1
|
Ortega-Tinoco S, Padilla-Orozco M, Hernández-Vázquez F, Garduño J, Mondragón-García A, Ramírez-Sánchez E, Bargas J, Hernández-López S. PACAP induces increased excitability in D1- and D2-expressing nucleus accumbens medium spiny neurons. Brain Res Bull 2025; 224:111323. [PMID: 40147707 DOI: 10.1016/j.brainresbull.2025.111323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/14/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
One of the main eating disorders associated with overweight and obesity is binge eating disorder. Binge eating is characterized by excessive consumption of high-calorie foods over a short period of time, approximately 2 hours. The nucleus accumbens (NAc) plays a key role in modulating the hedonic value of high-calorie foods, commonly referred to as palatable foods. Specific subregions of the shell portion of the NAc (NAcSh), known as hedonic hot spots, may play an important role in the motivational aspect of food consumption. Previous work has shown that the pituitary adenylate cyclase-activating polypeptide (PACAP) injected into the NAc reduces palatable food intake, suggesting that this peptide could be a potential tool for treating binge eating. However, the mechanisms of action of PACAP on the NAc are poorly understood. Here, we used whole-cell recording and calcium imaging techniques in NAcSh brain slices from D1-Cre and A2A-Cre mice to investigate PACAP modulation of medium spiny neuron (MSN) activity. We found that PACAP administration increased the firing rate of D1- and D2-expressing MSNs. In addition, in a binge-eating mouse model, nasal PACAP reduced binge-eating behavior.
Collapse
Affiliation(s)
- S Ortega-Tinoco
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - M Padilla-Orozco
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - F Hernández-Vázquez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - J Garduño
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - A Mondragón-García
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - E Ramírez-Sánchez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - J Bargas
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - S Hernández-López
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico.
| |
Collapse
|
2
|
Gómez-Paz A, Calderón V, Luna-Leal A, Palomero-Rivero M, Bargas J. A positive allosteric modulator of α7 nicotinic receptor reduces levodopa-induced dyskinesias in hemi-parkinsonian mice. Eur J Pharmacol 2025; 998:177655. [PMID: 40254067 DOI: 10.1016/j.ejphar.2025.177655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 04/01/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
Parkinson's disease is a prevalent neurodegenerative disorder characterized by motor impairments including rigidity, bradykinesia and tremor. L-3,4-dihydroxyphenylalanine (L-DOPA) keeps being the standard treatment for Parkinson's disease. But long-term treatment often leads to L-DOPA induced dyskinesias (LIDs): abnormal involuntary movements (AIMs) that significantly impact patients' quality of life. Drugs acting on nicotinic acetylcholine receptors (nAChRs) have emerged as a potential treatment for managing LIDs, since nicotine, shows promise in alleviating LIDs in animal models. Positive allosteric modulators acting via nAChRs of classes α4β2 and α7, such as NS9283 and PNU120596, respectively, have demonstrated therapeutic benefits in preclinical studies using parkinsonian models. Here we investigate the actions of both NS9283 and PNU120596 acting independently or enhancing nicotine's therapeutic effects on LIDs, seeking for novel therapeutic strategies for LIDs management. We used both behavioral assessments and an in vitro pharmacological bioassay previously reported to evaluate striatal microcircuit activity at the histological level in brain slices of dyskinetic mice. Our results show that PNU120596 administered alone is a potent anti-dyskinetic drug, its action not being improved by the presence of nicotine. In contrast, NS9283 has no action administered alone and does not significantly improve nicotine actions. Behavioral results coincide with the in vitro bioassay using principal components analysis of calcium imaging activity: PNU120596 actions in the striatal microcircuit clearly reduce and change active neurons in agreement with dyskinesia reduction. These findings point towards striatal α7-nAChRs positive allosteric modulators as potentially novel adjuvant drugs to manage LIDs.
Collapse
Affiliation(s)
- Alejandra Gómez-Paz
- Division de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México
| | - Vladimir Calderón
- Departamento de Neurobiología y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Aldo Luna-Leal
- Division de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México
| | - Marcela Palomero-Rivero
- Division de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México
| | - José Bargas
- Division de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México.
| |
Collapse
|
3
|
Arroyo B, Hernandez-Lemus E, Gutierrez R. The flow of reward information through neuronal ensembles in the accumbens. Cell Rep 2024; 43:114838. [PMID: 39395166 DOI: 10.1016/j.celrep.2024.114838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/05/2024] [Accepted: 09/20/2024] [Indexed: 10/14/2024] Open
Abstract
The nucleus accumbens shell (NAcSh) integrates reward information through diverse and specialized neuronal ensembles, influencing decision-making. By training rats in a probabilistic choice task and recording NAcSh neuronal activity, we found that rats adapt their choices based solely on the presence or absence of a sucrose reward, suggesting they build an internal representation of reward likelihood. We further demonstrate that NAcSh ensembles dynamically process different aspects of reward-guided behavior, with changes in composition and functional connections observed throughout the reinforcement learning process. The NAcSh forms a highly connected network characterized by a heavy-tailed distribution and the presence of neuronal hubs, facilitating efficient information flow. Reward delivery enhances mutual information, indicating increased communication between ensembles and network synchronization, whereas reward omission decreases it. Our findings reveal how reward information flows through dynamic NAcSh ensembles, whose flexible membership adapts as the rat learns to obtain rewards (energy) in an ever-changing environment.
Collapse
Affiliation(s)
- Benjamin Arroyo
- Laboratory Neurobiology of Appetite, Department of Pharmacology, CINVESTAV, Mexico City 07360, Mexico; Laboratory Neurobiology of Appetite, Center for Research on Aging (CIE), Cinvestav Sede Sur, Mexico City 14330, Mexico
| | - Enrique Hernandez-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico; Center for Complexity Sciences, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Ranier Gutierrez
- Laboratory Neurobiology of Appetite, Department of Pharmacology, CINVESTAV, Mexico City 07360, Mexico; Laboratory Neurobiology of Appetite, Center for Research on Aging (CIE), Cinvestav Sede Sur, Mexico City 14330, Mexico.
| |
Collapse
|
4
|
Correa A, Ponzi A, Calderón VM, Migliore R. Pathological cell assembly dynamics in a striatal MSN network model. Front Comput Neurosci 2024; 18:1410335. [PMID: 38903730 PMCID: PMC11188713 DOI: 10.3389/fncom.2024.1410335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
Under normal conditions the principal cells of the striatum, medium spiny neurons (MSNs), show structured cell assembly activity patterns which alternate sequentially over exceedingly long timescales of many minutes. It is important to understand this activity since it is characteristically disrupted in multiple pathologies, such as Parkinson's disease and dyskinesia, and thought to be caused by alterations in the MSN to MSN lateral inhibitory connections and in the strength and distribution of cortical excitation to MSNs. To understand how these long timescales arise we extended a previous network model of MSN cells to include synapses with short-term plasticity, with parameters taken from a recent detailed striatal connectome study. We first confirmed the presence of sequentially switching cell clusters using the non-linear dimensionality reduction technique, Uniform Manifold Approximation and Projection (UMAP). We found that the network could generate non-stationary activity patterns varying extremely slowly on the order of minutes under biologically realistic conditions. Next we used Simulation Based Inference (SBI) to train a deep net to map features of the MSN network generated cell assembly activity to MSN network parameters. We used the trained SBI model to estimate MSN network parameters from ex-vivo brain slice calcium imaging data. We found that best fit network parameters were very close to their physiologically observed values. On the other hand network parameters estimated from Parkinsonian, decorticated and dyskinetic ex-vivo slice preparations were different. Our work may provide a pipeline for diagnosis of basal ganglia pathology from spiking data as well as for the design pharmacological treatments.
Collapse
Affiliation(s)
- Astrid Correa
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Adam Ponzi
- Institute of Biophysics, National Research Council, Palermo, Italy
- Center for Human Nature, Artificial Intelligence, and Neuroscience, Hokkaido University, Sapporo, Japan
| | - Vladimir M. Calderón
- Department of Developmental Neurobiology and Neurophysiology, Neurobiology Institute, National Autonomous University of Mexico, Querétaro, Mexico
| | - Rosanna Migliore
- Institute of Biophysics, National Research Council, Palermo, Italy
| |
Collapse
|
5
|
Pérez-Ortega J, Akrouh A, Yuste R. Stimulus encoding by specific inactivation of cortical neurons. Nat Commun 2024; 15:3192. [PMID: 38609354 PMCID: PMC11015011 DOI: 10.1038/s41467-024-47515-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Neuronal ensembles are groups of neurons with correlated activity associated with sensory, motor, and behavioral functions. To explore how ensembles encode information, we investigated responses of visual cortical neurons in awake mice using volumetric two-photon calcium imaging during visual stimulation. We identified neuronal ensembles employing an unsupervised model-free algorithm and, besides neurons activated by the visual stimulus (termed "onsemble"), we also find neurons that are specifically inactivated (termed "offsemble"). Offsemble neurons showed faster calcium decay during stimuli, suggesting selective inhibition. In response to visual stimuli, each ensemble (onsemble+offsemble) exhibited small trial-to-trial variability, high orientation selectivity, and superior predictive accuracy for visual stimulus orientation, surpassing the sum of individual neuron activity. Thus, the combined selective activation and inactivation of cortical neurons enhances visual encoding as an emergent and distributed neural code.
