1
|
Li L, Hammerlindl H, Shen SQ, Bao F, Hammerlindl S, Altschuler SJ, Wu LF. A phenopushing platform to identify compounds that alleviate acute hypoxic stress by fast-tracking cellular adaptation. Nat Commun 2025; 16:2684. [PMID: 40102413 PMCID: PMC11920246 DOI: 10.1038/s41467-025-57754-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 03/03/2025] [Indexed: 03/20/2025] Open
Abstract
Severe acute hypoxic stress is a major contributor to the pathology of human diseases, including ischemic disorders. Current treatments focus on managing consequences of hypoxia, with few addressing cellular adaptation to low-oxygen environments. Here, we investigate whether accelerating hypoxia adaptation could provide a strategy to alleviate acute hypoxic stress. We develop a high-content phenotypic screening platform to identify compounds that fast-track adaptation to hypoxic stress. Our platform captures a high-dimensional phenotypic hypoxia response trajectory consisting of normoxic, acutely stressed, and chronically adapted cell states. Leveraging this trajectory, we identify compounds that phenotypically shift cells from the acutely stressed state towards the adapted state, revealing mTOR/PI3K or BET inhibition as strategies to induce this phenotypic shift. Importantly, our compound hits promote the survival of liver cells exposed to ischemia-like stress, and rescue cardiomyocytes from hypoxic stress. Our "phenopushing" platform offers a general, target-agnostic approach to identify compounds and targets that accelerate cellular adaptation, applicable across various stress conditions.
Collapse
Affiliation(s)
- Li Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Heinz Hammerlindl
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Susan Q Shen
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Feng Bao
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Sabrina Hammerlindl
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Steven J Altschuler
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA.
| | - Lani F Wu
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Zhang SQ, Deng Q, Tian C, Zhao HH, Yang LY, Cheng XW, Wang GP, Liu D. Costunolide normalizes neuroinflammation and improves neurogenesis deficits in a mouse model of depression through inhibiting microglial Akt/mTOR/NF-κB pathway. Acta Pharmacol Sin 2025:10.1038/s41401-025-01506-w. [PMID: 40011631 DOI: 10.1038/s41401-025-01506-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/09/2025] [Indexed: 02/28/2025]
Abstract
Neuroinflammation is crucial for the pathogenesis of major depression. Preclinical studies have shown the potential of anti-inflammatory agents, specifically costunolide (COS), correlate with antidepressant effects. In this study, we investigated the molecular mechanisms underlying the antidepressant actions of COS. Chronic restraint stress (CRS) was induced in male mice. The mice were treated with either intra-DG injection of COS (5 μM, 1 μL per side) or COS (20 mg/kg, i.p.) for 1 week. We showed that administration of COS through the both routes significantly ameliorated the depressive-like behavior in CRS-exposed mice. Furthermore, administration of COS significantly improved chronic stress-induced adult hippocampal neurogenesis deficits in the mice through attenuating microglia-derived neuroinflammation. We demonstrated that COS (5 μM) exerted anti-neuroinflammatory effects in LPS-treated BV2 cells via inhibiting microglial Akt/mTOR/NF-κB pathway; inactivation of mTOR/NF-κB/IL-1β pathway was required for the pro-neurogenic action of COS in CRS-exposed mice. Our results reveal the antidepressant mechanism of COS that is normalizing neuroinflammation to improve neurogenesis deficits, supporting anti-inflammatory agents as a potential therapeutic strategy for depression.
Collapse
Affiliation(s)
- Shao-Qi Zhang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qiao Deng
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Cheng Tian
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huan-Huan Zhao
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221004, China
| | - Li-Ying Yang
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xin-Wei Cheng
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guo-Ping Wang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
3
|
Al-Garni AM, Hosny SA, Almasabi F, Shati AA, Alzamil NM, ShamsEldeen AM, El-Shafei AA, Al-Hashem F, Zafrah H, Maarouf A, Al-Ani B, Bin-Jaliah I, Kamar SS. Identifying iNOS and glycogen as biomarkers for degenerated cerebellar purkinje cells in autism spectrum disorder: Protective effects of erythropoietin and zinc sulfate. PLoS One 2025; 20:e0317695. [PMID: 39946495 PMCID: PMC11824972 DOI: 10.1371/journal.pone.0317695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 01/02/2025] [Indexed: 02/16/2025] Open
Abstract
Autism spectrum disorder (ASD) is a collective neurodevelopmental disorder affecting young children and accounting for 1% of the world's population. The cerebellum is the major part of the human brain affected by ASD and is associated with a substantial reduction in the number of Purkinje cells. An association between ASD and the expression of the nitrosative stress biomarker inducible nitric oxide synthase (iNOS), as well as glycogen deposition in damaged Purkinje cells, has not been previously reported in the medical literature. To explore this correlation, young rats were injected with propionic acid (PPA) (500 mg/kg) for 5 days (model group), while the protection groups were treated with either erythropoietin (EPO, 5,000 U/kg) or 2 mg/kg zinc sulfate immediately after the PPA injections. ASD-like features were developed in the model group, as evidenced by cerebellum damage (degeneration of Purkinje cells) and cerebellar dysfunction (behavioral impairment). This study documented the exclusive expression of iNOS in the degenerated Purkinje cells, along with glycogen deposition in these cells. Additionally, PPA significantly (p < 0.001) modulated cerebellar tissue levels of mammalian target of rapamycin (mTOR), gamma-aminobutyric acid (GABA), GABAA receptor, serotonin, the marker of neuronal loss (calbindin D28K), and social interaction deficit. Some of these parameters were differentially protected by EPO and zinc sulfate, with the former providing greater protection than zinc sulfate. Furthermore, a significant correlation between the iNOS score and these parameters associated with ASD was observed. These findings demonstrate the colocalization of iNOS and glycogen in the damaged Purkinje cells induced by ASD, along with the modulation of ASD parameters, which were protected by EPO and zinc sulfate treatments. Thus, these potential novel biomarkers may offer possible therapeutic targets for the treatment of ASD.
Collapse
Affiliation(s)
- Abdulaziz M. Al-Garni
- Psychiatry section, Department of Medicine, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Department of Psychiatry, School of Medicine, Queen’s University, Kingston, Ontario, Canada
| | - Sara A. Hosny
- Medical Histology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Faris Almasabi
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ayed A. Shati
- Department of Child Health, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Norah M. Alzamil
- Department of Family and Community Medicine, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | - Asmaa A. El-Shafei
- Medical Histology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Fahaid Al-Hashem
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Hind Zafrah
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Amro Maarouf
- Department of Clinical Biochemistry, Russells Hall Hospital, Dudley, United Kingdom
| | - Bahjat Al-Ani
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ismaeel Bin-Jaliah
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Samaa S. Kamar
- Medical Histology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
4
|
Zhang N, Hu J, Liu W, Cai W, Xu Y, Wang X, Li S, Ru B. Advances in Novel Biomaterial-Based Strategies for Spinal Cord Injury Treatment. Mol Pharm 2024; 21:4764-4785. [PMID: 39235393 DOI: 10.1021/acs.molpharmaceut.3c01104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Spinal cord injury (SCI) is a highly disabling neurological disorder. Its pathological process comprises an initial acute injury phase (primary injury) and a secondary injury phase (subsequent chronic injury). Although surgical, drug, and cell therapies have made some progress in treating SCI, there is no exact therapeutic strategy for treating SCI and promoting nerve regeneration due to the complexity of the pathological SCI process. The development of novel drug delivery systems to treat SCI is expected to significantly impact the individualized treatment of SCI due to its unique and excellent properties, such as active targeting and controlled release. In this review, we first describe the pathological progression of the SCI response, including primary and secondary injuries. Next, we provide a concise overview of newly developed nanoplatforms and their potential application in regulating and treating different pathological processes of SCI. Then, we introduce the existing potential problems and future clinical application perspectives of biomedical engineering-based therapies for SCI.
Collapse
Affiliation(s)
- Nannan Zhang
- Center for Rehabilitation Medicine, Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 330004, China
| | - Jiaqi Hu
- Center for Rehabilitation Medicine, Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 330004, China
| | - Wenlong Liu
- Center for Rehabilitation Medicine, Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 330004, China
| | - Wenjun Cai
- Center for Rehabilitation Medicine, Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 330004, China
| | - Yun Xu
- Center for Rehabilitation Medicine, Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 330004, China
| | - Xiaojuan Wang
- Department of Clinical Pharmacy, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Shun Li
- Center for Rehabilitation Medicine, Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 330004, China
| | - Bin Ru
- Center for Rehabilitation Medicine, Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 330004, China
| |
Collapse
|
5
|
Qi X, He X, Peng Y, He X, Yang Q, Jiao K, Liu H. Roles of osteocalcin in the central nervous system. CNS Neurosci Ther 2024; 30:e70016. [PMID: 39252492 PMCID: PMC11386255 DOI: 10.1111/cns.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/04/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Bone-derived protein osteocalcin, which has beneficial effects on brain function, may be a future research direction for neurological disorders. A growing body of evidence suggests a link between osteocalcin and neurological disorders, but the exact relationship is contradictory and unclear. SCOPE OF REVIEW The aim of this review is to summarize the current research on the interaction between osteocalcin and the central nervous system and to propose some speculative future research directions. MAJOR CONCLUSIONS In the normal central nervous system, osteocalcin is involved in neuronal structure, neuroprotection, and the regulation of cognition and anxiety. Studies on osteocalcin-related abnormalities in the central nervous system are divided into animal model studies and human studies, depending on the subject. In humans, the link between osteocalcin and brain function is inconsistent. These conflicting data may be due to methodological inconsistencies. By reviewing the related literature on osteocalcin, some comorbidities of the bone and nervous system and future research directions related to osteocalcin are proposed.
Collapse
Affiliation(s)
- Xiao‐Shan Qi
- Department of RadiologyAffiliated Hospital of Zunyi Medical University, Engineering Research Center of Intelligent Medical Imaging in Guizhou Higher Education lnstitutions, Medical Imaging Center of Guizhou ProvinceZunyiChina
- The First Clinical Medical CollegeZunyi Medical UniversityZunyiChina
| | - Xin He
- Department of RadiologyAffiliated Hospital of Zunyi Medical University, Engineering Research Center of Intelligent Medical Imaging in Guizhou Higher Education lnstitutions, Medical Imaging Center of Guizhou ProvinceZunyiChina
| | - Ying Peng
- Department of RadiologyAffiliated Hospital of Zunyi Medical University, Engineering Research Center of Intelligent Medical Imaging in Guizhou Higher Education lnstitutions, Medical Imaging Center of Guizhou ProvinceZunyiChina
| | - Xing‐Hong He
- Department of RadiologyAffiliated Hospital of Zunyi Medical University, Engineering Research Center of Intelligent Medical Imaging in Guizhou Higher Education lnstitutions, Medical Imaging Center of Guizhou ProvinceZunyiChina
| | - Qian‐Yu Yang
- The First Clinical Medical CollegeZunyi Medical UniversityZunyiChina
| | - Kai Jiao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, School of StomatologyThe Fourth Military Medical UniversityXi‘anChina
| | - Heng Liu
- Department of RadiologyAffiliated Hospital of Zunyi Medical University, Engineering Research Center of Intelligent Medical Imaging in Guizhou Higher Education lnstitutions, Medical Imaging Center of Guizhou ProvinceZunyiChina
| |
Collapse
|
6
|
Atya HB, Sharaf NM, Abdelghany RM, El-Helaly SN, Taha H. Autophagy and exosomes; inter-connected maestros in Alzheimer's disease. Inflammopharmacology 2024; 32:2061-2073. [PMID: 38564092 PMCID: PMC11136856 DOI: 10.1007/s10787-024-01466-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
Autophagy is a crucial process involved in the degradation and recycling of cytoplasmic components which are transported to the lysosomal compartment by autophagosomes. Exosomes are an important means of communication and signaling in both normal and diseased states, and they have a significant role in the transmission and propagation of proteins, especially proteins implicated in neurodegenerative disorders. Autophagy may affect exosomal processing, but whether autophagy controls the release of aggregated β-amyloid and tau proteins in exosomes of Alzheimer disease (AD) is unclear. Therefore, our study aimed to investigate how modulating autophagy affects the exosomal release of these proteins in animal models of AD. Isolated exosomes from brain tissues of 48 male albino mice were divided into four groups (Negative control, LPS, rapamycin (RAPA), and chloroquine (CQ). LC3 I and LC3 II as well as Aβ and Tau proteins levels were determined. All mice undergone Neuro-behavioral tests (Morris Water maze test, Y-maze test, and Novel Object Recognition). Both LPS and CQ groups showed reduced expression levels of LC3 II and LC3 II/LC3 I ratio. In contrast, RAPA group showed a significant increase in both LC3-II expression and LC3-II/LC3-I ratio. The levels of both Aβ & Tau in exosomes of CQ & LPS groups were higher. While RAPA group showed a significant diminished levels of tau & Aβ proteins. In conclusion, our findings suggest that autophagy alterations in AD can influence the release of Aβ and tau proteins through exosomes, which may impact the spread of misfolded proteins in AD. These results highlight a potential innovative therapeutic approach for combating AD.
