1
|
MacMahon JA, Andrew PM, Izadi A, Bruun DA, Saito NH, Tancredi DJ, Brooks‐Kayal A, Lein PJ, Gurkoff GG. Acute and persistent changes in neural oscillatory activity predict development of epilepsy following acute organophosphate intoxication in adult rats. Epilepsia 2025; 66:1329-1342. [PMID: 39931903 PMCID: PMC11997943 DOI: 10.1111/epi.18212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 04/16/2025]
Abstract
OBJECTIVE Acute organophosphate (OP) intoxication affects a significant number of individuals worldwide. Those who survive OP-induced cholinergic crisis, which includes status epilepticus, often develop neurological morbidities. Here, we provide a rigorous characterization of the acute and delayed electrophysiological responses to OP intoxication with the goal of identifying early electrophysiological changes that predict later brain changes, including spontaneous recurrent seizures (SRS). METHODS Male and female rats were implanted with electroencephalographic (EEG) and intracranial EEG electrodes prior to acute intoxication with diisopropylfluorophosphate (DFP). All animals received standard of care therapeutics and were recorded continuously for 70 min post-DFP, then again for 5 min at 180 min post-DFP, 1 day postexposure (DPE), 3 DPE, and 7 DPE. Between 7 and 14 DPE, animals were recorded continuously. RESULTS In both sexes, acute DFP intoxication produced rapid and robust elevations in broadband power that were reduced but not terminated by midazolam (MDZ). Theta-delta ratio (TDR) was reduced immediately following DFP exposure and was further depressed by MDZ intervention. In the days that followed, broadband power and TDR recovered toward baseline. From 7 to 14 DPE, electrographic spiking was observed in all animals, and 80% developed SRS. Increased broadband power during status epilepticus was positively correlated with spike rate and SRS frequency. Slower recovery of broadband power to baseline in the days following exposure also correlated with increased SRS burden. Finally, a higher acute TDR correlated with increased spike rates at 3 and 7 DPE. SIGNIFICANCE The data presented in this study provide a rigorous characterization of post-DFP electrographic sequelae that significantly extends the field's current understanding of electrophysiological shifts caused by acute OP intoxication. Critically, we identified potential EEG-based biomarkers that may identify at-risk patients in a clinical setting.
Collapse
Affiliation(s)
- Jeremy A. MacMahon
- Department of Molecular Biosciences, School of Veterinary MedicineUniversity of California, DavisDavisCaliforniaUSA
| | - Peter M. Andrew
- Department of Molecular Biosciences, School of Veterinary MedicineUniversity of California, DavisDavisCaliforniaUSA
| | - Ali Izadi
- Department of Neurological Surgery, School of MedicineUniversity of California, DavisSacramentoCaliforniaUSA
| | - Donald A. Bruun
- Department of Molecular Biosciences, School of Veterinary MedicineUniversity of California, DavisDavisCaliforniaUSA
| | - Naomi H. Saito
- Department of Public Health Sciences, School of MedicineUniversity of California, DavisDavisCaliforniaUSA
| | - Daniel J. Tancredi
- Department of Pediatrics, School of MedicineUniversity of California, DavisSacramentoCaliforniaUSA
| | - Amy Brooks‐Kayal
- Department of Neurology, School of MedicineUniversity of California, DavisSacramentoCaliforniaUSA
| | - Pamela J. Lein
- Department of Molecular Biosciences, School of Veterinary MedicineUniversity of California, DavisDavisCaliforniaUSA
| | - Gene G. Gurkoff
- Department of Neurological Surgery, School of MedicineUniversity of California, DavisSacramentoCaliforniaUSA
- Veterans Association of Northern California Health Care SystemSacramentoCaliforniaUSA
| |
Collapse
|
2
|
Al-Senani GM, Abu Al-Ola KA, Al-Qahtani SD. Development of microfibrillated cellulose-reinforced carboxymethyl cellulose strip imprinted with benzotrifluoride-bearing hydrazone sensor for colorimetric detection of organophosphonates. Int J Biol Macromol 2024; 282:136674. [PMID: 39426769 DOI: 10.1016/j.ijbiomac.2024.136674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
The colorless and odorless nerve agents can cause paralysis and even death. The development of novel composite-based microporous strips has allowed for the rapid and visual detection of diisopropyl phosphorofluoridate (DIPF) nerve agent mimics. The active methyl-containing tricyanofuran and 4-aminobenzotrifluoride diazonium salt were azo-coupled in a straightforward manner to produce a new benzotrifluoride (BFT)-comprising tricyanofuran (TCF) hydrazone colorimetric probe. The molecular structure of the benzotrifluoride-bearing hydrazone (BFTH) was explored by different spectroscopic techniques. Microfibrillated cellulose (MFC) was produced using a green process from sugarcane bagasse, an agriculture waste that is notorious for being a solid pollution. Consequently, discovering a straightforward procedure to convert bagasse into valuable materials has been of utmost importance. MFC displayed diameters of 0.25-2 μm, whereas the sensory films exhibited pore diameters of 0.5-2.25 μm. Various quantities of the BFTH chromophore were used to create benzotrifluoride-bearing hydrazone/microfibrillated cellulose/carboxymethyl cellulose (BFTH/MFC@CMC) composites. The absorbance band of the hydrazone-immobilized composite increased from 435 nm to 580 nm as the content of DIPF was raised. When exposed to DIPF, the dipstick color shifted from orange to pink, according to the CIE Lab measurements. The sensor strip showed a detection limit to DIPF between 5 and 200 ppm.
Collapse
Affiliation(s)
- Ghadah M Al-Senani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Khulood A Abu Al-Ola
- Chemistry Department, College of Sciences, Al-Madina Al-Munawarah, Taibah University, Al-Madina 30002, Saudi Arabia
| | - Salhah D Al-Qahtani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
3
|
Urquizu E, Paratusic S, Goyenechea J, Gómez-Canela C, Fumàs B, Pubill D, Raldúa D, Camarasa J, Escubedo E, López-Arnau R. Acute Paraoxon-Induced Neurotoxicity in a Mouse Survival Model: Oxidative Stress, Dopaminergic System Alterations and Memory Deficits. Int J Mol Sci 2024; 25:12248. [PMID: 39596313 PMCID: PMC11594717 DOI: 10.3390/ijms252212248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
The secondary neurotoxicity induced by severe organophosphorus (OP) poisoning, including paraoxon (POX), is associated with cognitive impairments in survivors, who, despite receiving appropriate emergency treatments, may still experience lasting neurological deficits. Thus, the present study provides a survival mouse model of acute and severe POX poisoning to examine secondary neurotoxicity. Swiss CD-1 male mice were injected with POX (4 mg/kg, s.c.) followed by atropine (4 mg/kg, i.p.), pralidoxime (2-PAM; Pyridine-2-aldoxime methochloride) (25 mg/kg, i.p., twice, 1 h apart) and diazepam (5 mg/kg, i.p.), resulting in a survival rate >90% and Racine score of 5-6. Our results demonstrated that the model showed increased lipid peroxidation, downregulation of antioxidant enzymes and astrogliosis in the mouse hippocampus (HP) and prefrontal cortex (PFC), brain areas involved in cognitive functions. Moreover, dopamine (DA) levels were reduced in the hp, but increased in the PFC. Furthermore, the survival mouse model of acute POX intoxication did not exhibit phenotypic manifestations of depression, anxiety or motor incoordination. However, our results demonstrated long-term recognition memory impairments, which are in accordance with the molecular and neurochemical effects observed. In conclusion, this mouse model can aid in researching POX exposure's effects on memory and developing potential countermeasures against the secondary neurotoxicity induced by severe OP poisoning.
Collapse
Affiliation(s)
- Edurne Urquizu
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.U.)
| | - Selma Paratusic
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.U.)
| | - Júlia Goyenechea
- Department of Analytical Chemistry and Applied (Chromatography Section), School of Engineering, Institut Químic de Sarrià—Universitat Ramon Llull, 08017 Barcelona, Spain
| | - Cristian Gómez-Canela
- Department of Analytical Chemistry and Applied (Chromatography Section), School of Engineering, Institut Químic de Sarrià—Universitat Ramon Llull, 08017 Barcelona, Spain
| | - Berta Fumàs
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.U.)
| | - David Pubill
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.U.)
| | - Demetrio Raldúa
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Jordi Camarasa
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.U.)
| | - Elena Escubedo
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.U.)
| | - Raúl López-Arnau
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.U.)
| |
Collapse
|
4
|
Andrew PM, MacMahon JA, Bernardino PN, Tsai YH, Hobson BA, Porter VA, Huddleston SL, Luo AS, Bruun DA, Saito NH, Harvey DJ, Brooks-Kayal A, Chaudhari AJ, Lein PJ. Shifts in the spatiotemporal profile of inflammatory phenotypes of innate immune cells in the rat brain following acute intoxication with the organophosphate diisopropylfluorophosphate. J Neuroinflammation 2024; 21:285. [PMID: 39497181 PMCID: PMC11533402 DOI: 10.1186/s12974-024-03272-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/23/2024] [Indexed: 11/06/2024] Open
Abstract
Acute intoxication with cholinesterase inhibiting organophosphates (OP) can produce life-threatening cholinergic crisis and status epilepticus (SE). Survivors often develop long-term neurological consequences, including spontaneous recurrent seizures (SRS) and impaired cognition. Numerous studies implicate OP-induced neuroinflammation as a pathogenic mechanism contributing to these chronic sequelae; however, little is known about the inflammatory phenotype of innate immune cells in the brain following acute OP intoxication. Thus, the aim of this study was to characterize the natural history of microglial and astrocytic inflammatory phenotypes following acute intoxication with the OP, diisopropylfluorophosphate (DFP). Adult male and female Sprague-Dawley rats were administered a single dose of DFP (4 mg/kg, sc) followed by standard medical countermeasures. Within minutes, animals developed benzodiazepine-resistant SE as determined by monitoring seizures using a modified Racine scale. At 1, 3, 7, 14, and 28 d post-exposure (DPE), neuroinflammation was assessed using translocator protein (TSPO) positron emission tomography (PET) and magnetic resonance imaging (MRI). In both sexes, we observed consistently elevated radiotracer uptake across all examined brain regions and time points. A separate group of animals was euthanized at these same time points to collect tissues for immunohistochemical analyses. Colocalization of IBA-1, a marker for microglia, with iNOS or Arg1 was used to identify pro- and anti-inflammatory microglia, respectively; colocalization of GFAP, a marker for astrocytes, with C3 or S100A10, pro- and anti-inflammatory astrocytes, respectively. We observed shifts in the inflammatory profiles of microglia and astrocyte populations during the first month post-intoxication, largely in hyperintense inflammatory lesions in the piriform cortex and amygdala regions. In these areas, iNOS+ proinflammatory microglial cell density peaked at 3 and 7 DPE, while anti-inflammatory Arg1+ microglia cell density peaked at 14 DPE. Pro- and anti-inflammatory astrocytes emerged within 7 DPE, and roughly equal ratios of C3+ pro-inflammatory and S100A10+ anti-inflammatory astrocytes persisted at 28 DPE. In summary, microglia and astrocytes adopted mixed inflammatory phenotypes post-OP intoxication, which evolved over one month post exposure. These activated cell populations were most prominent in the piriform and amygdala areas and were more abundant in males compared to females. The temporal relationship between microglial and astrocytic responses suggests that initial microglial activity may influence delayed, persistent astrocytic responses. Further, our findings identify putative windows for inhibition of OP-induced neuroinflammatory responses in both sexes to evaluate the therapeutic benefit of anti-inflammation in this context.