Collapse
Affiliation(s)
- Jesús Pérez-Ortega
- Neurotechnology Center, Dept. Biological Sciences, Columbia University, New York, NY, 10027, USA.
| | - Alejandro Akrouh
- Neurotechnology Center, Dept. Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Rafael Yuste
- Neurotechnology Center, Dept. Biological Sciences, Columbia University, New York, NY, 10027, USA
| |
Collapse
|
6
|
Zamora-Ursulo MA, Perez-Becerra J, Tellez LA, Saderi N, Carrillo-Reid L. Reversal of pathological motor behavior in a model of Parkinson's disease by striatal dopamine uncaging. PLoS One 2023; 18:e0290317. [PMID: 37594935 PMCID: PMC10437883 DOI: 10.1371/journal.pone.0290317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/06/2023] [Indexed: 08/20/2023] Open
Abstract
Motor deficits observed in Parkinson's disease (PD) are caused by the loss of dopaminergic neurons and the subsequent dopamine depletion in different brain areas. The most common therapy to treat motor symptoms for patients with this disorder is the systemic intake of L-DOPA that increases dopamine levels in all the brain, making it difficult to discern the main locus of dopaminergic action in the alleviation of motor control. Caged compounds are molecules with the ability to release neuromodulators locally in temporary controlled conditions using light. In the present study, we measured the turning behavior of unilateral dopamine-depleted mice before and after dopamine uncaging. The optical delivery of dopamine in the striatum of lesioned mice produced contralateral turning behavior that resembled, to a lesser extent, the contralateral turning behavior evoked by a systemic injection of apomorphine. Contralateral turning behavior induced by dopamine uncaging was temporarily tied to the transient elevation of dopamine concentration and was reversed when dopamine decreased to pathological levels. Remarkably, contralateral turning behavior was tuned by changing the power and frequency of light stimulation, opening the possibility to modulate dopamine fluctuations using different light stimulation protocols. Moreover, striatal dopamine uncaging recapitulated the motor effects of a low concentration of systemic L-DOPA, but with better temporal control of dopamine levels. Finally, dopamine uncaging reduced the pathological synchronization of striatal neuronal ensembles that characterize unilateral dopamine-depleted mice. We conclude that optical delivery of dopamine in the striatum resembles the motor effects induced by systemic injection of dopaminergic agonists in unilateral dopamine-depleted mice. Future experiments using this approach could help to elucidate the role of dopamine in different brain nuclei in normal and pathological conditions.
Collapse
Affiliation(s)
| | - Job Perez-Becerra
- Instituto de Neurobiologia, Universidad Nacional Autónoma de Mexico, Juriquilla, Queretaro, Mexico
| | - Luis A. Tellez
- Instituto de Neurobiologia, Universidad Nacional Autónoma de Mexico, Juriquilla, Queretaro, Mexico
| | - Nadia Saderi
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosi, San Luis Potosi, Mexico
| | - Luis Carrillo-Reid
- Instituto de Neurobiologia, Universidad Nacional Autónoma de Mexico, Juriquilla, Queretaro, Mexico
| |
Collapse
|
7
|
Villalobos N, Ramírez-Sánchez E, Mondragón-García A, Garduño J, Castillo-Rolón D, Trujeque-Ramos S, Hernández-López S. Insulin decreases epileptiform activity in rat layer 5/6 prefrontal cortex in vitro. Synapse 2023; 77:e22263. [PMID: 36732015 DOI: 10.1002/syn.22263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 02/04/2023]
Abstract
Accumulating evidence indicates that insulin-mediated signaling in the brain may play important roles in regulating neuronal function. Alterations to insulin signaling are associated with the development of neurological disorders including Alzheimer's disease and Parkinson's disease. Also, hyperglycemia and insulin resistance have been associated with seizure activity and brain injury. In recent work, we found that insulin increased inhibitory GABAA -mediated tonic currents in the prefrontal cortex (PFC). In this work, we used local field potential recordings and calcium imaging to investigate the effect of insulin on seizure-like activity in PFC slices. Seizure-like events (SLEs) were induced by perfusing the slices with magnesium-free artificial cerebrospinal fluid (ACSF) containing the proconvulsive compound 4-aminopyridine (4-AP). We found that insulin decreased the frequency, amplitude, and duration of SLEs as well as the synchronic activity of PFC neurons evoked by 4-AP. These insulin effects were mediated by the PI3K/Akt signaling pathway and mimicked by gaboxadol (THIP), a δ GABAA receptor agonist. The effect of insulin on the number of SLEs was partially blocked by L-655,708, an inverse agonist with high selectivity for GABAA receptors containing the α5 subunit. Our results suggest that insulin reduces neuronal excitability by an increase of GABAergic tonic currents. The physiological relevance of these findings is discussed.
Collapse
Affiliation(s)
- N Villalobos
- Academia de Fisiología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, México
- Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Medicina del IPN, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, México
| | - E Ramírez-Sánchez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - A Mondragón-García
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - J Garduño
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - D Castillo-Rolón
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - S Trujeque-Ramos
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - S Hernández-López
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
8
|
Zhao G, Zhang D, Qiao D, Liu X. Exercise improves behavioral dysfunction and inhibits the spontaneous excitatory postsynaptic current of D2-medium spiny neurons. Front Aging Neurosci 2022; 14:1001256. [PMID: 36533169 PMCID: PMC9752814 DOI: 10.3389/fnagi.2022.1001256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/15/2022] [Indexed: 10/17/2023] Open
Abstract
The abnormal function of striatal medium spiny neurons (MSNs) leads to the excitation-inhibition imbalance of the basal ganglia, which is an important pathogenic factor of Parkinson's disease (PD). Exercise improves the dysfunction of basal ganglia through neuroprotective and neuroreparative effects, which may be related to the functional changes of expresses D2 receptors MSNs (D2-MSNs). In this study, D2-Cre mice were selected as the research objects, the PD model was induced by unilateral injection of 6-hydroxydopamine (6-OHDA) in the striatum, and the 4-week treadmill training method was used for exercise intervention. Using optogenetics and behavioral tests, we determined that the average total movement distance of PD and PD + Ex groups was significantly lower than that of the Control group, while that of the PD + Ex and PD + Laser groups was significantly higher than that of the PD group, and the two intervention methods of exercise and optogenetic-stimulation of the D2-MSNs had basically similar effects on improving the autonomic behavior of PD mice. To further investigate the cellular mechanisms, whole-cell patch clamp recordings were carried out on D2-MSNs. We found that exercise decreased the frequency and amplitude of spontaneous excitatory postsynaptic current (sEPSC) and increased the paired-pulse radio of D2-MSNs while leaving basic electrophysiological properties of MSNs unaffected. Combined with behavioral improvement and enhanced D2R protein expression, our findings suggest the inhibited sEPSC of D2-MSNs may contribute to the behavioral improvement after exercise.
Collapse
Affiliation(s)
- Gang Zhao
- Physical Education College, Soochow University, Suzhou, China
- Physical Education and Sports College, Beijing Normal University, Beijing, China
| | - Danyu Zhang
- Physical Education and Sports College, Beijing Normal University, Beijing, China
| | - Decai Qiao
- Physical Education and Sports College, Beijing Normal University, Beijing, China
| | - Xiaoli Liu
- Physical Education and Sports College, Beijing Normal University, Beijing, China
| |
Collapse
|
9
|
Serrano-Reyes M, Pérez-Ortega JE, García-Vilchis B, Laville A, Ortega A, Galarraga E, Bargas J. Dimensionality reduction and recurrence analysis reveal hidden structures of striatal pathological states. Front Syst Neurosci 2022; 16:975989. [PMID: 36741818 PMCID: PMC9893717 DOI: 10.3389/fnsys.2022.975989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/09/2022] [Indexed: 12/02/2022] Open
Abstract
A pipeline is proposed here to describe different features to study brain microcircuits on a histological scale using multi-scale analyses, including the uniform manifold approximation and projection (UMAP) dimensional reduction technique and modularity algorithm to identify neuronal ensembles, Runs tests to show significant ensembles activation, graph theory to show trajectories between ensembles, and recurrence analyses to describe how regular or chaotic ensembles dynamics are. The data set includes ex-vivo NMDA-activated striatal tissue in control conditions as well as experimental models of disease states: decorticated, dopamine depleted, and L-DOPA-induced dyskinetic rodent samples. The goal was to separate neuronal ensembles that have correlated activity patterns. The pipeline allows for the demonstration of differences between disease states in a brain slice. First, the ensembles were projected in distinctive locations in the UMAP space. Second, graphs revealed functional connectivity between neurons comprising neuronal ensembles. Third, the Runs test detected significant peaks of coactivity within neuronal ensembles. Fourth, significant peaks of coactivity were used to show activity transitions between ensembles, revealing recurrent temporal sequences between them. Fifth, recurrence analysis shows how deterministic, chaotic, or recurrent these circuits are. We found that all revealed circuits had recurrent activity except for the decorticated circuits, which tended to be divergent and chaotic. The Parkinsonian circuits exhibit fewer transitions, becoming rigid and deterministic, exhibiting a predominant temporal sequence that disrupts transitions found in the controls, thus resembling the clinical signs of rigidity and paucity of movements. Dyskinetic circuits display a higher recurrence rate between neuronal ensembles transitions, paralleling clinical findings: enhancement in involuntary movements. These findings confirm that looking at neuronal circuits at the histological scale, recording dozens of neurons simultaneously, can show clear differences between control and diseased striatal states: "fingerprints" of the disease states. Therefore, the present analysis is coherent with previous ones of striatal disease states, showing that data obtained from the tissue are robust. At the same time, it adds heuristic ways to interpret circuitry activity in different states.