Collapse
Affiliation(s)
- Hanaa B Atya
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, P.O. Box 11795, Cairo, Egypt.
| | - Nadia Mohamed Sharaf
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo-(GUC), Cairo, Egypt
| | - Ragwa Mansour Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo-(GUC), Cairo, Egypt
| | - Sara Nageeb El-Helaly
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Heba Taha
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, P.O. Box 11795, Cairo, Egypt
| |
Collapse
|
7
|
Chi OZ, Liu X, Fortus H, Werlen G, Jacinto E, Weiss HR. Inhibition of p70 Ribosomal S6 Kinase (S6K1) Reduces Cortical Blood Flow in a Rat Model of Autism-Tuberous Sclerosis. Neuromolecular Med 2024; 26:10. [PMID: 38570425 PMCID: PMC10990997 DOI: 10.1007/s12017-024-08780-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/04/2024] [Indexed: 04/05/2024]
Abstract
The manifestations of tuberous sclerosis complex (TSC) in humans include epilepsy, autism spectrum disorders (ASD) and intellectual disability. Previous studies suggested the linkage of TSC to altered cerebral blood flow and metabolic dysfunction. We previously reported a significant elevation in cerebral blood flow in an animal model of TSC and autism of young Eker rats. Inhibition of the mammalian target of rapamycin (mTOR) by rapamycin could restore normal oxygen consumption and cerebral blood flow. In this study, we investigated whether inhibiting a component of the mTOR signaling pathway, p70 ribosomal S6 kinase (S6K1), would yield comparable effects. Control Long Evans and Eker rats were divided into vehicle and PF-4708671 (S6K1 inhibitor, 75 mg/kg for 1 h) treated groups. Cerebral regional blood flow (14C-iodoantipyrine) was determined in isoflurane anesthetized rats. We found significantly increased basal cortical (+ 32%) and hippocampal (+ 15%) blood flow in the Eker rats. PF-4708671 significantly lowered regional blood flow in the cortex and hippocampus of the Eker rats. PF-4708671 did not significantly lower blood flow in these regions in the control Long Evans rats. Phosphorylation of S6-Ser240/244 and Akt-Ser473 was moderately decreased in Eker rats but only the latter reached statistical significance upon PF-4708671 treatment. Our findings suggest that moderate inhibition of S6K1 with PF-4708671 helps to restore normal cortical blood flow in Eker rats and that this information might have therapeutic potential in tuberous sclerosis complex and autism.
Collapse
Affiliation(s)
- Oak Z Chi
- Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson Medical School, 125 Paterson Street, Suite 3100, New Brunswick, NJ, 08901-1977, USA.
| | - Xia Liu
- Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson Medical School, 125 Paterson Street, Suite 3100, New Brunswick, NJ, 08901-1977, USA
| | - Harvey Fortus
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Guy Werlen
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Harvey R Weiss
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| |
Collapse
|
8
|
Wang W, Ma X, Du W, Lin R, Li Z, Jiang W, Wang LY, Worley PF, Xu T. Small G-Protein Rheb Gates Mammalian Target of Rapamycin Signaling to Regulate Morphine Tolerance in Mice. Anesthesiology 2024; 140:786-802. [PMID: 38147625 DOI: 10.1097/aln.0000000000004885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
BACKGROUND Analgesic tolerance due to long-term use of morphine remains a challenge for pain management. Morphine acts on μ-opioid receptors and downstream of the phosphatidylinositol 3-kinase signaling pathway to activate the mammalian target of rapamycin (mTOR) pathway. Rheb is an important regulator of growth and cell-cycle progression in the central nervous system owing to its critical role in the activation of mTOR. The hypothesis was that signaling via the GTP-binding protein Rheb in the dorsal horn of the spinal cord is involved in morphine-induced tolerance. METHODS Male and female wild-type C57BL/6J mice or transgenic mice (6 to 8 weeks old) were injected intrathecally with saline or morphine twice daily at 12-h intervals for 5 consecutive days to establish a tolerance model. Analgesia was assessed 60 min later using the tail-flick assay. After 5 days, the spine was harvested for Western blot or immunofluorescence analysis. RESULTS Chronic morphine administration resulted in the upregulation of spinal Rheb by 4.27 ± 0.195-fold (P = 0.0036, n = 6), in turn activating mTOR by targeting rapamycin complex 1 (mTORC1). Genetic overexpression of Rheb impaired morphine analgesia, resulting in a tail-flick latency of 4.65 ± 1.10 s (P < 0.0001, n = 7) in Rheb knock-in mice compared to 10 s in control mice (10 ± 0 s). Additionally, Rheb overexpression in spinal excitatory neurons led to mTORC1 signaling overactivation. Genetic knockout of Rheb or inhibition of mTORC1 signaling by rapamycin potentiated morphine-induced tolerance (maximum possible effect, 52.60 ± 9.56% in the morphine + rapamycin group vs. 16.60 ± 8.54% in the morphine group; P < 0.0001). Moreover, activation of endogenous adenosine 5'-monophosphate-activated protein kinase inhibited Rheb upregulation and retarded the development of morphine-dependent tolerance (maximum possible effect, 39.51 ± 7.40% in morphine + metformin group vs. 15.58 ± 5.79% in morphine group; P < 0.0001). CONCLUSIONS This study suggests spinal Rheb as a key molecular factor for regulating mammalian target of rapamycin signaling. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Wenying Wang
- Department of Anesthesiology, Sixth People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaqing Ma
- Department of Anesthesiology, Sixth People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjie Du
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Raozhou Lin
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Zhongping Li
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Wei Jiang
- Department of Anesthesiology, Sixth People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu-Yang Wang
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario, Canada; and Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Paul F Worley
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tao Xu
- Department of Anesthesiology, Sixth People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Anesthesiology, Suzhou Hospital of Anhui Medical University, Suzhou, China; and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
9
|
Chen Y, Chen J, Xing Z, Peng C, Li D. Autophagy in Neuroinflammation: A Focus on Epigenetic Regulation. Aging Dis 2024; 15:739-754. [PMID: 37548945 PMCID: PMC10917535 DOI: 10.14336/ad.2023.0718-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/18/2023] [Indexed: 08/08/2023] Open
Abstract
Neuroinflammation, characterized by the secretion of abundant inflammatory mediators, pro-inflammatory polarization of microglia, and the recruitment of infiltrating myeloid cells to foci of inflammation, drives or exacerbates the pathological processes of central nervous system disorders, especially in neurodegenerative diseases. Autophagy plays an essential role in neuroinflammatory processes, and the underlaying physiological mechanisms are closely correlated with neuroinflammation-related signals. Inhibition of mTOR and activation of AMPK and FOXO1 enhance autophagy and thereby suppress NLRP3 inflammasome activity and apoptosis, leading to the relief of neuroinflammatory response. And autophagy mitigates neuroinflammation mainly manifested by promoting the polarization of microglia from a pro-inflammatory to an anti-inflammatory state, reducing the production of pro-inflammatory mediators, and up-regulating the levels of anti-inflammatory factors. Notably, epigenetic modifications are intimately associated with autophagy and the onset and progression of various brain diseases. Non-coding RNAs, including microRNAs, circular RNAs and long noncoding RNAs, and histone acetylation have been reported to adjust autophagy-related gene and protein expression to alleviate inflammation in neurological diseases. The present review primarily focuses on the role and mechanisms of autophagy in neuroinflammatory responses, as well as epigenetic modifications of autophagy in neuroinflammation to reveal potential therapeutic targets in central nervous system diseases.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junren Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziwei Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Quan H, Zhang R. Microglia dynamic response and phenotype heterogeneity in neural regeneration following hypoxic-ischemic brain injury. Front Immunol 2023; 14:1320271. [PMID: 38094292 PMCID: PMC10716326 DOI: 10.3389/fimmu.2023.1320271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Hypoxic-ischemic brain injury poses a significant threat to the neural niche within the central nervous system. In response to this pathological process, microglia, as innate immune cells in the central nervous system, undergo rapid morphological, molecular and functional changes. Here, we comprehensively review these dynamic changes in microglial response to hypoxic-ischemic brain injury under pathological conditions, including stroke, chronic intermittent hypoxia and neonatal hypoxic-ischemic brain injury. We focus on the regulation of signaling pathways under hypoxic-ischemic brain injury and further describe the process of microenvironment remodeling and neural tissue regeneration mediated by microglia after hypoxic-ischemic injury.
Collapse
Affiliation(s)
- Hongxin Quan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Runrui Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| |
Collapse
|
11
|
Hu H, Lu X, Huang L, He Y, Liu X, Wang Y, Duan C. Castor1 overexpression regulates microglia M1/M2 polarization via inhibiting mTOR pathway. Metab Brain Dis 2023; 38:699-708. [PMID: 36454504 DOI: 10.1007/s11011-022-01135-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022]
Abstract
Microglia are resident immune cells in the brain and are closely associated with central nervous system inflammation and neurodegenerative diseases. It is known that mammalian target of rapamycin (mTOR) pathway plays an important role in the polarization of microglia. Castor1 has been identified as the cytosolic arginine sensor for the mTOR complex 1 (mTORC1) pathway, but the role of Castor1 in microglial polarization is still unknown. The purpose of this study was to explore the regulatory effect of Castor1 on microglial polarization and the underlying mechanism. The results demonstrated that Castor1 expression was significantly decreased in lipopolysaccharides (LPS) and interferon (IFN)-γ treated microglia. Castor1 overexpression inhibited the microglia M1 polarization by reducing the expression of M1 related markers. However, the expression of M2-related genes was promoted when Castor1 was overexpressed in IL-4 treated microglia. Mechanistically, Castor1 overexpression inhibited the activation of mTOR signaling pathway. In addition, after treatment with the mTOR activator MHY1485, the inhibitory effect of Castor1 overexpression on M1 polarization was attenuated, indicating that the regulation effects of Castor1 on M1 polarization was dependent on its inhibition of mTOR pathway. We propose that Castor1-mTOR signaling pathway could be considered as a potential target for treatment and intervention of central nervous system-related diseases by regulating microglia polarization.
Collapse
Affiliation(s)
- Huiling Hu
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Xiaoxia Lu
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lisi Huang
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yuqing He
- Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiuli Liu
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ying Wang
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Chaohui Duan
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
12
|
FDA-Approved Kinase Inhibitors in Preclinical and Clinical Trials for Neurological Disorders. Pharmaceuticals (Basel) 2022; 15:ph15121546. [PMID: 36558997 PMCID: PMC9784968 DOI: 10.3390/ph15121546] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Cancers and neurological disorders are two major types of diseases. We previously developed a new concept termed "Aberrant Cell Cycle Diseases" (ACCD), revealing that these two diseases share a common mechanism of aberrant cell cycle re-entry. The aberrant cell cycle re-entry is manifested as kinase/oncogene activation and tumor suppressor inactivation, which are hallmarks of both tumor growth in cancers and neuronal death in neurological disorders. Therefore, some cancer therapies (e.g., kinase inhibition, tumor suppressor elevation) can be leveraged for neurological treatments. The United States Food and Drug Administration (US FDA) has so far approved 74 kinase inhibitors, with numerous other kinase inhibitors in clinical trials, mostly for the treatment of cancers. In contrast, there are dire unmet needs of FDA-approved drugs for neurological treatments, such as Alzheimer's disease (AD), intracerebral hemorrhage (ICH), ischemic stroke (IS), traumatic brain injury (TBI), and others. In this review, we list these 74 FDA-approved kinase-targeted drugs and identify those that have been reported in preclinical and/or clinical trials for neurological disorders, with a purpose of discussing the feasibility and applicability of leveraging these cancer drugs (FDA-approved kinase inhibitors) for neurological treatments.
Collapse
|
13
|
Zhu R, Luo Y, Li S, Wang Z. The role of microglial autophagy in Parkinson's disease. Front Aging Neurosci 2022; 14:1039780. [PMID: 36389074 PMCID: PMC9664157 DOI: 10.3389/fnagi.2022.1039780] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/10/2022] [Indexed: 01/25/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. Studies have shown that abnormal accumulation of α-synuclein (α-Syn) in the substantia nigra is a specific pathological characteristic of PD. Abnormal accumulation of α-Syn in PD induces the activation of microglia. Microglia, which are immune cells in the central nervous system, are involved in the function and regulation of inflammation in PD by autophagy. The role of microglial autophagy in the pathophysiology of PD has become a hot-pot issue. This review outlines the pathways of microglial autophagy, and explores the key factor of microglial autophagy in the mechanism of PD and the possibility of microglial autophagy as a potential therapeutic target for PD.
Collapse
Affiliation(s)
- Rui Zhu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China,Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Yuyi Luo
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China,Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Shangang Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China,Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China,*Correspondence: Zhengbo Wang,
| | - Zhengbo Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China,Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China,*Correspondence: Zhengbo Wang,
| |
Collapse
|
14
|
Shi H, Jin L, Li J, Liang K, Li X, Ye Z, Zhu X, Oliveira JM, Reis RL, Mao Z, Wu M. Mesoporous polydopamine nanoparticles for sustained release of rapamycin and reactive oxygen species scavenging to synergistically accelerate neurogenesis after spinal cord injury. J Mater Chem B 2022; 10:6351-6359. [PMID: 35942619 DOI: 10.1039/d2tb00841f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spinal cord injury (SCI) is an intractable condition with complex pathological processes and poor prognosis. Reactive oxygen species (ROS) generation induced by the mammalian target of the rapamycin (mTOR) protein is one of the causes of secondary inflammation of SCI. Rapamycin (Rapa) is a pharmacological inhibitor of mTOR, which can inhibit ROS overproduction mediated by abnormal activation of the mTOR protein. Polydopamine, as a nanocarrier with excellent biological safety, has been reported to possess satisfactory ROS scavenging ability. Therefore, we designed a mesoporous polydopamine nanoparticle loaded with Rapa (mPDA@Rapa) for combination therapy, which simultaneously inhibited abnormally activated mTOR-mediated ROS production and eliminated already generated ROS. The synthesized mPDA nanoparticles could realize the effective encapsulation and sustained release of Rapa due to their mesoporous cavities and a hydrophobic benzene ring structure. In vitro experiments proved that mPDA@Rapa nanoparticles had a good ROS scavenging ability towards hydrogen peroxide and hydroxyl radicals. Furthermore, mPDA@Rapa also showed a good therapeutic effect in SCI model rats, which was evidenced by a smaller injury cavity, more coordinated hind limb movements, and a higher degree of neurogenesis and tissue regeneration. Our work provides a combined strategy to inhibit ROS overproduction and eliminate excess ROS, with potential applications not only in SCI, but also in other ROS-induced inflammations.
