1
|
Antipova V, Heimes D, Seidel K, Schulz J, Schmitt O, Holzmann C, Rolfs A, Bidmon HJ, González de San Román Martín E, Huesgen PF, Amunts K, Keiler J, Hammer N, Witt M, Wree A. Differently increased volumes of multiple brain areas in Npc1 mutant mice following various drug treatments. Front Neuroanat 2024; 18:1430790. [PMID: 39081805 PMCID: PMC11286580 DOI: 10.3389/fnana.2024.1430790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Background Niemann-Pick disease type C1 (NPC1, MIM 257220) is a heritable lysosomal storage disease characterized by a progressive neurological degeneration that causes disability and premature death. A murine model of Npc1-/- displays a rapidly progressing form of Npc1 disease, which is characterized by weight loss, ataxia, and increased cholesterol storage. Npc1-/- mice receiving a combined therapy (COMBI) of miglustat (MIGLU), the neurosteroid allopregnanolone (ALLO) and the cyclic oligosaccharide 2-hydroxypropyl-β-cyclodextrin (HPßCD) showed prevention of Purkinje cell loss, improved motor function and reduced intracellular lipid storage. Although therapy of Npc1-/- mice with COMBI, MIGLU or HPßCD resulted in the prevention of body weight loss, reduced total brain weight was not positively influenced. Methods In order to evaluate alterations of different brain areas caused by pharmacotherapy, fresh volumes (volumes calculated from the volumes determined from paraffin embedded brain slices) of various brain structures in sham- and drug-treated wild type and mutant mice were measured using stereological methods. Results In the wild type mice, the volumes of investigated brain areas were not significantly altered by either therapy. Compared with the respective wild types, fresh volumes of specific brain areas, which were significantly reduced in sham-treated Npc1-/- mice, partly increased after the pharmacotherapies in all treatment strategies; most pronounced differences were found in the CA1 area of the hippocampus and in olfactory structures. Discussion Volumes of brain areas of Npc1-/- mice were not specifically changed in terms of functionality after administering COMBI, MIGLU, or HPßCD. Measurements of fresh volumes of brain areas in Npc1-/- mice could monitor region-specific changes and response to drug treatment that correlated, in part, with behavioral improvements in this mouse model.
Collapse
Affiliation(s)
- Veronica Antipova
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Diana Heimes
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Mainz, Germany
| | - Katharina Seidel
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- Klinik für Frauenheilkunde und Geburtshilfe, Dietrich-Bonhoeffer-Klinikum, Neubrandenburg, Germany
| | - Jennifer Schulz
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Oliver Schmitt
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- Department of Anatomy, Medical School Hamburg, University of Applied Sciences and Medical University, Hamburg, Germany
| | - Carsten Holzmann
- Institute of Medical Genetics, Rostock University Medical Center, Rostock, Germany
- Centre of Transdisciplinary Neuroscience Rostock, Rostock, Germany
| | - Arndt Rolfs
- Medical Faculty, University of Rostock, Rostock, Germany
| | - Hans-Jürgen Bidmon
- Institute of Neurosciences and Medicine, Structural and Functional Organisation of the Brain (INM-1), Forschungszentrum Jülich, Jülich, Germany
- Central Institute of Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
| | | | - Pitter F. Huesgen
- Central Institute of Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- Institut für Biologie II, AG Funktional Proteomics, Freiburg, Germany
| | - Katrin Amunts
- Institute of Neurosciences and Medicine, Structural and Functional Organisation of the Brain (INM-1), Forschungszentrum Jülich, Jülich, Germany
- C. and O. Vogt Institute for Brain Research, University Hospital Düsseldorf, University Düsseldorf, Düsseldorf, Germany
| | - Jonas Keiler
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Niels Hammer
- Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
- Department of Orthopedic and Trauma Surgery, University of Leipzig, Leipzig, Germany
- Division of Biomechatronics, Fraunhofer Institute for Machine Tools and Forming Technology, Dresden, Germany
| | - Martin Witt
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- Department of Anatomy, Technische Universität Dresden, Dresden, Germany
- Department of Anatomy, Institute of Biostructural Basics of Medical Sciences, Poznan Medical University, Poznan, Poland
| | - Andreas Wree
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- Centre of Transdisciplinary Neuroscience Rostock, Rostock, Germany
| |
Collapse
|
2
|
Hernández-Cáceres MP, Pinto-Nuñez D, Rivera P, Burgos P, Díaz-Castro F, Criollo A, Yañez MJ, Morselli E. Role of lipids in the control of autophagy and primary cilium signaling in neurons. Neural Regen Res 2024; 19:264-271. [PMID: 37488876 PMCID: PMC10503597 DOI: 10.4103/1673-5374.377414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/09/2023] [Accepted: 04/27/2023] [Indexed: 07/26/2023] Open
Abstract
The brain is, after the adipose tissue, the organ with the greatest amount of lipids and diversity in their composition in the human body. In neurons, lipids are involved in signaling pathways controlling autophagy, a lysosome-dependent catabolic process essential for the maintenance of neuronal homeostasis and the function of the primary cilium, a cellular antenna that acts as a communication hub that transfers extracellular signals into intracellular responses required for neurogenesis and brain development. A crosstalk between primary cilia and autophagy has been established; however, its role in the control of neuronal activity and homeostasis is barely known. In this review, we briefly discuss the current knowledge regarding the role of autophagy and the primary cilium in neurons. Then we review the recent literature about specific lipid subclasses in the regulation of autophagy, in the control of primary cilium structure and its dependent cellular signaling in physiological and pathological conditions, specifically focusing on neurons, an area of research that could have major implications in neurodevelopment, energy homeostasis, and neurodegeneration.
Collapse
Affiliation(s)
- María Paz Hernández-Cáceres
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile
- Department of Basic Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Daniela Pinto-Nuñez
- Department of Basic Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Patricia Rivera
- Department of Basic Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
- Physiology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paulina Burgos
- Department of Basic Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Francisco Díaz-Castro
- Department of Basic Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
- Physiology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alfredo Criollo
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Autophagy Research Center, Santiago, Chile
| | - Maria Jose Yañez
- Department of Basic Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Eugenia Morselli
- Department of Basic Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
- Autophagy Research Center, Santiago, Chile
| |
Collapse
|
3
|
Lucarelli M, Camuso S, Di Pietro C, Bruno F, La Rosa P, Marazziti D, Fiorenza MT, Canterini S. Reduced Cerebellar BDNF Availability Affects Postnatal Differentiation and Maturation of Granule Cells in a Mouse Model of Cholesterol Dyshomeostasis. Mol Neurobiol 2023; 60:5395-5410. [PMID: 37314654 PMCID: PMC10415459 DOI: 10.1007/s12035-023-03435-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023]
Abstract
Niemann-Pick type C1 (NPC1) disease is a lysosomal lipid storage disorder due to mutations in the NPC1 gene resulting in the accumulation of cholesterol within the endosomal/lysosomal compartments. The prominent feature of the disorder is the progressive Purkinje cell degeneration leading to ataxia.In a mouse model of NPC1 disease, we have previously demonstrated that impaired Sonic hedgehog signaling causes defective proliferation of granule cells (GCs) and abnormal cerebellar morphogenesis. Studies conducted on cortical and hippocampal neurons indicate a functional interaction between Sonic hedgehog and brain-derived neurotrophic factor (BDNF) expression, leading us to hypothesize that BDNF signaling may be altered in Npc1 mutant mice, contributing to the onset of cerebellar alterations present in NPC1 disease before the appearance of signs of ataxia.We characterized the expression/localization patterns of the BDNF and its receptor, tropomyosin-related kinase B (TrkB), in the early postnatal and young adult cerebellum of the Npc1nmf164 mutant mouse strain.In Npc1nmf164 mice, our results show (i) a reduced expression of cerebellar BDNF and pTrkB in the first 2 weeks postpartum, phases in which most GCs complete the proliferative/migrative program and begin differentiation; (ii) an altered subcellular localization of the pTrkB receptor in GCs, both in vivo and in vitro; (iii) reduced chemotactic response to BDNF in GCs cultured in vitro, associated with impaired internalization of the activated TrkB receptor; (iv) an overall increase in dendritic branching in mature GCs, resulting in impaired differentiation of the cerebellar glomeruli, the major synaptic complex between GCs and mossy fibers.
Collapse
Affiliation(s)
- Micaela Lucarelli
- Division of Neuroscience, Dept. of Psychology, University La Sapienza, Rome, Italy
- PhD Program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Serena Camuso
- Division of Neuroscience, Dept. of Psychology, University La Sapienza, Rome, Italy
- PhD Program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Chiara Di Pietro
- Institute of Biochemistry and Cell Biology, Italian National Research Council (CNR), I-00015, Monterotondo Scalo, Italy
| | - Francesco Bruno
- Regional Neurogenetic Centre (CRN), Department of Primary Care, ASP, 88046, Lamezia Terme, Catanzaro, Italy
- Association for Neurogenetic Research (ARN), 88046, Lamezia Terme, Italy
| | - Piergiorgio La Rosa
- Division of Neuroscience, Dept. of Psychology, University La Sapienza, Rome, Italy
- European Center for Brain Research, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Daniela Marazziti
- Institute of Biochemistry and Cell Biology, Italian National Research Council (CNR), I-00015, Monterotondo Scalo, Italy
| | - Maria Teresa Fiorenza
- Division of Neuroscience, Dept. of Psychology, University La Sapienza, Rome, Italy
- European Center for Brain Research, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Sonia Canterini
- Division of Neuroscience, Dept. of Psychology, University La Sapienza, Rome, Italy.