Collapse
Affiliation(s)
- Miguel Serrano-Reyes
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico,Departamento de Ingeniería en Sistemas Biomédicos, Centro de Ingeniería Avanzada, Facultad de Ingeniería, Universidad Nacional Autónoma de México, Mexico City, Mexico,Miguel Serrano-Reyes,
| | - Jesús Esteban Pérez-Ortega
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico,Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Brisa García-Vilchis
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Antonio Laville
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Aidán Ortega
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Elvira Galarraga
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jose Bargas
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico,*Correspondence: Jose Bargas,
| |
Collapse
|
10
|
Padilla-Orozco M, Duhne M, Fuentes-Serrano A, Ortega A, Galarraga E, Bargas J, Lara-González E. Synaptic determinants of cholinergic interneurons hyperactivity during parkinsonism. Front Synaptic Neurosci 2022; 14:945816. [PMID: 36147730 PMCID: PMC9485566 DOI: 10.3389/fnsyn.2022.945816] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022] Open
Abstract
Parkinson’s disease is a neurodegenerative ailment generated by the loss of dopamine in the basal ganglia, mainly in the striatum. The disease courses with increased striatal levels of acetylcholine, disrupting the balance among these modulatory transmitters. These modifications disturb the excitatory and inhibitory balance in the striatal circuitry, as reflected in the activity of projection striatal neurons. In addition, changes in the firing pattern of striatal tonically active interneurons during the disease, including cholinergic interneurons (CINs), are being searched. Dopamine-depleted striatal circuits exhibit pathological hyperactivity as compared to controls. One aim of this study was to show how striatal CINs contribute to this hyperactivity. A second aim was to show the contribution of extrinsic synaptic inputs to striatal CINs hyperactivity. Electrophysiological and calcium imaging recordings in Cre-mice allowed us to evaluate the activity of dozens of identified CINs with single-cell resolution in ex vivo brain slices. CINs show hyperactivity with bursts and silences in the dopamine-depleted striatum. We confirmed that the intrinsic differences between the activity of control and dopamine-depleted CINs are one source of their hyperactivity. We also show that a great part of this hyperactivity and firing pattern change is a product of extrinsic synaptic inputs, targeting CINs. Both glutamatergic and GABAergic inputs are essential to sustain hyperactivity. In addition, cholinergic transmission through nicotinic receptors also participates, suggesting that the joint activity of CINs drives the phenomenon; since striatal CINs express nicotinic receptors, not expressed in striatal projection neurons. Therefore, CINs hyperactivity is the result of changes in intrinsic properties and excitatory and inhibitory inputs, in addition to the modification of local circuitry due to cholinergic nicotinic transmission. We conclude that CINs are the main drivers of the pathological hyperactivity present in the striatum that is depleted of dopamine, and this is, in part, a result of extrinsic synaptic inputs. These results show that CINs may be a main therapeutic target to treat Parkinson’s disease by intervening in their synaptic inputs.
Collapse
Affiliation(s)
- Montserrat Padilla-Orozco
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mariana Duhne
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Alejandra Fuentes-Serrano
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Aidán Ortega
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Elvira Galarraga
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Bargas
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: José Bargas,
| | - Esther Lara-González
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Esther Lara-González,
| |
Collapse
|
11
|
Lara-González E, Padilla-Orozco M, Fuentes-Serrano A, Bargas J, Duhne M. Translational neuronal ensembles: Neuronal microcircuits in psychology, physiology, pharmacology and pathology. Front Syst Neurosci 2022; 16:979680. [PMID: 36090187 PMCID: PMC9449457 DOI: 10.3389/fnsys.2022.979680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022] Open
Abstract
Multi-recording techniques show evidence that neurons coordinate their firing forming ensembles and that brain networks are made by connections between ensembles. While “canonical” microcircuits are composed of interconnected principal neurons and interneurons, it is not clear how they participate in recorded neuronal ensembles: “groups of neurons that show spatiotemporal co-activation”. Understanding synapses and their plasticity has become complex, making hard to consider all details to fill the gap between cellular-synaptic and circuit levels. Therefore, two assumptions became necessary: First, whatever the nature of the synapses these may be simplified by “functional connections”. Second, whatever the mechanisms to achieve synaptic potentiation or depression, the resultant synaptic weights are relatively stable. Both assumptions have experimental basis cited in this review, and tools to analyze neuronal populations are being developed based on them. Microcircuitry processing followed with multi-recording techniques show temporal sequences of neuronal ensembles resembling computational routines. These sequences can be aligned with the steps of behavioral tasks and behavior can be modified upon their manipulation, supporting the hypothesis that they are memory traces. In vitro, recordings show that these temporal sequences can be contained in isolated tissue of histological scale. Sequences found in control conditions differ from those recorded in pathological tissue obtained from animal disease models and those recorded after the actions of clinically useful drugs to treat disease states, setting the basis for new bioassays to test drugs with potential clinical use. These findings make the neuronal ensembles theoretical framework a dynamic neuroscience paradigm.
Collapse
Affiliation(s)
- Esther Lara-González
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Montserrat Padilla-Orozco
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alejandra Fuentes-Serrano
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Bargas
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: José Bargas,
| | - Mariana Duhne
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
- Mariana Duhne,
| |
Collapse
|
12
|
Striatal neuronal ensembles reveal differential actions of amantadine and clozapine to ameliorate mice L-DOPA-induced dyskinesia. Neuroscience 2022; 492:92-107. [PMID: 35367290 DOI: 10.1016/j.neuroscience.2022.03.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/03/2022] [Accepted: 03/26/2022] [Indexed: 12/23/2022]
Abstract
Amantadine and clozapine have proved to reduce abnormal involuntary movements (AIMs) in preclinical and clinical studies of L-DOPA-Induced Dyskinesias (LID). Even though both drugs decrease AIMs, they may have different action mechanisms by using different receptors and signaling profiles. Here we asked whether there are differences in how they modulate neuronal activity of multiple striatal neurons within the striatal microcircuit at histological level during the dose-peak of L-DOPA in ex-vivo brain slices obtained from dyskinetic mice. To answer this question, we used calcium imaging to record the activity of dozens of neurons of the dorsolateral striatum before and after drugs administration in vitro. We also developed an analysis framework to extract encoding insights from calcium imaging data by quantifying neuronal activity, identifying neuronal ensembles by linking neurons that coactivate using hierarchical cluster analysis and extracting network parameters using Graph Theory. The results show that while both drugs reduce LIDs scores behaviorally in a similar way, they have several different and specific actions on modulating the dyskinetic striatal microcircuit. The extracted features were highly accurate in separating amantadine and clozapine effects by means of principal components analysis (PCA) and support vector machine (SVM) algorithms. These results predict possible synergistic actions of amantadine and clozapine on the dyskinetic striatal microcircuit establishing a framework for a bioassay to test novel antidyskinetic drugs or treatments in vitro.
Collapse
|
13
|
Rendón-Ochoa EA, Padilla-Orozco M, Calderon VM, Avilés-Rosas VH, Hernández-González O, Hernández-Flores T, Perez-Ramirez MB, Palomero-Rivero M, Galarraga E, Bargas J. Dopamine D 2 and Adenosine A 2A Receptors Interaction on Ca 2+ Current Modulation in a Rodent Model of Parkinsonism. ASN Neuro 2022; 14:17590914221102075. [PMID: 36050845 PMCID: PMC9178983 DOI: 10.1177/17590914221102075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Adenosine A1 and A2A receptors are expressed in striatal projection neurons (SPNs). A1 receptors are located in direct (dSPN) and indirect SPNs (iSNP). A2A receptors are only present in iSPNs. Dopamine D2 receptors are also expressed in iSPNs and interactions between D2 and A2A receptors have received attention. iSPNs activity increases during parkinsonism (PD) and A2A receptors may be responsible by enhancing Ca2+ currents (iCa2+). Therefore, A2A receptors blockade is a therapeutic approach. We asked whether A2A receptors need the interaction with D2 receptors (D2R) to exert their actions. By using isolated and identified iSPNs to avoid indirect influences, we show that D2R action habilitates A2A receptors (A2AR) modulation. iCa2+ through voltage gated Ca2+ channels (CaV) was used as a signal to observe this interaction. Voltage-clamp recordings in acutely dissociated iSPNs, current-clamp recordings in slices and calcium imaging in transgenic A2A-Cre mice, showed that D2R reduction in iCa2+ endows A2AR to restore iCa2+ on iSPNs showing an antagonistic interaction between D2 and A2A receptors. A2A receptors were blocked by the antagonist istradefylline, however, this blockade differed in control and dopamine-depleted iSPNs: istradefylline reduced D2R modulation in parkinsonian animals as compared to controls. Calcium imaging recordings show that istradefylline occludes D2R actions in the parkinsonian circuitry and this effect depends on the order of drugs application. Thus, while D2 activation enables A2A receptors action, blockade of A2AR induces a reduction in the action of D2 agonists, confirming a complex interaction. Summary Statement A2A receptor required previous D2 receptor activation to modulate Ca2+ currents. Istradefylline decreases pramipexole modulation on Ca2+ currents. Istradefylline reduces A2A + neurons activity in striatial microcircuit, but pramipexole failed to further reduce neuronal activity.