Collapse
Affiliation(s)
- Haifei Shi
- Department of Orthopedics, 1st Affiliated Hospital of Zhejiang University School of Medicine, Qingchun Road 79, Hangzhou, 310003, China
| | - Lulu Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Jinyi Li
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Kejiong Liang
- Department of Orthopedics, 1st Affiliated Hospital of Zhejiang University School of Medicine, Qingchun Road 79, Hangzhou, 310003, China
| | - Xigong Li
- Department of Orthopedics, 1st Affiliated Hospital of Zhejiang University School of Medicine, Qingchun Road 79, Hangzhou, 310003, China
| | - Ziqiang Ye
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Xinyue Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Joaquim Miguel Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017, Barco GMR, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017, Barco GMR, Portugal
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Mengjie Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China.
| |
Collapse
|
15
|
Tassinari M, Mottolese N, Galvani G, Ferrara D, Gennaccaro L, Loi M, Medici G, Candini G, Rimondini R, Ciani E, Trazzi S. Luteolin Treatment Ameliorates Brain Development and Behavioral Performance in a Mouse Model of CDKL5 Deficiency Disorder. Int J Mol Sci 2022; 23:ijms23158719. [PMID: 35955854 PMCID: PMC9369425 DOI: 10.3390/ijms23158719] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 12/16/2022] Open
Abstract
CDKL5 deficiency disorder (CDD), a rare and severe neurodevelopmental disease caused by mutations in the X-linked CDKL5 gene, is characterized by early-onset epilepsy, intellectual disability, and autistic features. Although pharmacotherapy has shown promise in the CDD mouse model, safe and effective clinical treatments are still far off. Recently, we found increased microglial activation in the brain of a mouse model of CDD, the Cdkl5 KO mouse, suggesting that a neuroinflammatory state, known to be involved in brain maturation and neuronal dysfunctions, may contribute to the pathophysiology of CDD. The present study aims to evaluate the possible beneficial effect of treatment with luteolin, a natural flavonoid known to have anti-inflammatory and neuroprotective activities, on brain development and behavior in a heterozygous Cdkl5 (+/−) female mouse, the mouse model of CDD that best resembles the genetic clinical condition. We found that inhibition of neuroinflammation by chronic luteolin treatment ameliorates motor stereotypies, hyperactive profile and memory ability in Cdkl5 +/− mice. Luteolin treatment also increases hippocampal neurogenesis and improves dendritic spine maturation and dendritic arborization of hippocampal and cortical neurons. These findings show that microglia overactivation exerts a harmful action in the Cdkl5 +/− brain, suggesting that treatments aimed at counteracting the neuroinflammatory process should be considered as a promising adjuvant therapy for CDD.
Collapse
Affiliation(s)
- Marianna Tassinari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Nicola Mottolese
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Giuseppe Galvani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Domenico Ferrara
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Laura Gennaccaro
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Manuela Loi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Giorgio Medici
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Giulia Candini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Roberto Rimondini
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
16
|
Barks JD, Liu Y, Dopp IA, Silverstein FS. Azithromycin reduces inflammation-amplified hypoxic-ischemic brain injury in neonatal rats. Pediatr Res 2022; 92:415-423. [PMID: 34625655 PMCID: PMC8989723 DOI: 10.1038/s41390-021-01747-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/07/2021] [Accepted: 06/16/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Systemic inflammation amplifies neonatal hypoxic-ischemic (HI) brain injury. Azithromycin (AZ), an antibiotic with anti-inflammatory properties, improves sensorimotor function and reduces tissue damage after neonatal rat HI brain injury. The objective of this study was to determine if AZ is neuroprotective in two neonatal rat models of inflammation-amplified HI brain injury. DESIGN/METHODS Seven-day-old (P7) rats received injections of toll-like receptor agonists lipopolysaccharide (LPS) or Pam3Cys-Ser-(Lys)4 (PAM) prior to right carotid ligation followed by 50 min (LPS + HI) or 60 min (PAM + HI) in 8% oxygen. Outcomes included contralateral forelimb function (forepaw placing; grip strength), survival, %Intact right hemisphere (brain damage), and a composite score incorporating these measures. We compared postnatal day 35 outcomes in controls and groups treated with three or five AZ doses. Then, we compared P21 outcomes when the first (of five) AZ doses were administered 1, 2, or 4 h after HI. RESULTS In both LPS + HI and PAM + HI models, AZ improved sensorimotor function, survival, brain tissue preservation, and composite scores. Benefits increased with five- vs. three-dose AZ and declined with longer initiation delay. CONCLUSIONS Perinatal systemic infection is a common comorbidity of neonatal asphyxia brain injury and contributes to adverse outcomes. These data support further evaluation of AZ as a candidate treatment for neonatal neuroprotection. IMPACT AZ treatment decreases sensorimotor impairment and severity of brain injury, and improves survival, after inflammation-amplified HI brain injury, and this can be achieved even with a 2 h delay in initiation. This neuroprotective benefit is seen in models of inflammation priming by both Gram-negative and Gram-positive infections. This extends our previous findings that AZ treatment is neuroprotective after HI brain injury in neonatal rats.
Collapse
Affiliation(s)
- John D.E. Barks
- Department of Pediatrics, University of Michigan Medical School, The University of Michigan, Ann Arbor, MI
| | - Yiqing Liu
- Department of Pediatrics, University of Michigan Medical School, The University of Michigan, Ann Arbor, MI
| | - Ian A. Dopp
- Department of Pediatrics, University of Michigan Medical School, The University of Michigan, Ann Arbor, MI
| | - Faye S. Silverstein
- Department of Pediatrics, University of Michigan Medical School, The University of Michigan, Ann Arbor, MI,Department of Neurology, University of Michigan Medical School, The University of Michigan, Ann Arbor, MI
| |
Collapse
|
17
|
Xie N, Fan F, Jiang S, Hou Y, Zhang Y, Cairang N, Wang X, Meng X. Rhodiola crenulate alleviates hypobaric hypoxia-induced brain injury via adjusting NF-κB/NLRP3-mediated inflammation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 103:154240. [PMID: 35691080 DOI: 10.1016/j.phymed.2022.154240] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/15/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Rhodiola crenulate (R. crenulate), a famous Tibetan medicine, has been demonstrated to possess superiorly protective effects in high-altitude hypoxic brain injury (HHBI). However, its mechanisms on HHBI are still largely unknown. METHODS Herein, the protective effects and underlying mechanisms of R. crenulate on HHBI of BABL/c mice were explored through in vivo experiments. The mice model of HHBI was established using an animal hypobaric and hypoxic chamber. R. crenulate extract (RCE) (0.5, 1.0 and 2.0 g/kg) was given by gavage for 7 days. Pathological changes and neuronal viability of mice hippocampus and cortex were evaluated using H&E and Nissl staining, respectively. The brain water content (BWC) in mice was determined by calculating the ratio of dry to wet weight of brain tissue. And serum of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH-Px) and lactate dehydrogenase (LDH) were detected via commercial biochemical kits. Synchronously, the contents of total antioxidant capacity (T-AOC), lactic acid (LA), adenosine triphosphate (ATP), succinate dehydrogenase (SDH), pyruvate kinase (PK), Ca2+-Mg2+-ATPcase, Na+-K+-ATPcase, TNF-α, IL-1β and IL-6 in brain tissue were quantitative analysis by corresponding ELISA assay. Subsequently, NLRP3, ZO-1, claudin-5, occluding, p-p65, p65, ASC, cleaved-caspase-1, caspase-1 and IL-18 were determined by immunofluorescent and western blot analyses. RESULTS The results demonstrated that RCE remarkably alleviated pathological damage, BWC, as well enhanced neuronal viability. Furthermore, the oxidative stress injuries were reversely abrogated after RCE treatment, evidenced by the increases of SOD, GSH-Px and T-AOC, while the decreases of MDA and LDH contents. Marvelously, the administration of RCE rectified and balanced the abnormal energy metabolism via elevating the levels of ATP, SDH, PK, Ca2+-Mg2+-ATPcase and Na+-K+-ATPcase, and lowering LA. Simultaneously, the expression of tight junction proteins (ZO-1, claudin-5 and occludin) was enhanced, illustrating RCE treatment might maintain the integrity of blood-brain barrier (BBB). Additionally, RCE treatment confined the contents of IL-6, IL-1β and TNF-α, and attenuated fluorescent signal of NLRP3 protein. Concurrently, the results of western blot indicated that RCE treatment dramatically restrained p-p65/p65, ASC, NLRP3, cleaved-caspase-1/caspase-1 and IL-18 protein expressions in brain tissues of mice. CONCLUSION RCE may afford a protectively intervention in HHBI of mice through suppressing the oxidative stress, improving energy metabolism and the integrity of BBB, and subsiding inflammatory responses via the NF-κB/NLRP3 signaling pathway. As a promising agent for the treatment of mice HHBI, the deep-crossing molecular mechanisms of R. crenulate still needs to be further elucidated to identify novel core hub targets.
Collapse
Affiliation(s)
- Na Xie
- School of Pharmacy, and Research Institute of Integrated TCM & Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fangfang Fan
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shengnan Jiang
- School of Pharmacy, and Research Institute of Integrated TCM & Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ya Hou
- School of Pharmacy, and Research Institute of Integrated TCM & Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | | | - Xiaobo Wang
- School of Pharmacy, and Research Institute of Integrated TCM & Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xianli Meng
- School of Pharmacy, and Research Institute of Integrated TCM & Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
18
|
Tedeschi P, Nigro M, Travagli A, Catani M, Cavazzini A, Merighi S, Gessi S. Therapeutic Potential of Allicin and Aged Garlic Extract in Alzheimer’s Disease. Int J Mol Sci 2022; 23:ijms23136950. [PMID: 35805955 PMCID: PMC9266652 DOI: 10.3390/ijms23136950] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/06/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Garlic, Allium sativum, has long been utilized for a number of medicinal purposes around the world, and its medical benefits have been well documented. The health benefits of garlic likely arise from a wide variety of components, possibly working synergistically. Garlic and garlic extracts, especially aged garlic extracts (AGEs), are rich in bioactive compounds, with potent anti-inflammatory, antioxidant and neuroprotective activities. In light of these effects, garlic and its components have been examined in experimental models of Alzheimer’s disease (AD), the most common form of dementia without therapy, and a growing health concern in aging societies. With the aim of offering an updated overview, this paper reviews the chemical composition, metabolism and bioavailability of garlic bioactive compounds. In addition, it provides an overview of signaling mechanisms triggered by garlic derivatives, with a focus on allicin and AGE, to improve learning and memory.
Collapse
Affiliation(s)
- Paola Tedeschi
- Department of Chemical, Pharmaceutical and Agricultural Sciences—DOCPAS, University of Ferrara, 44121 Ferrara, Italy; (P.T.); (M.C.); (A.C.)
| | - Manuela Nigro
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.N.); (A.T.); (S.G.)
| | - Alessia Travagli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.N.); (A.T.); (S.G.)
| | - Martina Catani
- Department of Chemical, Pharmaceutical and Agricultural Sciences—DOCPAS, University of Ferrara, 44121 Ferrara, Italy; (P.T.); (M.C.); (A.C.)
| | - Alberto Cavazzini
- Department of Chemical, Pharmaceutical and Agricultural Sciences—DOCPAS, University of Ferrara, 44121 Ferrara, Italy; (P.T.); (M.C.); (A.C.)
| | - Stefania Merighi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.N.); (A.T.); (S.G.)
- Correspondence: ; Tel.: +39-0532-455434
| | - Stefania Gessi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.N.); (A.T.); (S.G.)
| |
Collapse
|
19
|
Lin SR, Lin QM, Lin YJ, Qian X, Wang XP, Gong Z, Chen F, Song B. Bradykinin postconditioning protects rat hippocampal neurons after restoration of spontaneous circulation following cardiac arrest via activation of the AMPK/mTOR signaling pathway. Neural Regen Res 2022; 17:2232-2237. [PMID: 35259843 PMCID: PMC9083139 DOI: 10.4103/1673-5374.337049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Bradykinin (BK) is an active component of the kallikrein-kinin system that has been shown to have cardioprotective and neuroprotective effects. We previously showed that BK postconditioning strongly protects rat hippocampal neurons upon restoration of spontaneous circulation (ROSC) after cardiac arrest. However, the precise mechanism underlying this process remains poorly understood. In this study, we treated a rat model of ROSC after cardiac arrest (induced by asphyxiation) with 150 μg/kg BK via intraperitoneal injection 48 hours after ROSC following cardiac arrest. We found that BK postconditioning effectively promoted the recovery of rat neurological function after ROSC following cardiac arrest, increased the amount of autophagosomes in the hippocampal tissue, inhibited neuronal cell apoptosis, up-regulated the expression of autophagy-related proteins LC3 and NBR1 and down-regulated p62, inhibited the expression of the brain injury marker S100β and apoptosis-related protein caspase-3, and affected the expression of adenosine monophosphate-activated protein kinase/mechanistic target of rapamycin pathway-related proteins. Adenosine monophosphate-activated protein kinase inhibitor compound C clearly inhibited BK-mediated activation of autophagy in rats after ROSC following cardiac arrest, which aggravated the injury caused by ROSC. The mechanistic target of rapamycin inhibitor rapamycin enhanced the protective effects of BK by stimulating autophagy. Our findings suggest that BK postconditioning protects against injury caused by ROSC through activating the adenosine monophosphate-activated protein kinase/mechanistic target of the rapamycin pathway.