- European Center for Brain Research, IRCCS Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
4
|
Kim S, Ochoa K, Melli SE, Yousufzai FAK, Barrera ZD, Williams AA, McIntyre G, Delgado E, Bolish JN, Macleod CM, Boghos M, Lens HP, Ramos AG, Wilson VB, Maloney K, Padron ZM, Khan AH, Blanco RE, Soto I. Disruptive lysosomal-metabolic signaling and neurodevelopmental deficits that precede Purkinje cell loss in a mouse model of Niemann-Pick Type-C disease. Sci Rep 2023; 13:5665. [PMID: 37024714 PMCID: PMC10079843 DOI: 10.1038/s41598-023-32971-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 04/05/2023] [Indexed: 04/08/2023] Open
Abstract
Purkinje cell (PC) loss occurs at an early age in patients and animal models of Niemann-Pick Type C (NPC), a lysosomal storage disease caused by mutations in the Npc1 or Npc2 genes. Although degeneration of PCs occurs early in NPC, little is known about how NPC1 deficiency affects the postnatal development of PCs. Using the Npc1nmf164 mouse model, we found that NPC1 deficiency significantly affected the postnatal development of PC dendrites and synapses. The developing dendrites of Npc1nmf164 PCs were significantly deficient in mitochondria and lysosomes. Furthermore, anabolic (mTORC1) and catabolic (TFEB) signaling pathways were not only perturbed but simultaneously activated in NPC1-deficient PCs, suggesting a loss of metabolic balance. We also found that mice with conditional heterozygous deletion of the Phosphatase and Tensin Homolog Deleted on Chromosome 10 gene (Pten-cHet), an inhibitor of mTORC1, showed similar early dendritic alterations in PCs to those found in Npc1-deficient mice. However, in contrast to Npc1nmf164 mice, Pten-cHet mice exhibited the overactivation of the mTORC1 pathway but with a strong inhibition of TFEB signaling, along with no dendritic mitochondrial reductions by the end of their postnatal development. Our data suggest that disruption of the lysosomal-metabolic signaling in PCs causes dendritic and synaptic developmental deficits that precede and promote their early degeneration in NPC.
Collapse
Affiliation(s)
- Sarah Kim
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ, USA
| | - Kathleen Ochoa
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ, USA
| | - Sierra E Melli
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ, USA
| | - Fawad A K Yousufzai
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ, USA
| | - Zerian D Barrera
- Department of Biological Science, Rowan University, Glassboro, NJ, USA
| | - Aela A Williams
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, USA
| | - Gianna McIntyre
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ, USA
| | - Esteban Delgado
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ, USA
| | - James N Bolish
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, USA
| | | | - Mary Boghos
- Department of Biology, Providence College, Providence, RI, USA
| | - Hayden P Lens
- Department of Biology, Providence College, Providence, RI, USA
| | - Alex G Ramos
- Department of Biology, Providence College, Providence, RI, USA
| | - Vincent B Wilson
- Department of Biological Science, Rowan University, Glassboro, NJ, USA
| | - Kelly Maloney
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ, USA
| | - Zachary M Padron
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ, USA
| | - Amaal H Khan
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ, USA
| | - Rosa E Blanco
- The Institute of Neurobiology, University of Puerto Rico, San Juan, PR, USA
| | - Ileana Soto
- Department of Biology, Providence College, Providence, RI, USA.
| |
Collapse
|
5
|
Pfrieger FW. The Niemann-Pick type diseases – A synopsis of inborn errors in sphingolipid and cholesterol metabolism. Prog Lipid Res 2023; 90:101225. [PMID: 37003582 DOI: 10.1016/j.plipres.2023.101225] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Disturbances of lipid homeostasis in cells provoke human diseases. The elucidation of the underlying mechanisms and the development of efficient therapies represent formidable challenges for biomedical research. Exemplary cases are two rare, autosomal recessive, and ultimately fatal lysosomal diseases historically named "Niemann-Pick" honoring the physicians, whose pioneering observations led to their discovery. Acid sphingomyelinase deficiency (ASMD) and Niemann-Pick type C disease (NPCD) are caused by specific variants of the sphingomyelin phosphodiesterase 1 (SMPD1) and NPC intracellular cholesterol transporter 1 (NPC1) or NPC intracellular cholesterol transporter 2 (NPC2) genes that perturb homeostasis of two key membrane components, sphingomyelin and cholesterol, respectively. Patients with severe forms of these diseases present visceral and neurologic symptoms and succumb to premature death. This synopsis traces the tortuous discovery of the Niemann-Pick diseases, highlights important advances with respect to genetic culprits and cellular mechanisms, and exposes efforts to improve diagnosis and to explore new therapeutic approaches.
Collapse
|
6
|
Fiorenza MT, La Rosa P, Canterini S, Erickson RP. The Cerebellum in Niemann-Pick C1 Disease: Mouse Versus Man. CEREBELLUM (LONDON, ENGLAND) 2023; 22:102-119. [PMID: 35040097 PMCID: PMC7617266 DOI: 10.1007/s12311-021-01347-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 02/01/2023]
Abstract
Selective neuronal vulnerability is common to most degenerative disorders, including Niemann-Pick C (NPC), a rare genetic disease with altered intracellular trafficking of cholesterol. Purkinje cell dysfunction and loss are responsible for cerebellar ataxia, which is among the prevailing neurological signs of the NPC disease. In this review, we focus on some questions that are still unresolved. First, we frame the cerebellar vulnerability in the context of the extended postnatal time length by which the development of this structure is completed in mammals. In line with this thought, the much later development of cerebellar symptoms in humans is due to the later development and/or maturation of the cerebellum. Hence, the occurrence of developmental events under a protracted condition of defective intracellular cholesterol mobilization hits the functional maturation of the various cell types generating the ground of increased vulnerability. This is particularly consistent with the high cholesterol demand required for cell proliferation, migration, differentiation, and synapse formation/remodeling. Other major questions we address are why the progression of Purkinje cells loss is always from the anterior to the posterior lobes and why cerebellar defects persist in the mouse model even when genetic manipulations can lead to nearly normal survival.
Collapse
Affiliation(s)
- Maria Teresa Fiorenza
- Division of Neuroscience, Department of Psychology, University La Sapienza, Rome, Italy.
- IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00179, Rome, Italy.
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology, University La Sapienza, Rome, Italy
| | - Sonia Canterini
- Division of Neuroscience, Department of Psychology, University La Sapienza, Rome, Italy
| | - Robert P Erickson
- Department of Pediatrics, University of Arizona School of Medicine, Tucson, AZ, 85724-5073, USA.
| |
Collapse
|
7
|
Ishitsuka Y, Irie T, Matsuo M. Cyclodextrins applied to the treatment of lysosomal storage disorders. Adv Drug Deliv Rev 2022; 191:114617. [PMID: 36356931 DOI: 10.1016/j.addr.2022.114617] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 09/14/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Cyclodextrin (CD), a cyclic oligosaccharide, is a pharmaceutical additive that improves the solubility of hydrophobic compounds. Recent research has focused on the potential active pharmaceutical abilities of CD. Lysosomal storage diseases are inherited metabolic diseases characterized by lysosomal dysfunction and abnormal lipid storage. Niemann-Pick disease type C (NPC) is caused by mutations in cholesterol transporter genes (NPC1, NPC2) and is characterized by cholesterol accumulation in lysosomes. A biocompatible cholesterol solubilizer 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) was recently used in NPC patients for compassionate use and in clinical trials. HP-β-CD is an attractive drug candidate for NPC; however, its adverse effects, such as ototoxicity, should be solved. In this review, we discuss the current use of HP-β-CD in basic and clinical research and discuss alternative CD derivatives that may outperform HP-β-CD, which should be considered for clinical use. The potential of CD therapy for the treatment of other lysosomal storage diseases is also discussed.