Collapse
Affiliation(s)
- Ernesto Alberto Rendón-Ochoa
- Laboratorio de Psicofarmacología, Unidad de Investigación Interdisciplinaria y de Ciencias de la Salud y Educación, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Montserrat Padilla-Orozco
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Vladimir Melesio Calderon
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Victor Hugo Avilés-Rosas
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Omar Hernández-González
- Facultad de Medicina, Departamento dé Fisiología, Universidad Nacional Autónoma de México, Circuito Exterior s/n Ciudad Universitaria, Ciudad de Mexico, Mexico
| | - Teresa Hernández-Flores
- Brain Mechanism for behavior Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - María Belén Perez-Ramirez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Marcela Palomero-Rivero
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Elvira Galarraga
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - José Bargas
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| |
Collapse
|
14
|
Pérez-Ortega J, Alejandre-García T, Yuste R. Long-term stability of cortical ensembles. eLife 2021; 10:e64449. [PMID: 34328414 PMCID: PMC8376248 DOI: 10.7554/elife.64449] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 07/29/2021] [Indexed: 12/25/2022] Open
Abstract
Neuronal ensembles, coactive groups of neurons found in spontaneous and evoked cortical activity, are causally related to memories and perception, but it is still unknown how stable or flexible they are over time. We used two-photon multiplane calcium imaging to track over weeks the activity of the same pyramidal neurons in layer 2/3 of the visual cortex from awake mice and recorded their spontaneous and visually evoked responses. Less than half of the neurons remained active across any two imaging sessions. These stable neurons formed ensembles that lasted weeks, but some ensembles were also transient and appeared only in one single session. Stable ensembles preserved most of their neurons for up to 46 days, our longest imaged period, and these 'core' cells had stronger functional connectivity. Our results demonstrate that neuronal ensembles can last for weeks and could, in principle, serve as a substrate for long-lasting representation of perceptual states or memories.
Collapse
Affiliation(s)
- Jesús Pérez-Ortega
- Department of Biological Sciences, Columbia UniversityNew YorkUnited States
| | | | - Rafael Yuste
- Department of Biological Sciences, Columbia UniversityNew YorkUnited States
| |
Collapse
|
15
|
Rodríguez-Arzate CA, Martínez-Mendoza ML, Rocha-Mendoza I, Luna-Palacios Y, Licea-Rodríguez J, Martínez-Torres A. Morphological and Calcium Signaling Alterations of Neuroglial Cells in Cerebellar Cortical Dysplasia Induced by Carmustine. Cells 2021; 10:cells10071581. [PMID: 34201497 PMCID: PMC8304447 DOI: 10.3390/cells10071581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023] Open
Abstract
Cortical dysplasias are alterations in the organization of the layers of the brain cortex due to problems in neuronal migration during development. The neuronal component has been widely studied in experimental models of cortical dysplasias. In contrast, little is known about how glia are affected. In the cerebellum, Bergmann glia (BG) are essential for neuronal migration during development, and in adult they mediate the control of fine movements through glutamatergic transmission. The aim of this study was to characterize the morphology and intracellular calcium dynamics of BG and astrocytes from mouse cerebellum and their modifications in a model of cortical dysplasia induced by carmustine (BCNU). Carmustine-treated mice were affected in their motor coordination and balance. Cerebellar dysplasias and heterotopias were more frequently found in lobule X. Morphology of BG cells and astrocytes was affected, as were their spontaneous [Ca2+]i transients in slice preparation and in vitro.
Collapse
Affiliation(s)
- Cynthia Alejandra Rodríguez-Arzate
- Instituto de Neurobiología (INB), Universidad Nacional Autónoma de México (UNAM), Campus Juriquilla, Querétaro 76230, QT, Mexico; (C.A.R.-A.); (M.L.M.-M.)
| | - Marianne Lizeth Martínez-Mendoza
- Instituto de Neurobiología (INB), Universidad Nacional Autónoma de México (UNAM), Campus Juriquilla, Querétaro 76230, QT, Mexico; (C.A.R.-A.); (M.L.M.-M.)
| | - Israel Rocha-Mendoza
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana, No. 3918, Zona Playitas, Ensenada 22860, BC, Mexico; (I.R.-M.); (Y.L.-P.); (J.L.-R.)
| | - Yryx Luna-Palacios
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana, No. 3918, Zona Playitas, Ensenada 22860, BC, Mexico; (I.R.-M.); (Y.L.-P.); (J.L.-R.)
| | - Jacob Licea-Rodríguez
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana, No. 3918, Zona Playitas, Ensenada 22860, BC, Mexico; (I.R.-M.); (Y.L.-P.); (J.L.-R.)
- Cátedras CONACYT, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada 22860, BC, Mexico
| | - Ataúlfo Martínez-Torres
- Instituto de Neurobiología (INB), Universidad Nacional Autónoma de México (UNAM), Campus Juriquilla, Querétaro 76230, QT, Mexico; (C.A.R.-A.); (M.L.M.-M.)
- Correspondence:
| |
Collapse
|
16
|
Juárez-Vidales JDJ, Pérez-Ortega J, Lorea-Hernández JJ, Méndez-Salcido F, Peña-Ortega F. Configuration and dynamics of dominant inspiratory multineuronal activity patterns during eupnea and gasping generation in vitro. J Neurophysiol 2021; 125:1289-1306. [PMID: 33502956 DOI: 10.1152/jn.00563.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The pre-Bötzinger complex (preBötC), located within the ventral respiratory column, produces inspiratory bursts in varying degrees of synchronization/amplitude. This wide range of population burst patterns reflects the flexibility of the preBötC neurons, which is expressed in variations in the onset/offset times of their activations and their activity during the population bursts, with respiratory neurons exhibiting a large cycle-to-cycle timing jitter both at the population activity onset and at the population activity peak, suggesting that respiratory neurons are stochastically activated before and during the inspiratory bursts. However, it is still unknown whether this stochasticity is maintained while evaluating the coactivity of respiratory neuronal ensembles. Moreover, the preBötC topology also remains unknown. In this study, by simultaneously recording tens of preBötC neurons and using coactivation analysis during the inspiratory periods, we found that the preBötC has a scale-free configuration (mixture of not many highly connected nodes, hubs, with abundant poorly connected elements) exhibiting the rich-club phenomenon (hubs more likely interconnected with each other). PreBötC neurons also produce multineuronal activity patterns (MAPs) that are highly stable and change during the hypoxia-induced reconfiguration. Moreover, preBötC contains a coactivating core network shared by all its MAPs. Finally, we found a distinctive pattern of sequential coactivation of core network neurons at the beginning of the inspiratory periods, indicating that, when evaluated at the multicellular level, the coactivation of respiratory neurons seems not to be stochastic.NEW & NOTEWORTHY By means of multielectrode recordings of preBötC neurons, we evaluated their configuration in normoxia and hypoxia, finding that the preBötC exhibits a scale-free configuration with a rich-club phenomenon. preBötC neurons produce multineuronal activity patterns that are highly stable but change during hypoxia. The preBötC contains a coactivating core network that exhibit a distinctive pattern of coactivation at the beginning of inspirations. These results reveal some network basis of inspiratory rhythm generation and its reconfiguration during hypoxia.