Collapse
Affiliation(s)
- Shi-Rong Lin
- Provincial College of Clinical Medicine, Fujian Medical University; Department of Emergency, Fujian Provincial Hospital South Branch; Department of Emergency, Fujian Provincial Hospital; Fujian Emergency Medical Center; Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Qing-Ming Lin
- Provincial College of Clinical Medicine, Fujian Medical University; Department of Emergency, Fujian Provincial Hospital; Fujian Emergency Medical Center; Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Yu-Jia Lin
- Provincial College of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Xin Qian
- Provincial College of Clinical Medicine, Fujian Medical University; Department of Emergency, Fujian Provincial Hospital; Fujian Emergency Medical Center; Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Xiao-Ping Wang
- Provincial College of Clinical Medicine, Fujian Medical University; Department of Emergency, Fujian Provincial Hospital; Fujian Emergency Medical Center; Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Zheng Gong
- Provincial College of Clinical Medicine, Fujian Medical University; Department of Emergency, Fujian Provincial Hospital; Fujian Emergency Medical Center; Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Feng Chen
- Provincial College of Clinical Medicine, Fujian Medical University; Department of Emergency, Fujian Provincial Hospital; Fujian Emergency Medical Center; Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Bin Song
- Department of Human Anatomy, School of Basic Medical Sciences, Fujian Medical University; Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province; Laboratory of Clinical Applied Anatomy, Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
20
|
Park S, Zhu J, Jeong KH, Kim WJ. Adjudin prevents neuronal damage and neuroinflammation via inhibiting mTOR activation against pilocarpine-induced status epilepticus. Brain Res Bull 2022; 182:80-89. [PMID: 35182690 DOI: 10.1016/j.brainresbull.2022.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/23/2022] [Accepted: 02/14/2022] [Indexed: 11/02/2022]
Abstract
Inflammatory responses in the brain play an etiological role in the development of epilepsy, suggesting that finding novel molecules for controlling neuroinflammation may have clinical value in developing the disease-modifying strategies for epileptogenesis. Adjudin, a multi-functional small molecule compound, has pleiotropic effects, including anti-inflammatory properties. In the present study, we aimed to investigate the effects of adjudin on pilocarpine-induced status epilepticus (SE) and its role in the regulation of reactive gliosis and neuroinflammation. SE was induced in male C57BL/6 mice that were then treated with adjudin (50mg/kg) for 3 days after SE onset. Immunofluorescence staining, terminal deoxynucleotidyl transferase dUTP nick end labeling staining, and western blot analysis were used to evaluate the effects of adjudin treatment in the hippocampus after SE. Our results showed that adjudin treatment significantly mitigated apoptotic cell death in the hippocampus after SE onset. Moreover, adjudin treatment suppressed SE-induced glial activation and activation of mammalian target of rapamycin signaling in the hippocampus. Concomitantly, adjudin treatment significantly reduced SE-induced inflammatory processes, as confirmed by changes in the expression of inflammatory mediators such as tumor necrosis factor-α, interleukin-1β, and arginase-1. In conclusion, these findings suggest that adjudin may serve as a potential neuroprotective agent for preventing pathological mechanisms implicated in epileptogenesis.
Collapse
Affiliation(s)
- Soojin Park
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea; Brain Korea 21 Plus Project for Medical Science, Yonsei University, Seoul, Republic of Korea
| | - Jing Zhu
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea; Brain Korea 21 Plus Project for Medical Science, Yonsei University, Seoul, Republic of Korea
| | - Kyoung Hoon Jeong
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea; Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Won-Joo Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
21
|
Nadeem MS, Kazmi I, Ullah I, Muhammad K, Anwar F. Allicin, an Antioxidant and Neuroprotective Agent, Ameliorates Cognitive Impairment. Antioxidants (Basel) 2021; 11:87. [PMID: 35052591 PMCID: PMC8772758 DOI: 10.3390/antiox11010087] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 02/08/2023] Open
Abstract
Allicin (diallylthiosulfinate) is a defense molecule produced by cellular contents of garlic (Allium sativum L.). On tissue damage, the non-proteinogenic amino acid alliin (S-allylcysteine sulfoxide) is converted to allicin in an enzyme-mediated process catalysed by alliinase. Allicin is hydrophobic in nature, can efficiently cross the cellular membranes and behaves as a reactive sulfur species (RSS) inside the cells. It is physiologically active molecule with the ability to oxidise the thiol groups of glutathione and between cysteine residues in proteins. Allicin has shown anticancer, antimicrobial, antioxidant properties and also serves as an efficient therapeutic agent against cardiovascular diseases. In this context, the present review describes allicin as an antioxidant, and neuroprotective molecule that can ameliorate the cognitive abilities in case of neurodegenerative and neuropsychological disorders. As an antioxidant, allicin fights the reactive oxygen species (ROS) by downregulation of NOX (NADPH oxidizing) enzymes, it can directly interact to reduce the cellular levels of different types of ROS produced by a variety of peroxidases. Most of the neuroprotective actions of allicin are mediated via redox-dependent pathways. Allicin inhibits neuroinflammation by suppressing the ROS production, inhibition of TLR4/MyD88/NF-κB, P38 and JNK pathways. As an inhibitor of cholinesterase and (AChE) and butyrylcholinesterase (BuChE) it can be applied to manage the Alzheimer's disease, helps to maintain the balance of neurotransmitters in case of autism spectrum disorder (ASD) and attention deficit hyperactive syndrome (ADHD). In case of acute traumatic spinal cord injury (SCI) allicin protects neuron damage by regulating inflammation, apoptosis and promoting the expression levels of Nrf2 (nuclear factor erythroid 2-related factor 2). Metal induced neurodegeneration can also be attenuated and cognitive abilities of patients suffering from neurological diseases can be ameliorates by allicin administration.
Collapse
Affiliation(s)
- Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; or
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; or
| | - Inam Ullah
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra 21300, Pakistan; (I.U.); (K.M.)
| | - Khushi Muhammad
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra 21300, Pakistan; (I.U.); (K.M.)
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; or
| |
Collapse
|
22
|
Baltan S, Sandau US, Brunet S, Bastian C, Tripathi A, Nguyen H, Liu H, Saugstad JA, Zarnegarnia Y, Dutta R. Identification of miRNAs That Mediate Protective Functions of Anti-Cancer Drugs During White Matter Ischemic Injury. ASN Neuro 2021; 13:17590914211042220. [PMID: 34619990 PMCID: PMC8642107 DOI: 10.1177/17590914211042220] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We have previously shown that two anti-cancer drugs, CX-4945 and MS-275, protect and preserve white matter (WM) architecture and improve functional recovery in a model of WM ischemic injury. While both compounds promote recovery, CX-4945 is a selective Casein kinase 2 (CK2) inhibitor and MS-275 is a selective Class I histone deacetylase (HDAC) inhibitor. Alterations in microRNAs (miRNAs) mediate some of the protective actions of these drugs. In this study, we aimed to (1) identify miRNAs expressed in mouse optic nerves (MONs); (2) determine which miRNAs are regulated by oxygen glucose deprivation (OGD); and (3) determine the effects of CX-4945 and MS-275 treatment on miRNA expression. RNA isolated from MONs from control and OGD-treated animals with and without CX-4945 or MS-275 treatment were quantified using NanoString nCounter® miRNA expression profiling. Comparative analysis of experimental groups revealed that 12 miRNAs were expressed at high levels in MONs. OGD upregulated five miRNAs (miR-1959, miR-501-3p, miR-146b, miR-201, and miR-335-3p) and downregulated two miRNAs (miR-1937a and miR-1937b) compared to controls. OGD with CX-4945 upregulated miR-1937a and miR-1937b, and downregulated miR-501-3p, miR-200a, miR-1959, and miR-654-3p compared to OGD alone. OGD with MS-275 upregulated miR-2134, miR-2141, miR-2133, miR-34b-5p, miR-153, miR-487b, miR-376b, and downregulated miR-717, miR-190, miR-27a, miR-1959, miR-200a, miR-501-3p, and miR-200c compared to OGD alone. Interestingly, miR-501-3p and miR-1959 were the only miRNAs upregulated by OGD, and downregulated by OGD plus CX-4945 and MS-275. Therefore, we suggest that protective functions of CX-4945 or MS-275 against WM injury maybe mediated, in part, through miRNA expression.
Collapse
Affiliation(s)
- Selva Baltan
- Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Neurosciences, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Selva Baltan, Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Mackenzie Hall 2140A, L459, 3181 S.W. Sam Jackson Park Rd., Portland, OR 97239, USA.
| | - Ursula S. Sandau
- Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - Sylvain Brunet
- Department of Neurosciences, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Chinthasagar Bastian
- Department of Neurosciences, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Ajai Tripathi
- Department of Neurosciences, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Hung Nguyen
- Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - Helen Liu
- Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - Julie A. Saugstad
- Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - Yalda Zarnegarnia
- Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - Ranjan Dutta
- Department of Neurosciences, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| |
Collapse
|
23
|
Ryan F, Khoshnam SE, Khodagholi F, Ashabi G, Ahmadiani A. How cytosolic compartments play safeguard functions against neuroinflammation and cell death in cerebral ischemia. Metab Brain Dis 2021; 36:1445-1467. [PMID: 34173922 DOI: 10.1007/s11011-021-00770-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 06/06/2021] [Indexed: 11/26/2022]
Abstract
Ischemic stroke is the second leading cause of mortality and disability globally. Neuronal damage following ischemic stroke is rapid and irreversible, and eventually results in neuronal death. In addition to activation of cell death signaling, neuroinflammation is also considered as another pathogenesis that can occur within hours after cerebral ischemia. Under physiological conditions, subcellular organelles play a substantial role in neuronal functionality and viability. However, their functions can be remarkably perturbed under neurological disorders, particularly cerebral ischemia. Therefore, their biochemical and structural response has a determining role in the sequel of neuronal cells and the progression of disease. However, their effects on cell death and neuroinflammation, as major underlying mechanisms of ischemic stroke, are still not understood. This review aims to provide a comprehensive overview of the contribution of each organelle on these pathological processes after ischemic stroke.
Collapse
Affiliation(s)
- Fari Ryan
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Centre, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghorbangol Ashabi
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, PO Box: 1417613151, Tehran, Iran.
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Necroptosis increases with age in the brain and contributes to age-related neuroinflammation. GeroScience 2021; 43:2345-2361. [PMID: 34515928 PMCID: PMC8599532 DOI: 10.1007/s11357-021-00448-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic inflammation of the central nervous system (CNS), termed neuroinflammation, is a hallmark of aging and a proposed mediator of cognitive decline associated with aging. Neuroinflammation is characterized by the persistent activation of microglia, the innate immune cells of the CNS, with damage-associated molecular patterns (DAMPs) being one of the well-known activators of microglia. Because necroptosis is a cell death pathway that induces inflammation through the release of DAMPs, we hypothesized that an age-associated increase in necroptosis contributes to increased neuroinflammation with age. The marker of necroptosis, phosphorylated form of MLKL (P-MLKL), and kinases in the necroptosis pathway (RIPK1, RIPK3, and MLKL) showed a region-specific increase in the brain with age, specifically in the cortex layer V and the CA3 region of the hippocampus of mice. Similarly, MLKL-oligomers, which cause membrane binding and permeabilization, were significantly increased in the cortex and hippocampus of old mice relative to young mice. Nearly 70 to 80% of P-MLKL immunoreactivity was localized to neurons and less than 10% was localized to microglia, whereas no P-MLKL was detected in astrocytes. P-MLKL expression in neurons was detected in the soma, not in the processes. Blocking necroptosis using Mlkl−/− mice reduced markers of neuroinflammation (Iba-1 and GFAP) in the brains of old mice, and short-term treatment with the necroptosis inhibitor, necrostatin-1s, reduced expression of proinflammatory cytokines, IL-6 and IL-1β, in the hippocampus of old mice. Thus, our data demonstrate for the first time that brain necroptosis increases with age and contributes to age-related neuroinflammation in mice.
Collapse
|
25
|
Li S, Hua X, Zheng M, Wu J, Ma Z, Xing X, Ma J, Zhang J, Shan C, Xu J. PLXNA2 knockdown promotes M2 microglia polarization through mTOR/STAT3 signaling to improve functional recovery in rats after cerebral ischemia/reperfusion injury. Exp Neurol 2021; 346:113854. [PMID: 34474008 DOI: 10.1016/j.expneurol.2021.113854] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/08/2021] [Accepted: 08/26/2021] [Indexed: 01/04/2023]
Abstract
Ischemic stroke is an acute cerebrovascular disease characterized by high mortality, morbidity and disability rates. Ischemia/reperfusion is a critical pathophysiological basis of motor and cognitive dysfunction caused by ischemic stroke. Microglia, innate immune cells of the central nervous system, mediate the neuroinflammatory response to ischemia/reperfusion. PlexinA2 (PLXNA2) plays an important role in the regulation of neuronal axon guidance, the immune response and angiogenesis. However, it is not clear whether PLXNA2 regulates microglia polarization in ischemic stroke or the underlying mechanism. In the present study, we investigated the role of PLXNA2 in rats with middle cerebral artery occlusion/reperfusion (MCAO/R) and BV2 microglia cells with oxygen and glucose deprivation/reoxygenation (OGD/R). A battery of behavioral tests, including the beam balance test, forelimb placement test, foot fault test, cylinder test, CatWalk gait analysis and Morris water maze test were performed to evaluate sensorimotor function, locomotor activity and cognitive ability. The expression of M1/M2-specific markers in the ischemic penumbra and BV2 microglia cells was detected using immunofluorescence staining, quantitative real-time PCR analysis and Western blot analysis. Our study showed that PLXNA2 knockdown accelerated the recovery of motor function and cognitive ability after MCAO/R. In addition, PLXNA2 knockdown restrained proinflammatory cytokine release and promoted anti-inflammatory cytokine release, and the mammalian target of rapamycin (mTOR)/signal transducer and activator of transcription 3 (STAT3) pathway was involved in PLXNA2 regulated microglia polarization. Taken together, our results indicate that PLXNA2 knockdown reduces neuroinflammation by switching the microglia phenotype from M1 to M2 in the ischemic penumbra of MCAO/R-injured rats, which may be due to the inhibition of mTOR/STAT3 signaling. Treatments targeting PLXNA2 may be a promising therapeutic strategy for ischemic stroke.