Collapse
Affiliation(s)
- Yoichi Ishitsuka
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Tetsumi Irie
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Packaging Technology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Muneaki Matsuo
- Department of Pediatrics, Faculty of Medicine, Saga University, 5-1-1, Nabeshima, Saga 849-8501, Japan
| |
Collapse
|
8
|
Rava A, La Rosa P, Palladino G, Dragotto J, Totaro A, Tiberi J, Canterini S, Oddi S, Fiorenza MT. The appearance of phagocytic microglia in the postnatal brain of Niemann Pick type C mice is developmentally regulated and underscores shortfalls in fine odor discrimination. J Cell Physiol 2022; 237:4563-4579. [PMID: 36322609 PMCID: PMC7613956 DOI: 10.1002/jcp.30909] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 10/07/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
Abstract
The loss of NPC1 or NPC2 function results in cholesterol and sphingolipid dyshomeostasis that impairs developmental trajectories, predisposing the postnatal brain to the appearance of pathological signs, including progressive and stereotyped Purkinje cell loss and microgliosis. Despite increasing evidence reporting the activation of pro-inflammatory microglia as a cardinal event of NPC1 disease progression at symptomatic stages both in patients and preclinical models, how microglia cells respond to altered neurodevelopmental dynamics remains not completely understood. To gain an insight on this issue, we have characterized patterns of microglia activation in the early postnatal cerebellum and young adult olfactory bulb of the hypomorphic Npc1nmf164 mouse model. Previous evidence has shown that both these areas display a number of anomalies affecting neuron and glial cell proliferation and differentiation, which largely anticipate cellular changes and clinical signs, raising our interest on how microglia interplay to these changes. Even so, to separate the contribution of cues provided by the dysfunctional microenvironment we have also studied microglia isolated from mice of increasing ages and cultured in vitro for 1 week. Our findings show that microglia of both cerebellum and olfactory bulb of Npc1nmf164 mice adopt an activated phenotype, characterized by increased cell proliferation, enlarged soma size and de-ramified processes, as well as a robust phagocytic activity, in a time- and space-specific manner. Enhanced phagocytosis associates with a profound remodeling of gene expression signatures towards gene products involved in chemotaxis, cell recognition and engulfment, including Cd68 and Trem2. These early changes in microglia morphology and activities are induced by region-specific developmental anomalies that likely anticipate alterations in neuronal connectivity. As a proof of concept, we show that microglia activation within the granule cell layer and glomerular layer of the olfactory bulb of Npc1nmf164 mice is associated with shortfalls in fine odor discrimination.
Collapse
Affiliation(s)
- Alessandro Rava
- Division of Neuroscience, Department of Psychology University La Sapienza Rome Italy
- PhD program in Behavioral Neuroscience University La Sapienza Rome Italy
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology University La Sapienza Rome Italy
- European Center for Brain Research IRCCS Fondazione Santa Lucia Rome Italy
| | - Giampiero Palladino
- Division of Neuroscience, Department of Psychology University La Sapienza Rome Italy
- PhD program in Behavioral Neuroscience University La Sapienza Rome Italy
| | - Jessica Dragotto
- Division of Neuroscience, Department of Psychology University La Sapienza Rome Italy
- PhD program in Behavioral Neuroscience University La Sapienza Rome Italy
| | - Antonio Totaro
- European Center for Brain Research IRCCS Fondazione Santa Lucia Rome Italy
| | - Jessica Tiberi
- Division of Neuroscience, Department of Psychology University La Sapienza Rome Italy
- PhD program in Behavioral Neuroscience University La Sapienza Rome Italy
| | - Sonia Canterini
- Division of Neuroscience, Department of Psychology University La Sapienza Rome Italy
| | - Sergio Oddi
- European Center for Brain Research IRCCS Fondazione Santa Lucia Rome Italy
- Faculty of Veterinary Medicine University of Teramo Teramo Italy
| | - Maria Teresa Fiorenza
- Division of Neuroscience, Department of Psychology University La Sapienza Rome Italy
- European Center for Brain Research IRCCS Fondazione Santa Lucia Rome Italy
| |
Collapse
|
9
|
Bruno F, Laganà V, Di Lorenzo R, Bruni AC, Maletta R. Calabria as a Genetic Isolate: A Model for the Study of Neurodegenerative Diseases. Biomedicines 2022; 10:biomedicines10092288. [PMID: 36140389 PMCID: PMC9496333 DOI: 10.3390/biomedicines10092288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Although originally multi-ethnic in its structure, nowadays the Calabria region of southern Italy represents an area with low genetic heterogeneity and a high level of consanguinity that allows rare mutations to be maintained due to the founder effect. A complex research methodology—ranging from clinical activity to the genealogical reconstruction of families/populations across the centuries, the creation of databases, and molecular/genetic research—was modelled on the characteristics of the Calabrian population for more than three decades. This methodology allowed the identification of several novel genetic mutations or variants associated with neurodegenerative diseases. In addition, a higher prevalence of several hereditary neurodegenerative diseases has been reported in this population, such as Alzheimer’s disease, frontotemporal dementia, Parkinson’s disease, Niemann–Pick type C disease, spinocerebellar ataxia, Creutzfeldt–Jakob disease, and Gerstmann–Straussler–Scheinker disease. Here, we summarize and discuss the results of research data supporting the view that Calabria could be considered as a genetic isolate and could represent a model, a sort of outdoor laboratory—similar to very few places in the world—useful for the advancement of knowledge on neurodegenerative diseases.
Collapse
Affiliation(s)
- Francesco Bruno
- Regional Neurogenetic Centre (CRN), Department of Primary Care, ASP Catanzaro, 88046 Lamezia Terme, Italy
- Association for Neurogenetic Research (ARN), 88046 Lamezia Terme, Italy
- Correspondence: (F.B.); (A.C.B.)
| | - Valentina Laganà
- Association for Neurogenetic Research (ARN), 88046 Lamezia Terme, Italy
| | | | - Amalia C. Bruni
- Regional Neurogenetic Centre (CRN), Department of Primary Care, ASP Catanzaro, 88046 Lamezia Terme, Italy
- Association for Neurogenetic Research (ARN), 88046 Lamezia Terme, Italy
- Correspondence: (F.B.); (A.C.B.)
| | - Raffaele Maletta
- Regional Neurogenetic Centre (CRN), Department of Primary Care, ASP Catanzaro, 88046 Lamezia Terme, Italy
- Association for Neurogenetic Research (ARN), 88046 Lamezia Terme, Italy
| |
Collapse
|
10
|
Garg C, khan H, Kaur A, Singh TG, Sharma VK, Singh SK. Therapeutic Implications of Sonic Hedgehog Pathway in Metabolic Disorders: Novel Target for Effective Treatment. Pharmacol Res 2022; 179:106194. [DOI: 10.1016/j.phrs.2022.106194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 12/13/2022]
|
11
|
Carradori D, Chen H, Werner B, Shah AS, Leonardi C, Usuelli M, Mezzenga R, Platt F, Leroux JC. Investigating the Mechanism of Cyclodextrins in the Treatment of Niemann-Pick Disease Type C Using Crosslinked 2-Hydroxypropyl-β-cyclodextrin. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004735. [PMID: 33079457 DOI: 10.1002/smll.202004735] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/10/2020] [Indexed: 06/11/2023]
Abstract
Niemann-Pick disease type C (NPC) is a severe disorder that is characterized by intracellular transport abnormalities leading to cytoplasmic accumulation of lipids such as cholesterol and sphingolipids. The compound 2-hydroxypropyl-β-cyclodextrin (HPβCD) has high cholesterol complexation capacity and is currently under clinical investigation for the NPC treatment. However, due to its short blood half-life, high doses are required to produce a therapeutic effect. In this work, stable polymerized HPβCD is generated to investigate their in vitro mechanisms of action and in vivo effects. Crosslinked CDs (8-312 kDa) display a ninefold greater cholesterol complexation capacity than monomeric HPβCD but are taken up to a lower extent, resulting in an overall comparable in vitro effect. In vivo, the 19.3 kDa HPβCD exhibits a longer half-life than the monomeric HPβCD but it does not increase the life span of Npc1 mice, possibly due to reduced brain penetration. This is circumvented by the application of magnetic resonance imaging-guided low intensity-pulsed focused ultrasound (MRIg-FUS), which increases the brain penetration of the CD. In conclusion, stable polymerized HPβCDs can elucidate CDs' mechanism of action while the use of MRIg-FUS warrants further investigation, as it may be key to harnessing CDs full therapeutic potential in the NPC treatment.
Collapse
Affiliation(s)
- Dario Carradori
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, 8049, Switzerland
| | - Hsintsung Chen
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - Beat Werner
- Center for MR-Research, University Children's Hospital, Zürich, 8032, Switzerland
| | - Aagam S Shah
- Institute of Neuroinformatics, ETH Zürich and University of Zürich, Zürich, 8057, Switzerland
| | - Chiara Leonardi
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, 8049, Switzerland
| | - Mattia Usuelli
- Department of Health Sciences and Technology, ETH Zürich, Zürich, 8092, Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zürich, Zürich, 8092, Switzerland
| | - Frances Platt
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, 8049, Switzerland
| |
Collapse
|
12
|
Boyle BR, Melli SE, Altreche RS, Padron ZM, Yousufzai FAK, Kim S, Vasquez MD, Carone DM, Carone BR, Soto I. NPC1 deficiency impairs cerebellar postnatal development of microglia and climbing fiber refinement in a mouse model of Niemann-Pick disease type C. Development 2020; 147:dev.189019. [PMID: 32611604 PMCID: PMC7420841 DOI: 10.1242/dev.189019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/22/2020] [Indexed: 01/30/2023]
Abstract
Little is known about the effects of NPC1 deficiency in brain development and whether these effects contribute to neurodegeneration in Niemann–Pick disease type C (NPC). Degeneration of cerebellar Purkinje cells occurs at an earlier stage and to a greater extent in NPC; therefore, we analyzed the effect of NPC1 deficiency on microglia and on climbing fiber synaptic refinement during cerebellar postnatal development using the Npc1nmf164 mouse. Our analysis revealed that NPC1 deficiency leads to early phenotypic changes in microglia that are not associated with an innate immune response. However, the lack of NPC1 in Npc1nmf164 mice significantly affected the early development of microglia by delaying the radial migration, increasing the proliferation and impairing the differentiation of microglia precursor cells during postnatal development. Additionally, increased phagocytic activity of differentiating microglia was observed at the end of the second postnatal week in Npc1nmf164 mice. Moreover, significant climbing fiber synaptic refinement deficits along with an increased engulfment of climbing fiber synaptic elements by microglia were found in Npc1nmf164 mice, suggesting that profound developmental defects in microglia and synaptic connectivity might precede and predispose Purkinje cells to early neurodegeneration in NPC. Summary: Genetic deficiency of Npc1 impairs postnatal development of microglia and climbing fiber synaptic pruning in the mouse cerebellum.
