1
|
Dong L, Zhou R, Zhou J, Liu K, Jin C, Wang J, Xue C, Tian M, Zhang H, Zhong Y. Positron emission tomography molecular imaging for pathological visualization in multiple system atrophy. Neurobiol Dis 2025; 206:106828. [PMID: 39900304 DOI: 10.1016/j.nbd.2025.106828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/05/2025] Open
Abstract
Multiple system atrophy (MSA) is a complex, heterogeneous neurodegenerative disorder characterized by a multifaceted pathogenesis. Its key pathological hallmark is the abnormal aggregation of α-synuclein, which triggers neuroinflammation, disrupts both dopaminergic and non-dopaminergic systems, and results in metabolic abnormalities in the brain. Positron emission tomography (PET) is a non-invasive technique that enables the visualization, characterization, and quantification of these pathological processes from diverse perspectives using radiolabeled agents. PET imaging of molecular events provides valuable insights into the underlying pathomechanisms of MSA and holds significant promise for the development of imaging biomarkers, which could greatly improve disease assessment and management. In this review, we focused on the pathological mechanisms of MSA, summarized relevant targets and radiopharmaceuticals, and discussed the clinical applications and future perspectives of PET molecular imaging in MSA.
Collapse
Affiliation(s)
- La Dong
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China
| | - Jinyun Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China
| | - Ke Liu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China
| | - Chentao Jin
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China
| | - Jing Wang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China
| | - Chenxi Xue
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China; Human Phenome Institute, Fudan University, Shanghai 200040, China
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China; Human Phenome Institute, Fudan University, Shanghai 200040, China.
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China; College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310014, China; Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang 310014, China.
| | - Yan Zhong
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China; Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
2
|
Niu J, Zhong Y, Jin C, Cen P, Wang J, Cui C, Xue L, Cui X, Tian M, Zhang H. Positron Emission Tomography Imaging of Synaptic Dysfunction in Parkinson's Disease. Neurosci Bull 2024; 40:743-758. [PMID: 38483697 PMCID: PMC11178751 DOI: 10.1007/s12264-024-01188-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/09/2023] [Indexed: 06/15/2024] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases with a complex pathogenesis. Aggregations formed by abnormal deposition of alpha-synuclein (αSyn) lead to synapse dysfunction of the dopamine and non-dopamine systems. The loss of dopaminergic neurons and concomitant alterations in non-dopaminergic function in PD constitute its primary pathological manifestation. Positron emission tomography (PET), as a representative molecular imaging technique, enables the non-invasive visualization, characterization, and quantification of biological processes at cellular and molecular levels. Imaging synaptic function with PET would provide insights into the mechanisms underlying PD and facilitate the optimization of clinical management. In this review, we focus on the synaptic dysfunction associated with the αSyn pathology of PD, summarize various related targets and radiopharmaceuticals, and discuss applications and perspectives of PET imaging of synaptic dysfunction in PD.
Collapse
Affiliation(s)
- Jiaqi Niu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Yan Zhong
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Chentao Jin
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Peili Cen
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Jing Wang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Chunyi Cui
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Le Xue
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Xingyue Cui
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China.
- Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, 200040, China.
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China.
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310014, China.
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310014, China.
| |
Collapse
|
3
|
VMAT2 availability in Parkinson's disease with probable REM sleep behaviour disorder. Mol Brain 2021; 14:165. [PMID: 34758845 PMCID: PMC8579554 DOI: 10.1186/s13041-021-00875-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/29/2021] [Indexed: 11/21/2022] Open
Abstract
REM sleep behaviour disorder (RBD) can be an early non-motor symptom of Parkinson’s disease (PD) with pathology involving mainly the pontine nuclei. Beyond the brainstem, it is unclear if RBD patients comorbid with PD have more affected striatal dopamine denervation compared to PD patients unaffected by RBD (PD-RBD−). To elucidate this, we evaluated the availability of vesicular monoamine transporter 2 (VMAT2), an index of nigrostriatal dopamine innervation, in 15 PD patients with probable RBD (PD-RBD+), 15 PD-RBD−, and 15 age-matched healthy controls (HC) using [11C]DTBZ PET imaging. This technique measured VMAT2 availability within striatal regions of interest (ROI). A mixed effect model was used to compare the radioligand binding of VMAT2 between the three groups for each striatal ROI, while co-varying for sex, cognitive function and depression scores. Multiple regressions were also computed to predict clinical measures from group condition and VMAT2 binding within all ROIs explored. We observed a significant main effect of group condition on VMAT2 availability within the caudate, putamen, ventral striatum, globus pallidus, substantia nigra, and subthalamus. Specifically, our results revealed that PD-RBD+ had lower VMAT2 availability compared to HC in all these regions except for the subthalamus and substantia nigra, while PD-RBD− was significantly lower than HC in all these regions. PD-RBD− showed a negative relationship between motor severity and VMAT2 availability within the left caudate. Our findings reflect that both PD patient subgroups had similar denervation within the nigrostriatal pathway. There were no significant interactions detected between radioligand binding and clinical scores in PD-RBD+. Taken together, VMAT2 and striatal dopamine denervation in general may not be a significant contributor to the pathophysiology of RBD in PD patients. Future studies are encouraged to explore other underlying neural chemistry mechanisms contributing to RBD in PD patients.