Collapse
Affiliation(s)
- Peter M Andrew
- Department of Molecular Biosciences, Davis, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Jeremy A MacMahon
- Department of Molecular Biosciences, Davis, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Pedro N Bernardino
- Department of Molecular Biosciences, Davis, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Yi-Hua Tsai
- Department of Molecular Biosciences, Davis, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Brad A Hobson
- Center for Molecular and Genomic Imaging, College of Engineering, University of California, DavisDavis, CA, 95616, USA
| | - Valerie A Porter
- Department of Biomedical Engineering, College of Engineering, University of California, DavisDavis, CA, 95616, USA
| | - Sydney L Huddleston
- Center for Molecular and Genomic Imaging, College of Engineering, University of California, DavisDavis, CA, 95616, USA
| | - Audrey S Luo
- Department of Molecular Biosciences, Davis, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Donald A Bruun
- Department of Molecular Biosciences, Davis, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Naomi H Saito
- Department of Public Health Sciences, Davis, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Danielle J Harvey
- Department of Public Health Sciences, Davis, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Amy Brooks-Kayal
- Department of Neurology, Davis, School of Medicine, University of California, Sacramento, CA, 95817, USA
| | - Abhijit J Chaudhari
- Center for Molecular and Genomic Imaging, College of Engineering, University of California, DavisDavis, CA, 95616, USA
- Department of Radiology, Davis, School of Medicine, University of California, Sacramento, CA, 95817, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, Davis, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
5
|
Moghe M, Kim SS, Guan M, Rait A, Pirollo KF, Harford JB, Chang EH. scL-2PAM: A Novel Countermeasure That Ameliorates Neuroinflammation and Neuronal Losses in Mice Exposed to an Anticholinesterase Organophosphate. Int J Mol Sci 2024; 25:7539. [PMID: 39062781 PMCID: PMC11276659 DOI: 10.3390/ijms25147539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Due to their inhibition of acetylcholinesterase, organophosphates are among the most toxic of chemicals. Pralidoxime (a.k.a 2-PAM) is the only acetylcholinesterase reactivator approved in the U.S., but 2-PAM only poorly traverses the blood-brain barrier. Previously, we have demonstrated that scL-2PAM, a nanoformulation designed to enter the brain via receptor-mediated transcytosis, is superior to unencapsulated 2-PAM for reactivating brain acetylcholinesterase, ameliorating cholinergic crisis, and improving survival rates for paraoxon-exposed mice. Here, we employ histology and transcriptome analyses to assess the ability of scL-2PAM to prevent neurological sequelae including microglial activation, expression of inflammatory cytokines, and ultimately loss of neurons in mice surviving paraoxon exposures. Levels of the mRNA encoding chemokine ligand 2 (CCL2) were significantly upregulated after paraoxon exposures, with CCL2 mRNA levels in the brain correlating well with the intensity and duration of cholinergic symptoms. Our nanoformulation of 2-PAM was found to be superior to unencapsulated 2-PAM in reducing the levels of the CCL2 transcript. Moreover, brain histology revealed that scL-2PAM was more effective than unencapsulated 2-PAM in preventing microglial activation and the subsequent loss of neurons. Thus, scL-2PAM appears to be a new and improved countermeasure for reducing neuroinflammation and mitigating brain damage in survivors of organophosphate exposures.
Collapse
Affiliation(s)
- Manish Moghe
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (M.M.); (A.R.); (K.F.P.)
| | - Sang-Soo Kim
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (M.M.); (A.R.); (K.F.P.)
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
- SynerGene Therapeutics, Inc., Potomac, MD 20854, USA;
| | - Miaoyin Guan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (M.M.); (A.R.); (K.F.P.)
| | - Antonina Rait
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (M.M.); (A.R.); (K.F.P.)
| | - Kathleen F. Pirollo
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (M.M.); (A.R.); (K.F.P.)
| | | | - Esther H. Chang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (M.M.); (A.R.); (K.F.P.)
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
6
|
Huang T, Chen Q, Jiang H, Zhang K. Research Progress in the Degradation of Chemical Warfare Agent Simulants Using Metal-Organic Frameworks. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1108. [PMID: 38998714 PMCID: PMC11243471 DOI: 10.3390/nano14131108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024]
Abstract
Chemical warfare agents primarily comprise organophosphorus nerve agents, saliva alkaloids, cyanides, and mustard gas. Exposure to these agents can result in severe respiratory effects, including spasms, edema, and increased secretions leading to breathing difficulties and suffocation. Protecting public safety and national security from such threats has become an urgent priority. Porous metal-organic framework (MOF) materials have emerged as promising candidates for the degradation of chemical warfare agents due to their large surface area, tunable pore size distribution, and excellent catalytic performance. Furthermore, combining MOFs with polymers can enhance their elasticity and processability and improve their degradation performance. In this review, we summarize the literature of the past five years on MOF-based composite materials and their effectiveness in degrading chemical warfare agents. Moreover, we discuss key factors influencing their degradation efficiency, such as MOF structure, pore size, and functionalization strategies. Furthermore, we highlight recent developments in the design of MOF-polymer composites, which offer enhanced degradation performance and stability for practical applications in CWA degradation. These composite materials exhibit good performance in degrading chemical warfare agents, playing a crucial role in protecting public safety and maintaining national security. We can expect to see more breakthroughs in the application of metal-organic framework porous materials for degrading chemical warfare agents. It is hoped that these innovative materials will play a positive role in achieving social stability and security.
Collapse
Affiliation(s)
- Taotao Huang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan 243032, China; (T.H.); (Q.C.)
| | - Qian Chen
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan 243032, China; (T.H.); (Q.C.)
| | - Hui Jiang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Kui Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan 243032, China; (T.H.); (Q.C.)
| |
Collapse
|
7
|
Tsai YH, González EA, Grodzki ACG, Bruun DA, Saito NH, Harvey DJ, Lein PJ. Acute intoxication with diisopropylfluorophosphate promotes cellular senescence in the adult male rat brain. FRONTIERS IN TOXICOLOGY 2024; 6:1360359. [PMID: 38745692 PMCID: PMC11091247 DOI: 10.3389/ftox.2024.1360359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/12/2024] [Indexed: 05/16/2024] Open
Abstract
Acute intoxication with high levels of organophosphate (OP) cholinesterase inhibitors can cause cholinergic crisis, which is associated with acute, life-threatening parasympathomimetic symptoms, respiratory depression and seizures that can rapidly progress to status epilepticus (SE). Clinical and experimental data demonstrate that individuals who survive these acute neurotoxic effects often develop significant chronic morbidity, including behavioral deficits. The pathogenic mechanism(s) that link acute OP intoxication to chronic neurological deficits remain speculative. Cellular senescence has been linked to behavioral deficits associated with aging and neurodegenerative disease, but whether acute OP intoxication triggers cellular senescence in the brain has not been investigated. Here, we test this hypothesis in a rat model of acute intoxication with the OP diisopropylfluorophosphate (DFP). Adult male Sprague-Dawley rats were administered DFP (4 mg/kg, s.c.). Control animals were administered an equal volume (300 µL) of sterile phosphate-buffered saline (s.c.). Both groups were subsequently injected with atropine sulfate (2 mg/kg, i.m.) and 2-pralidoxime (25 mg/kg, i.m.). DFP triggered seizure activity within minutes that rapidly progressed to SE, as determined using behavioral seizure criteria. Brains were collected from animals at 1, 3, and 6 months post-exposure for immunohistochemical analyses of p16, a biomarker of cellular senescence. While there was no immunohistochemical evidence of cellular senescence at 1-month post-exposure, at 3- and 6-months post-exposure, p16 immunoreactivity was significantly increased in the CA3 and dentate gyrus of the hippocampus, amygdala, piriform cortex and thalamus, but not the CA1 region of the hippocampus or the somatosensory cortex. Co-localization of p16 immunoreactivity with cell-specific biomarkers, specifically, NeuN, GFAP, S100β, IBA1 and CD31, revealed that p16 expression in the brain of DFP animals is neuron-specific. The spatial distribution of p16-immunopositive cells overlapped with expression of senescence associated β-galactosidase and with degenerating neurons identified by FluoroJade-C (FJC) staining. The co-occurrence of p16 and FJC was positively correlated. This study implicates cellular senescence as a novel pathogenic mechanism underlying the chronic neurological deficits observed in individuals who survive OP-induced cholinergic crisis.
Collapse
Affiliation(s)
- Yi-Hua Tsai
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Eduardo A. González
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Ana C. G. Grodzki
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Donald A. Bruun
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Naomi H. Saito
- Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Danielle J. Harvey
- Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Pamela J. Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
8
|
Andrew PM, Feng W, Calsbeek JJ, Antrobus SP, Cherednychenko GA, MacMahon JA, Bernardino PN, Liu X, Harvey DJ, Lein PJ, Pessah IN. The α4 Nicotinic Acetylcholine Receptor Is Necessary for the Initiation of Organophosphate-Induced Neuronal Hyperexcitability. TOXICS 2024; 12:263. [PMID: 38668486 PMCID: PMC11054284 DOI: 10.3390/toxics12040263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/29/2024]
Abstract
Acute intoxication with organophosphorus (OP) cholinesterase inhibitors can produce seizures that rapidly progress to life-threatening status epilepticus. Significant research effort has been focused on investigating the involvement of muscarinic acetylcholine receptors (mAChRs) in OP-induced seizure activity. In contrast, there has been far less attention on nicotinic AChRs (nAChRs) in this context. Here, we address this data gap using a combination of in vitro and in vivo models. Pharmacological antagonism and genetic deletion of α4, but not α7, nAChR subunits prevented or significantly attenuated OP-induced electrical spike activity in acute hippocampal slices and seizure activity in mice, indicating that α4 nAChR activation is necessary for neuronal hyperexcitability triggered by acute OP exposures. These findings not only suggest that therapeutic strategies for inhibiting the α4 nAChR subunit warrant further investigation as prophylactic and immediate treatments for acute OP-induced seizures, but also provide mechanistic insight into the role of the nicotinic cholinergic system in seizure generation.