Collapse
Affiliation(s)
- Bridget R Boyle
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| | - Sierra E Melli
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| | - Ruth S Altreche
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| | - Zachary M Padron
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| | - Fawad A K Yousufzai
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| | - Sarah Kim
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| | - Mariella D Vasquez
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| | - Dawn M Carone
- Swarthmore College, Department of Biology, Swarthmore, PA 19081, USA
| | - Benjamin R Carone
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| | - Ileana Soto
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
13
|
Favret JM, Weinstock NI, Feltri ML, Shin D. Pre-clinical Mouse Models of Neurodegenerative Lysosomal Storage Diseases. Front Mol Biosci 2020; 7:57. [PMID: 32351971 PMCID: PMC7174556 DOI: 10.3389/fmolb.2020.00057] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
There are over 50 lysosomal hydrolase deficiencies, many of which cause neurodegeneration, cognitive decline and death. In recent years, a number of broad innovative therapies have been proposed and investigated for lysosomal storage diseases (LSDs), such as enzyme replacement, substrate reduction, pharmacologic chaperones, stem cell transplantation, and various forms of gene therapy. Murine models that accurately reflect the phenotypes observed in human LSDs are critical for the development, assessment and implementation of novel translational therapies. The goal of this review is to summarize the neurodegenerative murine LSD models available that recapitulate human disease, and the pre-clinical studies previously conducted. We also describe some limitations and difficulties in working with mouse models of neurodegenerative LSDs.
Collapse
Affiliation(s)
| | | | | | - Daesung Shin
- Hunter James Kelly Research Institute, Department of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
14
|
Identification of Novel Pathways Associated with Patterned Cerebellar Purkinje Neuron Degeneration in Niemann-Pick Disease, Type C1. Int J Mol Sci 2019; 21:ijms21010292. [PMID: 31906248 PMCID: PMC6981888 DOI: 10.3390/ijms21010292] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 12/23/2019] [Accepted: 12/25/2019] [Indexed: 01/22/2023] Open
Abstract
Niemann-Pick disease, type C1 (NPC1) is a lysosomal disease characterized by progressive cerebellar ataxia. In NPC1, a defect in cholesterol transport leads to endolysosomal storage of cholesterol and decreased cholesterol bioavailability. Purkinje neurons are sensitive to the loss of NPC1 function. However, degeneration of Purkinje neurons is not uniform. They are typically lost in an anterior-to-posterior gradient with neurons in lobule X being resistant to neurodegeneration. To gain mechanistic insight into factors that protect or potentiate Purkinje neuron loss, we compared RNA expression in cerebellar lobules III, VI, and X from control and mutant mice. An unexpected finding was that the gene expression differences between lobules III/VI and X were more pronounced than those observed between mutant and control mice. Functional analysis of genes with anterior to posterior gene expression differences revealed an enrichment of genes related to neuronal cell survival within the posterior cerebellum. This finding is consistent with the observation, in multiple diseases, that posterior Purkinje neurons are, in general, resistant to neurodegeneration. To our knowledge, this is the first study to evaluate anterior to posterior transcriptome-wide changes in gene expression in the cerebellum. Our data can be used to not only explore potential pathological mechanisms in NPC1, but also to further understand cerebellar biology.
Collapse
|
15
|
NPC1 Deficiency in Mice is Associated with Fetal Growth Restriction, Neonatal Lethality and Abnormal Lung Pathology. J Clin Med 2019; 9:jcm9010012. [PMID: 31861571 PMCID: PMC7019814 DOI: 10.3390/jcm9010012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022] Open
Abstract
The rare lysosomal storage disorder Niemann-Pick disease type C1 (NPC1) arises from mutation of NPC1, which encodes a lysosomal transmembrane protein essential for normal transport and trafficking of cholesterol and sphingolipids. NPC1 is highly heterogeneous in both clinical phenotypes and age of onset. Previous studies have reported sub-Mendelian survival rates for mice homozygous for various Npc1 mutant alleles but have not studied the potential mechanisms underlying this phenotype. We performed the first developmental analysis of a Npc1 mouse model, Npc1em1Pav, and discovered significant fetal growth restriction in homozygous mutants beginning at E16.5. Npc1em1Pav/em1Pav mice also exhibited cyanosis, increased respiratory effort, and over 50% lethality at birth. Analysis of neonatal lung tissues revealed lipid accumulation, notable abnormalities in surfactant, and enlarged alveolar macrophages, suggesting that lung abnormalities may be associated with neonatal lethality in Npc1em1Pav/em1Pav mice. The phenotypic severity of the Npc1em1Pav model facilitated this first analysis of perinatal lethality and lung pathology in an NPC1 model organism, and this model may serve as a useful resource for developing treatments for respiratory complications seen in NPC1 patients.
Collapse
|
16
|
Dragotto J, Palladino G, Canterini S, Caporali P, Patil R, Fiorenza MT, Erickson RP. Decreased neural stem cell proliferation and olfaction in mouse models of Niemann-Pick C1 disease and the response to hydroxypropyl-β-cyclodextrin. J Appl Genet 2019; 60:357-365. [PMID: 31485950 DOI: 10.1007/s13353-019-00517-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/06/2019] [Accepted: 08/16/2019] [Indexed: 12/01/2022]
Abstract
The Npc1nih/nih-null model and the Npc1nmf164/nmf164 hypomorph models of Niemann-Pick C1 (NPC1) disease show defects in olfaction. We have tested the effects of the life-prolonging treatment hydroxypropyl-beta-cyclodextrin (HPBCD) on olfaction and neural stem cell numbers when delivered either systemically or by nasal inhalation. Using the paradigm of finding a hidden cube of food after overnight food deprivation, Npc1nih/nih homozygous mice showed a highly significant delay in finding the food compared with wild-type mice. Npc1nmf164/nmf164 homozygous mice showed an early loss of olfaction which was mildly corrected by somatic delivery of HPBCD which also increased the number of neural stem cells in the mutant but did not change the number in wild-type mice. In contrast, nasal delivery of this drug, at 1/5 the dosage used for somatic delivery, to Npc1nmf164/nmf164 mutant mice delayed loss of olfaction but the control of nasal delivered saline did so as well. The nasal delivery of HPBCD to wild-type mice caused loss of olfaction but nasal delivery of saline did not. Neural stem cell counts were not improved by nasal therapy with HPBCD. We credit the delay in olfaction found with the treatment, a delay which was also found for time of death, to a large amount of stimulation the mice received with handling during the nasal delivery.
Collapse
Affiliation(s)
- Jessica Dragotto
- Division of Neuroscience, Department of Psychology, Università La Sapienza di Roma, Rome, Italy
| | - Giampiero Palladino
- Division of Neuroscience, Department of Psychology, Università La Sapienza di Roma, Rome, Italy
| | - Sonia Canterini
- Division of Neuroscience, Department of Psychology, Università La Sapienza di Roma, Rome, Italy
| | - Paola Caporali
- Division of Neuroscience, Department of Psychology, Università La Sapienza di Roma, Rome, Italy
| | - Rutaraj Patil
- Department of Pediatrics, University of Arizona School of Medicine, Tucson, AZ, 85724-5073, USA
| | - Maria Teresa Fiorenza
- Division of Neuroscience, Department of Psychology, Università La Sapienza di Roma, Rome, Italy.,IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00179, Rome, Italy
| | - Robert P Erickson
- Department of Pediatrics, University of Arizona School of Medicine, Tucson, AZ, 85724-5073, USA.
| |
Collapse
|
17
|
Oddi S, Caporali P, Dragotto J, Totaro A, Maiolati M, Scipioni L, Angelucci CB, Orsini C, Canterini S, Rapino C, Maccarrone M, Fiorenza MT. The endocannabinoid system is affected by cholesterol dyshomeostasis: Insights from a murine model of Niemann Pick type C disease. Neurobiol Dis 2019; 130:104531. [PMID: 31302243 DOI: 10.1016/j.nbd.2019.104531] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/25/2019] [Accepted: 07/10/2019] [Indexed: 01/01/2023] Open
Abstract
The dyshomeostasis of intracellular cholesterol trafficking is typical of the Niemann-Pick type C (NPC) disease, a fatal inherited lysosomal storage disorder presenting with progressive neurodegeneration and visceral organ involvement. In light of the well-established relevance of cholesterol in regulating the endocannabinoid (eCB) system expression and activity, this study was aimed at elucidating whether NPC disease-related cholesterol dyshomeostasis affects the functional status of the brain eCB system. To this end, we exploited a murine model of NPC deficiency for determining changes in the expression and activity of the major molecular components of the eCB signaling, including cannabinoid type-1 and type-2 (CB1 and CB2) receptors, their ligands, N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG), along with their main synthesizing/inactivating enzymes. We found a robust alteration of distinct components of the eCB system in various brain regions, including the cortex, hippocampus, striatum and cerebellum, of Npc1-deficient compared to wild-type pre-symptomatic mice. Changes of the eCB component expression and activity differ from one brain structure to another, although 2-AG and AEA are consistently found to decrease and increase in each structure, respectively. The thorough biochemical characterization of the eCB system was accompanied by a behavioral characterization of Npc1-deficient mice using a number of paradigms evaluating anxiety, locomotor activity, spatial learning/memory abilities, and coping response to stressful experience. Our findings provide the first description of an early and region-specific alteration of the brain eCB system in NPC and suggest that defective eCB signaling could contribute at producing and/or worsening the neurological symptoms of this disorder.