Collapse
Affiliation(s)
- Sisi Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xuyun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Mouxiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Jiajia Wu
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Zhenzhen Ma
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiangxin Xing
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jie Ma
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Junpeng Zhang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chunlei Shan
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai 201203, China
| | - Jianguang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai 201203, China.
| |
Collapse
|
26
|
Vargova I, Machova Urdzikova L, Karova K, Smejkalova B, Sursal T, Cimermanova V, Turnovcova K, Gandhi CD, Jhanwar-Uniyal M, Jendelova P. Involvement of mTOR Pathways in Recovery from Spinal Cord Injury by Modulation of Autophagy and Immune Response. Biomedicines 2021; 9:biomedicines9060593. [PMID: 34073791 PMCID: PMC8225190 DOI: 10.3390/biomedicines9060593] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022] Open
Abstract
Traumatic spinal cord injury (SCI) is untreatable and remains the leading cause of disability. Neuroprotection and recovery after SCI can be partially achieved by rapamycin (RAPA) treatment, an inhibitor of mTORC1, complex 1 of the mammalian target of rapamycin (mTOR) pathway. However, mechanisms regulated by the mTOR pathway are not only controlled by mTORC1, but also by a second mTOR complex (mTORC2). Second-generation inhibitor, pp242, inhibits both mTORC1 and mtORC2, which led us to explore its therapeutic potential after SCI and compare it to RAPA treatment. In a rat balloon-compression model of SCI, the effect of daily RAPA (5 mg/kg; IP) and pp242 (5 mg/kg; IP) treatment on inflammatory responses and autophagy was observed. We demonstrated inhibition of the mTOR pathway after SCI through analysis of p-S6, p-Akt, and p-4E-BP1 levels. Several proinflammatory cytokines were elevated in pp242-treated rats, while RAPA treatment led to a decrease in proinflammatory cytokines. Both RAPA and pp242 treatments caused an upregulation of LC3B and led to improved functional and structural recovery in acute SCI compared to the controls, however, a greater axonal sprouting was seen following RAPA treatment. These results suggest that dual mTOR inhibition by pp242 after SCI induces distinct mechanisms and leads to recovery somewhat inferior to that following RAPA treatment.
Collapse
Affiliation(s)
- Ingrid Vargova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska, 1083, 142 20 Prague, Czech Republic; (I.V.); (L.M.U.); (K.K.); (B.S.); (V.C.); (K.T.)
- 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague, Czech Republic
| | - Lucia Machova Urdzikova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska, 1083, 142 20 Prague, Czech Republic; (I.V.); (L.M.U.); (K.K.); (B.S.); (V.C.); (K.T.)
| | - Kristyna Karova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska, 1083, 142 20 Prague, Czech Republic; (I.V.); (L.M.U.); (K.K.); (B.S.); (V.C.); (K.T.)
| | - Barbora Smejkalova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska, 1083, 142 20 Prague, Czech Republic; (I.V.); (L.M.U.); (K.K.); (B.S.); (V.C.); (K.T.)
- 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague, Czech Republic
| | - Tolga Sursal
- Department of Neurosurgery, Westchester Medical Center, New York Medical College, Valhalla, NY 10595, USA; (T.S.); (C.D.G.)
| | - Veronika Cimermanova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska, 1083, 142 20 Prague, Czech Republic; (I.V.); (L.M.U.); (K.K.); (B.S.); (V.C.); (K.T.)
| | - Karolina Turnovcova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska, 1083, 142 20 Prague, Czech Republic; (I.V.); (L.M.U.); (K.K.); (B.S.); (V.C.); (K.T.)
| | - Chirag D. Gandhi
- Department of Neurosurgery, Westchester Medical Center, New York Medical College, Valhalla, NY 10595, USA; (T.S.); (C.D.G.)
| | - Meena Jhanwar-Uniyal
- Department of Neurosurgery, Westchester Medical Center, New York Medical College, Valhalla, NY 10595, USA; (T.S.); (C.D.G.)
- Correspondence: (M.J.-U.); (P.J.); Tel.: +420-2-4106-2828 (P.J.)
| | - Pavla Jendelova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska, 1083, 142 20 Prague, Czech Republic; (I.V.); (L.M.U.); (K.K.); (B.S.); (V.C.); (K.T.)
- 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague, Czech Republic
- Correspondence: (M.J.-U.); (P.J.); Tel.: +420-2-4106-2828 (P.J.)
| |
Collapse
|
27
|
Zheng G, Wang L, Li X, Niu X, Xu G, Lv P. Rapamycin alleviates cognitive impairment in murine vascular dementia: The enhancement of mitophagy by PI3K/AKT/mTOR axis. Tissue Cell 2021; 69:101481. [PMID: 33383488 DOI: 10.1016/j.tice.2020.101481] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022]
Abstract
There are no approved symptomatic treatments for vascular dementia (VaD). Rapamycin (RAPA) improves cognitive deficits in Alzheimer's disease rats. To explore whether RAPA improves cognitive impairment after VaD and its possible molecular mechanisms. Thirty Sprague Dawley rats were randomly divided into three groups: sham (received sham-operation), VaD model (received permanent ligation of bilateral carotid arteries) and RAPA (7.5 mg/kg) treatment. Cognitive function was evaluated by Morris water maze test. Neuronal apoptosis was evaluated by TUNEL staining. Mitophagy was assessed by mitochondrial DNA (mtDNA), ATP level, transmission electron microscope and mitophagy-associated proteins. Proteins were quantified by Western blot and immunofluorescence. BV2 cells were exposed to RAPA or/and MHY1485 (mTOR activator) to verify in vivo results. Compared to VaD rats, the escape latency of RAPA-treated rats was significantly decreased, and time spent in target quadrant was longer. Pathologic changes, mitochondrial dysfunction, increase of neuronal apoptosis and related proteins in VaD rats were remarkably alleviated by RAPA. After RAPA treatment, an increase in number of autophagosomes was observed, along with up-regulation of mitophagy-related proteins. Overexpression of PI3K, AKT and mTOR were suppressed by RAPA treatment. In vitro experiments confirmed effects of RAPA, and demonstrated that MHY1485 addition reversed the RAPA-caused apoptosis inhibition and mitophagy enhancement. Overall, RAPA improved the cognitive impairment of VaD rats, alleviated neuronal injury and mitochondrial dysfunction. We proposed a potential mechanism that RAPA may play improving role by inhibiting neuronal apoptosis and enhancing mitophagy through PI3K/AKT/mTOR pathway. Findings provided an exciting possibility for novel treatment strategy of VaD.
Collapse
Affiliation(s)
- Guimin Zheng
- Department of Neurology, Hebei Medical University, China; Department of Rheumatology and Immunology, HeBei General Hospital, China.
| | - Lei Wang
- Department of Medical Imaging, HeBei General Hospital, China.
| | - Xiuqin Li
- Department of Geriatric Medicine, HeBei General Hospital, China.
| | - Xiaoli Niu
- Department of Neurology, HeBei General Hospital, China.
| | - Guodong Xu
- Department of Neurointerventional Surgery, HeBei General Hospital, China.
| | - Peiyuan Lv
- Department of Neurology, Hebei Medical University, China; Department of Neurology, HeBei General Hospital, China.
| |
Collapse
|
28
|
Mishra J, Vishwakarma J, Malik R, Gupta K, Pandey R, Maurya SK, Garg A, Shukla M, Chattopadhyay N, Bandyopadhyay S. Hypothyroidism Induces Interleukin-1-Dependent Autophagy Mechanism as a Key Mediator of Hippocampal Neuronal Apoptosis and Cognitive Decline in Postnatal Rats. Mol Neurobiol 2021; 58:1196-1211. [PMID: 33106949 DOI: 10.1007/s12035-020-02178-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023]
Abstract
Thyroid hormone (TH) is essential for brain development, and hypothyroidism induces cognitive deficits in children and young adults. However, the participating mechanisms remain less explored. Here, we examined the molecular mechanism, hypothesizing the involvement of a deregulated autophagy and apoptosis pathway in hippocampal neurons that regulate cognitive functions. Therefore, we used a rat model of developmental hypothyroidism, generated through methimazole treatment from gestation until young adulthood. We detected that methimazole stimulated the autophagy mechanism, characterized by increased LC3B-II, Beclin-1, ATG7, and ATG5-12 conjugate and decreased p-mTOR/mTOR and p-ULK1/ULK1 autophagy regulators in the hippocampus of developing and young adult rats. This methimazole-induced hippocampal autophagy could be inhibited by thyroxine treatment. Subsequently, probing the upstream mediators of autophagy revealed an increased hippocampal neuroinflammation, marked by upregulated interleukin (IL)-1alpha and beta and activated microglial marker, Iba1, promoting neuronal IL-1 receptor-1 expression. Hence, IL-1R-antagonist (IL-1Ra), which reduced hippocampal neuronal IL-1R1, also inhibited the enhanced autophagy in hypothyroid rats. We then linked these events with hypothyroidism-induced apoptosis and loss of hippocampal neurons, where we observed that like thyroxine, IL-1Ra and autophagy inhibitor, 3-methyladenine, reduced the cleaved caspase-3 and TUNEL-stained apoptotic neurons and enhanced Nissl-stained neuronal count in methimazole-treated rats. We further related these molecular results with cognition through Y-maze and passive avoidance tests, demonstrating an IL-1Ra and 3-methyladenine-mediated improvement in learning-memory performances of the hypothyroid rats. Taken together, our study enlightens the critical role of neuroinflammation-dependent autophagy mechanism in TH-regulated hippocampal functions, disrupted in developmental hypothyroidism.
Collapse
Affiliation(s)
- Juhi Mishra
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, Lucknow, Uttar Pradesh, 226001, India
- Department of Biochemistry, Babu Banarasi Das University, Faizabad Road, Lucknow, Uttar Pradesh, India
| | - Jitendra Vishwakarma
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, Lucknow, Uttar Pradesh, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Rafat Malik
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, Lucknow, Uttar Pradesh, 226001, India
| | - Keerti Gupta
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, Lucknow, Uttar Pradesh, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Rukmani Pandey
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, Lucknow, Uttar Pradesh, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
- Department of Psychiatry, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shailendra Kumar Maurya
- Division of Endocrinology, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, Uttar Pradesh, India
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Asmita Garg
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, Lucknow, Uttar Pradesh, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Manoj Shukla
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, Uttar Pradesh, India
| | - Sanghamitra Bandyopadhyay
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, Lucknow, Uttar Pradesh, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
29
|
Guden DS, Temiz-Resitoglu M, Senol SP, Kibar D, Yilmaz SN, Tunctan B, Malik KU, Sahan-Firat S. mTOR inhibition as a possible pharmacological target in the management of systemic inflammatory response and associated neuroinflammation by lipopolysaccharide challenge in rats. Can J Physiol Pharmacol 2021; 99:921-934. [PMID: 33641344 DOI: 10.1139/cjpp-2020-0487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuroinflammation plays a critical role during sepsis triggered by microglial activation. Mammalian target of rapamycin (mTOR) has gained attraction in neuroinflammation, however, the mechanism remains unclear. Our goal was to assess the effects of mTOR inhibition by rapamycin on inflammation, microglial activation, oxidative stress, and apoptosis associated with the changes in the inhibitor-κB (IκB)-α/nuclear factor-κB (NF-κB)/hypoxia-inducible factor-1α (HIF-1α) pathway activity following a systemic challenge with lipopolysaccharide (LPS). Rats received saline (10 mL/kg), LPS (10 mg/kg), and (or) rapamycin (1 mg/kg) intraperitoneally. Inhibition of mTOR by rapamycin blocked phosphorylated form of ribosomal protein S6, NF-κB p65 activity by increasing degradation of IκB-α in parallel with HIF-1α expression increased by LPS in the kidney, heart, lung, and brain tissues. Rapamycin attenuated the increment in the expression of tumor necrosis factor-α and interleukin-1β, the inducible nitric oxide synthase, gp91phox, and p47phox in addition to nitrite levels elicited by LPS in tissues or sera. Concomitantly, rapamycin treatment reduced microglial activation, brain expression of caspase-3, and Bcl-2-associated X protein while it increased expression of B cell lymphoma 2 induced by LPS. Overall, this study supports the hypothesis that mTOR contributes to the detrimental effect of LPS-induced systemic inflammatory response associated with neuroinflammation via IκB-α/NF-κB/HIF-1α signaling pathway.