Collapse
Affiliation(s)
- Peter M. Andrew
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, Davis, CA 95616, USA; (P.M.A.); (W.F.); (J.J.C.); (S.P.A.); (G.A.C.); (J.A.M.); (P.N.B.); (X.L.)
| | - Wei Feng
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, Davis, CA 95616, USA; (P.M.A.); (W.F.); (J.J.C.); (S.P.A.); (G.A.C.); (J.A.M.); (P.N.B.); (X.L.)
| | - Jonas J. Calsbeek
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, Davis, CA 95616, USA; (P.M.A.); (W.F.); (J.J.C.); (S.P.A.); (G.A.C.); (J.A.M.); (P.N.B.); (X.L.)
| | - Shane P. Antrobus
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, Davis, CA 95616, USA; (P.M.A.); (W.F.); (J.J.C.); (S.P.A.); (G.A.C.); (J.A.M.); (P.N.B.); (X.L.)
| | - Gennady A. Cherednychenko
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, Davis, CA 95616, USA; (P.M.A.); (W.F.); (J.J.C.); (S.P.A.); (G.A.C.); (J.A.M.); (P.N.B.); (X.L.)
| | - Jeremy A. MacMahon
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, Davis, CA 95616, USA; (P.M.A.); (W.F.); (J.J.C.); (S.P.A.); (G.A.C.); (J.A.M.); (P.N.B.); (X.L.)
| | - Pedro N. Bernardino
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, Davis, CA 95616, USA; (P.M.A.); (W.F.); (J.J.C.); (S.P.A.); (G.A.C.); (J.A.M.); (P.N.B.); (X.L.)
| | - Xiuzhen Liu
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, Davis, CA 95616, USA; (P.M.A.); (W.F.); (J.J.C.); (S.P.A.); (G.A.C.); (J.A.M.); (P.N.B.); (X.L.)
| | - Danielle J. Harvey
- Department of Public Health Sciences, UC Davis School of Medicine, Davis, CA 95616, USA;
| | - Pamela J. Lein
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, Davis, CA 95616, USA; (P.M.A.); (W.F.); (J.J.C.); (S.P.A.); (G.A.C.); (J.A.M.); (P.N.B.); (X.L.)
| | - Isaac N. Pessah
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, Davis, CA 95616, USA; (P.M.A.); (W.F.); (J.J.C.); (S.P.A.); (G.A.C.); (J.A.M.); (P.N.B.); (X.L.)
| |
Collapse
|
9
|
Putra M, Vasanthi SS, Rao NS, Meyer C, Van Otterloo M, Thangi L, Thedens DR, Kannurpatti SS, Thippeswamy T. Inhibiting Inducible Nitric Oxide Synthase with 1400W Reduces Soman (GD)-Induced Ferroptosis in Long-Term Epilepsy-Associated Neuropathology: Structural and Functional Magnetic Resonance Imaging Correlations with Neurobehavior and Brain Pathology. J Pharmacol Exp Ther 2024; 388:724-738. [PMID: 38129129 PMCID: PMC10801728 DOI: 10.1124/jpet.123.001929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Organophosphate (OP) nerve agent (OPNA) intoxication leads to long-term brain dysfunctions. The ineffectiveness of current treatments for OPNA intoxication prompts a quest for the investigation of the mechanism and an alternative effective therapeutic approach. Our previous studies on 1400W, a highly selective inducible nitric oxide synthase (iNOS) inhibitor, showed improvement in epilepsy and seizure-induced brain pathology in rat models of kainate and OP intoxication. In this study, magnetic resonance imaging (MRI) modalities, behavioral outcomes, and biomarkers were comprehensively investigated for brain abnormalities following soman (GD) intoxication in a rat model. T1 and T2 MRI robustly identified pathologic microchanges in brain structures associated with GD toxicity, and 1400W suppressed those aberrant alterations. Moreover, functional network reduction was evident in the cortex, hippocampus, and thalamus after GD exposure, and 1400W rescued the losses except in the thalamus. Behavioral tests showed protection by 1400W against GD-induced memory dysfunction, which also correlated with the extent of brain pathology observed in structural and functional MRIs. GD exposure upregulated iron-laden glial cells and ferritin levels in the brain and serum, 1400W decreased ferritin levels in the epileptic foci in the brain but not in the serum. The levels of brain ferritin also correlated with MRI parameters. Further, 1400W mitigated the overproduction of nitroxidative markers after GD exposure. Overall, this study provides direct evidence for the relationships of structural and functional MRI modalities with behavioral and molecular abnormalities following GD exposure and the neuroprotective effect of an iNOS inhibitor, 1400W. SIGNIFICANT STATEMENT: Our studies demonstrate the MRI microchanges in the brain following GD toxicity, which strongly correlate with neurobehavioral performances and iron homeostasis. The inhibition of iNOS with 1400W mitigates GD-induced cognitive decline, iron dysregulation, and aberrant brain MRI findings.
Collapse
Affiliation(s)
- Marson Putra
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa (M.P., S.S.V., N.S.R., C.M., M.V.O., L.T., T.T.); Department of Radiology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa (D.R.T.); and Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, New Jersey (S.S.K.)
| | - Suraj S Vasanthi
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa (M.P., S.S.V., N.S.R., C.M., M.V.O., L.T., T.T.); Department of Radiology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa (D.R.T.); and Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, New Jersey (S.S.K.)
| | - Nikhil S Rao
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa (M.P., S.S.V., N.S.R., C.M., M.V.O., L.T., T.T.); Department of Radiology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa (D.R.T.); and Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, New Jersey (S.S.K.)
| | - Christina Meyer
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa (M.P., S.S.V., N.S.R., C.M., M.V.O., L.T., T.T.); Department of Radiology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa (D.R.T.); and Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, New Jersey (S.S.K.)
| | - Madison Van Otterloo
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa (M.P., S.S.V., N.S.R., C.M., M.V.O., L.T., T.T.); Department of Radiology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa (D.R.T.); and Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, New Jersey (S.S.K.)
| | - Lal Thangi
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa (M.P., S.S.V., N.S.R., C.M., M.V.O., L.T., T.T.); Department of Radiology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa (D.R.T.); and Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, New Jersey (S.S.K.)
| | - Daniel R Thedens
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa (M.P., S.S.V., N.S.R., C.M., M.V.O., L.T., T.T.); Department of Radiology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa (D.R.T.); and Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, New Jersey (S.S.K.)
| | - Sridhar S Kannurpatti
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa (M.P., S.S.V., N.S.R., C.M., M.V.O., L.T., T.T.); Department of Radiology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa (D.R.T.); and Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, New Jersey (S.S.K.)
| | - Thimmasettappa Thippeswamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa (M.P., S.S.V., N.S.R., C.M., M.V.O., L.T., T.T.); Department of Radiology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa (D.R.T.); and Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, New Jersey (S.S.K.)
| |
Collapse
|
10
|
Blair RE, Hawkins E, Pinchbeck LR, DeLorenzo RJ, Deshpande LS. Chronic Epilepsy and Mossy Fiber Sprouting Following Organophosphate-Induced Status Epilepticus in Rats. J Pharmacol Exp Ther 2024; 388:325-332. [PMID: 37643794 PMCID: PMC10801751 DOI: 10.1124/jpet.123.001739] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023] Open
Abstract
Organophosphate (OP) compounds are highly toxic and include pesticides and chemical warfare nerve agents. OP exposure inhibits the acetylcholinesterase enzyme, causing cholinergic overstimulation that can evolve into status epilepticus (SE) and produce lethality. Furthermore, OP-induced SE survival is associated with mood and memory dysfunction and spontaneous recurrent seizures (SRS). In male Sprague-Dawley rats, we assessed hippocampal pathology and chronic SRS following SE induced by administration of OP agents paraoxon (2 mg/kg, s.c.), diisopropyl fluorophosphate (4 mg/kg, s.c.), or O-isopropyl methylphosphonofluoridate (GB; sarin) (2 mg/kg, s.c.), immediately followed by atropine and 2-PAM. At 1-hour post-OP-induced SE onset, midazolam was administered to control SE. Approximately 6 months after OP-induced SE, SRS were evaluated using video and electroencephalography monitoring. Histopathology was conducted using hematoxylin and eosin (H&E), while silver sulfide (Timm) staining was used to assess mossy fiber sprouting (MFS). Across all the OP agents, over 60% of rats that survived OP-induced SE developed chronic SRS. H&E staining revealed a significant hippocampal neuronal loss, while Timm staining revealed extensive MFS within the inner molecular region of the dentate gyrus. This study demonstrates that OP-induced SE is associated with hippocampal neuronal loss, extensive MFS, and the development of SRS, all hallmarks of chronic epilepsy. SIGNIFICANCE STATEMENT: Models of organophosphate (OP)-induced SE offer a unique resource to identify molecular mechanisms contributing to neuropathology and the development of chronic OP morbidities. These models could allow the screening of targeted therapeutics for efficacious treatment strategies for OP toxicities.
Collapse
Affiliation(s)
- Robert E Blair
- Departments of Neurology (R.E.B., E.H., R.J.D., L.S.D.) and Pharmacology and Toxicology (R.J.D., L.S.D.) School of Medicine, and Department of Biology, College of Humanities & Sciences (L.R.P.), Virginia Commonwealth University, Richmond, Virginia
| | - Elisa Hawkins
- Departments of Neurology (R.E.B., E.H., R.J.D., L.S.D.) and Pharmacology and Toxicology (R.J.D., L.S.D.) School of Medicine, and Department of Biology, College of Humanities & Sciences (L.R.P.), Virginia Commonwealth University, Richmond, Virginia
| | - Lauren R Pinchbeck
- Departments of Neurology (R.E.B., E.H., R.J.D., L.S.D.) and Pharmacology and Toxicology (R.J.D., L.S.D.) School of Medicine, and Department of Biology, College of Humanities & Sciences (L.R.P.), Virginia Commonwealth University, Richmond, Virginia
| | - Robert J DeLorenzo
- Departments of Neurology (R.E.B., E.H., R.J.D., L.S.D.) and Pharmacology and Toxicology (R.J.D., L.S.D.) School of Medicine, and Department of Biology, College of Humanities & Sciences (L.R.P.), Virginia Commonwealth University, Richmond, Virginia
| | - Laxmikant S Deshpande
- Departments of Neurology (R.E.B., E.H., R.J.D., L.S.D.) and Pharmacology and Toxicology (R.J.D., L.S.D.) School of Medicine, and Department of Biology, College of Humanities & Sciences (L.R.P.), Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
11
|
Prchalova E, Kohoutova Z, Knittelova K, Malinak D, Musilek K. Strategies for enhanced bioavailability of oxime reactivators in the central nervous system. Arch Toxicol 2023; 97:2839-2860. [PMID: 37642747 DOI: 10.1007/s00204-023-03587-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/10/2023] [Indexed: 08/31/2023]
Abstract
Oxime reactivators of acetylcholinesterase are commonly used to treat highly toxic organophosphate poisoning. They are effective nucleophiles that can restore the catalytic activity of acetylcholinesterase; however, their main limitation is the difficulty in crossing the blood-brain barrier (BBB) because of their strongly hydrophilic nature. Various approaches to overcome this limitation and enhance the bioavailability of oxime reactivators in the CNS have been evaluated; these include structural modifications, conjugation with molecules that have transporters in the BBB, bypassing the BBB through intranasal delivery, and inhibition of BBB efflux transporters. A promising approach is the use of nanoparticles (NPs) as the delivery systems. Studies using mesoporous silica nanomaterials, poly (L-lysine)-graft-poly(ethylene oxide) NPs, metallic organic frameworks, poly(lactic-co-glycolic acid) NPs, human serum albumin NPs, liposomes, solid lipid NPs, and cucurbiturils, have shown promising results. Some NPs are considered as nanoreactors for organophosphate detoxification; these combine bioscavengers with encapsulated oximes. This study provides an overview and critical discussion of the strategies used to enhance the bioavailability of oxime reactivators in the central nervous system.
Collapse
Affiliation(s)
- Eliska Prchalova
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Zuzana Kohoutova
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Karolina Knittelova
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - David Malinak
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic.
- Biomedical Research Centre, University Hospital in Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| | - Kamil Musilek
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic.