Collapse
Affiliation(s)
- Sergio Oddi
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy; Fondazione Santa Lucia, IRCCS, Via del Fosso di Fiorano 64, 00179, Italy
| | - Paola Caporali
- Department of Psychology, Division of Neuroscience and "Daniel Bovet" Neurobiology Research Center, Sapienza University of Rome, Via dei Sardi 70, 00185 Rome, Italy
| | - Jessica Dragotto
- Department of Psychology, Division of Neuroscience and "Daniel Bovet" Neurobiology Research Center, Sapienza University of Rome, Via dei Sardi 70, 00185 Rome, Italy
| | - Antonio Totaro
- Fondazione Santa Lucia, IRCCS, Via del Fosso di Fiorano 64, 00179, Italy
| | - Marzia Maiolati
- Department of Psychology, Division of Neuroscience and "Daniel Bovet" Neurobiology Research Center, Sapienza University of Rome, Via dei Sardi 70, 00185 Rome, Italy
| | - Lucia Scipioni
- Fondazione Santa Lucia, IRCCS, Via del Fosso di Fiorano 64, 00179, Italy
| | | | - Cristina Orsini
- Fondazione Santa Lucia, IRCCS, Via del Fosso di Fiorano 64, 00179, Italy; Department of Psychology, Division of Neuroscience and "Daniel Bovet" Neurobiology Research Center, Sapienza University of Rome, Via dei Sardi 70, 00185 Rome, Italy
| | - Sonia Canterini
- Department of Psychology, Division of Neuroscience and "Daniel Bovet" Neurobiology Research Center, Sapienza University of Rome, Via dei Sardi 70, 00185 Rome, Italy
| | - Cinzia Rapino
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Mauro Maccarrone
- Fondazione Santa Lucia, IRCCS, Via del Fosso di Fiorano 64, 00179, Italy; Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Maria Teresa Fiorenza
- Fondazione Santa Lucia, IRCCS, Via del Fosso di Fiorano 64, 00179, Italy; Department of Psychology, Division of Neuroscience and "Daniel Bovet" Neurobiology Research Center, Sapienza University of Rome, Via dei Sardi 70, 00185 Rome, Italy.
| |
Collapse
|
18
|
Fiorenza MT, Moro E, Erickson RP. The pathogenesis of lysosomal storage disorders: beyond the engorgement of lysosomes to abnormal development and neuroinflammation. Hum Mol Genet 2019; 27:R119-R129. [PMID: 29718288 DOI: 10.1093/hmg/ddy155] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 04/24/2018] [Indexed: 01/03/2023] Open
Abstract
There is growing evidence that the complex clinical manifestations of lysosomal storage diseases (LSDs) are not fully explained by the engorgement of the endosomal-autophagic-lysosomal system. In this review, we explore current knowledge of common pathogenetic mechanisms responsible for the early onset of tissue abnormalities of two LSDs, Mucopolysaccharidosis type II (MPSII) and Niemann-Pick type C (NPC) diseases. In particular, perturbations of the homeostasis of glycosaminoglycans (GAGs) and cholesterol (Chol) in MPSII and NPC diseases, respectively, affect key biological processes, including morphogen signaling. Both GAGs and Chol finely regulate the release, reception and tissue distribution of Shh. Hence, not surprisingly, developmental processes depending on correct Shh signaling have been found altered in both diseases. Besides abnormal signaling, exaggerated activation of microglia and impairment of autophagy and mitophagy occur in both diseases, largely before the appearance of typical pathological signs.
Collapse
Affiliation(s)
- Maria Teresa Fiorenza
- Division of Neuroscience, Department of Psychology and "Daniel Bovet" Neurobiology Research Center, Sapienza University of Rome, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Enrico Moro
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | |
Collapse
|
19
|
Lucarelli M, Di Pietro C, La Sala G, Fiorenza MT, Marazziti D, Canterini S. Anomalies in Dopamine Transporter Expression and Primary Cilium Distribution in the Dorsal Striatum of a Mouse Model of Niemann-Pick C1 Disease. Front Cell Neurosci 2019; 13:226. [PMID: 31178699 PMCID: PMC6544041 DOI: 10.3389/fncel.2019.00226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/06/2019] [Indexed: 12/15/2022] Open
Abstract
The Niemann-Pick type C1 (NPC1) is a rare genetic disease characterized by the accumulation of endocytosed cholesterol and other lipids in the endosome/lysosome compartments. In the brain, the accumulation/mislocalization of unesterified cholesterol, gangliosides and sphingolipids is responsible for the appearance of neuropathological hallmarks, and progressive neurological decline in patients. The imbalance of unesterified cholesterol and other lipids, including GM2 and GM3 gangliosides, alters a number of signaling mechanisms impacting on the overall homeostasis of neurons. In particular, lipid depletion experiments have shown that lipid rafts regulate the cell surface expression of dopamine transporter (DAT) and modulate its activity. Dysregulated dopamine transporter's function results in imbalanced dopamine levels at synapses and severely affects dopamine-induced locomotor responses and dopamine receptor-mediated synaptic signaling. Recent studies begin to correlate dopaminergic stimulation with the length and function of the primary cilium, a non-motile organelle that coordinates numerous signaling pathways. In particular, the absence of dopaminergic D2 receptor stimulation induces the elongation of dorso-striatal neuron's primary cilia. This study has used a mouse model of the NPC1 disease to correlate cholesterol dyshomeostasis with dorso-striatal anomalies in terms of DAT expression and primary cilium (PC) length and morphology. We found that juvenile Npc1nmf164 mice display a reduction of dorso-striatal DAT expression, with associated alterations of PC number, length-frequency distribution, and tortuosity.
Collapse
Affiliation(s)
- Micaela Lucarelli
- Division of Neuroscience, Department of Psychology, Center for Research in Neurobiology 'Daniel Bovet', Sapienza University of Rome, Rome, Italy.,PhD Program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Chiara Di Pietro
- Institute of Cell Biology and Neurobiology, Italian National Research Council, Rome, Italy
| | - Gina La Sala
- Institute of Cell Biology and Neurobiology, Italian National Research Council, Rome, Italy
| | - Maria Teresa Fiorenza
- Division of Neuroscience, Department of Psychology, Center for Research in Neurobiology 'Daniel Bovet', Sapienza University of Rome, Rome, Italy
| | - Daniela Marazziti
- Institute of Cell Biology and Neurobiology, Italian National Research Council, Rome, Italy
| | - Sonia Canterini
- Division of Neuroscience, Department of Psychology, Center for Research in Neurobiology 'Daniel Bovet', Sapienza University of Rome, Rome, Italy
| |
Collapse
|
20
|
Santiago-Mujica E, Flunkert S, Rabl R, Neddens J, Loeffler T, Hutter-Paier B. Hepatic and neuronal phenotype of NPC1 -/- mice. Heliyon 2019; 5:e01293. [PMID: 30923761 PMCID: PMC6423819 DOI: 10.1016/j.heliyon.2019.e01293] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 01/15/2019] [Accepted: 02/26/2019] [Indexed: 12/14/2022] Open
Abstract
Niemann-Pick type C disease (NPC) is a fatal autosomal recessive disorder characterized by a defect in the intracellular transport of lipoproteins leading to the accumulation of lipids in diverse tissues. A visceral and neuronal phenotype mimicking human NPC1 disease has been described in NPC1 mutant mice. These mice are by now the most widely used NPC1 rodent model to study NPC and developmental compounds against this devastating disease. Here we characterized NPC1-/- mice for their hepatic and neuronal phenotype to confirm the stability of the phenotype, provide a characterization of disease progression and pinpoint the age of robust phenotype onset. Animals of 4-10 weeks of age were analyzed for general health, motor deficits as well as hepatic and neuronal alterations with a special focus on cerebellar pathology. Our results show that NPC1-/- mice have a reduced general health at the age of 9-10 weeks. Robust motor deficits can be observed even earlier at 8 weeks of age. Hepatic changes included increased organ weight and cholesterol levels at 6 weeks of age accompanied by severely increased liver enzyme levels. Analysis of NPC1-/- brain pathology showed decreased cholesterol and increased Aβ levels in the hippocampus at the age of 6 weeks. Further analysis revealed a decrease of the cytokine IL-12p70 in the cerebellum along with a very early increase of astrocytosis. Hippocampal IL-12p70 levels were increased at the age of 6 weeks followed by increased activated microglia levels. By the age of 10 weeks, also cerebellar Aβ levels were increased along with strongly reduced Calbindin D-28k levels. Our results validate and summarize the progressive development of the hepatic and neuronal phenotype of NPC1-/- mice that starts with cerebellar astrocytosis, making this mouse model a valuable tool for the development of new compounds against NPC.