Collapse
Affiliation(s)
- Demet Sinem Guden
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | | | - Sefika Pinar Senol
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Deniz Kibar
- Department of Histology and Embryology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Sakir Necat Yilmaz
- Department of Histology and Embryology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Bahar Tunctan
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Kafait U Malik
- Department of Pharmacology, College of Medicine, University of Tennessee, Department of Pharmacology, College of Medicine, Memphis, TN, USA
| | - Seyhan Sahan-Firat
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| |
Collapse
|
30
|
Kukec E, Goričar K, Dolžan V, Rener-Primec Z. HIF1A polymorphisms do not modify the risk of epilepsy nor cerebral palsy after neonatal hypoxic-ischemic encephalopathy. Brain Res 2021; 1757:147281. [PMID: 33515534 DOI: 10.1016/j.brainres.2021.147281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 11/19/2022]
Abstract
PURPOSE Hypoxic-ischemic encephalopathy (HIE) remains the major cause of cerebral palsy and epilepsy in developed countries. Hypoxia-inducible factor 1 alpha (HIF-1α) is the key mediator of oxygen homoeostasis. The aim of this study was to investigate whether hypoxia-inducible factor 1 subunit alpha (HIF1A) functional polymorphisms are associated with the risk of epilepsy, drug-resistant epilepsy, and cerebral palsy after neonatal HIE. METHODS The study included 139 healthy controls and 229 patients with epilepsy and/or cerebral palsy, of which 95 had perinatal HIE. Genomic DNA isolated from buccal swabs or peripheral blood were genotyped for HIF1A rs11549465 and rs11549467 using PCR based methods. RESULTS The investigated HIF1A polymorphisms did not influence the risk of epilepsy and its drug-resistance nor cerebral palsy after neonatal HIE (all p > 0.05). Clinical characteristics of patients were significantly associated with neurological deficits after HIE. CONCLUSION This study found no statistically significant association of HIF1A rs11549465 and rs11549467 with the development of epilepsy and its drug-resistance, as well as cerebral palsy, after neonatal HIE.
Collapse
Affiliation(s)
- Eva Kukec
- Department of Child, Adolescent, and Developmental Neurology, Children's Hospital, University Medical Centre Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Slovenia
| | - Katja Goričar
- Faculty of Medicine, University of Ljubljana, Slovenia; Pharmacogenetics Laboratory, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Vita Dolžan
- Faculty of Medicine, University of Ljubljana, Slovenia; Pharmacogenetics Laboratory, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Zvonka Rener-Primec
- Department of Child, Adolescent, and Developmental Neurology, Children's Hospital, University Medical Centre Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Slovenia.
| |
Collapse
|
31
|
Bojja SL, Medhi B, Anand S, Bhatia A, Joshi R, Minz RW. Metformin ameliorates the status epilepticus- induced hippocampal pathology through possible mTOR modulation. Inflammopharmacology 2021; 29:137-151. [PMID: 33386490 DOI: 10.1007/s10787-020-00782-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 11/23/2020] [Indexed: 12/16/2022]
Abstract
The initial precipitating injury such as SE progresses to chronic epilepsy through multiple epileptogenic processes. Early epileptogenic events are generally characterized by neuroinflammation, neurodegeneration and abnormal neurogenesis in the hippocampus. Metformin has exhibited anti-inflammatory and neuroprotective properties in numerous studies. The current study attempts to investigate the effect of metformin on seizure-induced inflammation and neuronal degeneration, and the involvement of the mTOR pathway. Status epilepticus (SE) was induced in male Wistar rats with systemic administration of Lithium (127 mg/kg) and Pilocarpine (30 mg/kg). In test rats, Metformin 100 mg/kg or 200 mg/kg was administered orally for 7 days, followed by SE induction. Results indicate that metformin did not alter the SE profile significantly which was evident by the behavioural scoring and electroencephalogram (EEG) recordings. However, metformin 200 mg/kg attenuated the SE-induced glial activation (p < 0.01), up regulated mRNA levels of proinflammatory cytokines (p < 0.001) and chemokines (p < 0.001) and enhanced BBB permeability (p < 0.05). In addition, metformin ameliorated the insult-induced region-specific neuronal damage (p < 0.01) and restored the hippocampal neuronal density. Metformin significantly inhibited phosphorylated S6 ribosomal protein (phospho-S6rp) (p < 0.05), thus demonstrating that the beneficial effects might be partly mediated by the mTOR pathway. The study thus reiterates that mTOR signalling is one of the mechanisms involved in inflammation and neurodegeneration in early epileptogenesis following SE.
Collapse
Affiliation(s)
- Sree Lalitha Bojja
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India.,Department of Pharmacology, Manipal College of Pharmaceutical Sciences, MAHE, Manipal, Karnataka, 576104, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Shashi Anand
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Rupa Joshi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Ranjana W Minz
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| |
Collapse
|
32
|
Li S, Ren C, Stone C, Chandra A, Xu J, Li N, Han C, Ding Y, Ji X, Shao G. Hamartin: An Endogenous Neuroprotective Molecule Induced by Hypoxic Preconditioning. Front Genet 2020; 11:582368. [PMID: 33193709 PMCID: PMC7556298 DOI: 10.3389/fgene.2020.582368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/08/2020] [Indexed: 11/23/2022] Open
Abstract
Hypoxic/ischemic preconditioning (HPC/IPC) is an innate neuroprotective mechanism in which a number of endogenous molecules are known to be involved. Tuberous sclerosis complex 1 (TSC1), also known as hamartin, is thought to be one such molecule. It is also known that hamartin is involved as a target in the rapamycin (mTOR) signaling pathway, which functions to integrate a variety of environmental triggers in order to exert control over cellular metabolism and homeostasis. Understanding the role of hamartin in ischemic/hypoxic neuroprotection will provide a novel target for the treatment of hypoxic-ischemic disease. Therefore, the proposed molecular mechanisms of this neuroprotective role and its preconditions are reviewed in this paper, with emphases on the mTOR pathway and the relationship between the expression of hamartin and DNA methylation.
Collapse
Affiliation(s)
- Sijie Li
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China
| | - Christopher Stone
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Ankush Chandra
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Jiali Xu
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ning Li
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Cong Han
- Department of Neurosurgery, The Fifth Medical Centre of PLA General Hospital, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Guo Shao
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China.,Public Health Department, Biomedicine Research Center, Basic Medical College, Baotou, China.,Baotou Medical College of Neuroscience Institute, Baotou Medical College, Baotou, China
| |
Collapse
|
33
|
Miceli V, Russelli G, Iannolo G, Gallo A, Lo Re V, Agnese V, Sparacia G, Conaldi PG, Bulati M. Role of non-coding RNAs in age-related vascular cognitive impairment: An overview on diagnostic/prognostic value in Vascular Dementia and Vascular Parkinsonism. Mech Ageing Dev 2020; 191:111332. [PMID: 32805261 DOI: 10.1016/j.mad.2020.111332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
Abstract
Age is the pivotal risk factor for different common medical conditions such as cardiovascular diseases, cancer and dementia. Among age-related disorders, cardiovascular and cerebrovascular diseases, represent the leading causes of premature mortality strictly related to vascular ageing, a pathological condition characterized by endothelial dysfunction, atherosclerosis, hypertension, heart disease and stroke. These features negatively impact on the brain, owing to altered cerebral blood flow, neurovascular coupling and impaired endothelial permeability leading to cerebrovascular diseases (CVDs) as Vascular Dementia (VD) and Parkinsonism (VP). It is an increasing opinion that neurodegenerative disorders and cerebrovascular diseases are associated from a pathogenetic point of view, and in this review, we discuss how cerebrovascular dysfunctions, due to epigenetic alterations, are linked with neuronal degeneration/dysfunction that lead to cognitive impairment. The relation between neurodegenerative and cerebrovascular diseases are reviewed with a focus on role of ncRNAs in age-related vascular diseases impairing the endothelium in the blood-brain barrier with consequent dysfunction of cerebral blood flow. In this review we dissert about different regulatory mechanisms of gene expression implemented by ncRNAs in the pathogenesis of age-related neurovascular impairment, aiming to highlight the potential use of ncRNAs as biomarkers for diagnostic/prognostic purposes as well as novel therapeutic targets.
Collapse
Affiliation(s)
- V Miceli
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | - G Russelli
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | - G Iannolo
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | - A Gallo
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | - V Lo Re
- Neurology Service, Department of Diagnostic and Therapeutic Services, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | - V Agnese
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | - G Sparacia
- Radiology Service, Department of Diagnostic and Therapeutic Services, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | - P G Conaldi
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy
| | - M Bulati
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS ISMETT), Palermo, Italy.
| |
Collapse
|
34
|
Fischer I, Barak B. Molecular and Therapeutic Aspects of Hyperbaric Oxygen Therapy in Neurological Conditions. Biomolecules 2020; 10:E1247. [PMID: 32867291 PMCID: PMC7564723 DOI: 10.3390/biom10091247] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023] Open
Abstract
In hyperbaric oxygen therapy (HBOT), the subject is placed in a chamber containing 100% oxygen gas at a pressure of more than one atmosphere absolute. This treatment is used to hasten tissue recovery and improve its physiological aspects, by providing an increased supply of oxygen to the damaged tissue. In this review, we discuss the consequences of hypoxia, as well as the molecular and physiological processes that occur in subjects exposed to HBOT. We discuss the efficacy of HBOT in treating neurological conditions and neurodevelopmental disorders in both humans and animal models. We summarize by discussing the challenges in this field, and explore future directions that will allow the scientific community to better understand the molecular aspects and applications of HBOT for a wide variety of neurological conditions.
Collapse
Affiliation(s)
- Inbar Fischer
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Boaz Barak
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel;
- The School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
35
|
Rodríguez-Gómez JA, Kavanagh E, Engskog-Vlachos P, Engskog MK, Herrera AJ, Espinosa-Oliva AM, Joseph B, Hajji N, Venero JL, Burguillos MA. Microglia: Agents of the CNS Pro-Inflammatory Response. Cells 2020; 9:E1717. [PMID: 32709045 PMCID: PMC7407646 DOI: 10.3390/cells9071717] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022] Open
Abstract
The pro-inflammatory immune response driven by microglia is a key contributor to the pathogenesis of several neurodegenerative diseases. Though the research of microglia spans over a century, the last two decades have increased our understanding exponentially. Here, we discuss the phenotypic transformation from homeostatic microglia towards reactive microglia, initiated by specific ligand binding to pattern recognition receptors including toll-like receptor-4 (TLR4) or triggering receptors expressed on myeloid cells-2 (TREM2), as well as pro-inflammatory signaling pathways triggered such as the caspase-mediated immune response. Additionally, new research disciplines such as epigenetics and immunometabolism have provided us with a more holistic view of how changes in DNA methylation, microRNAs, and the metabolome may influence the pro-inflammatory response. This review aimed to discuss our current knowledge of pro-inflammatory microglia from different angles, including recent research highlights such as the role of exosomes in spreading neuroinflammation and emerging techniques in microglia research including positron emission tomography (PET) scanning and the use of human microglia generated from induced pluripotent stem cells (iPSCs). Finally, we also discuss current thoughts on the impact of pro-inflammatory microglia in neurodegenerative diseases.
Collapse
Affiliation(s)
- José A. Rodríguez-Gómez
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain; (J.A.R.-G.); (A.J.H.); (A.M.E.-O.); (J.L.V.)
- Department of Medical Physiology and Biophysics, Faculty of Medicine, University of Seville, 41009 Sevilla, Spain
| | - Edel Kavanagh
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - Pinelopi Engskog-Vlachos
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institute, 17177 Stockholm, Sweden; (P.E.-V.); (B.J.)
| | - Mikael K.R. Engskog
- Department of Medicinal Chemistry, Analytical Pharmaceutical Chemistry, Uppsala University, 751 23 Uppsala, Sweden;
| | - Antonio J. Herrera
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain; (J.A.R.-G.); (A.J.H.); (A.M.E.-O.); (J.L.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - Ana M. Espinosa-Oliva
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain; (J.A.R.-G.); (A.J.H.); (A.M.E.-O.); (J.L.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - Bertrand Joseph
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institute, 17177 Stockholm, Sweden; (P.E.-V.); (B.J.)
| | - Nabil Hajji
- Division of Brain Sciences, The John Fulcher Molecular Neuro-Oncology Laboratory, Imperial College London, London W12 ONN, UK;
| | - José L. Venero
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain; (J.A.R.-G.); (A.J.H.); (A.M.E.-O.); (J.L.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - Miguel A. Burguillos
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain; (J.A.R.-G.); (A.J.H.); (A.M.E.-O.); (J.L.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| |
Collapse
|
36
|
Antia, a Natural Antioxidant Product, Attenuates Cognitive Dysfunction in Streptozotocin-Induced Mouse Model of Sporadic Alzheimer's Disease by Targeting the Amyloidogenic, Inflammatory, Autophagy, and Oxidative Stress Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4386562. [PMID: 32655767 PMCID: PMC7320293 DOI: 10.1155/2020/4386562] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/07/2020] [Accepted: 04/11/2020] [Indexed: 12/13/2022]
Abstract
Background Many neurodegenerative diseases such as Alzheimer's disease are associated with oxidative stress. Therefore, antioxidant therapy has been suggested for the prevention and treatment of neurodegenerative diseases. Objective We investigated the ability of the antioxidant Antia to exert a protective effect against sporadic Alzheimer's disease (SAD) induced in mice. Antia is a natural product that is extracted from the edible yamabushitake mushroom, the gotsukora and kothala himbutu plants, diosgenin (an extract from wild yam tubers), and amla (Indian gooseberry) after treatment with MRN-100. Methods Single intracerebroventricular (ICV) injection of streptozotocin (STZ) (3 mg/kg) was used for induction of SAD in mice. Antia was injected intraperitoneally (i.p.) in 3 doses (25, 50, and 100 mg/kg/day) for 21 days. Neurobehavioral tests were conducted within 24 h after the last day of injection. Afterwards, mice were sacrificed and their hippocampi were rapidly excised, weighed, and homogenized to be used for measuring biochemical parameters. Results Treatment with Antia significantly improved mice performance in the Morris water maze. In addition, biochemical analysis showed that Antia exerted a protective effect for several compounds, including GSH, MDA, NF-κB, IL-6, TNF-α, and amyloid β. Further studies with western blot showed the protective effect of Antia for the JAK2/STAT3 pathway. Conclusions Antia exerts a significant protection against cognitive dysfunction induced by ICV-STZ injection. This effect is achieved through targeting of the amyloidogenic, inflammatory, and oxidative stress pathways. The JAK2/STAT3 pathway plays a protective role for neuroinflammatory and neurodegenerative diseases such as SAD.