Collapse
Affiliation(s)
- Josué de Jesús Juárez-Vidales
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro, Mexico
| | - Jesús Pérez-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro, Mexico
| | - Jonathan Julio Lorea-Hernández
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro, Mexico
| | - Felipe Méndez-Salcido
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro, Mexico
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro, Mexico
| |
Collapse
|
17
|
Castillo-Rolón D, Ramírez-Sánchez E, Arenas-López G, Garduño J, Hernández-González O, Mihailescu S, Hernández-López S. Nicotine Increases Spontaneous Glutamate Release in the Rostromedial Tegmental Nucleus. Front Neurosci 2021; 14:604583. [PMID: 33519359 PMCID: PMC7838497 DOI: 10.3389/fnins.2020.604583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/23/2020] [Indexed: 01/26/2023] Open
Abstract
The rostromedial tegmental nucleus (RMTg) is a bilateral structure localized in the brainstem and comprise of mainly GABAergic neurons. One of the main functions of the RMTg is to regulate the activity of dopamine neurons of the mesoaccumbens pathway. Therefore, the RMTg has been proposed as a modulator of the reward system and adaptive behaviors associated to reward learning. The RMTg receives an important glutamatergic input from the lateral habenula. Also, it receives cholinergic inputs from the laterodorsal and pedunculopontine tegmental nuclei. Previously, it was reported that nicotine increases glutamate release, evoked by electric stimulation, in the RMTg nucleus. However, the mechanisms by which nicotine induces this effect were not explored. In the present work, we performed electrophysiological experiments in brainstem slices to study the effect of nicotine on spontaneous excitatory postsynaptic currents recorded from immunocytochemically identified RMTg neurons. Also, we used calcium imaging techniques to explore the effects of nicotine on multiple RMTg neurons simultaneously. We found that nicotine promotes the persistent release of glutamate through the activation of α7 nicotinic acetylcholine receptors present on glutamatergic afferents and by a mechanism involving calcium release from intracellular stores. Through these mechanisms, nicotine increases the excitability and synchronizes the activity of RMTg neurons. Our results suggest that the RMTg nucleus mediates the noxious effects of the nicotine, and it could be a potential therapeutic target against tobacco addiction.
Collapse
Affiliation(s)
- Diego Castillo-Rolón
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Enrique Ramírez-Sánchez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Gabina Arenas-López
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Julieta Garduño
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Omar Hernández-González
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Stefan Mihailescu
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Salvador Hernández-López
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
18
|
Hernández-González O, Mondragón-García A, Hernández-López S, Castillo-Rolon DE, Arenas-López G, Tapia D, Mihailescu S. Mechanisms of stimulatory effects of mecamylamine on the dorsal raphe neurons. Brain Res Bull 2020; 164:289-298. [DOI: 10.1016/j.brainresbull.2020.08.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/17/2020] [Accepted: 08/30/2020] [Indexed: 11/15/2022]
|
19
|
Serrano-Reyes M, García-Vilchis B, Reyes-Chapero R, Cáceres-Chávez VA, Tapia D, Galarraga E, Bargas J. Spontaneous Activity of Neuronal Ensembles in Mouse Motor Cortex: Changes after GABAergic Blockade. Neuroscience 2020; 446:304-322. [PMID: 32860933 DOI: 10.1016/j.neuroscience.2020.08.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/02/2020] [Accepted: 08/18/2020] [Indexed: 01/12/2023]
Abstract
The mouse motor cortex exhibits spontaneous activity in the form of temporal sequences of neuronal ensembles in vitro without the need of tissue stimulation. These neuronal ensembles are defined as groups of neurons with a strong correlation between its firing patterns, generating what appears to be a predetermined neural conduction mode that needs study. Each ensemble is commonly accompanied by one or more parvalbumin expressing neurons (PV+) or fast spiking interneurons. Many of these interneurons have functional connections between them, helping to form a circuit configuration similar to a small-world network. However, rich club metrics show that most connected neurons are neurons not expressing parvalbumin, mainly pyramidal neurons (PV-) suggesting feed-forward propagation through pyramidal cells. Ensembles with PV+ neurons are connected to these hubs. When ligand-gated fast GABAergic transmission is blocked, temporal sequences of ensembles collapse into a unique synchronous and recurrent ensemble, showing the need of inhibition for coding cortical spontaneous activity. This new ensemble has a duration and electrophysiological characteristics of brief recurrent interictal epileptiform discharges (IEDs) composed by the coactivity of both PV- and PV+ neurons, demonstrating that GABA transmission impedes its occurrence. Synchronous ensembles are clearly divided into two clusters one of them lasting longer and mainly composed by PV+ neurons. Because an ictal-like event was not recorded after several minutes of IEDs recording, it is inferred that an external stimulus and/or fast GABA transmission are necessary for its appearance, making this preparation ideal to study both the neuronal machinery to encode cortical spontaneous activity and its transformation into brief non-ictal epileptiform discharges.
Collapse
Affiliation(s)
- Miguel Serrano-Reyes
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City 04510, Mexico
| | - Brisa García-Vilchis
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City 04510, Mexico
| | - Rosa Reyes-Chapero
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City 04510, Mexico
| | | | - Dagoberto Tapia
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City 04510, Mexico
| | - Elvira Galarraga
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City 04510, Mexico
| | - José Bargas
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City 04510, Mexico.
| |
Collapse
|
20
|
Suarez LM, Solis O, Sanz-Magro A, Alberquilla S, Moratalla R. Dopamine D1 Receptors Regulate Spines in Striatal Direct-Pathway and Indirect-Pathway Neurons. Mov Disord 2020; 35:1810-1821. [PMID: 32643147 DOI: 10.1002/mds.28174] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Dopamine transmission is involved in the maintenance of the structural plasticity of direct-pathway and indirect-pathway striatal projection neurons (d-SPNs and i-SPNs, respectively). The lack of dopamine in Parkinson's disease produces synaptic remodeling in both types of SPNs, reducing the length of the dendritic arbor and spine density and increasing the intrinsic excitability. Meanwhile, the elevation of dopamine levels by levodopa recovers these alterations selectively in i-SPNs. However, little is known about the specific role of the D1 receptor (D1R) in these alterations. METHODS To explore the specific role of D1R in the synaptic remodeling of SPNs, we used knockout D1R mice (D1R-/- ) and wild-type mice crossed with drd2-enhanced green fluorescent protein (eGFP) to identify d-SPNs and i-SPNs. Corticostriatal slices were used for reconstruction of the dendritic arbors after Lucifer yellow intracellular injection and for whole-cell recordings in naïve and parkinsonian mice treated with saline or levodopa. RESULTS The genetic inactivation of D1R reduces the length of the dendritic tree and the spine density in all SPNs, although more so in d-SPNs, which also increases their spiking. In parkinsonian D1R-/- mice, the spine density decreases in i-SPNs, and this spine loss recovers after chronic levodopa. CONCLUSIONS D1R is essential for the maintenance of spine plasticity in d-SPNs but also affects i-SPNs, indicating an important crosstalk between these 2 types of neurons. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Luz M Suarez
- Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Carlos III Institute of Health (ISCIII), Madrid, Spain
| | - Oscar Solis
- Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Carlos III Institute of Health (ISCIII), Madrid, Spain
| | - Adrian Sanz-Magro
- Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain
| | - Samuel Alberquilla
- Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Carlos III Institute of Health (ISCIII), Madrid, Spain
| | - Rosario Moratalla
- Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Carlos III Institute of Health (ISCIII), Madrid, Spain
| |
Collapse
|
21
|
Oxytocin prevents neuronal network pain-related changes on spinal cord dorsal horn in vitro. Cell Calcium 2020; 90:102246. [PMID: 32590238 DOI: 10.1016/j.ceca.2020.102246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/02/2020] [Accepted: 06/16/2020] [Indexed: 12/28/2022]
Abstract
Recently, oxytocin (OT) has been studied as a potential modulator of endogenous analgesia by acting upon pain circuits at the spinal cord and supraspinal levels. Yet the detailed action mechanisms of OT are still undetermined. The present study aimed to evaluate the action of OT in the spinal cord dorsal horn network under nociceptive-like conditions induced by the activation of the N-methyl-d-aspartate (NMDA) receptor and formalin injection, using calcium imaging techniques. Results demonstrate that the spontaneous Ca2+-dependent activity of the dorsal horn cells was scarce, and the coactivity of cells was mainly absent. When NMDA was applied, high rates of activity and coactivity occurred in the dorsal horn cells; these rates of high activity mimicked the activity dynamics evoked by a neuropathic pain condition. In addition, although OT treatment increased activity rates, it was also capable of disrupting the conformation of coordinated activity previously consolidated by NMDA treatment, without showing any effect by itself. Altogether, our results suggest that OT globally prevents the formation of coordinated patterns previously generated by nociceptive-like conditions on dorsal horn cells by NMDA application, which supports previous evidence showing that OT represents a potential therapeutic alternative for the treatment of chronic neuropathic pain.