- Biomedical Research Centre, University Hospital in Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| |
Collapse
|
12
|
Opravil J, Pejchal J, Finger V, Korabecny J, Rozsypal T, Hrabinova M, Muckova L, Hepnarova V, Konecny J, Soukup O, Jun D. A-agents, misleadingly known as "Novichoks": a narrative review. Arch Toxicol 2023; 97:2587-2607. [PMID: 37612377 PMCID: PMC10475003 DOI: 10.1007/s00204-023-03571-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/02/2023] [Indexed: 08/25/2023]
Abstract
"Novichok" refers to a new group of nerve agents called the A-series agents. Their existence came to light in 2018 after incidents in the UK and again in 2020 in Russia. They are unique organophosphorus-based compounds developed during the Cold War in a program called Foliant in the USSR. This review is based on original chemical entities from Mirzayanov's memoirs published in 2008. Due to classified research, a considerable debate arose about their structures, and hence, various structural moieties were speculated. For this reason, the scientific literature is highly incomplete and, in some cases, contradictory. This review critically assesses the information published to date on this class of compounds. The scope of this work is to summarize all the available and relevant information, including the physicochemical properties, chemical synthesis, mechanism of action, toxicity, pharmacokinetics, and medical countermeasures used to date. The environmental stability of A-series agents, the lack of environmentally safe decontamination, their high toxicity, and the scarcity of information on post-contamination treatment pose a challenge for managing possible incidents.
Collapse
Affiliation(s)
- Jakub Opravil
- Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Jaroslav Pejchal
- Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Vladimir Finger
- Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
- Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Tomas Rozsypal
- Nuclear, Biological and Chemical Defence Institute, University of Defence, Vita Nejedleho 1, 682 03 Vyskov, Czech Republic
| | - Martina Hrabinova
- Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Lubica Muckova
- Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Vendula Hepnarova
- Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Jan Konecny
- Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Daniel Jun
- Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| |
Collapse
|
13
|
Das B, Majumder D. A molecular docking-based comparative assessment of various anticholinergic drugs as antidotes to different nerve agent poisoning. J Biomol Struct Dyn 2023; 41:7809-7820. [PMID: 36152998 DOI: 10.1080/07391102.2022.2125904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 09/10/2022] [Indexed: 10/14/2022]
Abstract
Nerve agent poisoning is still a threat to civilization. Nerve agents function by binding with the enzyme acetylcholinesterase irreversibly. Accumulation of acetylcholine in the synapse causes over-stimulation of muscarinic and nicotinic acetylcholinergic receptors. Thus miosis, glandular hyper secretion, bronchoconstriction, vomiting, diarrhea and bradycardia occurs (by M1-M5 receptors stimulation); whereas convulsion and seizures occur due to the nicotinic receptors. Atropine is a non-selective muscarinic antagonists but no nicotinic antagonists are known. Seizures are controlled by diazepam. Enzyme aging occurs without treatment which causes the enzyme resistant to oxime therapy. Though numerous wet-lab based works has carried out, however, recent time there is an over-growing trend to make comparative assessment of drugs and toxicants. Here we made a molecular docking based comparative assessments between nerve agents toxicity and efficacy of different drugs to prevent this toxicity. Our results suggest that VX is the most harmful organophosphate nerve agents and HI-6 is the best drug followed by Obidoxime and Pralidoxime to free acetylcholinestarase. Docking results correspond the data trend of different in vivo experiments for the assessment of severity of different nerve agents and/or effectiveness of different antidote drugs. Our study reinforces the utility of pretreatment of the enzyme with a carbamic acid derivative like Pyridostigmine bromide which inhibits the enzyme reversibly to a smaller extent and thus, prevent the enzyme from aging and the nerve agent binding.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bishwajit Das
- Society for Systems Biology & Translational Research, Kolkata, India
- Department of Physiology, West Bengal State University, Kolkata, India
| | - Durjoy Majumder
- Department of Physiology, West Bengal State University, Kolkata, India
| |
Collapse
|
14
|
Neurotoxicity evoked by organophosphates and available countermeasures. Arch Toxicol 2023; 97:39-72. [PMID: 36335468 DOI: 10.1007/s00204-022-03397-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022]
Abstract
Organophosphorus compounds (OP) are a constant problem, both in the military and in the civilian field, not only in the form of acute poisoning but also for their long-lasting consequences. No antidote has been found that satisfactorily protects against the toxic effects of organophosphates. Likewise, there is no universal cure to avert damage after poisoning. The key mechanism of organophosphate toxicity is the inhibition of acetylcholinesterase. The overstimulation of nicotinic or muscarinic receptors by accumulated acetylcholine on a synaptic cleft leads to activation of the glutamatergic system and the development of seizures. Further consequences include generation of reactive oxygen species (ROS), neuroinflammation, and the formation of various other neuropathologists. In this review, we present neuroprotection strategies which can slow down the secondary nerve cell damage and alleviate neurological and neuropsychiatric disturbance. In our opinion, there is no unequivocal approach to ensure neuroprotection, however, sooner the neurotoxicity pathway is targeted, the better the results which can be expected. It seems crucial to target the key propagation pathways, i.e., to block cholinergic and, foremostly, glutamatergic cascades. Currently, the privileged approach oriented to stimulating GABAAR by benzodiazepines is of limited efficacy, so that antagonizing the hyperactivity of the glutamatergic system could provide an even more efficacious approach for terminating OP-induced seizures and protecting the brain from permanent damage. Encouraging results have been reported for tezampanel, an antagonist of GluK1 kainate and AMPA receptors, especially in combination with caramiphen, an anticholinergic and anti-glutamatergic agent. On the other hand, targeting ROS by antioxidants cannot or already developed neuroinflammation does not seem to be very productive as other processes are also involved.
Collapse
|
15
|
Wang X, Wang X, Feng R, Fu T, Zhang J, Sun X. Recent advances of chemosensors for nerve agents. Chem Asian J 2022; 17:e202200284. [DOI: 10.1002/asia.202200284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/16/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Xiao Wang
- Shaanxi University of Science and Technology Xi\'an Campus: Shaanxi University of Science and Technology College of Chemistry and Chemical Engineering CHINA
| | - Xuechuan Wang
- Shaanxi University of Science and Technology Xi\'an Campus: Shaanxi University of Science and Technology College of Chemistry and Chemical Engineering CHINA
| | - Rong Feng
- Xi'an Jiaotong University School of Life Science and Technology CHINA
| | - Tao Fu
- Xi'an Jiaotong University School of Life Science and Technology CHINA
| | - Jie Zhang
- Fourth Military Medical University: Air Force Medical University Institute of Preventive medicine CHINA
| | - Xiaolong Sun
- Xi'an Jiaotong University School of life science and technology 28, Xianning West Road, Xi'an, Shaanxi 710049 XiAn CHINA
| |
Collapse
|
16
|
Kostoudi S, Pampalakis G. Improvements, Variations and Biomedical Applications of the Michaelis-Arbuzov Reaction. Int J Mol Sci 2022; 23:ijms23063395. [PMID: 35328816 PMCID: PMC8955222 DOI: 10.3390/ijms23063395] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 01/27/2023] Open
Abstract
Compounds bearing the phosphorus–carbon (P–C) bond have important pharmacological, biochemical, and toxicological properties. Historically, the most notable reaction for the formation of the P–C bond is the Michaelis–Arbuzov reaction, first described in 1898. The classical Michaelis–Arbuzov reaction entails a reaction between an alkyl halide and a trialkyl phosphite to yield a dialkylalkylphosphonate. Nonetheless, deviations from the classical mechanisms and new modifications have appeared that allowed the expansion of the library of reactants and consequently the chemical space of the yielded products. These involve the use of Lewis acid catalysts, green methods, ultrasound, microwave, photochemically-assisted reactions, aryne-based reactions, etc. Here, a detailed presentation of the Michaelis–Arbuzov reaction and its developments and applications in the synthesis of biomedically important agents is provided. Certain examples of such applications include the development of alkylphosphonofluoridates as serine hydrolase inhibitors and activity-based probes, and the P–C containing antiviral and anticancer agents.
Collapse
|
17
|
Gage M, Putra M, Gomez-Estrada C, Golden M, Wachter L, Gard M, Thippeswamy T. Differential Impact of Severity and Duration of Status Epilepticus, Medical Countermeasures, and a Disease-Modifier, Saracatinib, on Brain Regions in the Rat Diisopropylfluorophosphate Model. Front Cell Neurosci 2021; 15:772868. [PMID: 34720886 PMCID: PMC8555467 DOI: 10.3389/fncel.2021.772868] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/28/2021] [Indexed: 11/29/2022] Open
Abstract
Acute organophosphate (OP) toxicity poses a significant threat to both military and civilian personnel as it can lead to a variety of cholinergic symptoms including the development of status epilepticus (SE). Depending on its severity, SE can lead to a spectrum of neurological changes including neuroinflammation and neurodegeneration. In this study, we determined the impact of SE severity and duration on disease promoting parameters such as gliosis and neurodegeneration and the efficacy of a disease modifier, saracatinib (AZD0530), a Src/Fyn tyrosine kinase inhibitor. Animals were exposed to 4 mg/kg diisopropylfluorophosphate (DFP, s.c.) followed by medical countermeasures. We had five experimental groups: controls (no DFP), animals with no continuous convulsive seizures (CS), animals with ∼20-min continuous CS, 31-60-min continuous CS, and > 60-min continuous CS. These groups were then assessed for astrogliosis, microgliosis, and neurodegeneration 8 days after DFP exposure. The 31-60-min and > 60-min groups, but not ∼20-min group, had significantly upregulated gliosis and neurodegeneration in the hippocampus compared to controls. In the piriform cortex and amygdala, however, all three continuous CS groups had significant upregulation in both gliosis and neurodegeneration. In a separate cohort of animals that had ∼20 and > 60-min of continuous CS, we administered saracatinib for 7 days beginning three hours after DFP. There was bodyweight loss and mortality irrespective of the initial SE severity and duration. However, in survived animals, saracatinib prevented spontaneous recurrent seizures (SRS) during the first week in both severity groups. In the ∼20-min CS group, compared to the vehicle, saracatinib significantly reduced neurodegeneration in the piriform cortex and amygdala. There were no significant differences in the measured parameters between the naïve control and saracatinib on its own (without DFP) groups. Overall, this study demonstrates the differential effects of the initial SE severity and duration on the localization of gliosis and neurodegeneration. We have also demonstrated the disease-modifying potential of saracatinib. However, its’ dosing regimen should be optimized based on initial severity and duration of CS during SE to maximize therapeutic effects and minimize toxicity in the DFP model as well as in other OP models such as soman.