Collapse
|
37
|
Dong J, Lei J, Elsayed NA, Lee JY, Shin N, Na Q, Chudnovets A, Jia B, Wang X, Burd I. The effect of intrauterine inflammation on mTOR signaling in mouse fetal brain. Dev Neurobiol 2020; 80:149-159. [PMID: 32333505 DOI: 10.1002/dneu.22755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/24/2019] [Accepted: 04/20/2020] [Indexed: 11/05/2022]
Abstract
Fetuses exposed to an inflammatory environment are predisposed to long-term adverse neurological outcomes. However, the mechanism by which intrauterine inflammation (IUI) is responsible for abnormal fetal brain development is not fully understood. The mechanistic target of rapamycin (mTOR) signaling pathway is closely associated with fetal brain development. We hypothesized that mTOR signaling might be involved in fetal brain injury and malformation when fetuses are exposed to the IUI environment. A well-established IUI model was utilized by intrauterine injection of lipopolysaccharide (LPS) to explore the effect of IUI on mTOR signaling in mouse fetal brains. We found that microglia activation in LPS fetal brains was increased, as demonstrated by elevated Iba-1 protein level and immunofluorescence density. LPS fetal brains also showed reduced neuronal cell counts, decreased cell proliferation demonstrated by low Ki67-positive density, and elevated neuron apoptosis evidenced by high expression of cleaved Caspase 3. Furthermore, we found that mTOR signaling in LPS fetal brains was elevated at 2 hr after LPS treatment, declined at 6 hr and showed overall inhibition at 24 hr. In summary, our study revealed that LPS-induced IUI leads to increased activation of microglia cells, neuronal damage, and dynamic alterations in mTOR signaling in the mouse fetal brain. Our findings indicate that abnormal changes in mTOR signaling may underlie the development of future neurological complications in offspring exposed to prenatal IUI.
Collapse
Affiliation(s)
- Jie Dong
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Obstetrics and Gynecology, Reproductive Medical Center, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jun Lei
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nada A Elsayed
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ji Yeon Lee
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Na Shin
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Quan Na
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anna Chudnovets
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bei Jia
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaohong Wang
- Department of Obstetrics and Gynecology, Reproductive Medical Center, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Irina Burd
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
38
|
Cho KS, Lee JH, Cho J, Cha GH, Song GJ. Autophagy Modulators and Neuroinflammation. Curr Med Chem 2020; 27:955-982. [PMID: 30381067 DOI: 10.2174/0929867325666181031144605] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/20/2018] [Accepted: 10/21/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Neuroinflammation plays a critical role in the development and progression of various neurological disorders. Therefore, various studies have focused on the development of neuroinflammation inhibitors as potential therapeutic tools. Recently, the involvement of autophagy in the regulation of neuroinflammation has drawn substantial scientific interest, and a growing number of studies support the role of impaired autophagy in the pathogenesis of common neurodegenerative disorders. OBJECTIVE The purpose of this article is to review recent research on the role of autophagy in controlling neuroinflammation. We focus on studies employing both mammalian cells and animal models to evaluate the ability of different autophagic modulators to regulate neuroinflammation. METHODS We have mostly reviewed recent studies reporting anti-neuroinflammatory properties of autophagy. We also briefly discussed a few studies showing that autophagy modulators activate neuroinflammation in certain conditions. RESULTS Recent studies report neuroprotective as well as anti-neuroinflammatory effects of autophagic modulators. We discuss the possible underlying mechanisms of action of these drugs and their potential limitations as therapeutic agents against neurological disorders. CONCLUSION Autophagy activators are promising compounds for the treatment of neurological disorders involving neuroinflammation.
Collapse
Affiliation(s)
- Kyoung Sang Cho
- Department of Biological Sciences, Konkuk University, Seoul, Korea
| | - Jang Ho Lee
- Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, Korea
| | - Jeiwon Cho
- Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, Korea.,Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, Korea
| | - Guang-Ho Cha
- Department of Medical Science, College of Medicine, Chungnam National University, 35015 Daejeon, Korea
| | - Gyun Jee Song
- Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, Korea.,Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, Korea
| |
Collapse
|
39
|
Control of Inflammation by Calorie Restriction Mimetics: On the Crossroad of Autophagy and Mitochondria. Cells 2019; 9:cells9010082. [PMID: 31905682 PMCID: PMC7017321 DOI: 10.3390/cells9010082] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/17/2019] [Accepted: 12/25/2019] [Indexed: 01/07/2023] Open
Abstract
Mitochondrial metabolism and autophagy are two of the most metabolically active cellular processes, playing a crucial role in regulating organism longevity. In fact, both mitochondrial dysfunction or autophagy decline compromise cellular homeostasis and induce inflammation. Calorie restriction (CR) is the oldest strategy known to promote healthspan, and a plethora of CR mimetics have been used to emulate its beneficial effects. Herein, we discuss how CR and CR mimetics, by modulating mitochondrial metabolism or autophagic flux, prevent inflammatory processes, protect the intestinal barrier function, and dampen both inflammaging and neuroinflammation. We outline the effects of some compounds classically known as modulators of autophagy and mitochondrial function, such as NAD+ precursors, metformin, spermidine, rapamycin, and resveratrol, on the control of the inflammatory cascade and how these anti-inflammatory properties could be involved in their ability to increase resilience to age-associated diseases.
Collapse
|
40
|
Wu T, He K, Liang X, Wei T, Wang Y, Zou L, Zhang T, Xue Y, Tang M. The glycolytic shift was involved in CdTe/ZnS quantum dots inducing microglial activation mediated through the mTOR signaling pathway. J Appl Toxicol 2019; 40:388-402. [PMID: 31802521 DOI: 10.1002/jat.3912] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/01/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022]
Abstract
The excellent optical property and relatively low toxicity of CdTe/ZnS core/shell quantum dots (QDs) make them an advanced fluorescent probe in the application of biomedicines, particularly in neuroscience. Thus, it is important to evaluate the biosafety of CdTe/ZnS QDs on the central nervous system (CNS). Our previous studies have suggested that the high possibility of CdTe/ZnS QDs being transported into the brain across the blood-brain barrier resulted in microglial activation and a shift of glycometabolism, but their underlying mechanism remains unclear. In this study, when mice were injected intravenously with CdTe/ZnS QDs through tail veins, the microglial activation, polarized into both M1 phenotype and M2 phenotype, and the neuronal impairment were observed in the hippocampus. Meanwhile, the increased pro- and anti-inflammatory cytokines released from BV2 microglial cells treated with CdTe/ZnS QDs also indicated that QD exposure was capable of inducing microglial activation in vitro. We further demonstrated that the glycolytic shift from oxidative phosphorylation switching into aerobic glycolysis was required in the microglial activation into M1 phenotype induced by CdTe/ZnS QD treatment, which was mediated through the mTOR signaling pathway. The findings, taken together, provide a mechanistic insight regarding the CdTe/ZnS QDs inducing microglial activation and the role of the glycolytic shift in it.
Collapse
Affiliation(s)
- Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Keyu He
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing, People's Republic of China.,Blood Transfusion Department, Zhongda Hospital, Southeast University, Nanjing, People's Republic of China
| | - Xue Liang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Tingting Wei
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Yan Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Lingyue Zou
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
41
|
Royce GH, Brown-Borg HM, Deepa SS. The potential role of necroptosis in inflammaging and aging. GeroScience 2019; 41:795-811. [PMID: 31721033 PMCID: PMC6925091 DOI: 10.1007/s11357-019-00131-w] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/23/2019] [Indexed: 02/06/2023] Open
Abstract
An age-associated increase in chronic, low-grade sterile inflammation termed "inflammaging" is a characteristic feature of mammalian aging that shows a strong association with occurrence of various age-associated diseases. However, the mechanism(s) responsible for inflammaging and its causal role in aging and age-related diseases are not well understood. Age-associated accumulation of damage-associated molecular patterns (DAMPs) is an important trigger in inflammation and has been proposed as a potential driver of inflammaging. DAMPs can initiate an inflammatory response by binding to the cell surface receptors on innate immune cells. Programmed necrosis, termed necroptosis, is one of the pathways that can release DAMPs, and cell death due to necroptosis is known to induce inflammation. Necroptosis-mediated inflammation plays an important role in a variety of age-related diseases such as Alzheimer's disease, Parkinson's disease, and atherosclerosis. Recently, it was reported that markers of necroptosis increase with age in mice and that dietary restriction, which retards aging and increases lifespan, reduces necroptosis and inflammation. Genetic manipulations that increase lifespan (Ames Dwarf mice) and reduce lifespan (Sod1-/- mice) are associated with reduced and increased necroptosis and inflammation, respectively. While necroptosis evolved to protect cells/tissues from invading pathogens, e.g., viruses, we propose that the age-related increase in oxidative stress, mTOR signaling, and cell senescence results in cells/tissues in old animals being more prone to undergo necroptosis thereby releasing DAMPs, which contribute to the chronic inflammation observed with age. Approach to decrease DAMPs release by reducing/blocking necroptosis is a potentially new approach to reduce inflammaging, retard aging, and improve healthspan.
Collapse
Affiliation(s)
| | - Holly M Brown-Borg
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Sathyaseelan S Deepa
- Stephenson Cancer Center, Oklahoma City, OK, USA.
- Department of Biochemistry and Molecular Biology, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC-1368A, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
42
|
Yuan H, Wu G, Zhai X, Lu B, Meng B, Chen J. Melatonin and Rapamycin Attenuate Isoflurane-Induced Cognitive Impairment Through Inhibition of Neuroinflammation by Suppressing the mTOR Signaling in the Hippocampus of Aged Mice. Front Aging Neurosci 2019; 11:314. [PMID: 31803045 PMCID: PMC6877689 DOI: 10.3389/fnagi.2019.00314] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/31/2019] [Indexed: 12/26/2022] Open
Abstract
Melatonin exerts neuroprotective effects on isoflurane-induced cognitive impairment. However, the underlying mechanism has yet to be elucidated. The present study sought to determine if melatonin confers its beneficial effects by acting on mammalian target of rapamycin (mTOR) and attenuates the neuroinflammation in the hippocampus of aged mice. A total of 72 male C57BL/6 mice, 16-month-old, were randomly and equally divided into six groups: (1) the control group (CON); (2) the rapamycin group (RAP); (3) the melatonin group (MEL); (4) the isoflurane group (ISO); (5) the rapamycin + isoflurane group (RAP + ISO); and (6) the melatonin + isoflurane group (MEL + ISO). RAP, RAP + ISO, MEL, MEL + ISO groups received 1 mg/kg/day mTOR inhibitor rapamycin solution or 10 mg/kg/day melatonin solution, respectively, intraperitoneally at 5:00 p.m. for 14 days consecutively. Mice in the CON and ISO groups were administered an equivalent volume of saline. Subsequently, ISO, RAP + ISO, and MEL + ISO groups were exposed to inhale 2% isoflurane for 4 h; the CON, RAP, and MEL mice received only the vehicle gas. Then, the memory function and spatial learning of the mice were examined via the Morris water maze (MWM) test. mTOR expression was detected via Western blot, whereas the concentration of inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 and that of melatonin was quantified with enzyme-linked immunosorbent assay (ELISA). Melatonin and rapamycin significantly ameliorated the isoflurane-induced cognitive impairment and also led to a decrease in the melatonin levels as well as the expression levels of TNF-α, IL-1β, IL-6, and p-mTOR in the hippocampus. In conclusion, these results showed that melatonin and rapamycin attenuates mTOR expression while affecting the downstream proinflammatory cytokines. Thus, these molecular findings could be associated with an improved cognitive function in mice exposed to isoflurane.
Collapse
Affiliation(s)
- Hui Yuan
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Guorong Wu
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Xiaojie Zhai
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Bo Lu
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Bo Meng
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Junping Chen
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
43
|
Xiang C, Han S, Nao J, Cong S. MicroRNAs Dysregulation and Metabolism in Multiple System Atrophy. Front Neurosci 2019; 13:1103. [PMID: 31680837 PMCID: PMC6811505 DOI: 10.3389/fnins.2019.01103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 09/30/2019] [Indexed: 12/13/2022] Open
Abstract
Multiple system atrophy (MSA) is an adult onset, fatal disease, characterized by an accumulation of alpha-synuclein (α-syn) in oligodendroglial cells. MicroRNAs (miRNAs) are small non-coding RNAs involved in post-translational regulation and several biological processes. Disruption of miRNA-related pathways in the central nervous system (CNS) plays an important role in the pathogenesis of neurodegenerative diseases, including MSA. While the exact mechanisms underlying miRNAs in the pathogenesis of MSA remain unclear, it is known that miRNAs can repress the translation of messenger RNAs (mRNAs) that regulate the following pathogenesis associated with MSA: autophagy, neuroinflammation, α-syn accumulation, synaptic transmission, oxidative stress, and apoptosis. In this review, the metabolism of miRNAs and their functional roles in the pathogenesis of MSA are discussed, thereby highlighting miRNAs as potential new biomarkers for the diagnosis of MSA and in increasing our understanding of the disease process.
