1
|
Li S, Sun L, Huang H, Wei X, Lu Y, Qian K, Wu Y. Identifying disulfidptosis-related biomarkers in epilepsy based on integrated bioinformatics and experimental analyses. Neurobiol Dis 2025; 205:106789. [PMID: 39805370 DOI: 10.1016/j.nbd.2025.106789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
One of the underlying mechanisms of epilepsy (EP), a brain disease characterized by recurrent seizures, is considered to be cell death. Disulfidptosis, a proposed novel cell death mechanism, is thought to play a part in the pathogenesis of epilepsy, but the exact role is unclear. The gene expression omnibus series (GSE) 33000 and GSE63808 datasets were used to search for differentially expressed disulfidptosis-related molecules (DE-DRMs). A correlation between the DE-DRMs was discovered. Individuals with epilepsy were then used to investigate molecular clusters based on the expression of DE-DRMs. Following that, the best machine learning model which is validated by GSE143272 dataset and predictor molecules were identified. The correlation between predictive molecules and clinical traits was determined. Based on the in vitro and in vivo seizures models, experimental analyses were applied to verify the DE-DRMs expressions and the correlation between them. Nine molecules were identified as DE-DRMs: glycogen synthase 1 (GYS1), solute carrier family 3 member 2 (SLC3A2), solute carrier family 7 member 11 (SLC7A11), NADH:ubiquinone oxidoreductase core subunit S1 (NDUFS1), 3-oxoacyl-ACP synthase, mitochondrial (OXSM), leucine rich pentatricopeptide repeat containing (LRPPRC), NADH:ubiquinone oxidoreductase subunit A11 (NDUFA11), NUBP iron‑sulfur cluster assembly factor, mitochondrial (NUBPL), and NCK associated protein 1 (NCKAP1). NDUFS1 interacted with NDUFA11, NUBPL, and LRPPRC, while SLC3A2 interacted with SLC7A11. The optimal machine learning model was revealed to be the random forest (RF) model. G protein guanine nucleotide-binding protein alpha subunit q (GNAQ) was linked to sodium valproate resistance. The experimental analyses suggested an upregulated SLC7A11 expression, an increased number of formed SLC3A2 and SLC7A11 complexes, and a decreased number of formed NDUFS1 and NDUFA11 complexes. This study provides previously undocumented evidence of the relationship between disulfidptosis and EP. In addition to suggesting that SLC7A11 may be a specific DRM for EP, this research demonstrates the alterations in two disulfidptosis-related protein complexes: SLC7A11-SLC3A2 and NDUFS1-NDUFA11.
Collapse
Affiliation(s)
- Sijun Li
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Lanfeng Sun
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Hongmi Huang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Xing Wei
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Yuling Lu
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Kai Qian
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Yuan Wu
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
2
|
Sumsky S, Greenfield LJ. Network analysis of preictal iEEG reveals changes in network structure preceding seizure onset. Sci Rep 2022; 12:12526. [PMID: 35869236 PMCID: PMC9307526 DOI: 10.1038/s41598-022-16877-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/18/2022] [Indexed: 12/05/2022] Open
Abstract
Seizures likely result from aberrant network activity and synchronization. Changes in brain network connectivity may underlie seizure onset. We used a novel method of rapid network model estimation from intracranial electroencephalography (iEEG) data to characterize pre-ictal changes in network structure prior to seizure onset. We analyzed iEEG data from 20 patients from the iEEG.org database. Using 10 s epochs sliding by 1 s intervals, a multiple input, single output (MISO) state space model was estimated for each output channel and time point with all other channels as inputs, generating sequential directed network graphs of channel connectivity. These networks were assessed using degree and betweenness centrality. Both degree and betweenness increased at seizure onset zone (SOZ) channels 37.0 ± 2.8 s before seizure onset. Degree rose in all channels 8.2 ± 2.2 s prior to seizure onset, with increasing connections between the SOZ and surrounding channels. Interictal networks showed low and stable connectivity. A novel MISO model-based network estimation method identified changes in brain network structure just prior to seizure onset. Increased connectivity was initially isolated within the SOZ and spread to non-SOZ channels before electrographic seizure onset. Such models could help confirm localization of SOZ regions.
Collapse
|
3
|
Reply to “Slow oscillations anticipate interictal epileptic discharges”. Clin Neurophysiol 2022; 139:130-131. [DOI: 10.1016/j.clinph.2022.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022]
|
4
|
Abstract
Epilepsy is characterized by specific alterations in network organization. The main parameters at the basis of epileptogenic network formation are alterations of cortical thickness, development of pathologic hubs, modification of hub distribution, and white matter alterations. The effect is a reinforcement of brain connectivity in both the epileptogenic zone and the propagation zone. Moreover, the epileptogenic network is characterized by some specific neurophysiologic biomarkers that evidence the tendency of the network itself to shift from an interictal state to an ictal one. The recognition of these features is crucial in planning epilepsy surgery.