Collapse
|
22
|
Duhne M, Lara‐González E, Laville A, Padilla‐Orozco M, Ávila‐Cascajares F, Arias‐García M, Galarraga E, Bargas J. Activation of parvalbumin‐expressing neurons reconfigures neuronal ensembles in murine striatal microcircuits. Eur J Neurosci 2020; 53:2149-2164. [DOI: 10.1111/ejn.14670] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/23/2019] [Accepted: 01/02/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Mariana Duhne
- División Neurociencias Instituto de Fisiología Celular Universidad Nacional Autónoma de México México City Mexico
| | - Esther Lara‐González
- División Neurociencias Instituto de Fisiología Celular Universidad Nacional Autónoma de México México City Mexico
- Facultad de Ciencias Químicas Benemérita Universidad Autónoma de Puebla Puebla Mexico
| | - Antonio Laville
- División Neurociencias Instituto de Fisiología Celular Universidad Nacional Autónoma de México México City Mexico
| | - Montserrat Padilla‐Orozco
- División Neurociencias Instituto de Fisiología Celular Universidad Nacional Autónoma de México México City Mexico
| | - Fatima Ávila‐Cascajares
- División Neurociencias Instituto de Fisiología Celular Universidad Nacional Autónoma de México México City Mexico
| | - Mario Arias‐García
- División Neurociencias Instituto de Fisiología Celular Universidad Nacional Autónoma de México México City Mexico
| | - Elvira Galarraga
- División Neurociencias Instituto de Fisiología Celular Universidad Nacional Autónoma de México México City Mexico
| | - José Bargas
- División Neurociencias Instituto de Fisiología Celular Universidad Nacional Autónoma de México México City Mexico
| |
Collapse
|
23
|
Olivares-Moreno R, López-Hidalgo M, Altamirano-Espinoza A, González-Gallardo A, Antaramian A, Lopez-Virgen V, Rojas-Piloni G. Mouse corticospinal system comprises different functional neuronal ensembles depending on their hodology. BMC Neurosci 2019; 20:50. [PMID: 31547806 PMCID: PMC6757377 DOI: 10.1186/s12868-019-0533-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/17/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Movement performance depends on the synaptic interactions generated by coherent parallel sensorimotor cortical outputs to different downstream targets. The major outputs of the neocortex to subcortical structures are driven by pyramidal tract neurons (PTNs) located in layer 5B. One of the main targets of PTNs is the spinal cord through the corticospinal (CS) system, which is formed by a complex collection of distinct CS circuits. However, little is known about intracortical synaptic interactions that originate CS commands and how different populations of CS neurons are functionally organized. To further understand the functional organization of the CS system, we analyzed the activity of unambiguously identified CS neurons projecting to different zones of the same spinal cord segment using two-photon calcium imaging and retrograde neuronal tracers. RESULTS Sensorimotor cortex slices obtained from transgenic mice expressing GCaMP6 funder the Thy1 promoter were used to analyze the spontaneous calcium transients in layer 5 pyramidal neurons. Distinct subgroups of CS neurons projecting to dorsal horn and ventral areas of the same segment show more synchronous activity between them than with other subgroups. CONCLUSIONS The results indicate that CS neurons projecting to different spinal cord zones segregated into functional ensembles depending on their hodology, suggesting that a modular organization of CS outputs controls sensorimotor behaviors in a coordinated manner.
Collapse
Affiliation(s)
- Rafael Olivares-Moreno
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro, Mexico
| | - Mónica López-Hidalgo
- Escuela Nacional de Estudios Superiores, Juriquilla, UNAM, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro, Mexico
| | - Alain Altamirano-Espinoza
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro, Mexico
| | - Adriana González-Gallardo
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro, Mexico
| | - Anaid Antaramian
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro, Mexico
| | - Verónica Lopez-Virgen
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro, Mexico
| | - Gerardo Rojas-Piloni
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro, Mexico.
| |
Collapse
|
24
|
Comparison of Actions between L-DOPA and Different Dopamine Agonists in Striatal DA-Depleted Microcircuits In Vitro: Pre-Clinical Insights. Neuroscience 2019; 410:76-96. [DOI: 10.1016/j.neuroscience.2019.04.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/23/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
|
25
|
Garduño J, Hernández-López S, Rolón DC, de la Cruz L, Hernández-Vázquez F, Reyes-Vaca A, Arenas I, Bravo-Martínez J, Garcia DE. Electrophysiological characterization of glucose sensing neurons in the hypothalamic arcuate nucleus of male rats. Neurosci Lett 2019; 703:168-176. [PMID: 30926375 DOI: 10.1016/j.neulet.2019.03.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/14/2019] [Accepted: 03/25/2019] [Indexed: 12/01/2022]
Abstract
The arcuate nucleus (ARC), located at the base of hypothalamus, contains two main populations of neurons involved in the regulation of food intake and energy expenditure. The NPY neurons are orexigenic and their activation stimulates food intake while the activation of POMC neurons promote the opposite effect. Several works have tried to identify these neurons based on their electrophysiological and pharmacological characteristics. However, the classification of ARC neurons is still inconclusive. In this work, glucose concentrations were changed within at physiological range, and the response of rat ARC neurons to this stimulus was used to identify them. Subsequently, the cells were classified on the basis of their passive and active electrophysiological properties. Finally, calcium imaging experiments were done to study the response of ARC neurons populations changing glucose concentrations. We found that NPY and putative POMC neurons can be distinguished based on their electrophysiological properties such as input resistance and firing pattern. Calcium imaging experiments confirmed the diversity of ARC neurons.
Collapse
Affiliation(s)
- Julieta Garduño
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), PO Box 70250, Ciudad de México, 04510, Mexico.
| | - Salvador Hernández-López
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), PO Box 70250, Ciudad de México, 04510, Mexico
| | - Diego Castillo Rolón
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), PO Box 70250, Ciudad de México, 04510, Mexico
| | - Lizbeth de la Cruz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), PO Box 70250, Ciudad de México, 04510, Mexico
| | - Fabiola Hernández-Vázquez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, 04510, Mexico
| | - Arturo Reyes-Vaca
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), PO Box 70250, Ciudad de México, 04510, Mexico
| | - Isabel Arenas
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), PO Box 70250, Ciudad de México, 04510, Mexico
| | - Jorge Bravo-Martínez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), PO Box 70250, Ciudad de México, 04510, Mexico
| | - David E Garcia
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), PO Box 70250, Ciudad de México, 04510, Mexico
| |
Collapse
|
26
|
Jáidar O, Carrillo-Reid L, Nakano Y, Lopez-Huerta VG, Hernandez-Cruz A, Bargas J, Garcia-Munoz M, Arbuthnott GW. Synchronized activation of striatal direct and indirect pathways underlies the behavior in unilateral dopamine-depleted mice. Eur J Neurosci 2019; 49:1512-1528. [PMID: 30633847 PMCID: PMC6767564 DOI: 10.1111/ejn.14344] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/17/2018] [Accepted: 12/25/2018] [Indexed: 11/27/2022]
Abstract
For more than three decades it has been known, that striatal neurons become hyperactive after the loss of dopamine input, but the involvement of dopamine (DA) D1‐ or D2‐receptor‐expressing neurons has only been demonstrated indirectly. By recording neuronal activity using fluorescent calcium indicators in D1 or D2 eGFP‐expressing mice, we showed that following dopamine depletion, both types of striatal output neurons are involved in the large increase in neuronal activity generating a characteristic cell assembly of particular neurons that dominate the pattern. When we expressed channelrhodopsin in all the output neurons, light activation in freely moving animals, caused turning like that following dopamine loss. However, if the light stimulation was patterned in pulses the animals circled in the other direction. To explore the neuronal participation during this stimulation we infected normal mice with channelrhodopsin and calcium indicator in striatal output neurons. In slices made from these animals, continuous light stimulation for 15 s induced many cells to be active together and a particular dominant group of neurons, whereas light in patterned pulses activated fewer cells in more variable groups. These results suggest that the simultaneous activity of a large dominant group of striatal output neurons is intimately associated with parkinsonian symptoms.
Collapse
Affiliation(s)
- Omar Jáidar
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Luis Carrillo-Reid
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yoko Nakano
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | | | | | - José Bargas
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | | | | |
Collapse
|
27
|
García-Vilchis B, Suárez P, Serrano-Reyes M, Arias-García M, Tapia D, Duhne M, Bargas J, Galarraga E. Differences in synaptic integration between direct and indirect striatal projection neurons: Role of CaV
3 channels. Synapse 2018; 73:e22079. [DOI: 10.1002/syn.22079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Brisa García-Vilchis
- División de Neurociencias, Instituto de Fisiología Celular; Universidad Nacional Autónoma de México; México City México
| | - Paola Suárez
- División de Neurociencias, Instituto de Fisiología Celular; Universidad Nacional Autónoma de México; México City México
| | - Miguel Serrano-Reyes
- División de Neurociencias, Instituto de Fisiología Celular; Universidad Nacional Autónoma de México; México City México
| | - Mario Arias-García
- División de Neurociencias, Instituto de Fisiología Celular; Universidad Nacional Autónoma de México; México City México
| | - Dagoberto Tapia
- División de Neurociencias, Instituto de Fisiología Celular; Universidad Nacional Autónoma de México; México City México
| | - Mariana Duhne
- División de Neurociencias, Instituto de Fisiología Celular; Universidad Nacional Autónoma de México; México City México
| | - José Bargas
- División de Neurociencias, Instituto de Fisiología Celular; Universidad Nacional Autónoma de México; México City México
| | - Elvira Galarraga
- División de Neurociencias, Instituto de Fisiología Celular; Universidad Nacional Autónoma de México; México City México
| |
Collapse
|
28
|
Marshall LJ, Willett C. Parkinson's disease research: adopting a more human perspective to accelerate advances. Drug Discov Today 2018; 23:1950-1961. [PMID: 30240875 DOI: 10.1016/j.drudis.2018.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/20/2018] [Accepted: 09/12/2018] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) affects 1% of the population over 60 years old and, with global increases in the aging population, presents huge economic and societal burdens. The etiology of PD remains unknown; most cases are idiopathic, presumed to result from genetic and environmental risk factors. Despite 200 years since the first description of PD, the mechanisms behind initiation and progression of the characteristic neurodegenerative processes are not known. Here, we review progress and limitations of the multiple PD animal models available and identify advances that could be implemented to better understand pathological processes, improve disease outcome, and reduce dependence on animal models. Lessons learned from reducing animal use in PD research could serve as guideposts for wider biomedical research.