Collapse
Affiliation(s)
- Meghan Gage
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States.,Neuroscience Interdepartmental Program, Iowa State University, Ames, IA, United States
| | - Marson Putra
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States.,Neuroscience Interdepartmental Program, Iowa State University, Ames, IA, United States
| | - Crystal Gomez-Estrada
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Madison Golden
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Logan Wachter
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Megan Gard
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Thimmasettappa Thippeswamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States.,Neuroscience Interdepartmental Program, Iowa State University, Ames, IA, United States
| |
Collapse
|
18
|
Nasiripur P, Zangiabadi M, Baghersad MH. Visible light photocatalytic degradation of methyl parathion as chemical warfare agents simulant via GO-Fe3O4/Bi2MoO6 nanocomposite. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130875] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
González EA, Calsbeek JJ, Tsai YH, Tang MY, Andrew P, Vu J, Berg EL, Saito NH, Harvey DJ, Supasai S, Gurkoff GG, Silverman JL, Lein PJ. Sex-specific acute and chronic neurotoxicity of acute diisopropylfluorophosphate (DFP)-intoxication in juvenile Sprague-Dawley rats. Curr Res Toxicol 2021; 2:341-356. [PMID: 34622217 PMCID: PMC8484742 DOI: 10.1016/j.crtox.2021.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022] Open
Abstract
Preclinical efforts to improve medical countermeasures against organophosphate (OP) chemical threat agents have largely focused on adult male models. However, age and sex have been shown to influence the neurotoxicity of repeated low-level OP exposure. Therefore, to determine the influence of sex and age on outcomes associated with acute OP intoxication, postnatal day 28 Sprague-Dawley male and female rats were exposed to the OP diisopropylfluorophosphate (DFP; 3.4 mg/kg, s.c.) or an equal volume of vehicle (∼80 µL saline, s.c.) followed by atropine sulfate (0.1 mg/kg, i.m.) and pralidoxime (2-PAM; 25 mg/kg, i.m.). Seizure activity was assessed during the first 4 h post-exposure using behavioral criteria and electroencephalographic (EEG) recordings. At 1 d post-exposure, acetylcholinesterase (AChE) activity was measured in cortical tissue, and at 1, 7, and 28 d post-exposure, brains were collected for neuropathologic analyses. At 1 month post-DFP, animals were analyzed for motor ability, learning and memory, and hippocampal neurogenesis. Acute DFP intoxication triggered more severe seizure behavior in males than females, which was supported by EEG recordings. DFP caused significant neurodegeneration and persistent microglial activation in numerous brain regions of both sexes, but astrogliosis occurred earlier and was more severe in males compared to females. DFP males and females exhibited pronounced memory deficits relative to sex-matched controls. In contrast, acute DFP intoxication altered hippocampal neurogenesis in males, but not females. These findings demonstrate that acute DFP intoxication triggers seizures in juvenile rats of both sexes, but the seizure severity varies by sex. Some, but not all, chronic neurotoxic outcomes also varied by sex. The spatiotemporal patterns of neurological damage suggest that microglial activation may be a more important factor than astrogliosis or altered neurogenesis in the pathogenesis of cognitive deficits in juvenile rats acutely intoxicated with OPs.
Collapse
Key Words
- 2-PAM, pralidoxime
- AChE, acetylcholinesterase
- AS, atropine-sulfate
- BChE, butyrylcholinesterase
- CT, computed tomography
- ChE, cholinesterase
- Cognitive deficits
- DFP, diisopropylfluorophosphate
- EEG, electroencephalogram
- FJC, Fluoro-Jade C
- Neurodegeneration
- Neurogenesis
- Neuroinflammation
- OP, organophosphate
- PBS, phosphate-buffered saline
- ROI, region of interest
- SE, status epilepticus
- Seizures
- Sex differences
- T2w, T2-weighted
- VEH, vehicle
- i.m., intramuscular
- i.p., intraperitoneal
- s.c., subcutaneous
Collapse
Affiliation(s)
- Eduardo A. González
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA
| | - Jonas J. Calsbeek
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA
| | - Yi-Hua Tsai
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA
| | - Mei-Yun Tang
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA
| | - Peter Andrew
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA
| | - Joan Vu
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA
| | - Elizabeth L. Berg
- Department of Psychiatry, University of California, Davis, School of Medicine, 2230, Stockton Boulevard, Sacramento, CA 95817, USA
| | - Naomi H. Saito
- Department of Public Health Sciences, University of California, Davis, One Shields Avenue, School of Medicine, Davis, CA 95616, USA
| | - Danielle J. Harvey
- Department of Public Health Sciences, University of California, Davis, One Shields Avenue, School of Medicine, Davis, CA 95616, USA
| | - Suangsuda Supasai
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA
| | - Gene G. Gurkoff
- Department of Neurological Surgery, University of California, Davis, School of Medicine, 4860 Y Street, Sacramento, CA 95817, USA
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA 95618, USA
| | - Jill L. Silverman
- Department of Psychiatry, University of California, Davis, School of Medicine, 2230, Stockton Boulevard, Sacramento, CA 95817, USA
- MIND Institute, University of California, Davis, 2825 50th Street, Sacramento, CA 95817, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA
- MIND Institute, University of California, Davis, 2825 50th Street, Sacramento, CA 95817, USA
| |
Collapse
|
20
|
Calsbeek JJ, González EA, Bruun DA, Guignet MA, Copping N, Dawson ME, Yu AJ, MacMahon JA, Saito NH, Harvey DJ, Silverman JL, Lein PJ. Persistent neuropathology and behavioral deficits in a mouse model of status epilepticus induced by acute intoxication with diisopropylfluorophosphate. Neurotoxicology 2021; 87:106-119. [PMID: 34509511 PMCID: PMC8595753 DOI: 10.1016/j.neuro.2021.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 01/01/2023]
Abstract
Organophosphate (OP) nerve agents and pesticides are a class of neurotoxic compounds that can cause status epilepticus (SE), and death following acute high-dose exposures. While the standard of care for acute OP intoxication (atropine, oxime, and high-dose benzodiazepine) can prevent mortality, survivors of OP poisoning often experience long-term brain damage and cognitive deficits. Preclinical studies of acute OP intoxication have primarily used rat models to identify candidate medical countermeasures. However, the mouse offers the advantage of readily available knockout strains for mechanistic studies of acute and chronic consequences of OP-induced SE. Therefore, the main objective of this study was to determine whether a mouse model of acute diisopropylfluorophosphate (DFP) intoxication would produce acute and chronic neurotoxicity similar to that observed in rat models and humans following acute OP intoxication. Adult male C57BL/6J mice injected with DFP (9.5 mg/kg, s.c.) followed 1 min later with atropine sulfate (0.1 mg/kg, i.m.) and 2-pralidoxime (25 mg/kg, i.m.) developed behavioral and electrographic signs of SE within minutes that continued for at least 4 h. Acetylcholinesterase inhibition persisted for at least 3 d in the blood and 14 d in the brain of DFP mice relative to vehicle (VEH) controls. Immunohistochemical analyses revealed significant neurodegeneration and neuroinflammation in multiple brain regions at 1, 7, and 28 d post-exposure in the brains of DFP mice relative to VEH controls. Deficits in locomotor and home-cage behavior were observed in DFP mice at 28 d post-exposure. These findings demonstrate that this mouse model replicates many of the outcomes observed in rats and humans acutely intoxicated with OPs, suggesting the feasibility of using this model for mechanistic studies and therapeutic screening.
Collapse
Affiliation(s)
- Jonas J Calsbeek
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, 95616, USA.
| | - Eduardo A González
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, 95616, USA.
| | - Donald A Bruun
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, 95616, USA.
| | - Michelle A Guignet
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, 95616, USA.
| | - Nycole Copping
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA; MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA.
| | - Mallory E Dawson
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, 95616, USA.
| | - Alexandria J Yu
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, 95616, USA.
| | - Jeremy A MacMahon
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, 95616, USA.
| | - Naomi H Saito
- Department of Public Health Sciences, University of California, Davis, School of Medicine, Davis, CA, 95616, USA.
| | - Danielle J Harvey
- Department of Public Health Sciences, University of California, Davis, School of Medicine, Davis, CA, 95616, USA.
| | - Jill L Silverman
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA; MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA.
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, 95616, USA; MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
21
|
Mundy PC, Pressly B, Carty DR, Yaghoobi B, Wulff H, Lein PJ. The efficacy of γ-aminobutyric acid type A receptor (GABA AR) subtype-selective positive allosteric modulators in blocking tetramethylenedisulfotetramine (TETS)-induced seizure-like behavior in larval zebrafish with minimal sedation. Toxicol Appl Pharmacol 2021; 426:115643. [PMID: 34265354 PMCID: PMC8514104 DOI: 10.1016/j.taap.2021.115643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 11/19/2022]
Abstract
The chemical threat agent tetramethylenedisulfotetramine (TETS) is a γ-aminobutyric acid type A receptor (GABA AR) antagonist that causes life threatening seizures. Currently, there is no specific antidote for TETS intoxication. TETS-induced seizures are typically treated with benzodiazepines, which function as nonselective positive allosteric modulators (PAMs) of synaptic GABAARs. The major target of TETS was recently identified as the GABAAR α2β3γ2 subtype in electrophysiological studies using recombinantly expressed receptor combinations. Here, we tested whether these in vitro findings translate in vivo by comparing the efficacy of GABAAR subunit-selective PAMs in reducing TETS-induced seizure behavior in larval zebrafish. We tested PAMs targeting α1, α2, α2/3/5, α6, ß2/3, ß1/2/3, and δ subunits and compared their efficacy to the benzodiazepine midazolam (MDZ). The data demonstrate that α2- and α6-selective PAMs (SL-651,498 and SB-205384, respectively) were effective at mitigating TETS-induced seizure-like behavior. Combinations of SB-205384 and MDZ or SL-651,498 and 2–261 (ß2/3-selective) mitigated TETS-induced seizure-like behavior at concentrations that did not elicit sedating effects in a photomotor behavioral assay, whereas MDZ alone caused sedation at the concentration required to stop seizure behavior. Isobologram analyses suggested that SB-205384 and MDZ interacted in an antagonistic fashion, while the effects of SL-651,498 and 2–261 were additive. These results further elucidate the molecular mechanism by which TETS induces seizures and provide mechanistic insight regarding specific countermeasures against this chemical convulsant.
Collapse
Affiliation(s)
- Paige C Mundy
- Department of Molecular Biosciences, University of California, School of Veterinary Medicine, Davis, CA 95616, United States.
| | - Brandon Pressly
- Department of Pharmacology, University of California, School of Medicine, Davis, CA 95616, United States.
| | - Dennis R Carty
- Department of Molecular Biosciences, University of California, School of Veterinary Medicine, Davis, CA 95616, United States
| | - Bianca Yaghoobi
- Department of Molecular Biosciences, University of California, School of Veterinary Medicine, Davis, CA 95616, United States.
| | - Heike Wulff
- Department of Pharmacology, University of California, School of Medicine, Davis, CA 95616, United States.
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, School of Veterinary Medicine, Davis, CA 95616, United States.
| |
Collapse
|
22
|
Andrew PM, Lein PJ. Neuroinflammation as a Therapeutic Target for Mitigating the Long-Term Consequences of Acute Organophosphate Intoxication. Front Pharmacol 2021; 12:674325. [PMID: 34054549 PMCID: PMC8153682 DOI: 10.3389/fphar.2021.674325] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/30/2021] [Indexed: 12/14/2022] Open
Abstract
Acute intoxication with organophosphates (OPs) can cause a potentially fatal cholinergic crisis characterized by peripheral parasympathomimetic symptoms and seizures that rapidly progress to status epilepticus (SE). While current therapeutic countermeasures for acute OP intoxication significantly improve the chances of survival when administered promptly, they are insufficient for protecting individuals from chronic neurologic outcomes such as cognitive deficits, affective disorders, and acquired epilepsy. Neuroinflammation is posited to contribute to the pathogenesis of these long-term neurologic sequelae. In this review, we summarize what is currently known regarding the progression of neuroinflammatory responses after acute OP intoxication, drawing parallels to other models of SE. We also discuss studies in which neuroinflammation was targeted following OP-induced SE, and explain possible reasons why such therapeutic interventions have inconsistently and only partially improved long-term outcomes. Finally, we suggest future directions for the development of therapeutic strategies that target neuroinflammation to mitigate the neurologic sequelae of acute OP intoxication.