Collapse
|
4
|
Huang Y, Liu H, Hu J, Han C, Zhong Z, Luo W, Zhang Y, Ling F. Significant Difference of Immune Cell Fractions and Their Correlations With Differential Expression Genes in Parkinson's Disease. Front Aging Neurosci 2021; 13:686066. [PMID: 34483877 PMCID: PMC8416258 DOI: 10.3389/fnagi.2021.686066] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/19/2021] [Indexed: 11/19/2022] Open
Abstract
Parkinson’s disease (PD) is the second most neurodegenerative disease in the world. T cell infiltration in the central nervous system (CNS) has provided insights that the peripheral immune cells participate in the pathogenesis of PD. However, the association between the peripheral immune system and CNS remains to be elucidated. In this study, we analyzed incorporative substantia nigra (SN) expression data and blood expression data using the CIBERSORT to obtain the 22 immune cell fractions and then explored the molecular function to identify the potential key immune cell types and genes of PD. We observed that the proportions of naïve CD4 T cells, gamma delta T cells, resting natural killer (NK) cells, neutrophils in the blood, and regulatory T cells (Tregs) in the SN were significantly different between patients with PD and healthy controls (HCs). We identified p53-induced death domain protein 1 (PIDD1) as the hub gene of a PD-related module. The enrichment score of the neuron-specific gene set was significantly different between PD and HC, and genes in the neuron-related module were enriched in the biological process about mitochondria and synapses. These results suggested that the fractions of naïve CD4 T cells, gamma delta T cells, resting NK cells, and neutrophils may be used as a combined diagnostic marker in the blood, and Tregs in SN may be a potential therapeutic design target for PD.
Collapse
Affiliation(s)
- Yilin Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Huisheng Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Jiaqi Hu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Chongyin Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zhenggang Zhong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Wei Luo
- Clinical Research Institute, Foshan Hospital, Sun Yat-sen University, Foshan, China
| | - Yuhu Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Fei Ling
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
5
|
[11C]dihydrotetrabenazine Positron Emission Tomography in Manganese-Exposed Workers. J Occup Environ Med 2021; 62:788-794. [PMID: 32472844 DOI: 10.1097/jom.0000000000001915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To understand the neurotoxic effects of manganese (Mn) exposure on monoaminergic function, utilizing [C]dihydrotetrabenazine (DTBZ) positron emission tomography (PET) to measure vesicular monoamine transporter 2 (VMAT2). METHODS Basal ganglia and thalamic DTBZ binding potentials (BPND) were calculated on 56 PETs from 41 Mn-exposed workers. Associations between cumulative Mn exposure, regional BPND, and parkinsonism were examined by mixed linear regression. RESULTS Thalamic DTBZ BPND was inversely associated with exposure in workers with less than 3 mg Mn/m-yrs, but subsequently remained stable. Pallidal DTBZ binding increased in workers with less than 2 mg Mn/m-yrs of exposure, but decreased thereafter. Thalamic DTBZ binding was inversely associated with parkinsonism (P = 0.003). CONCLUSION Mn-dose-dependent associations with thalamic and pallidal DTBZ binding indicate direct effects on monoaminergic VMAT2. Thalamic DTBZ binding was also associated with parkinsonism, suggesting potential as an early biomarker of Mn neurotoxicity.