Collapse
Key Words
- AAALAC, Association for Assessment and Accreditation of Laboratory Animal Care
- ALT, alanine aminotransferase
- ANOVA, Analysis of variance
- AOI, Area of interest
- AP, alkaline phosphatase
- APP, Amyloid Precursor Protein
- AST, aspartate aminotransferase
- CD45, cluster of differentiation 45
- CNS, central nervous system
- Cell biology
- DAPI, 4′,6-Diamidin-2-phenylindol
- GFAP, Glial fibrillary acidic protein
- IFN-γ, Interferon-gamma
- IL-10/12, Interleukin-10/12
- KC, keratinocyte chemoattractant
- MAP2, microtubuli-associated protein 2
- Molecular biology
- NPC, Niemann-Pick type C
- Neuroscience
- Physiology
- TNF-α, tumor necrosis factor-alpha
- WT, wildtype
Collapse
|
21
|
Linear Cyclodextrin Polymer Prodrugs as Novel Therapeutics for Niemann-Pick Type C1 Disorder. Sci Rep 2018; 8:9547. [PMID: 29934581 PMCID: PMC6015065 DOI: 10.1038/s41598-018-27926-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/13/2018] [Indexed: 12/14/2022] Open
Abstract
Niemann-Pick Type C1 disorder (NPC) is a rare lysosomal storage disease characterized by the accumulation of cholesterol in lysosomes. NPC has no FDA approved treatments yet, however 2-hydroxypropyl-β-cyclodextrin (HPβCD) has shown efficacy for treating the disease in both mouse and feline NPC models and is currently being investigated in late stage clinical trials. Despite promising results, therapeutic use of HPβCD is limited by the need for high doses, ototoxicity and intrathecal administration. These limitations can be attributed to its poor pharmacokinetic profile. In the attempt to overcome these limitations, we have designed a β-cyclodextrin (βCD) based polymer prodrugs (ORX-301) for an enhanced pharmacokinetic and biodistribution profile, which in turn can potentially provide an improved efficacy at lower doses. We demonstrated that subcutaneously injected ORX-301 extended the mean lifespan of NPC mice at a dosage 5-fold lower (800 mg/kg, body weight) the HPβCD dose proven efficacious (4000 mg/kg). We also show that ORX-301 penetrates the blood brain barrier and counteracts neurological impairment. These properties represent a substantial improvement and appear to overcome major limitations of presently available βCD-based therapy, demonstrating that this novel prodrug is a valuable alternative/complement for existing therapies.
Collapse
|
22
|
Impact of Reduced Cerebellar EAAT Expression on Purkinje Cell Firing Pattern of NPC1-deficient Mice. Sci Rep 2018; 8:3318. [PMID: 29463856 PMCID: PMC5820268 DOI: 10.1038/s41598-018-21805-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/12/2018] [Indexed: 12/14/2022] Open
Abstract
Niemann-Pick disease Type C1 (NPC1) is a rare hereditary neurodegenerative disease. NPC1-patients suffer, amongst others, from ataxia, based on a loss of cerebellar Purkinje cells (PCs). Impaired expression/function of excitatory amino acid transporters (EAATs) are suspected of contributing to PC-degeneration in hereditary spinocerebellar ataxias (SCAs). Thus, we studied EAAT-expression and its impact to PC-activity in NPC1−/–mice. Western blot revealed reduced EAAT1, EAAT2, EAAT4, and βIII-spectrin levels in NPC1−/–mice. EAATs play a crucial role in synaptic transmission, thus we were interested in the impact of the reduced EAAT-expression on the function of PCs. Patch-clamp recordings of PCs showed no differences in the firing patterns of NPC1+/+and NPC1−/–mice using a low internal chloride concentration. Because EAAT4 also comprises a chloride permeable ion pore, we perturbed the chloride homeostasis using a high internal chloride concentration. We observed differences in the firing patterns of NPC1+/+and NPC1−/–mice, suggesting an impact of the altered EAAT4-expression. Additionally, the EAAT-antagonist DL-TBOA acts differently in NPC1+/+and NPC1−/–mice. Our data support the line of evidence that an altered EAAT-expression/function is involved in neurodegeneration of PCs observed in SCAs. Thus, we suggest that similar pathogenic mechanisms contribute the loss of PCs in NPC1.
Collapse
|
23
|
Erickson RP, Deutsch G, Patil R. A pilot study of direct delivery of hydroxypropyl-beta-cyclodextrin to the lung by the nasal route in a mouse model of Niemann-Pick C1 disease: motor performance is unaltered and lung disease is worsened. J Appl Genet 2018; 59:187-191. [PMID: 29411332 DOI: 10.1007/s13353-018-0431-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/11/2018] [Accepted: 01/16/2018] [Indexed: 01/20/2023]
Abstract
We have tested the efficacy of hydroxypropyl-beta-cyclodextrin (HPBCD) delivered by the nasal route in the mouse model of juvenile Niemann-Pick C1 disease (NPC1), as pulmonary disease has not responded to systemic therapy with this drug. Since mice have no gag reflex, coating of the nasal cavity, with possible access to the brain, would be followed by delivery of HPBCD to the lung. While foamy macrophages, containing stored cholesterol, were found in the Npc1 nmf164 homozygous mice, a marked inflammatory response was found with inhaled HPBCD, both in mutant and wild-type animals. Slight inflammation also occasionally occurred with saline inhalation. There was no difference between the saline-treated, HPBCD-treated, and untreated Npc1 nmf164 homozygous mice for weight, balance beam performance, or coat hanger performance. Interestingly, there was a trend to longer survival in the HPBCD-treated Npc1 nmf164 homozygous mice, which, when combined with the survival times of the saline-treated survivals (each of which was not different), became significant.
Collapse
Affiliation(s)
- Robert P Erickson
- Department of Pediatrics, University of Arizona College of Medicine, Tucson, AZ, USA.
| | - Gail Deutsch
- Department of Pathology, Seattle Children's Hospital, University of Washington School of Medicine, Seattle, WA, USA
| | - Ruturaj Patil
- Department of Pediatrics, University of Arizona College of Medicine, Tucson, AZ, USA
| |
Collapse
|
24
|
Marshall CA, Watkins-Chow DE, Palladino G, Deutsch G, Chandran K, Pavan WJ, Erickson RP. In Niemann-Pick C1 mouse models, glial-only expression of the normal gene extends survival much further than do changes in genetic background or treatment with hydroxypropyl-beta-cyclodextrin. Gene 2017; 643:117-123. [PMID: 29223359 DOI: 10.1016/j.gene.2017.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/01/2017] [Accepted: 12/06/2017] [Indexed: 11/19/2022]
Abstract
The Npc1nmf164 allele of Npc1 provides a mouse model for Niemann-Pick disease type C1 (NPC1), a genetic disease known to have a widely variable phenotype. The transfer of the Npc1nmf164 mutation from the C57BL/6J inbred strain to the BALB/cJ inbred strain increased the mean lifespan from 117.8days to 153.1days, confirming that the severity of the NPC1 phenotype is strongly influenced by genetic background. The transfer of another Npc1 allele, Npc1nih, to this background also extended survival of the homozygotes indicating that the modifying effect of BALB/cJ is not limited to a single allele of Npc1. The increased longevity due to the BALB/cJ background did not map to a previously mapped modifier on chromosome 19, indicating the presence of additional genes impacting disease severity. The previously studied Glial Fibrillary Acidic Protein promoter-Npc1 cDNA transgene (GFAP-Npc1) which only expresses NPC1 in astrocytes further extended the lifespan of Npc1nmf164 homozygotes on a BALB/cJ background (up to 600days). Hydroxypropyl-β-cyclodextrin (HPβCD) treatment, not previously tested in the Npc1nmf164 mutant, extended life in the Npc1nmf164 homozygotes but not the transgenic, Npc1nmf164 mice on the BALB/cJ background. In all cases, lack of weight gain and early cerebellar symptoms of loss of motor control were found. At termination, the one mouse sacrificed for histological studies showed severe, diffuse pulmonary alveolar proteinosis suggesting that pulmonary abnormalities in NPC1 mouse models are not unique to the Npc1nih allele.