Collapse
Affiliation(s)
- Lindsay J Marshall
- Humane Society International, The Humane Society of the United States, 700 Professional Drive, Gaithersburg, MD 20879, USA
| | - Catherine Willett
- Humane Society International, The Humane Society of the United States, 700 Professional Drive, Gaithersburg, MD 20879, USA.
| |
Collapse
|
29
|
Calcium currents in striatal fast-spiking interneurons: dopaminergic modulation of Ca V1 channels. BMC Neurosci 2018; 19:42. [PMID: 30012109 PMCID: PMC6048700 DOI: 10.1186/s12868-018-0441-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/07/2018] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Striatal fast-spiking interneurons (FSI) are a subset of GABAergic cells that express calcium-binding protein parvalbumin (PV). They provide feed-forward inhibition to striatal projection neurons (SPNs), receive cortical, thalamic and dopaminergic inputs and are coupled together by electrical and chemical synapses, being important components of the striatal circuitry. It is known that dopamine (DA) depolarizes FSI via D1-class DA receptors, but no studies about the ionic mechanism of this action have been reported. Here we ask about the ion channels that are the effectors of DA actions. This work studies their Ca2+ currents. RESULTS Whole-cell recordings in acutely dissociated and identified FSI from PV-Cre transgenic mice were used to show that FSI express an array of voltage gated Ca2+ channel classes: CaV1, CaV2.1, CaV2.2, CaV2.3 and CaV3. However, CaV1 Ca2+ channel carries most of the whole-cell Ca2+ current in FSI. Activation of D1-like class of DA receptors by the D1-receptor selective agonist SKF-81297 (SKF) enhances whole-cell Ca2+ currents through CaV1 channels modulation. A previous block of CaV1 channels with nicardipine occludes the action of the DA-agonist, suggesting that no other Ca2+ channel is modulated by D1-receptor activation. Bath application of SKF in brain slices increases the firing rate and activity of FSI as measured with both whole-cell and Ca2+ imaging recordings. These actions are reduced by nicardipine. CONCLUSIONS The present work discloses one final effector of DA modulation in FSI. We conclude that the facilitatory action of DA in FSI is in part due to CaV1 Ca2+ channels positive modulation.
Collapse
|
30
|
Differential Synaptic Remodeling by Dopamine in Direct and Indirect Striatal Projection Neurons in Pitx3 -/- Mice, a Genetic Model of Parkinson's Disease. J Neurosci 2018; 38:3619-3630. [PMID: 29483281 DOI: 10.1523/jneurosci.3184-17.2018] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/23/2017] [Accepted: 01/18/2018] [Indexed: 02/06/2023] Open
Abstract
In toxin-based models of Parkinson's disease (PD), striatal projection neurons (SPNs) exhibit dendritic atrophy and spine loss concurrent with an increase in excitability. Chronic l-DOPA treatment that induces dyskinesia selectively restores spine density and excitability in indirect pathway SPNs (iSPNs), whereas spine loss and hyperexcitability persist in direct pathway SPNs (dSPNs). These alterations have only been characterized in toxin-based models of PD, raising the possibility that they are an artifact of exposure to the toxin, which may engage compensatory mechanisms independent of the PD-like pathology or due to the loss of dopaminergic afferents. To test all these, we studied the synaptic remodeling in Pitx3-/- or aphakia mice, a genetic model of PD, in which most of the dopamine neurons in the substantia nigra fail to fully differentiate and to innervate the striatum. We made 3D reconstructions of the dendritic arbor and measured excitability in identified SPNs located in dorsal striatum of BAC-Pitx3-/- mice treated with saline or l-DOPA. Both dSPNs and iSPNs from BAC-Pitx3-/- mice had shorter dendritic trees, lower spine density, and more action potentials than their counterparts from WT mice. Chronic l-DOPA treatment restored spine density and firing rate in iSPNs. By contrast, in dSPNs, spine loss and hyperexcitability persisted following l-DOPA treatment, which is similar to what happens in 6-OHDA WT mice. This indicates that dopamine-mediated synaptic remodeling and plasticity is independent of dopamine innervation during SPN development and that Pitx3-/- mice are a good model because they develop the same pathology described in the toxins-based models and in human postmortem studies of advanced PD.SIGNIFICANCE STATEMENT As the only genetic model of Parkinson's disease (PD) that develops dyskinesia, Pitx3-/- mice reproduce the behavioral effects seen in humans and are a good system for studying dopamine-induced synaptic remodeling. The studies we present here establish that the structural and functional synaptic plasticity that occur in striatal projection neurons in PD and in l-DOPA-induced dyskinesia are specifically due to modulation of the neurotransmitter dopamine and are not artifacts of the use of chemical toxins in PD models. In addition, our findings provide evidence that synaptic plasticity in the Pitx3-/- mouse is similar to that seen in toxin models despite its lack of dopaminergic innervation of the striatum during development. Pitx3-/- mice reproduced the alterations described in patients with advanced PD and in well accepted toxin-based models of PD and dyskinesia. These results further consolidate the fidelity of the Pitx3-/- mouse as a PD model in which to study the morphological and physiological remodeling of striatal projection neurons by administration of l-DOPA and other drugs.
Collapse
|
31
|
Aparicio-Juárez A, Duhne M, Lara-González E, Ávila-Cascajares F, Calderón V, Galarraga E, Bargas J. Cortical stimulation relieves parkinsonian pathological activity in vitro. Eur J Neurosci 2018; 49:834-848. [PMID: 29250861 DOI: 10.1111/ejn.13806] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/21/2017] [Accepted: 12/11/2017] [Indexed: 01/22/2023]
Abstract
Previously, we have shown that chemical excitatory drives such as N-methyl-d-aspartate (NMDA) are capable of activating the striatal microcircuit exhibiting neuronal ensembles that alternate their activity producing temporal sequences. One aim of this work was to demonstrate whether similar activity could be evoked by delivering cortical stimulation. Dynamic calcium imaging allowed us to follow the activity of dozens of neurons with single-cell resolution in mus musculus brain slices. A train of electrical stimuli in the cortex evoked network activity similar to the one induced by bath application of NMDA. Previously, we have also shown that the dopamine-depleted striatal microcircuit increases its spontaneous activity generating dominant recurrent ensembles that interrupt the temporal sequences found in control microcircuits. This activity correlates with parkinsonian pathological activity. Several cortical stimulation protocols such as transcranial magnetic stimulation reduce motor signs of Parkinsonism. Here, we show that cortical stimulation in vitro temporarily eliminates the pathological activity from the dopamine-depleted striatal microcircuit by turning off some neurons that sustain this activity and recruiting new ones that allow transitions between network states, similar to the control circuit. When cortical stimulation is given in the presence of L-DOPA, parkinsonian activity is eliminated during the whole recording period. The present experimental evidence suggests that cortical stimulation such as that generated by transcranial magnetic stimulation, or otherwise, may allow reduce L-DOPA dosage.
Collapse
Affiliation(s)
- Ariadna Aparicio-Juárez
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, P.O. Box 70-253, CDMX, Mexico City, 04510, México
| | - Mariana Duhne
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, P.O. Box 70-253, CDMX, Mexico City, 04510, México
| | - Esther Lara-González
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, P.O. Box 70-253, CDMX, Mexico City, 04510, México
| | - Fátima Ávila-Cascajares
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, P.O. Box 70-253, CDMX, Mexico City, 04510, México
| | - Vladimir Calderón
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, P.O. Box 70-253, CDMX, Mexico City, 04510, México
| | - Elvira Galarraga
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, P.O. Box 70-253, CDMX, Mexico City, 04510, México
| | - José Bargas
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, P.O. Box 70-253, CDMX, Mexico City, 04510, México
| |
Collapse
|
32
|
Suarez LM, Solis O, Aguado C, Lujan R, Moratalla R. L-DOPA Oppositely Regulates Synaptic Strength and Spine Morphology in D1 and D2 Striatal Projection Neurons in Dyskinesia. Cereb Cortex 2018; 26:4253-4264. [PMID: 27613437 PMCID: PMC5066835 DOI: 10.1093/cercor/bhw263] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/01/2016] [Indexed: 12/21/2022] Open
Abstract
Dopamine depletion in Parkinson's disease (PD) produces dendritic spine loss in striatal medium spiny neurons (MSNs) and increases their excitability. However, the synaptic changes that occur in MSNs in PD, in particular those induced by chronic L-3,4-dihydroxyphenylalanine (L-DOPA) treatment, are still poorly understood. We exposed BAC-transgenic D1-tomato and D2-eGFP mice to PD and dyskinesia model paradigms, enabling cell type-specific assessment of changes in synaptic physiology and morphology. The distinct fluorescence markers allowed us to identify D1 and D2 MSNs for analysis using intracellular sharp electrode recordings, electron microscopy, and 3D reconstructions with single-cell Lucifer Yellow injections. Dopamine depletion induced spine pruning in both types of MSNs, affecting mushroom and thin spines equally. Dopamine depletion also increased firing rate in both D1- and D2-MSNs, but reduced evoked-EPSP amplitude selectively in D2-MSNs. L-DOPA treatment that produced dyskinesia differentially affected synaptic properties in D1- and D2-MSNs. In D1-MSNs, spine density remained reduced but the remaining spines were enlarged, with bigger heads and larger postsynaptic densities. These morphological changes were accompanied by facilitation of action potential firing triggered by synaptic inputs. In contrast, although L-DOPA restored the number of spines in D2-MSNs, it resulted in shortened postsynaptic densities. These changes in D2-MSNs correlated with a decrease in synaptic transmission. Our findings indicate that L-DOPA-induced dyskinesia is associated with abnormal spine morphology, modified synaptic transmission, and altered EPSP-spike coupling, with distinct effects in D1- and D2-MSNs.