Collapse
|
6
|
Dong J, Hawes S, Wu J, Le W, Cai H. Connectivity and Functionality of the Globus Pallidus Externa Under Normal Conditions and Parkinson's Disease. Front Neural Circuits 2021; 15:645287. [PMID: 33737869 PMCID: PMC7960779 DOI: 10.3389/fncir.2021.645287] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
The globus pallidus externa (GPe) functions as a central hub in the basal ganglia for processing motor and non-motor information through the creation of complex connections with the other basal ganglia nuclei and brain regions. Recently, with the adoption of sophisticated genetic tools, substantial advances have been made in understanding the distinct molecular, anatomical, electrophysiological, and functional properties of GPe neurons and non-neuronal cells. Impairments in dopamine transmission in the basal ganglia contribute to Parkinson's disease (PD), the most common movement disorder that severely affects the patients' life quality. Altered GPe neuron activity and synaptic connections have also been found in both PD patients and pre-clinical models. In this review, we will summarize the main findings on the composition, connectivity and functionality of different GPe cell populations and the potential GPe-related mechanisms of PD symptoms to better understand the cell type and circuit-specific roles of GPe in both normal and PD conditions.
Collapse
Affiliation(s)
- Jie Dong
- Laboratory of Neurogenetics, Transgenic Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| | - Sarah Hawes
- Laboratory of Neurogenetics, Transgenic Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| | - Junbing Wu
- Child Health Institute of New Jersey, Rutgers University, New Brunswick, NJ, United States
| | - Weidong Le
- Liaoning Provincial Center for Clinical Research on Neurological Diseases & Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Medical School of University of Electronic Science and Technology of China, Institute of Neurology, Sichuan Provincial Hospital, Sichuan Academy of Medical Science, Chengdu, China
| | - Huaibin Cai
- Laboratory of Neurogenetics, Transgenic Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
7
|
Goud NS, Bhattacharya A, Joshi RK, Nagaraj C, Bharath RD, Kumar P. Carbon-11: Radiochemistry and Target-Based PET Molecular Imaging Applications in Oncology, Cardiology, and Neurology. J Med Chem 2021; 64:1223-1259. [PMID: 33499603 DOI: 10.1021/acs.jmedchem.0c01053] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The positron emission tomography (PET) molecular imaging technique has gained its universal value as a remarkable tool for medical diagnosis and biomedical research. Carbon-11 is one of the promising radiotracers that can report target-specific information related to its pharmacology and physiology to understand the disease status. Currently, many of the available carbon-11 (t1/2 = 20.4 min) PET radiotracers are heterocyclic derivatives that have been synthesized using carbon-11 inserted different functional groups obtained from primary and secondary carbon-11 precursors. A spectrum of carbon-11 PET radiotracers has been developed against many of the upregulated and emerging targets for the diagnosis, prognosis, prediction, and therapy in the fields of oncology, cardiology, and neurology. This review focuses on the carbon-11 radiochemistry and various target-specific PET molecular imaging agents used in tumor, heart, brain, and neuroinflammatory disease imaging along with its associated pathology.
Collapse
Affiliation(s)
- Nerella Sridhar Goud
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Ahana Bhattacharya
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Raman Kumar Joshi
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Chandana Nagaraj
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Rose Dawn Bharath
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Pardeep Kumar
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| |
Collapse
|
8
|
Globus pallidus, but not entopeduncular nucleus, 6-OHDA-induced lesion attenuates L-Dopa-induced dyskinesia in the rat model of Parkinson's disease. Pharmacol Biochem Behav 2020; 197:173013. [DOI: 10.1016/j.pbb.2020.173013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 12/27/2022]
|
9
|
Kong Y, Zhou H, Feng H, Zhuang J, Wen T, Zhang C, Sun B, Wang J, Guan Y. Elucidating the Relationship Between Diabetes Mellitus and Parkinson's Disease Using 18F-FP-(+)-DTBZ, a Positron-Emission Tomography Probe for Vesicular Monoamine Transporter 2. Front Neurosci 2020; 14:682. [PMID: 32760240 PMCID: PMC7372188 DOI: 10.3389/fnins.2020.00682] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 06/03/2020] [Indexed: 01/25/2023] Open
Abstract
Diabetes mellitus (DM) and Parkinson’s disease (PD) have been and will continue to be two common chronic diseases globally that are difficult to diagnose during the prodromal phase. Current molecular genetics, cell biological, and epidemiological evidences have shown the correlation between PD and DM. PD shares the same pathogenesis pathways and pathological factors with DM. In addition, β-cell reduction, which can cause hyperglycemia, is a striking feature of DM. Recent studies indicated that hyperglycemia is highly relevant to the pathologic changes in PD. However, further correlation between DM and PD remains to be investigated. Intriguingly, polycystic monoamine transporter 2 (VMAT2), which is co-expressed in dopaminergic neurons and β cells, is responsible for taking up dopamine into the presynaptic vesicles and can specifically bind to the β cells. Furthermore, we have summarized the specific molecular and diagnostic functions of VMAT2 for the two diseases reported in this review. Therefore, VMAT2 can be applied as a target probe for positron emission tomography (PET) imaging to detect β-cell and dopamine level changes, which can contribute to the diagnosis of DM and PD during the prodromal phase. Targeting VMAT2 with the molecular probe 18F-FP-(+)-DTBZ can be an entry point for the β cell mass (BCM) changes in DM at the molecular level, to clarify the potential relationship between DM and PD. VMAT2 has promising clinical significance in investigating the pathogenesis, early diagnosis, and treatment evaluation of the two diseases.