Collapse
Affiliation(s)
- Craig A Marshall
- Department of Pediatrics, University of Arizona College of Medicine, Tucson, AZ 85724-5073, United States
| | - Dawn E Watkins-Chow
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Giampiero Palladino
- Department of Pediatrics, University of Arizona College of Medicine, Tucson, AZ 85724-5073, United States
| | - Gail Deutsch
- Department of Pathology, Seattle Children's Hospital, Seattle, WA, United States
| | - Keshav Chandran
- Department of Pediatrics, University of Arizona College of Medicine, Tucson, AZ 85724-5073, United States
| | - William J Pavan
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Robert P Erickson
- Department of Pediatrics, University of Arizona College of Medicine, Tucson, AZ 85724-5073, United States.
| |
Collapse
|
25
|
Hammerschmidt TG, Oliveira Schmitt Ribas G, Saraiva‐Pereira ML, Bonatto MP, Kessler RG, Souza FTS, Trapp F, Michelin‐Tirelli K, Burin MG, Giugliani R, Vargas CR. Molecular and biochemical biomarkers for diagnosis and therapy monitorization of Niemann‐Pick type C patients. Int J Dev Neurosci 2017; 66:18-23. [DOI: 10.1016/j.ijdevneu.2017.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 11/29/2022] Open
Affiliation(s)
- Tatiane Grazieli Hammerschmidt
- Departamento de Análises, Faculdade de FarmáciaUFRGSAvenida Ipiranga, 2752CEP 90610‐000Porto AlegreRSBrazil
- Programa de Pós‐Graduação em Ciências Farmacêuticas, UFRGSAv. Ipiranga, 2752CEP 90610‐000Porto AlegreRSBrazil
| | - Graziela Oliveira Schmitt Ribas
- Programa de Pós‐Graduação em Ciências Farmacêuticas, UFRGSAv. Ipiranga, 2752CEP 90610‐000Porto AlegreRSBrazil
- Serviço de Genética Médica, HCPARua Ramiro Barcelos, 2350CEP 90035‐003Porto AlegreRSBrazil
| | - Maria Luiza Saraiva‐Pereira
- Programa de Pós‐Graduação em Ciências Biológicas, Bioquímica, UFRGSRua Ramiro Barcelos, 2600CEP 90035‐003Porto AlegreRSBrazil
- Programa de Pós‐Graduação em Ciências Farmacêuticas, UFRGSAv. Ipiranga, 2752CEP 90610‐000Porto AlegreRSBrazil
| | - Márcia Polese Bonatto
- Programa de Pós‐Graduação em Ciências Biológicas, Bioquímica, UFRGSRua Ramiro Barcelos, 2600CEP 90035‐003Porto AlegreRSBrazil
| | - Rejane Gus Kessler
- Programa de Pós‐Graduação em Ciências Biológicas, Bioquímica, UFRGSRua Ramiro Barcelos, 2600CEP 90035‐003Porto AlegreRSBrazil
- Departamento de GenéticaIB, Universidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| | - Fernanda Timm Seabra Souza
- Programa de Pós‐Graduação em Ciências Biológicas, Bioquímica, UFRGSRua Ramiro Barcelos, 2600CEP 90035‐003Porto AlegreRSBrazil
- Serviço de Genética Médica, HCPARua Ramiro Barcelos, 2350CEP 90035‐003Porto AlegreRSBrazil
| | - Franciele Trapp
- Serviço de Genética Médica, HCPARua Ramiro Barcelos, 2350CEP 90035‐003Porto AlegreRSBrazil
| | - Kristiane Michelin‐Tirelli
- Programa de Pós‐Graduação em Ciências Biológicas, Bioquímica, UFRGSRua Ramiro Barcelos, 2600CEP 90035‐003Porto AlegreRSBrazil
- Serviço de Genética Médica, HCPARua Ramiro Barcelos, 2350CEP 90035‐003Porto AlegreRSBrazil
| | - Maira Graeff Burin
- Programa de Pós‐Graduação em Ciências Biológicas, Bioquímica, UFRGSRua Ramiro Barcelos, 2600CEP 90035‐003Porto AlegreRSBrazil
- Serviço de Genética Médica, HCPARua Ramiro Barcelos, 2350CEP 90035‐003Porto AlegreRSBrazil
| | - Roberto Giugliani
- Programa de Pós‐Graduação em Ciências Biológicas, Bioquímica, UFRGSRua Ramiro Barcelos, 2600CEP 90035‐003Porto AlegreRSBrazil
- Serviço de Genética Médica, HCPARua Ramiro Barcelos, 2350CEP 90035‐003Porto AlegreRSBrazil
- Departamento de GenéticaIB, Universidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| | - Carmen Regla Vargas
- Departamento de Análises, Faculdade de FarmáciaUFRGSAvenida Ipiranga, 2752CEP 90610‐000Porto AlegreRSBrazil
- Programa de Pós‐Graduação em Ciências Biológicas, Bioquímica, UFRGSRua Ramiro Barcelos, 2600CEP 90035‐003Porto AlegreRSBrazil
- Programa de Pós‐Graduação em Ciências Farmacêuticas, UFRGSAv. Ipiranga, 2752CEP 90610‐000Porto AlegreRSBrazil
- Serviço de Genética Médica, HCPARua Ramiro Barcelos, 2350CEP 90035‐003Porto AlegreRSBrazil
| |
Collapse
|
26
|
Erickson RP, Fiorenza MT. A hopeful therapy for Niemann-Pick C diseases. Lancet 2017; 390:1720-1721. [PMID: 28803711 DOI: 10.1016/s0140-6736(17)31631-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 05/28/2017] [Indexed: 10/19/2022]
Affiliation(s)
- Robert P Erickson
- Department of Pediatrics, University of Arizona School of Medicine, Tucson, AZ, 85724-5073, USA.
| | - Maria Teresa Fiorenza
- Division of Neuroscience, Department of Psychology, Sapienza University, Rome, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
27
|
Totenhagen JW, Bernstein A, Yoshimaru ES, Erickson RP, Trouard TP. Quantitative magnetic resonance imaging of brain atrophy in a mouse model of Niemann-Pick type C disease. PLoS One 2017; 12:e0178179. [PMID: 28542381 PMCID: PMC5443551 DOI: 10.1371/journal.pone.0178179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 05/09/2017] [Indexed: 12/12/2022] Open
Abstract
In vivo magnetic resonance imaging (MRI) was used to investigate regional and global brain atrophy in the neurodegenerative Niemann Pick Type C1 (NPC1) disease mouse model. Imaging experiments were conducted with the most commonly studied mouse model of NPC1 disease at early and late disease states. High-resolution in vivo images were acquired at early and late stages of the disease and analyzed with atlas-based registration to obtain measurements of twenty brain region volumes. A two-way ANOVA analysis indicated eighteen of these regions were different due to genotype and thirteen showed a significant interaction with age and genotype. The ability to measure in vivo neurodegeneration evidenced by brain atrophy adds to the ability to monitor disease progression and treatment response in the mouse model.
Collapse
Affiliation(s)
- John W. Totenhagen
- Biomedical Engineering Program, University of Arizona, Tucson, Arizona, United States of America
| | - Adam Bernstein
- Biomedical Engineering Program, University of Arizona, Tucson, Arizona, United States of America
| | - Eriko S. Yoshimaru
- Biomedical Engineering Program, University of Arizona, Tucson, Arizona, United States of America
| | - Robert P. Erickson
- Department of Pediatrics, University of Arizona, Tucson, Arizona, United States of America
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Theodore P. Trouard
- Biomedical Engineering Program, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
- Department of Medical Imaging, University of Arizona, Tucson, Arizona, United States of America
- McKight Brain Institute, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
28
|
Canterini S, Dragotto J, Dardis A, Zampieri S, De Stefano ME, Mangia F, Erickson RP, Fiorenza MT. Shortened primary cilium length and dysregulated Sonic hedgehog signaling in Niemann-Pick C1 disease. Hum Mol Genet 2017; 26:2277-2289. [DOI: 10.1093/hmg/ddx118] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/25/2017] [Indexed: 11/13/2022] Open
|
29
|
Caporali P, Bruno F, Palladino G, Dragotto J, Petrosini L, Mangia F, Erickson RP, Canterini S, Fiorenza MT. Developmental delay in motor skill acquisition in Niemann-Pick C1 mice reveals abnormal cerebellar morphogenesis. Acta Neuropathol Commun 2016; 4:94. [PMID: 27586038 PMCID: PMC5009663 DOI: 10.1186/s40478-016-0370-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 08/18/2016] [Indexed: 12/11/2022] Open
Abstract
Niemann-Pick type C1 (NPC1) disease is a lysosomal storage disorder caused by defective intracellular trafficking of exogenous cholesterol. Purkinje cell (PC) degeneration is the main sign of cerebellar dysfunction in both NPC1 patients and animal models. It has been recently shown that a significant decrease in Sonic hedgehog (Shh) expression reduces the proliferative potential of granule neuron precursors in the developing cerebellum of Npc1−/− mice. Pursuing the hypothesis that this developmental defect translates into functional impairments, we have assayed Npc1-deficient pups belonging to the milder mutant mouse strain Npc1nmf164 for sensorimotor development from postnatal day (PN) 3 to PN21. Npc1nmf164/ Npc1nmf164 pups displayed a 2.5-day delay in the acquisition of complex motor abilities compared to wild-type (wt) littermates, in agreement with the significant disorganization of cerebellar cortex cytoarchitecture observed between PN11 and PN15. Compared to wt, Npc1nmf164 homozygous mice exhibited a poorer morphological differentiation of Bergmann glia (BG), as indicated by thicker radial shafts and less elaborate reticular pattern of lateral processes. Also BG functional development was defective, as indicated by the significant reduction in GLAST and Glutamine synthetase expression. A reduced VGluT2 and GAD65 expression also indicated an overall derangement of the glutamatergic/GABAergic stimulation that PCs receive by climbing/parallel fibers and basket/stellate cells, respectively. Lastly, Npc1-deficiency also affected oligodendrocyte differentiation as indicated by the strong reduction of myelin basic protein. Two sequential 2-hydroxypropyl-β-cyclodextrin administrations at PN4 and PN7 counteract these defects, partially preventing functional impairment of BG and fully restoring the normal patterns of glutamatergic/GABAergic stimulation to PCs. These findings indicate that in Npc1nmf164 homozygous mice the derangement of synaptic connectivity and dysmyelination during cerebellar morphogenesis largely anticipate motor deficits that are typically observed during adulthood.