Collapse
Affiliation(s)
| | - Pamela J. Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, United States
| |
Collapse
|
23
|
Casillas RP, Tewari-Singh N, Gray JP. Special issue: emerging chemical terrorism threats. Toxicol Mech Methods 2021; 31:239-241. [PMID: 33730980 PMCID: PMC10728888 DOI: 10.1080/15376516.2021.1904472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Robert P Casillas
- Director: Discovery, Nonclinical, and Animal Health Consulting, Latham BioPharm Group, Cambridge, MA, USA
| | - Neera Tewari-Singh
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Joshua P Gray
- Department of Science, U.S. Coast Guard Academy, New London, CT, USA
| |
Collapse
|
24
|
Zolkowska D, Dhir A, Rogawski MA. Perampanel, a potent AMPA receptor antagonist, protects against tetramethylenedisulfotetramine-induced seizures and lethality in mice: comparison with diazepam. Arch Toxicol 2021; 95:2459-2468. [PMID: 33914090 PMCID: PMC8241714 DOI: 10.1007/s00204-021-03053-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/15/2021] [Indexed: 11/08/2022]
Abstract
Tetramethylenedisulfotetramine (TETS), a noncompetitive GABAA receptor antagonist, is a potent, highly lethal convulsant that is considered to be a chemical threat agent. Here, we assessed the ability of the AMPA receptor antagonist perampanel to protect against TETS-induced seizures and lethality in mice when administered before or after treatment with the toxicant. For comparison, we conducted parallel testing with diazepam, which is a first-line treatment for chemically induced seizures in humans. Pre-treatment of mice with either perampanel (1–4 mg/kg, i.p.) or diazepam (1–5 mg/kg, i.p.) conferred protection in a dose-dependent fashion against tonic seizures and lethality following a dose of TETS (0.2 mg/kg, i.p.) that rapidly induces seizures and death. The ED50 values for protection against mortality were 1.6 mg/kg for perampanel and 2.1 mg/kg for diazepam. Clonic seizures were unaffected by perampanel and only prevented in a minority of animals by high-dose diazepam. Neither treatment prevented myoclonic body twitches. Perampanel and diazepam also conferred protection against tonic seizures and lethality when administered 15 min following a 0.14 mg/kg, i.p., dose of TETS and 5 min following a 0.2 mg/kg, i.p., dose of TETS. Both posttreatments were highly potent at reducing tonic seizures and lethality in animals exposed to the lower dose of TETS whereas greater doses of both treatments were required in animals exposed to the larger dose of TETS. Neither treatment was as effective suppressing clonic seizures. In an experiment where 0.4 mg/kg TETS was administered by oral gavage and the treatment drugs were administered 5 min later, perampanel only partially protected against lethality whereas diazepam produced nearly complete protection. We conclude that perampanel and diazepam protect against TETS-induced tonic seizures and lethality but have less impact on clonic seizures. Both drugs could have utility in the treatment of TETS intoxication but neither eliminates all seizure activity.
Collapse
Affiliation(s)
- Dorota Zolkowska
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA
| | - Ashish Dhir
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA
| | - Michael A Rogawski
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA. .,Department of Pharmacology, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
25
|
Lumley L, Du F, Marrero-Rosado B, Stone M, Keith ZM, Schultz C, Whitten K, Walker K, Acon-Chen C, Wright L, Shih TM. Soman-induced toxicity, cholinesterase inhibition and neuropathology in adult male Göttingen minipigs. Toxicol Rep 2021; 8:896-907. [PMID: 33996503 PMCID: PMC8095108 DOI: 10.1016/j.toxrep.2021.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 01/05/2023] Open
Abstract
Animal models are essential for evaluating the toxicity of chemical warfare nerve agents (CWNAs) to extrapolate to human risk and are necessary to evaluate the efficacy of medical countermeasures. The Göttingen minipig is increasingly used for toxicological studies because it has anatomical and physiological characteristics that are similar to those of humans. Our objective was to determine whether the minipig would be a useful large animal model to evaluate the toxic effects of soman (GD). We determined the intramuscular (IM) median lethal dose (LD50) of GD in adult male Göttingen minipigs using an up-and-down dosing method. In addition to lethality estimates, we characterized the observable signs of toxicity, blood and tissue cholinesterase (ChE) activity and brain pathology following GD exposure. The 24 h LD50 of GD was estimated to be 4.7 μg/kg, with 95 % confidence limits of 3.6 and 6.3 μg/kg. As anticipated, GD inhibited ChE activity in blood and several tissues. Neurohistopathological analysis showed neurodegeneration and neuroinflammation in survivors exposed to 4.7 μg/kg of GD, including in the primary visual cortex and various thalamic nuclei. These findings suggest that the minipig will be a useful large animal model for assessing drugs to mitigate neuropathological effects of exposure to CWNAs.
Collapse
Affiliation(s)
- Lucille Lumley
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Fu Du
- FD NeuroTechnologies, Inc., Columbia, MD, United States
| | - Brenda Marrero-Rosado
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Michael Stone
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Zora-Maya Keith
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Caroline Schultz
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Kimberly Whitten
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Katie Walker
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Cindy Acon-Chen
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Linnzi Wright
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, MD, United States
| | - Tsung-Ming Shih
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| |
Collapse
|
26
|
Dhir A, Bruun DA, Guignet M, Tsai Y, González E, Calsbeek J, Vu J, Saito N, Tancredi DJ, Harvey DJ, Lein PJ, Rogawski MA. Allopregnanolone and perampanel as adjuncts to midazolam for treating diisopropylfluorophosphate-induced status epilepticus in rats. Ann N Y Acad Sci 2020; 1480:183-206. [PMID: 32915470 PMCID: PMC7756871 DOI: 10.1111/nyas.14479] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/29/2020] [Accepted: 08/06/2020] [Indexed: 12/11/2022]
Abstract
Combinations of midazolam, allopregnanolone, and perampanel were assessed for antiseizure activity in a rat diisopropylfluorophosphate (DFP) status epilepticus model. Animals receiving DFP followed by atropine and pralidoxime exhibited continuous high-amplitude rhythmical electroencephalography (EEG) spike activity and behavioral seizures for more than 5 hours. Treatments were administered intramuscularly 40 min after DFP. Seizures persisted following midazolam (1.8 mg/kg). The combination of midazolam with either allopregnanolone (6 mg/kg) or perampanel (2 mg/kg) terminated EEG and behavioral status epilepticus, but the onset of the perampanel effect was slow. The combination of midazolam, allopregnanolone, and perampanel caused rapid and complete suppression of EEG and behavioral seizures. In the absence of DFP, animals treated with the three-drug combination were sedated but not anesthetized. Animals that received midazolam alone exhibited spontaneous recurrent EEG seizures, whereas those that received the three-drug combination did not, demonstrating antiepileptogenic activity. All combination treatments reduced neurodegeneration as assessed with Fluoro-Jade C staining to a greater extent than midazolam alone, and most reduced astrogliosis as assessed by GFAP immunoreactivity but had mixed effects on markers of microglial activation. We conclude that allopregnanolone, a positive modulator of the GABAA receptor, and perampanel, an AMPA receptor antagonist, are potential adjuncts to midazolam in the treatment of benzodiazepine-refractory organophosphate nerve agent-induced status epilepticus.
Collapse
Affiliation(s)
- Ashish Dhir
- Department of Neurology, School of MedicineUniversity of California, DavisSacramentoCalifornia
| | - Donald A. Bruun
- Department of Molecular Biosciences, School of Veterinary MedicineUniversity of California, DavisDavisCalifornia
| | - Michelle Guignet
- Department of Molecular Biosciences, School of Veterinary MedicineUniversity of California, DavisDavisCalifornia
| | - Yi‐Hua Tsai
- Department of Molecular Biosciences, School of Veterinary MedicineUniversity of California, DavisDavisCalifornia
| | - Eduardo González
- Department of Molecular Biosciences, School of Veterinary MedicineUniversity of California, DavisDavisCalifornia
| | - Jonas Calsbeek
- Department of Molecular Biosciences, School of Veterinary MedicineUniversity of California, DavisDavisCalifornia
| | - Joan Vu
- Department of Molecular Biosciences, School of Veterinary MedicineUniversity of California, DavisDavisCalifornia
| | - Naomi Saito
- Department of Public Health Sciences, School of MedicineUniversity of California, DavisDavisCalifornia
| | - Daniel J. Tancredi
- Department of Pediatrics, School of MedicineUniversity of California, DavisSacramentoCalifornia
| | - Danielle J. Harvey
- Department of Public Health Sciences, School of MedicineUniversity of California, DavisDavisCalifornia
| | - Pamela J. Lein
- Department of Molecular Biosciences, School of Veterinary MedicineUniversity of California, DavisDavisCalifornia
| | - Michael A. Rogawski
- Department of Neurology, School of MedicineUniversity of California, DavisSacramentoCalifornia
| |
Collapse
|
27
|
Acute administration of diazepam or midazolam minimally alters long-term neuropathological effects in the rat brain following acute intoxication with diisopropylfluorophosphate. Eur J Pharmacol 2020; 886:173538. [PMID: 32898549 DOI: 10.1016/j.ejphar.2020.173538] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/30/2022]
Abstract
Acute intoxication with organophosphorus cholinesterase inhibitors (OPs) can trigger seizures that rapidly progress to life-threatening status epilepticus. Diazepam, long considered the standard of care for treating OP-induced seizures, is being replaced by midazolam. Whether midazolam is more effective than diazepam in mitigating the persistent effects of acute OP intoxication has not been rigorously evaluated. We compared the efficacy of diazepam vs. midazolam in preventing persistent neuropathology in adult male Sprague-Dawley rats acutely intoxicated with the OP diisopropylfluorophosphate (DFP). Subjects were administered pyridostigmine bromide (0.1 mg/kg, i.p.) 30 min prior to injection with DFP (4 mg/kg, s.c.) or vehicle (saline) followed 1 min later by atropine sulfate (2 mg/kg, i.m.) and pralidoxime (25 mg/kg, i.m.), and 40 min later by diazepam (5 mg/kg, i.p.), midazolam (0.73 mg/kg, i.m.), or vehicle. At 3 and 6 months post-exposure, neurodegeneration, reactive astrogliosis, microglial activation, and oxidative stress were assessed in multiple brain regions using quantitative immunohistochemistry. Brain mineralization was evaluated by in vivo micro-computed tomography (micro-CT). Acute DFP intoxication caused persistent neurodegeneration, neuroinflammation, and brain mineralization. Midazolam transiently mitigated neurodegeneration, and both benzodiazepines partially protected against reactive astrogliosis in a brain region-specific manner. Neither benzodiazepine attenuated microglial activation or brain mineralization. These findings indicate that neither benzodiazepine effectively protects against persistent neuropathological changes, and suggest that midazolam is not significantly better than diazepam. Overall, this study highlights the need for improved neuroprotective strategies for treating humans in the event of a chemical emergency involving OPs.
