of the neuroendocrine basis of sex differences or resistance to protective drugs is essential to develop targeted therapies for sex-specific seizure conditions. This article provides a brief overview of the current status of sex differences in seizure susceptibility and the potential mechanisms underlying the gender differences in seizure sensitivity.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
38
|
Reddy DS, Estes WA. Clinical Potential of Neurosteroids for CNS Disorders. Trends Pharmacol Sci 2016; 37:543-561. [PMID: 27156439 DOI: 10.1016/j.tips.2016.04.003] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/02/2016] [Accepted: 04/05/2016] [Indexed: 11/27/2022]
Abstract
Neurosteroids are key endogenous molecules in the brain that affect many neural functions. We describe here recent advances in US National Institutes of Health (NIH)-sponsored and other clinical studies of neurosteroids for CNS disorders. The neuronal GABA-A receptor chloride channel is one of the prime molecular targets of neurosteroids. Allopregnanolone-like neurosteroids are potent allosteric agonists as well as direct activators of both synaptic and extrasynaptic GABA-A receptors. Hence, neurosteroids can maximally enhance synaptic phasic and extrasynaptic tonic inhibition. The resulting chloride current conductance generates a form of shunting inhibition that controls network excitability, seizures, and behavior. Such mechanisms of neurosteroids are providing innovative therapies for epilepsy, status epilepticus (SE), traumatic brain injury (TBI), fragile X syndrome (FXS), and chemical neurotoxicity. The neurosteroid field has entered a new era, and many compounds have reached advanced clinical trials. Synthetic analogs have several advantages over natural neurosteroids for clinical use because of their superior bioavailability and safety trends.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA.
| | - William A Estes
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| |
Collapse
|
39
|
Reddy DS. Catamenial Epilepsy: Discovery of an Extrasynaptic Molecular Mechanism for Targeted Therapy. Front Cell Neurosci 2016; 10:101. [PMID: 27147973 PMCID: PMC4840555 DOI: 10.3389/fncel.2016.00101] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 04/04/2016] [Indexed: 01/22/2023] Open
Abstract
Catamenial epilepsy is a type of refractory epilepsy characterized by seizure clusters around perimenstrual or periovulatory period. The pathophysiology of catamenial epilepsy still remains unclear, yet there are few animal models to study this gender-specific disorder. The pathophysiology of perimenstrual catamenial epilepsy involves the withdrawal of the progesterone-derived GABAergic neurosteroids due to the decline in progesterone level at the time of menstruation. These manifestations can be faithfully reproduced in rodents by specific neuroendocrine manipulations. Since mice and rats, like humans, have ovarian cycles with circulating hormones, they appear to be suitable animal models for studies of perimenstrual seizures. Recently, we created specific experimental models to mimic perimenstrual seizures. Studies in rat and mouse models of catamenial epilepsy show enhanced susceptibility to seizures or increased seizure exacerbations following neurosteroid withdrawal. During such a seizure exacerbation period, there is a striking decrease in the anticonvulsant effect of commonly prescribed antiepileptics, such as benzodiazepines, but an increase in the anticonvulsant potency of exogenous neurosteroids. We discovered an extrasynaptic molecular mechanism of catamenial epilepsy. In essence, extrasynaptic δGABA-A receptors are upregulated during perimenstrual-like neuroendocrine milieu. Consequently, there is enhanced antiseizure efficacy of neurosteroids in catamenial models because δGABA-A receptors confer neurosteroid sensitivity and greater seizure protection. Molecular mechanisms such as these offer a strong rationale for the clinical development of a neurosteroid replacement therapy for catamenial epilepsy.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College of Medicine Bryan, TX, USA
| |
Collapse
|
40
|
Carver CM, Reddy DS. Neurosteroid Structure-Activity Relationships for Functional Activation of Extrasynaptic δGABA(A) Receptors. J Pharmacol Exp Ther 2016; 357:188-204. [PMID: 26857959 PMCID: PMC4809321 DOI: 10.1124/jpet.115.229302] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 02/05/2016] [Indexed: 01/18/2023] Open
Abstract
Synaptic GABAA receptors are primary mediators of rapid inhibition in the brain and play a key role in the pathophysiology of epilepsy and other neurologic disorders. The δ-subunit GABAA receptors are expressed extrasynaptically in the dentate gyrus and contribute to tonic inhibition, promoting network shunting as well as reducing seizure susceptibility. However, the neurosteroid structure-function relationship at δGABA(A) receptors within the native hippocampus neurons remains unclear. Here we report a structure-activity relationship for neurosteroid modulation of extrasynaptic GABAA receptor-mediated tonic inhibition in the murine dentate gyrus granule cells. We recorded neurosteroid allosteric potentiation of GABA as well as direct activation of tonic currents using a wide array of natural and synthetic neurosteroids. Our results shows that, for all neurosteroids, the C3α-OH group remains obligatory for extrasynaptic receptor functional activity, as C3β-OH epimers were inactive in activating tonic currents. Allopregnanolone and related pregnane analogs exhibited the highest potency and maximal efficacy in promoting tonic currents. Alterations at the C17 or C20 region of the neurosteroid molecule drastically altered the transduction kinetics of tonic current activation. The androstane analogs had the weakest modulatory response among the analogs tested. Neurosteroid potentiation of tonic currents was completely (approximately 95%) diminished in granule cells from δ-knockout mice, suggesting that δ-subunit receptors are essential for neurosteroid activity. The neurosteroid sensitivity of δGABA(A) receptors was confirmed at the systems level using a 6-Hz seizure test. A consensus neurosteroid pharmacophore model at extrasynaptic δGABA(A) receptors is proposed based on a structure-activity relationship for activation of tonic current and seizure protection.