Collapse
|
30
|
Mitoma H, Manto M. The physiological basis of therapies for cerebellar ataxias. Ther Adv Neurol Disord 2016; 9:396-413. [PMID: 27582895 DOI: 10.1177/1756285616648940] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cerebellar ataxias represent a group of heterogeneous disorders impacting on activities of daily living and quality of life. Various therapies have been proposed to improve symptoms in cerebellar ataxias. This review examines the physiological background of the various treatments currently administered worldwide. We analyze the mechanisms of action of drugs with a focus on aminopyridines and other antiataxic medications, of noninvasive cerebellar stimulation, and of motor rehabilitation. Considering the cerebellum as a controller, we propose the novel concept of 'restorable stage'. Because of its unique anatomical architecture and its diffuse connectivity in particular with the cerebral cortex, keeping in mind the anatomophysiology of the cerebellar circuitry is a necessary step to understand the rationale of therapies of cerebellar ataxias and develop novel therapeutic tools.
Collapse
Affiliation(s)
- Hiroshi Mitoma
- Department of Medical Education, Tokyo Medical University, 6-7-1 Nishi-shinjyuku, Shinjyuku-ku, Tokyo, 160-0023, Japan
| | - Mario Manto
- Unité d'Etude du Mouvement (UEM), FNRS, Neurologie ULB-Erasme, Brussels, Belgium Université de Mons, Mons, Belgium
| |
Collapse
|
31
|
Dardis A, Zampieri S, Canterini S, Newell KL, Stuani C, Murrell JR, Ghetti B, Fiorenza MT, Bembi B, Buratti E. Altered localization and functionality of TAR DNA Binding Protein 43 (TDP-43) in niemann- pick disease type C. Acta Neuropathol Commun 2016; 4:52. [PMID: 27193329 PMCID: PMC4870731 DOI: 10.1186/s40478-016-0325-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/09/2016] [Indexed: 12/13/2022] Open
Abstract
Niemann-Pick type C (NPC) disease is a lysosomal storage disorder characterized by the occurrence of visceral and neurological symptoms. At present, the molecular mechanisms causing neurodegeneration in this disease are unknown. Here we report the altered expression and/or mislocalization of the TAR-DNA binding protein 43 (TDP-43) in both NPC mouse and in a human neuronal model of the disease. We also report the neuropathologic study of a NPC patient’s brain, showing that while TDP-43 is below immunohistochemical detection in nuclei of cerebellar Purkinje cells, it has a predominant localization in the cytoplasm of these cells. From a functional point of view, the TDP-43 mislocalization, that occurs in a human experimental neuronal model system, is associated with specific alterations in TDP-43 controlled genes. Most interestingly, treatment with N-Acetyl-cysteine (NAC) or beta-cyclodextrin (CD) can partially restore TDP-43 nuclear localization. Taken together, the results of these studies extend the role of TDP-43 beyond the Amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD)/Alzheimer disease (AD) spectrum. These findings may open novel research/therapeutic avenues for a better understanding of both NPC disease and the TDP-43 proteinopathy disease mechanism.
Collapse
|
32
|
Adebali O, Reznik AO, Ory DS, Zhulin IB. Establishing the precise evolutionary history of a gene improves prediction of disease-causing missense mutations. Genet Med 2016; 18:1029-36. [PMID: 26890452 PMCID: PMC4990510 DOI: 10.1038/gim.2015.208] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/09/2015] [Indexed: 11/29/2022] Open
Abstract
Purpose: Predicting the phenotypic effects of mutations has become an important application in clinical genetic diagnostics. Computational tools evaluate the behavior of the variant over evolutionary time and assume that variations seen during the course of evolution are probably benign in humans. However, current tools do not take into account orthologous/paralogous relationships. Paralogs have dramatically different roles in Mendelian diseases. For example, whereas inactivating mutations in the NPC1 gene cause the neurodegenerative disorder Niemann-Pick C, inactivating mutations in its paralog NPC1L1 are not disease-causing and, moreover, are implicated in protection from coronary heart disease. Methods: We identified major events in NPC1 evolution and revealed and compared orthologs and paralogs of the human NPC1 gene through phylogenetic and protein sequence analyses. We predicted whether an amino acid substitution affects protein function by reducing the organism’s fitness. Results: Removing the paralogs and distant homologs improved the overall performance of categorizing disease-causing and benign amino acid substitutions. Conclusion: The results show that a thorough evolutionary analysis followed by identification of orthologs improves the accuracy in predicting disease-causing missense mutations. We anticipate that this approach will be used as a reference in the interpretation of variants in other genetic diseases as well. Genet Med18 10, 1029–1036.
Collapse
Affiliation(s)
- Ogun Adebali
- Graduate School of Genome Science and Technology, University of Tennessee-Oak Ridge National Laboratory, Knoxville, Tennessee, USA.,Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.,Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Alexander O Reznik
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA.,Present address: Center for Bioinformatics, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Daniel S Ory
- Diabetes Cardiovascular Disease Center, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Igor B Zhulin
- Graduate School of Genome Science and Technology, University of Tennessee-Oak Ridge National Laboratory, Knoxville, Tennessee, USA.,Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.,Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
33
|
Palladino G, Loizzo S, Fortuna A, Canterini S, Palombi F, Erickson RP, Mangia F, Fiorenza MT. Visual evoked potentials of Niemann-Pick type C1 mice reveal an impairment of the visual pathway that is rescued by 2-hydroxypropyl-ß-cyclodextrin. Orphanet J Rare Dis 2015; 10:133. [PMID: 26458950 PMCID: PMC4603821 DOI: 10.1186/s13023-015-0348-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/27/2015] [Indexed: 12/21/2022] Open
Abstract
Background The lysosomal storage disorder, Niemann Pick type C1 (NPC1), presents a variable phenotype including neurovisceral and neurological symptoms. 2-Hydroxypropyl-ß-cyclodextrin (HPßCD)-based therapies are presently the most promising route of intervention. While severe cerebellar dysfunction remains the main disabling feature of NPC1, sensory functions including auditory and olfactory ones are also affected. Morphological and functional anomalies of Npc1−/− mouse retina have also been observed, although the functional integrity of the visual pathway from retina to visual cortex is still unsettled. We have addressed this issue by characterizing the visual evoked potential (VEP) response of Npc1−/− mice and determining if/how HPßCD administration influences the VEPs of both Npc1−/− and Npc1+/+ mice. Methods VEP elicited by a brief visual stimulus were recorded from the scalp overlying the visual cortex of adult (PN, postnatal days 60, 75, 85 and 100) Npc1+/+ and Npc1−/− mice that had received repeated injections of either HPßCD or plain vehicle. The first injection was given at PN4 and was followed by a second one at PN7 and thereafter by weekly injections up to PN49. Cholesterol accumulation and myelin loss were finally assessed by filipin staining and myelin basic protein immunohistochemistry, respectively. Results and discussion We have found that the transmission of visual signals from retina to visual cortex is negatively influenced by the loss of Npc1 function. In fact, the VEP response of Npc1−/− mice displayed a highly significant increase in the latency compared to that of Npc1+/+ mice. HPßCD administration fully rescued this defect and counteracted the cholesterol accumulation in retinal ganglion cells and dorsal lateral geniculate nucleus neurons, as well as the myelin loss in optic nerve fibers and axons projecting to the visual cortex observed in of Npc1−/− mice. By contrast, HPßCD administration had no effect on the VEP response of Npc1+/+ mice, further strengthening the treatment efficacy. Conclusions This study pinpoints the analysis of VEP response as a potentially accurate and non-invasive approach to assess neural activity and visual information processing in NPC1 patients, as well as for monitoring the progression of the disease and assessing the efficacy of potential therapies. Electronic supplementary material The online version of this article (doi:10.1186/s13023-015-0348-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Giampiero Palladino
- Department of Psychology, Section of Neuroscience and "Daniel Bovet" Neurobiology Research Center, Sapienza University of Rome, 00185, Rome, Italy
| | - Stefano Loizzo
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, via Regina Elena 299, 00161, Rome, Italy
| | - Andrea Fortuna
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, via Regina Elena 299, 00161, Rome, Italy
| | - Sonia Canterini
- Department of Psychology, Section of Neuroscience and "Daniel Bovet" Neurobiology Research Center, Sapienza University of Rome, 00185, Rome, Italy
| | - Fioretta Palombi
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161, Rome, Italy
| | - Robert P Erickson
- Department of Pediatrics, University of Arizona, Tucson, AZ, 85724-5073, USA
| | - Franco Mangia
- Department of Psychology, Section of Neuroscience and "Daniel Bovet" Neurobiology Research Center, Sapienza University of Rome, 00185, Rome, Italy
| | - Maria Teresa Fiorenza
- Department of Psychology, Section of Neuroscience and "Daniel Bovet" Neurobiology Research Center, Sapienza University of Rome, 00185, Rome, Italy.
| |
Collapse
|