Collapse
|
28
|
Kundrick E, Marrero-Rosado B, Stone M, Schultz C, Walker K, Lee-Stubbs RB, de Araujo Furtado M, Lumley LA. Delayed midazolam dose effects against soman in male and female plasma carboxylesterase knockout mice. Ann N Y Acad Sci 2020; 1479:94-107. [PMID: 32027397 DOI: 10.1111/nyas.14311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/13/2020] [Accepted: 01/19/2020] [Indexed: 01/30/2023]
Abstract
Chemical warfare nerve agent exposure leads to status epilepticus that may progress to epileptogenesis and severe brain pathology when benzodiazepine treatment is delayed. We evaluated the dose-response effects of delayed midazolam (MDZ) on toxicity induced by soman (GD) in the plasma carboxylesterase knockout (Es1-/- ) mouse, which, similar to humans, lacks plasma carboxylesterase. Initially, we compared the median lethal dose (LD50 ) of GD exposure in female Es1-/- mice across estrous with male mice and observed a greater LD50 during estrus compared with proestrus or with males. Subsequently, male and female GD-exposed Es1-/- mice treated with a dose range of MDZ 40 min after seizure onset were evaluated for survivability, seizure activity, and epileptogenesis. GD-induced neuronal loss and microglial activation were evaluated 2 weeks after exposure. Similar to our previous observations in rats, delayed treatment with MDZ dose-dependently increased survival and reduced seizure severity in GD-exposed mice, but was unable to prevent epileptogenesis, neuronal loss, or gliosis. These results suggest that MDZ is beneficial against GD exposure, even when treatment is delayed, but that adjunct therapies to enhance protection need to be identified. The Es1-/- mouse GD exposure model may be useful to screen for improved medical countermeasures against nerve agent exposure.
Collapse
Affiliation(s)
- Erica Kundrick
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland
| | - Brenda Marrero-Rosado
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland
| | - Michael Stone
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland
| | - Caroline Schultz
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland
| | - Katie Walker
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland
| | - Robyn B Lee-Stubbs
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland
| | | | - Lucille A Lumley
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland
| |
Collapse
|
29
|
Betapudi V, Goswami R, Silayeva L, Doctor DM, Chilukuri N. Gene therapy delivering a paraoxonase 1 variant offers long-term prophylactic protection against nerve agents in mice. Sci Transl Med 2020; 12:12/527/eaay0356. [PMID: 31969483 DOI: 10.1126/scitranslmed.aay0356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/19/2019] [Accepted: 11/13/2019] [Indexed: 11/02/2022]
Abstract
Chemical warfare nerve agents are organophosphorus chemical compounds that induce cholinergic crisis, leaving little or no time for medical intervention to prevent death. The current chemical treatment regimen may prevent death but does not prevent postexposure complications such as brain damage and permanent behavioral abnormalities. In the present study, we have demonstrated an adeno-associated virus 8 (AAV8)-mediated paraoxonase 1 variant IF-11 (PON1-IF11) gene therapy that offers asymptomatic prophylactic protection to mice against multiple lethal doses of G-type chemical warfare nerve agents, namely, tabun, sarin, cyclosarin, and soman, for up to 5 months in mice. A single injection of liver-specific adeno-associated viral particles loaded with PON1-IF11 gene resulted in expression and secretion of recombinant PON1-IF11 in milligram quantities, which has the catalytic power to break down G-type chemical warfare nerve agents into biologically inactive products in vitro and in vivo in rodents. Mice containing milligram concentrations of recombinant PON1-IF11 in their blood displayed no clinical signs of toxicity, as judged by their hematological parameters and serum chemistry profiles. Our study unfolds avenues to develop a one-time application of gene therapy to express a near-natural and circulating therapeutic PON1-IF11 protein that can potentially protect humans against G-type chemical warfare nerve agents for several weeks to months.
Collapse
Affiliation(s)
- Venkaiah Betapudi
- Medical Toxicology Research Division, Biochemistry & Physiology Department, Agent Mitigation, United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, MD 21010-5400, USA
| | - Reena Goswami
- Medical Toxicology Research Division, Biochemistry & Physiology Department, Agent Mitigation, United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, MD 21010-5400, USA
| | - Liliya Silayeva
- Medical Toxicology Research Division, Biochemistry & Physiology Department, Agent Mitigation, United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, MD 21010-5400, USA
| | - Deborah M Doctor
- Medical Toxicology Research Division, Biochemistry & Physiology Department, Agent Mitigation, United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, MD 21010-5400, USA
| | - Nageswararao Chilukuri
- Medical Toxicology Research Division, Biochemistry & Physiology Department, Agent Mitigation, United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, MD 21010-5400, USA.
| |
Collapse
|
30
|
Jett DA, Galanopoulou AS, Moshé SL. Preface: Discovery and development of better medical countermeasures for chemical threats targeting the nervous system. Neurobiol Dis 2020; 133:104557. [PMID: 31374245 PMCID: PMC6904429 DOI: 10.1016/j.nbd.2019.104557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- David A Jett
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, USA.
| | - Aristea S Galanopoulou
- Isabelle Rapin Division of Child Neurology, Saul R. Korey Department of Neurology, Dominick P. Purpura Department of Neuroscience, Laboratory of Developmental Epilepsy, Comprehensive Einstein/Montefiore Epilepsy, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Solomon L Moshé
- Isabelle Rapin Division of Child Neurology, Saul R. Korey Department of Neurology, Dominick P. Purpura Department of Neuroscience, Laboratory of Developmental Epilepsy, Comprehensive Einstein/Montefiore Epilepsy, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
31
|
Guignet M, Dhakal K, Flannery BM, Hobson BA, Zolkowska D, Dhir A, Bruun DA, Li S, Wahab A, Harvey DJ, Silverman JL, Rogawski MA, Lein PJ. Persistent behavior deficits, neuroinflammation, and oxidative stress in a rat model of acute organophosphate intoxication. Neurobiol Dis 2020; 133:104431. [PMID: 30905768 PMCID: PMC6754818 DOI: 10.1016/j.nbd.2019.03.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/05/2019] [Accepted: 03/20/2019] [Indexed: 01/24/2023] Open
Abstract
Current medical countermeasures for organophosphate (OP)-induced status epilepticus (SE) are not effective in preventing long-term morbidity and there is an urgent need for improved therapies. Rat models of acute intoxication with the OP, diisopropylfluorophosphate (DFP), are increasingly being used to evaluate therapeutic candidates for efficacy in mitigating the long-term neurologic effects associated with OP-induced SE. Many of these therapeutic candidates target neuroinflammation and oxidative stress because of their implication in the pathogenesis of persistent neurologic deficits associated with OP-induced SE. Critical to these efforts is the rigorous characterization of the rat DFP model with respect to outcomes associated with acute OP intoxication in humans, which include long-term electroencephalographic, neurobehavioral, and neuropathologic effects, and their temporal relationship to neuroinflammation and oxidative stress. To address these needs, we examined a range of outcomes at later times post-exposure than have previously been reported for this model. Adult male Sprague-Dawley rats were given pyridostigmine bromide (0.1 mg/kg, im) 30 min prior to administration of DFP (4 mg/kg, sc), which was immediately followed by atropine sulfate (2 mg/kg, im) and pralidoxime (25 mg/kg, im). This exposure paradigm triggered robust electroencephalographic and behavioral seizures that rapidly progressed to SE lasting several hours in 90% of exposed animals. Animals that survived DFP-induced SE (~70%) exhibited spontaneous recurrent seizures and hyperreactive responses to tactile stimuli over the first 2 months post-exposure. Performance in the elevated plus maze, open field, and Pavlovian fear conditioning tests indicated that acute DFP intoxication reduced anxiety-like behavior and impaired learning and memory at 1 and 2 months post-exposure in the absence of effects on general locomotor behavior. Immunohistochemical analyses revealed significantly increased expression of biomarkers of reactive astrogliosis, microglial activation and oxidative stress in multiple brain regions at 1 and 2 months post-DFP, although there was significant spatiotemporal heterogeneity across these endpoints. Collectively, these data largely support the relevance of the rat model of acute DFP intoxication as a model for acute OP intoxication in the human, and support the hypothesis that neuroinflammation and/or oxidative stress represent potential therapeutic targets for mitigating the long-term neurologic sequelae of acute OP intoxication.
Collapse
Affiliation(s)
- Michelle Guignet
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, 1089 Veterinary Medicine Drive, Davis, CA, 95616 USA, , , , , ,
| | - Kiran Dhakal
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, 1089 Veterinary Medicine Drive, Davis, CA, 95616 USA, , , , , ,
| | - Brenna M. Flannery
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, 1089 Veterinary Medicine Drive, Davis, CA, 95616 USA, , , , , ,
| | - Brad A. Hobson
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, 1089 Veterinary Medicine Drive, Davis, CA, 95616 USA, , , , , ,
| | - Dorota Zolkowska
- Department of Neurology, School of Medicine, University of California-Davis, 4860 Y Street, Sacramento, CA 95817 USA, , , ;
| | - Ashish Dhir
- Department of Neurology, School of Medicine, University of California-Davis, 4860 Y Street, Sacramento, CA 95817 USA, , , ;
| | - Donald A. Bruun
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, 1089 Veterinary Medicine Drive, Davis, CA, 95616 USA, , , , , ,
| | - Shuyang Li
- Department of Public Health Sciences, University of California-Davis, One Shields Avenue, Davis, CA 95616 USA, ,
| | - Abdul Wahab
- Department of Neurology, School of Medicine, University of California-Davis, 4860 Y Street, Sacramento, CA 95817 USA, , , ;
| | - Danielle J. Harvey
- Department of Public Health Sciences, University of California-Davis, One Shields Avenue, Davis, CA 95616 USA, ,
| | - Jill L. Silverman
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California-Davis, 2230 Stockton Boulevard, Sacramento, CA 95817 USA,
- MIND Institute, School of Medicine, University of California-Davis, 2825 50 Street, Sacramento, CA 95817 USA
| | - Michael A. Rogawski
- Department of Neurology, School of Medicine, University of California-Davis, 4860 Y Street, Sacramento, CA 95817 USA, , , ;
| | - Pamela J. Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, 1089 Veterinary Medicine Drive, Davis, CA, 95616 USA, , , , , ,
- MIND Institute, School of Medicine, University of California-Davis, 2825 50 Street, Sacramento, CA 95817 USA
| |
Collapse
|
32
|
Bandara SB, Carty DR, Singh V, Harvey DJ, Vasylieva N, Pressly B, Wulff H, Lein PJ. Susceptibility of larval zebrafish to the seizurogenic activity of GABA type A receptor antagonists. Neurotoxicology 2019; 76:220-234. [PMID: 31811871 DOI: 10.1016/j.neuro.2019.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 01/18/2023]
Abstract
Previous studies demonstrated that pentylenetetrazole (PTZ), a GABA type A receptor (GABAAR) antagonist, elicits seizure-like phenotypes in larval zebrafish (Danio rerio). Here, we determined whether the GABAAR antagonists, tetramethylenedisulfotetramine (TETS) and picrotoxin (PTX), both listed as credible chemical threat agents, similarly trigger seizures in zebrafish larvae. Larvae of three, routinely used laboratory zebrafish lines, Tropical 5D, NHGRI and Tupfel long fin, were exposed to varying concentrations of PTZ (used as a positive control), PTX or TETS for 20 min at 5 days post fertilization (dpf). Acute exposure to PTZ, PTX or TETS triggered seizure behavior in the absence of morbidity or mortality. While the concentration-effect relationship for seizure behavior was similar across zebrafish lines for each GABAAR antagonist, significantly less TETS was required to trigger seizures relative to PTX or PTZ. Recordings of extracellular field potentials in the optic tectum of 5 dpf Tropical 5D zebrafish confirmed that all three GABAAR antagonists elicited extracellular spiking patterns consistent with seizure activity, although the pattern varied between chemicals. Post-exposure treatment with the GABAAR positive allosteric modulators (PAMs), diazepam, midazolam or allopregnanolone, attenuated seizure behavior and activity but did not completely normalize electrical field recordings in the optic tectum. These data are consistent with observations of seizure responses in mammalian models exposed to these same GABAAR antagonists and PAMs, further validating larval zebrafish as a higher throughput-screening platform for antiseizure therapeutics, and demonstrating its appropriateness for identifying improved countermeasures for TETS and other convulsant chemical threat agents that trigger seizures via GABAAR antagonism.