Collapse
Affiliation(s)
- Yanyan Kong
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Haicong Zhou
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Hu Feng
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Junyi Zhuang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Tieqiao Wen
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiao Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Smith GS, Mills KA, Pontone GM, Anderson WS, Perepezko KM, Brasic J, Zhou Y, Brandt J, Butson CR, Holt DP, Mathews WB, Dannals RF, Wong DF, Mari Z. Effect of STN DBS on vesicular monoamine transporter 2 and glucose metabolism in Parkinson's disease. Parkinsonism Relat Disord 2019; 64:235-241. [PMID: 31053531 DOI: 10.1016/j.parkreldis.2019.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/04/2019] [Accepted: 04/07/2019] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Deep brain stimulation (DBS) is an established treatment for Parkinson's Disease (PD). Despite the improvement of motor symptoms in most patients by sub-thalamic nucleus (STN) DBS and its widespread use, the neurobiological mechanisms are not completely understood. The objective of the present study was to elucidate the effects of subthalamic nucleus (STN) DBS in PD on the dopamine system and neural circuitry, employing high-resolution positron emission tomography (PET) imaging. The hypotheses tested were that STN DBS would decrease the striatal vesicular monoamine transporter (VMAT2), secondary to an increase in dopamine concentrations, and would decrease striatal cerebral metabolism and increase cortical cerebral metabolism. METHODS PET imaging of the vesicular monoamine transporter (VMAT2) and cerebral glucose metabolism was performed prior to DBS surgery and after 4-6 months of STN stimulation in seven PD patients (mean age 67 ± 7). RESULTS The patients demonstrated significant improvement in motor and neuropsychiatric symptoms after STN DBS. Decreased VMAT2 was observed in the caudate, putamen and associative striatum and in extra-striatal, cortical and limbic regions. Cerebral glucose metabolism was decreased in striatal sub-regions and increased in temporal and parietal cortices and the cerebellum. Decreased striatal VMAT2 was correlated with decreased striatal and increased cortical and limbic metabolism. Improvement of depressive symptoms was correlated with decreased VMAT2 in striatal and extra-striatal regions and with striatal decreases and cortical increases in metabolism. CONCLUSIONS The present results support further investigation of the role of VMAT2, and associated changes in neural circuitry in the improvement of motor and non-motor symptoms with STN DBS in PD.
Collapse
Affiliation(s)
- Gwenn S Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Kelly A Mills
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Greg M Pontone
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - W Stanley Anderson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kate M Perepezko
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James Brasic
- Section of High Resolution Brain PET, Division of Nuclear Medicine, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yun Zhou
- Section of High Resolution Brain PET, Division of Nuclear Medicine, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jason Brandt
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher R Butson
- Scientific Computing & Imaging (SCI) Institute, Departments of Biomedical Engineering, Neurology, Neurosurgery & Psychiatry, University of Utah, USA
| | - Daniel P Holt
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William B Mathews
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert F Dannals
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dean F Wong
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Section of High Resolution Brain PET, Division of Nuclear Medicine, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zoltan Mari
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| |
Collapse
|