Collapse
Affiliation(s)
- Luz M Suarez
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, 28002 Madrid, Spain.,CIBERNED, Instituto de Salud Carlos III, 28002 Madrid, Spain
| | - Oscar Solis
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, 28002 Madrid, Spain.,CIBERNED, Instituto de Salud Carlos III, 28002 Madrid, Spain
| | - Carolina Aguado
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), Dept. Ciencias Medicas, Facultad de Medicina, Universidad de Castilla-La Mancha, Campus Biosanitario, Albacete, Spain, Spain
| | - Rafael Lujan
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), Dept. Ciencias Medicas, Facultad de Medicina, Universidad de Castilla-La Mancha, Campus Biosanitario, Albacete, Spain, Spain
| | - Rosario Moratalla
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, 28002 Madrid, Spain.,CIBERNED, Instituto de Salud Carlos III, 28002 Madrid, Spain
| |
Collapse
|
33
|
Functional comparison of corticostriatal and thalamostriatal postsynaptic responses in striatal neurons of the mouse. Brain Struct Funct 2017; 223:1229-1253. [PMID: 29101523 DOI: 10.1007/s00429-017-1536-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 10/05/2017] [Indexed: 12/19/2022]
Abstract
Synaptic inputs from cortex and thalamus were compared in electrophysiologically defined striatal cell classes: direct and indirect pathways' striatal projection neurons (dSPNs and iSPNs), fast-spiking interneurons (FS), cholinergic interneurons (ChINs), and low-threshold spiking-like (LTS-like) interneurons. Our purpose was to observe whether stimulus from cortex or thalamus had equivalent synaptic strength to evoke prolonged suprathreshold synaptic responses in these neuron classes. Subthreshold responses showed that inputs from either source functionally mix up in their dendrites at similar electrotonic distances from their somata. Passive and active properties of striatal neuron classes were consistent with the previous studies. Cre-dependent adeno-associated viruses containing Td-Tomato or eYFP fluorescent proteins were used to identify target cells. Transfections with ChR2-eYFP driven by the promoters CamKII or EF1.DIO in intralaminar thalamic nuclei using Vglut-2-Cre mice, or CAMKII in the motor cortex were used to stimulate cortical or thalamic afferents optogenetically. Both field stimuli in the cortex or photostimulation of ChR2-YFP cortical fibers evoked similar prolonged suprathreshold responses in SPNs. Photostimulation of ChR2-YFP thalamic afferents also evoked suprathreshold responses. Differences previously described between responses of dSPNs and iSPNs were observed in both cases. Prolonged suprathreshold responses could also be evoked from both sources onto all other neuron classes studied. However, to evoke thalamostriatal suprathreshold responses, afferents from more than one thalamic nucleus had to be stimulated. In conclusion, both thalamus and cortex are capable to generate suprathreshold responses converging on diverse striatal cell classes. Postsynaptic properties appear to shape these responses.
Collapse
|
34
|
Clarkson BDS, Kahoud RJ, McCarthy CB, Howe CL. Inflammatory cytokine-induced changes in neural network activity measured by waveform analysis of high-content calcium imaging in murine cortical neurons. Sci Rep 2017; 7:9037. [PMID: 28831096 PMCID: PMC5567248 DOI: 10.1038/s41598-017-09182-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/20/2017] [Indexed: 01/07/2023] Open
Abstract
During acute neuroinflammation, increased levels of cytokines within the brain may contribute to synaptic reorganization that results in long-term changes in network hyperexcitability. Indeed, inflammatory cytokines are implicated in synaptic dysfunction in epilepsy and in an array of degenerative and autoimmune diseases of the central nervous system. Current tools for studying the impact of inflammatory factors on neural networks are either insufficiently fast and sensitive or require complicated and costly experimental rigs. Calcium imaging offers a reasonable surrogate for direct measurement of neuronal network activity, but traditional imaging paradigms are confounded by cellular heterogeneity and cannot readily distinguish between glial and neuronal calcium transients. While the establishment of pure neuron cultures is possible, the removal of glial cells ignores physiologically relevant cell-cell interactions that may be critical for circuit level disruptions induced by inflammatory factors. To overcome these issues, we provide techniques and algorithms for image processing and waveform feature extraction using automated analysis of spontaneous and evoked calcium transients in primary murine cortical neuron cultures transduced with an adeno-associated viral vector driving the GCaMP6f reporter behind a synapsin promoter. Using this system, we provide evidence of network perturbations induced by the inflammatory cytokines TNFα, IL1β, and IFNγ.
Collapse
Affiliation(s)
| | - Robert J Kahoud
- Department of Neurology, Mayo Clinic, Rochester, MN, USA 55905, USA
- Department of Pediatrics, Mayo Clinic, Rochester, MN, USA 55905, USA
| | | | - Charles L Howe
- Department of Neurology, Mayo Clinic, Rochester, MN, USA 55905, USA.
- Department of Neuroscience, Mayo Clinic, Rochester, MN, USA 55905, USA.
- Department of Immunology, Mayo Clinic, Rochester, MN, USA 55905, USA.
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA 55905, USA.
| |
Collapse
|
35
|
Boronat-García A, Guerra-Crespo M, Drucker-Colín R. Historical perspective of cell transplantation in Parkinson’s disease. World J Transplant 2017; 7:179-192. [PMID: 28698835 PMCID: PMC5487308 DOI: 10.5500/wjt.v7.i3.179] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/27/2017] [Accepted: 05/15/2017] [Indexed: 02/05/2023] Open
Abstract
Cell grafting has been considered a therapeutic approach for Parkinson’s disease (PD) since the 1980s. The classical motor symptoms of PD are caused by the loss of dopaminergic neurons in the substantia nigra pars compacta, leading to a decrement in dopamine release in the striatum. Consequently, the therapy of cell-transplantation for PD consists in grafting dopamine-producing cells directly into the brain to reestablish dopamine levels. Different cell sources have been shown to induce functional benefits on both animal models of PD and human patients. However, the observed motor improvements are highly variable between individual subjects, and the sources of this variability are not fully understood. The purpose of this review is to provide a general overview of the pioneering studies done in animal models of PD that established the basis for the first clinical trials in humans, and compare these with the latest findings to identify the most relevant aspects that remain unanswered to date. The main focus of the discussions presented here will be on the mechanisms associated with the survival and functionality of the transplants. These include the role of the dopamine released by the grafts and the capacity of the grafted cells to extend fibers and to integrate into the motor circuit. The complete understanding of these aspects will require extensive research on basic aspects of molecular and cellular physiology, together with neuronal network function, in order to uncover the real potential of cell grafting for treating PD.
Collapse
|
36
|
Affiliation(s)
- José Bargas
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México
| | - Jesús Pérez-Ortega
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México
| |
Collapse
|
37
|
Amyloid β Peptide-Induced Changes in Prefrontal Cortex Activity and Its Response to Hippocampal Input. INTERNATIONAL JOURNAL OF PEPTIDES 2017; 2017:7386809. [PMID: 28127312 PMCID: PMC5239987 DOI: 10.1155/2017/7386809] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 11/02/2016] [Indexed: 12/24/2022]
Abstract
Alterations in prefrontal cortex (PFC) function and abnormalities in its interactions with other brain areas (i.e., the hippocampus) have been related to Alzheimer Disease (AD). Considering that these malfunctions correlate with the increase in the brain's amyloid beta (Aβ) peptide production, here we looked for a causal relationship between these pathognomonic signs of AD. Thus, we tested whether or not Aβ affects the activity of the PFC network and the activation of this cortex by hippocampal input stimulation in vitro. We found that Aβ application to brain slices inhibits PFC spontaneous network activity as well as PFC activation, both at the population and at the single-cell level, when the hippocampal input is stimulated. Our data suggest that Aβ can contribute to AD by disrupting PFC activity and its long-range interactions throughout the brain.
Collapse
|