Collapse
Affiliation(s)
- Chase Matthew Carver
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
41
|
Seizure facilitating activity of the oral contraceptive ethinyl estradiol. Epilepsy Res 2016; 121:29-32. [PMID: 26874323 DOI: 10.1016/j.eplepsyres.2016.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/31/2015] [Accepted: 01/24/2016] [Indexed: 11/22/2022]
Abstract
Contraceptive management is critical in women with epilepsy. Although oral contraceptives (OCs) are widely used by many women with epilepsy, little is known about their impact on epileptic seizures and epileptogenesis. Ethinyl estradiol (EE) is the primary component of OC pills. In this study, we investigated the pharmacological effect of EE on epileptogenesis and kindled seizures in female mice using the hippocampus kindling model. Animals were stimulated daily with or without EE until generalized stage 5 seizures were elicited. EE treatment significantly accelerated the rate of epileptogenesis. In acute studies, EE caused a significant decrease in the afterdischarge threshold and increased the incidence and severity of seizures in fully-kindled mice. In chronic studies, EE treatment caused a greater susceptibility to kindled seizures. Collectively, these results are consistent with moderate proconvulsant-like activity of EE. Such excitatory effects may affect seizure risk in women with epilepsy taking OC pills.
Collapse
|
42
|
GABA withdrawal syndrome: GABAA receptor, synapse, neurobiological implications and analogies with other abstinences. Neuroscience 2015; 313:57-72. [PMID: 26592722 DOI: 10.1016/j.neuroscience.2015.11.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 11/07/2015] [Accepted: 11/10/2015] [Indexed: 11/22/2022]
Abstract
The sudden interruption of the increase of the concentration of the gamma-aminobutyric acid (GABA), determines an increase in neuronal activity. GABA withdrawal (GW) is a heuristic analogy, with withdrawal symptoms developed by other GABA receptor-agonists such as alcohol, benzodiazepines, and neurosteroids. GW comprises a model of neuronal excitability validated by electroencephalogram (EEG) in which high-frequency and high-amplitude spike-wave complexes appear. In brain slices, GW was identified by increased firing synchronization of pyramidal neurons and by changes in the active properties of the neuronal membrane. GW induces pre- and postsynaptic changes: a decrease in GABA synthesis/release, and the decrease in the expression and composition of GABAA receptors associated with increased calcium entry into the cell. GW is an excellent bioassay for studying partial epilepsy, epilepsy refractory to drug treatment, and a model to reverse or prevent the generation of abstinences from different drugs.
Collapse
|
43
|
|
44
|
Affiliation(s)
- Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Dominick P. Purpura Department of Neuroscience, Laboratory of Developmental Epilepsy, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
45
|
Sex, epilepsy, and epigenetics. Neurobiol Dis 2014; 72 Pt B:210-6. [PMID: 24998474 DOI: 10.1016/j.nbd.2014.06.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/19/2014] [Accepted: 06/24/2014] [Indexed: 02/05/2023] Open
Abstract
Epilepsy refers to a heterogeneous group of disorders that are associated with a wide range of pathogenic mechanisms, seizure manifestations, comorbidity profiles, and therapeutic responses. These characteristics are all influenced quite significantly by sex. As with other conditions exhibiting such patterns, sex differences in epilepsy are thought to arise-at the most fundamental level-from the "organizational" and "activational" effects of sex hormones as well as from the direct actions of the sex chromosomes. However, our understanding of the specific molecular, cellular, and network level processes responsible for mediating sex differences in epilepsy remains limited. Because increasing evidence suggests that epigenetic mechanisms are involved both in epilepsy and in brain sexual dimorphism, we make the case here that analyzing epigenetic regulation will provide novel insights into the basis for sex differences in epilepsy.
Collapse
|