Collapse
Affiliation(s)
- Suren B Bandara
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, United States.
| | - Dennis R Carty
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, United States.
| | - Vikrant Singh
- Department of Pharmacology, University of California, Davis, School of Medicine, Davis, CA 95616, United States.
| | - Danielle J Harvey
- Department of Public Health Sciences, University of California, Davis, School of Medicine, Davis, CA 95616, United States.
| | - Natalia Vasylieva
- Department of Entomology, University of California, Davis, College of Agricultural and Environmental Sciences, Davis, CA 95616, United States.
| | - Brandon Pressly
- Department of Pharmacology, University of California, Davis, School of Medicine, Davis, CA 95616, United States.
| | - Heike Wulff
- Department of Pharmacology, University of California, Davis, School of Medicine, Davis, CA 95616, United States.
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, United States.
| |
Collapse
|
33
|
Yang J, Bruun DA, Wang C, Wan D, McReynolds CB, Phu K, Inceoglu B, Lein PJ, Hammock BD. Lipidomes of brain from rats acutely intoxicated with diisopropylfluorophosphate identifies potential therapeutic targets. Toxicol Appl Pharmacol 2019; 382:114749. [PMID: 31521729 PMCID: PMC6957308 DOI: 10.1016/j.taap.2019.114749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/30/2019] [Accepted: 09/07/2019] [Indexed: 01/28/2023]
Abstract
Organophosphates (OPs), a class of phosphorus-containing chemicals that act by disrupting cholinergic transmission, include both toxic and fast-acting chemical warfare agents as well as less toxic but more easily accessible OP pesticides. The classical atropine/2-PAM antidote fails to protect against long-term symptoms following acute intoxication with OPs at levels that trigger status epilepticus. Acute OP intoxication also causes a robust neuroinflammatory response, which is implicated in the pathogenesis of long-term effects. In this study, we characterized the profiles of lipid mediators, important players in neuroinflammation, in the rat model of acute DFP intoxication. The profiles of lipid mediators were monitored in three different regions of the brain (cortex, hippocampus, and cerebellum) at 0, 1, 3, 7, 14, and 28 days post-exposure. The distribution pattern of lipid mediators was distinct in the three brain regions. In the cerebellum, the profile is dominated by LOX metabolites, while the lipid mediator profiles in cortex and hippocampus are dominated by COX metabolites followed by LOX and CYP 450 metabolites. Following acute DFP intoxication, most of the pro-inflammatory lipid mediators (e.g., PGD2 and PGE2) increased rapidly from day 1, while the concentrations of some anti-inflammatory lipid mediators (e.g. 14,15 EpETrE) decreased after DFP intoxication but recovered by day 14 post-exposure. The lipidomics results suggest two potential treatment targets: blocking the formation of prostaglandins by inhibiting COX and stabilizing the anti-inflammatory lipid mediators containing epoxides by inhibiting the enzyme soluble epoxide hydrolase (sEH).
Collapse
Affiliation(s)
- Jun Yang
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California, Davis, Davis, CA 95616, USA
| | - Donald A Bruun
- Department of Molecular Biosciences, University of California, Davis, CA 95616, USA
| | - Chang Wang
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California, Davis, Davis, CA 95616, USA; School of Radiation Medicine and Protection, Medical College of Soochow University, School for Radiological and Interdisciplinary Sciences (RAD-X), Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou 215123, PR China
| | - Debin Wan
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California, Davis, Davis, CA 95616, USA
| | - Cindy B McReynolds
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California, Davis, Davis, CA 95616, USA
| | - Kenny Phu
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California, Davis, Davis, CA 95616, USA
| | - Bora Inceoglu
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California, Davis, Davis, CA 95616, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis, CA 95616, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
34
|
Putra M, Sharma S, Gage M, Gasser G, Hinojo-Perez A, Olson A, Gregory-Flores A, Puttachary S, Wang C, Anantharam V, Thippeswamy T. Inducible nitric oxide synthase inhibitor, 1400W, mitigates DFP-induced long-term neurotoxicity in the rat model. Neurobiol Dis 2019; 133:104443. [PMID: 30940499 DOI: 10.1016/j.nbd.2019.03.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/22/2019] [Accepted: 03/28/2019] [Indexed: 11/26/2022] Open
Abstract
Chemical nerve agents (CNA) are increasingly becoming a threat to both civilians and military personnel. CNA-induced acute effects on the nervous system have been known for some time and the long-term consequences are beginning to emerge. In this study, we used diisopropylfluorophosphate (DFP), a seizurogenic CNA to investigate the long-term impact of its acute exposure on the brain and its mitigation by an inducible nitric oxide synthase (iNOS) inhibitor, 1400W as a neuroprotectant in the rat model. Several experimental studies have demonstrated that DFP-induced seizures and/or status epilepticus (SE) causes permanent brain injury, even after the countermeasure medication (atropine, oxime, and diazepam). In the present study, DFP-induced SE caused a significant increase in iNOS and 3-nitrotyrosine (3-NT) at 24 h, 48 h, 7d, and persisted for a long-term (12 weeks post-exposure), which led to the hypothesis that iNOS is a potential therapeutic target in DFP-induced brain injury. To test the hypothesis, we administered 1400W (20 mg/kg, i.m.) or the vehicle twice daily for the first three days of post-exposure. 1400W significantly reduced DFP-induced iNOS and 3-NT upregulation in the hippocampus and piriform cortex, and the serum nitrite levels at 24 h post-exposure. 1400W also prevented DFP-induced mortality in <24 h. The brain immunohistochemistry (IHC) at 7d post-exposure revealed a significant reduction in gliosis and neurodegeneration (NeuN+ FJB positive cells) in the 1400W-treated group. 1400W, in contrast to the vehicle, caused a significant reduction in the epileptiform spiking and spontaneous recurrent seizures (SRS) during 12 weeks of continuous video-EEG study. IHC of brain sections from the same animals revealed a significant reduction in reactive gliosis (both microgliosis and astrogliosis) and neurodegeneration across various brain regions in the 1400W-treated group when compared to the vehicle-treated group. A multiplex assay from hippocampal lysates at 6 weeks post-exposure showed a significant increase in several key pro-inflammatory cytokines/chemokines such as IL-1α, TNFα, IL-1β, IL-2, IL-6, IL-12, IL-17a, MCP-1, LIX, and Eotaxin, and a growth factor, VEGF in the vehicle-treated animals. 1400W significantly suppressed IL-1α, TNFα, IL-2, IL-12, and MCP-1 levels. It also suppressed DFP-induced serum nitrite levels at 6 weeks post-exposure. In the Morris water maze, the vehicle-treated animals spent significantly less time in the target quadrant in a probe trial at 9d post-exposure compared to their time spent in the same quadrant 11 days previously (i.e., 2 days prior to DFP exposure). Such a difference was not observed in the 1400W and control groups. However, learning and short-term memory were unaffected when tested at 10-16d and 28-34d post-exposure. Accelerated rotarod, horizontal bar test, and the forced swim test revealed no significant changes between groups. Overall, the findings from this study suggest that 1400W may be considered as a potential therapeutic agent as a follow-on therapy for CNA exposure, after controlling the acute symptoms, to prevent mortality and some of the long-term neurotoxicity parameters such as epileptiform spiking, SRS, neurodegeneration, reactive gliosis in some brain regions, and certain key proinflammatory cytokines and chemokine.
Collapse
Affiliation(s)
- Marson Putra
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, United States
| | - Shaunik Sharma
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, United States
| | - Meghan Gage
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, United States
| | | | - Andy Hinojo-Perez
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, United States
| | - Ashley Olson
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, United States
| | - Adriana Gregory-Flores
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, United States
| | - Sreekanth Puttachary
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, United States
| | - Chong Wang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, United States
| | | | - Thimmasettappa Thippeswamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
35
|
Bruun DA, Guignet M, Harvey DJ, Lein PJ. Pretreatment with pyridostigmine bromide has no effect on seizure behavior or 24 hour survival in the rat model of acute diisopropylfluorophosphate intoxication. Neurotoxicology 2019; 73:81-84. [PMID: 30853371 DOI: 10.1016/j.neuro.2019.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/27/2019] [Accepted: 03/04/2019] [Indexed: 01/16/2023]
Abstract
Acute intoxication with organophosphate cholinesterase inhibitors (OPs) is a significant human health threat, and current medical countermeasures for OP poisoning are of limited therapeutic efficacy. The rat model of acute intoxication with diisopropylfluorophosphate (DFP) is increasingly being used to test candidate compounds for efficacy in protecting against the immediate and long-term consequences of acute OP toxicity. In this model, rats are typically pretreated with pyridostigmine bromide (PB), a reversible cholinesterase inhibitor, to enhance survival. However, PB pretreatment is not likely in most scenarios of civilian exposure to acutely neurotoxic levels of OPs. Therefore, the goal of this study was to determine whether PB pretreatment significantly increases survival in DFP-intoxicated rats. Adult male Sprague Dawley rats were injected with DFP (4 mg/kg, s.c.) or vehicle (VEH) followed 1 min later by combined i.m. injection of atropine sulfate (2 mg/kg) and 2-pralidoxime (25 mg/kg). Animals were pretreated 30 min prior to these injections with PB (0.1 mg/kg, i.m.) or an equal volume of saline. DFP triggered rapid and sustained seizure behavior irrespective of PB pretreatment, and there was no significant difference in average seizure behavior score during the first 4 h following injection between DFP animals pretreated with PB or not. PB pretreatment also had no significant effect on survival or brain AChE activity at 24 h post-DFP exposure. In summary, PB pretreatment is not necessary to ensure survival of rats acutely intoxicated with DFP, and eliminating PB pretreatment in the rat model of acute DFP intoxication would increase its relevance to acute OP intoxication in civilians.
Collapse
Affiliation(s)
- Donald A Bruun
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA.
| | - Michelle Guignet
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA.
| | - Danielle J Harvey
- Department of Public Health Sciences, University of California-Davis, One Shields Avenue, Davis, CA, 95616, USA.
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA.
| |
Collapse
|