Collapse
Affiliation(s)
- Chunchen Xiang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shunchang Han
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuyan Cong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
44
|
Weiss HR, Mellender SJ, Kiss GK, Liu X, Chi OZ. Improvement in Microregional Oxygen Supply/Consumption Balance and Infarct Size After Cerebral Ischemia-Reperfusion With Inhibition of p70 Ribosomal S6 Kinase (S6K1). J Stroke Cerebrovasc Dis 2019; 28:104276. [DOI: 10.1016/j.jstrokecerebrovasdis.2019.06.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 01/03/2023] Open
|
45
|
Tang BL. Targeting the Mitochondrial Pyruvate Carrier for Neuroprotection. Brain Sci 2019; 9:238. [PMID: 31540439 PMCID: PMC6770198 DOI: 10.3390/brainsci9090238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 01/02/2023] Open
Abstract
The mitochondrial pyruvate carriers mediate pyruvate import into the mitochondria, which is key to the sustenance of the tricarboxylic cycle and oxidative phosphorylation. However, inhibition of mitochondria pyruvate carrier-mediated pyruvate transport was recently shown to be beneficial in experimental models of neurotoxicity pertaining to the context of Parkinson's disease, and is also protective against excitotoxic neuronal death. These findings attested to the metabolic adaptability of neurons resulting from MPC inhibition, a phenomenon that has also been shown in other tissue types. In this short review, I discuss the mechanism and potential feasibility of mitochondrial pyruvate carrier inhibition as a neuroprotective strategy in neuronal injury and neurodegenerative diseases.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, Singapore 117596, Singapore.
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore.
| |
Collapse
|
46
|
Ren Z, Wang X, Xu M, Frank JA, Luo J. Minocycline attenuates ethanol-induced cell death and microglial activation in the developing spinal cord. Alcohol 2019; 79:25-35. [PMID: 30529756 DOI: 10.1016/j.alcohol.2018.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/12/2022]
Abstract
Developmental exposure to ethanol may cause fetal alcohol spectrum disorders (FASD), and the immature central nervous system (CNS) is particularly vulnerable to ethanol. In addition to vulnerability in the developing brain, we previously showed that ethanol also caused neuroapoptosis, microglial activation, and neuroinflammation in the spinal cord. Minocycline is an antibiotic that inhibits microglial activation and alleviates neuroinflammation. We sought to determine whether minocycline could protect spinal cord neurons against ethanol-induced damage. In this study, we showed that minocycline significantly inhibited ethanol-induced caspase-3 activation, microglial activation, and the expression of pro-inflammatory cytokines in the developing spinal cord. Moreover, minocycline blocked ethanol-induced activation of glycogen synthase kinase 3 beta (GSK3β), a key regulator of microglial activation. Meanwhile, minocycline significantly restored ethanol-induced inhibition of protein kinase B (AKT), mammalian target of the rapamycin (mTOR), and ERK1/2 signaling pathways, which were important pro-survival signaling pathways for neurons. Together, minocycline may attenuate ethanol-induced damage to the developing spinal cord by inhibiting microglial activation/neuroinflammation and by restoring the pro-survival signaling.
Collapse
|
47
|
Schweig JE, Yao H, Coppola K, Jin C, Crawford F, Mullan M, Paris D. Spleen tyrosine kinase (SYK) blocks autophagic Tau degradation in vitro and in vivo. J Biol Chem 2019; 294:13378-13395. [PMID: 31324720 DOI: 10.1074/jbc.ra119.008033] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/12/2019] [Indexed: 12/29/2022] Open
Abstract
Spleen tyrosine kinase (SYK) plays a major role in inflammation and in adaptive immune responses and could therefore contribute to the neuroinflammation observed in various neurodegenerative diseases. Indeed, previously we have reported that SYK also regulates β-amyloid (Aβ) production and hyperphosphorylation of Tau protein involved in these diseases. Moreover, SYK hyperactivation occurs in a subset of activated microglia, in dystrophic neurites surrounding Aβ deposits, and in neurons affected by Tau pathology both in individuals with Alzheimer's disease (AD) and in AD mouse models. SYK activation increases Tau phosphorylation and accumulation, suggesting that SYK could be an attractive target for treating AD. However, the mechanism by which SYK affects Tau pathology is not clear. In this study, using cell biology and biochemical approaches, along with immunoprecipitation and immunoblotting, quantitative RT-PCR, and ELISAs, we found that SYK inhibition increases autophagic Tau degradation without impacting Tau production. Using neuron-like SH-SY5Y cells, we demonstrate that SYK acts upstream of the mammalian target of rapamycin (mTOR) pathway and that pharmacological inhibition or knockdown of SYK decreases mTOR pathway activation and increases autophagic Tau degradation. Interestingly, chronic SYK inhibition in a tauopathy mouse model profoundly reduced Tau accumulation, neuroinflammation, neuronal and synaptic loss, and also reversed defective autophagy. Our results further suggest that the SYK up-regulation observed in the brains of individuals with AD contributes to defective autophagic clearance leading to the accumulation of pathogenic Tau species. These findings further highlight SYK as a therapeutic target for the treatment of tauopathies and other neurodegenerative proteinopathies associated with defective autophagic clearance.
Collapse
Affiliation(s)
- Jonas Elias Schweig
- Roskamp Institute, Sarasota, Florida 34243; The Open University, Milton Keynes MK7 6AA, United Kingdom; James A. Haley Veterans Hospital, Tampa, Florida 33612.
| | - Hailan Yao
- Roskamp Institute, Sarasota, Florida 34243; James A. Haley Veterans Hospital, Tampa, Florida 33612
| | - Kyle Coppola
- Roskamp Institute, Sarasota, Florida 34243; James A. Haley Veterans Hospital, Tampa, Florida 33612
| | - Chao Jin
- Roskamp Institute, Sarasota, Florida 34243
| | - Fiona Crawford
- Roskamp Institute, Sarasota, Florida 34243; The Open University, Milton Keynes MK7 6AA, United Kingdom; James A. Haley Veterans Hospital, Tampa, Florida 33612
| | - Michael Mullan
- Roskamp Institute, Sarasota, Florida 34243; The Open University, Milton Keynes MK7 6AA, United Kingdom
| | - Daniel Paris
- Roskamp Institute, Sarasota, Florida 34243; The Open University, Milton Keynes MK7 6AA, United Kingdom; James A. Haley Veterans Hospital, Tampa, Florida 33612
| |
Collapse
|
48
|
Chi OZ, Kiss GK, Mellender SJ, Liu X, Liu S, Jacinto E, Weiss HR. Inhibition of p70 ribosomal S6 kinase 1 (S6K1) by PF-4708671 decreased infarct size in early cerebral ischemia-reperfusion with decreased BBB permeability. Eur J Pharmacol 2019; 855:202-207. [PMID: 31063769 DOI: 10.1016/j.ejphar.2019.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 01/19/2023]
Abstract
It is not clear whether inhibition of p70 ribosomal S6 kinase 1 (S6K1) is neuroprotective in cerebral ischemia-reperfusion. Decreasing blood-brain barrier (BBB) disruption has been associated with a better neuronal outcome in cerebral ischemia. We hypothesized that inhibition of S6K1 would decrease BBB disruption and infarct size in the early stage of cerebral ischemia-reperfusion. Middle cerebral artery occlusion (MCAO) was performed in rats under isoflurane anesthesia with controlled ventilation. 75 mg/kg of PF-4708671, an S6K1 inhibitor, was administered intraperitoneally 15 min after MCAO. After 1 h of MCAO and 2 h of reperfusion, the transfer coefficient (Ki) of 14C-α-aminoisobutyric acid and the volume of 3H-dextran distribution were determined to assess the degree of BBB disruption. At the same time point, phosphorylated Rictor (pT1135) and the infarct size were measured to evaluate S6K1 activity. In the PF-4708671 treated rats, the Ki of the ischemic-reperfused cortex was lower than the untreated rats (-22%, P < 0.05) and the volume of dextran distribution was significantly lower in most brain regions. With PF-4708671, a significant decrease in pT1135 Rictor was observed and the percentage of cortical infarct out of total cortical area was decreased (11.6 ± 2.0% vs 7.2 ± 1.1%, P < 0.0001). Our data demonstrate that PF-4708671 decreased the size of the cortical infarct in the ischemic-reperfused cortex with a decrease in BBB disruption suggesting that inhibition of S6K1 may induce neuronal survival in early cerebral ischemia-reperfusion and that a decrease of BBB disruption could be one of the contributing factors.
Collapse
Affiliation(s)
- Oak Z Chi
- Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson Medical School, 125 Paterson Street, Suite 3100, New Brunswick, NJ, 08901-1977, USA.
| | - Geza K Kiss
- Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson Medical School, 125 Paterson Street, Suite 3100, New Brunswick, NJ, 08901-1977, USA
| | - Scott J Mellender
- Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson Medical School, 125 Paterson Street, Suite 3100, New Brunswick, NJ, 08901-1977, USA
| | - Xia Liu
- Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson Medical School, 125 Paterson Street, Suite 3100, New Brunswick, NJ, 08901-1977, USA
| | - Sharon Liu
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Harvey R Weiss
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ, 08854, USA
| |
Collapse
|
49
|
Ortiz-González XR, Tintos-Hernández JA, Keller K, Li X, Foley AR, Bharucha-Goebel DX, Kessler SK, Yum SW, Crino PB, He M, Wallace DC, Bönnemann CG. Homozygous boricua TBCK mutation causes neurodegeneration and aberrant autophagy. Ann Neurol 2019; 83:153-165. [PMID: 29283439 DOI: 10.1002/ana.25130] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 12/26/2017] [Accepted: 12/26/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Autosomal-recessive mutations in TBCK cause intellectual disability of variable severity. Although the physiological function of TBCK remains unclear, loss-of-function mutations are associated with inhibition of mechanistic target of rapamycin complex 1 (mTORC1) signaling. Given that mTORC1 signaling is known to regulate autophagy, we hypothesized that TBCK-encephalopathy patients with a neurodegenerative course have defects in autophagic-lysosomal dysfunction. METHODS Children (n = 8) of Puerto Rican (Boricua) descent affected with homozygous TBCK p.R126X mutations underwent extensive neurological phenotyping and neurophysiological studies. We quantified autophagosome content in TBCK-/- patient-derived fibroblasts by immunostaining and assayed autophagic markers by western assay. Free sialylated oligosaccharide profiles were assayed in patient's urine and fibroblasts. RESULTS The neurological phenotype of children with TBCK p.R126X mutations, which we call TBCK-encephaloneuronopathy (TBCKE), include congenital hypotonia, progressive motor neuronopathy, leukoencephalopathy, and epilepsy. Systemic features include coarse facies, dyslipidemia, and osteoporosis. TBCK-/- fibroblasts in vitro exhibit increased numbers of LC3+ autophagosomes and increased autophagic flux by immunoblots. Free oligosaccharide profiles in fibroblasts and urine of TBCKE patients differ from control fibroblasts and are ameliorated by treatment with the mTORC1 activator leucine. INTERPRETATION TBCKE is a clinically distinguishable syndrome with progressive central and peripheral nervous system dysfunction, consistently observed in patients with the p.R126X mutation. We provide evidence that inappropriate autophagy in the absence of cellular stressors may play a role in this disorder, and that mTORC1 activation may ameliorate the autophagic-lysosomal system dysfunction. Free oligosaccharide profiles could serve as a novel biomarker for this disorder as well as a tool to evaluate potential therapeutic interventions. Ann Neurol 2018;83:153-165.
Collapse
Affiliation(s)
- Xilma R Ortiz-González
- Department of Pediatrics, Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Jesus A Tintos-Hernández
- Department of Pediatrics, Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA.,Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA.,Department of Pathology and Laboratory Medicine, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kierstin Keller
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA.,Department of Pathology and Laboratory Medicine, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Xueli Li
- Department of Pathology and Laboratory Medicine, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Diana X Bharucha-Goebel
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD.,Division of Neurology, Children's National Health System, Washington, DC
| | - Sudha K Kessler
- Department of Pediatrics, Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sabrina W Yum
- Department of Pediatrics, Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Peter B Crino
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD
| | - Miao He
- Department of Pathology and Laboratory Medicine, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA.,Department of Pathology and Laboratory Medicine, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| |
Collapse
|
50
|
He M, Sun H, Pang J, Guo X, Huo Y, Wu X, Liu Y, Ma J. Propofol alleviates hypoxia-induced nerve injury in PC-12 cells by up-regulation of microRNA-153. BMC Anesthesiol 2018; 18:197. [PMID: 30579328 PMCID: PMC6303956 DOI: 10.1186/s12871-018-0660-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 12/03/2018] [Indexed: 12/31/2022] Open
Abstract
Background Although the neuroprotective role of propofol has been identified recently, the regulatory mechanism associated with microRNAs (miRNAs/miRs) in neuronal cells remains to be poorly understood. We aimed to explore the regulatory mechanism of propofol in hypoxia-injured rat pheochromocytoma (PC-12) cells. Methods PC-12 cells were exposed to hypoxia, and cell viability and apoptosis were assessed by CCK-8 assay and flow cytometry assay/Western blot analysis, respectively. Effects of propofol on hypoxia-injured cells were measured, and the expression of miR-153 was determined by stem-loop RT-PCR. After that, whether propofol affected PC-12 cells under hypoxia via miR-153 was verified, and the downstream protein of miR-153 as well as the involved signaling cascade was finally explored. Results Hypoxia-induced decrease of cell viability and increase of apoptosis were attenuated by propofol. Then, we found hypoxia exposure up-regulated miR-153 expression, and the level of miR-153 was further elevated by propofol in hypoxia-injured PC-12 cells. Following experiments showed miR-153 inhibition reversed the effects of propofol on hypoxia-treated PC-12 cells. Afterwards, we found BTG3 expression was negatively regulated by miR-153 expression, and BTG3 overexpression inhibited the mTOR pathway and AMPK activation. Besides, hypoxia inhibited the mTOR pathway and AMPK, and these inhibitory effects could be attenuated by propofol. Conclusion Propofol protected hypoxia-injured PC-12 cells through miR-153-mediataed down-regulation of BTG3. BTG3 could inhibit the mTOR pathway and AMPK activation.
Collapse
Affiliation(s)
- Mingwei He
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Haiyan Sun
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Jinlei Pang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Xiangfei Guo
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Yansong Huo
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Xianhong Wu
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Yaguang Liu
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Jun Ma
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|