Collapse
|
5
|
Breton VL, Dufour S, Chinvarun Y, Del Campo JM, Bardakjian BL, Carlen PL. Transitions between neocortical seizure and non-seizure-like states and their association with presynaptic glutamate release. Neurobiol Dis 2020; 146:105124. [PMID: 33010482 DOI: 10.1016/j.nbd.2020.105124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 11/28/2022] Open
Abstract
The transition between seizure and non-seizure states in neocortical epileptic networks is governed by distinct underlying dynamical processes. Based on the gamma distribution of seizure and inter-seizure durations, over time, seizures are highly likely to self-terminate; whereas, inter-seizure durations have a low chance of transitioning back into a seizure state. Yet, the chance of a state transition could be formed by multiple overlapping, unknown synaptic mechanisms. To identify the relationship between the underlying synaptic mechanisms and the chance of seizure-state transitions, we analyzed the skewed histograms of seizure durations in human intracranial EEG and seizure-like events (SLEs) in local field potential activity from mouse neocortical slices, using an objective method for seizure state classification. While seizures and SLE durations were demonstrated to have a unimodal distribution (gamma distribution shape parameter >1), suggesting a high likelihood of terminating, inter-SLE intervals were shown to have an asymptotic exponential distribution (gamma distribution shape parameter <1), suggesting lower probability of cessation. Then, to test cellular mechanisms for these distributions, we studied the modulation of synaptic neurotransmission during, and between, the in vitro SLEs. Using simultaneous local field potential and whole-cell voltage clamp recordings, we found a suppression of presynaptic glutamate release at SLE termination, as demonstrated by electrically- and optogenetically-evoked excitatory postsynaptic currents (EPSCs), and focal hypertonic sucrose application. Adenosine A1 receptor blockade interfered with the suppression of this release, changing the inter-SLE shape parameter from asymptotic exponential to unimodal, altering the chance of state transition occurrence with time. These findings reveal a critical role for presynaptic glutamate release in determining the chance of neocortical seizure state transitions.
Collapse
Affiliation(s)
- Vanessa L Breton
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Krembil Research Institute, Division of Fundamental Neurobiology, Toronto Western Hospital, Toronto, Ontario M5T 0S8, Canada.
| | - Suzie Dufour
- Krembil Research Institute, Division of Fundamental Neurobiology, Toronto Western Hospital, Toronto, Ontario M5T 0S8, Canada; National Optics Institute, Biophotonics, Quebec, Canada G1P 4S4
| | - Yotin Chinvarun
- Comprehensive Epilepsy Program and Neurology Unit, Phramongkutklao Hospital, Bangkok, Thailand
| | - Jose Martin Del Campo
- Department of Medicine (Neurology), University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Berj L Bardakjian
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Peter L Carlen
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; Krembil Research Institute, Division of Fundamental Neurobiology, Toronto Western Hospital, Toronto, Ontario M5T 0S8, Canada; Department of Medicine (Neurology), University Health Network, Toronto, Ontario M5G 2C4, Canada
| |
Collapse
|
6
|
Amakhin DV, Smolensky IV, Soboleva EB, Zaitsev AV. Paradoxical Anticonvulsant Effect of Cefepime in the Pentylenetetrazole Model of Seizures in Rats. Pharmaceuticals (Basel) 2020; 13:ph13050080. [PMID: 32357511 PMCID: PMC7281561 DOI: 10.3390/ph13050080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 01/03/2023] Open
Abstract
Many β-lactam antibiotics, including cephalosporins, may cause neurotoxic and proconvulsant effects. The main molecular mechanism of such effects is considered to be γ-aminobutyric acid type a (GABAa) receptor blockade, leading to the suppression of GABAergic inhibition and subsequent overexcitation. We found that cefepime (CFP), a cephalosporin, has a pronounced antiepileptic effect in the pentylenetetrazole (PTZ)-induced seizure model by decreasing the duration and severity of the seizure and animal mortality. This effect was specific to the PTZ model. In line with findings of previous studies, CFP exhibited a proconvulsant effect in other models, including the maximal electroshock model and 4-aminopyridine model of epileptiform activity, in vitro. To determine the antiepileptic mechanism of CFP in the PTZ model, we used whole-cell patch-clamp recordings. We demonstrated that CFP or PTZ decreased the amplitude of GABAa receptor-mediated postsynaptic currents. PTZ also decreased the current decay time constant and temporal summation of synaptic responses. In contrast, CFP slightly increased the decay time constant and did not affect summation. When applied together, CFP prevented alterations to the summation of responses by PTZ, strongly reducing the effects of PTZ on repetitive inhibitory synaptic transmission. The latter may explain the antiepileptic effect of CFP in the PTZ model.
Collapse
|
7
|
Codadu NK, Graham RT, Burman RJ, Jackson‐Taylor RT, Raimondo JV, Trevelyan AJ, Parrish RR. Divergent paths to seizure-like events. Physiol Rep 2019; 7:e14226. [PMID: 31587522 PMCID: PMC6778598 DOI: 10.14814/phy2.14226] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 12/19/2022] Open
Abstract
Much debate exists about how the brain transitions into an epileptic seizure. One source of confusion is that there are likely to be critical differences between experimental seizure models. To address this, we have compared the evolving activity patterns in two widely used in vitro models of epileptic discharges. Brain slices from young adult mice were prepared in the same way and bathed either in 0 Mg2+ or 100 µmol/L 4AP artificial cerebrospinal fluid. We have found that while local field potential recordings of epileptiform discharges in the two models appear broadly similar, patch-clamp analysis reveals an important difference in the relative degree of glutamatergic involvement. 4AP affects parvalbumin-expressing interneurons more than other cortical populations, destabilizing their resting state and inducing spontaneous bursting behavior. Consequently, the most prominent pattern of transient discharge ("interictal event") in this model is almost purely GABAergic, although the transition to seizure-like events (SLEs) involves pyramidal recruitment. In contrast, interictal discharges in 0 Mg2+ are only maintained by a very large glutamatergic component that also involves transient discharges of the interneurons. Seizure-like events in 0 Mg2+ have significantly higher power in the high gamma frequency band (60-120Hz) than these events do in 4AP, and are greatly delayed in onset by diazepam, unlike 4AP events. We, therefore, conclude that the 0 Mg2+ and 4AP models display fundamentally different levels of glutamatergic drive, demonstrating how ostensibly similar pathological discharges can arise from different sources. We contend that similar interpretative issues will also be relevant to clinical practice.
Collapse
Affiliation(s)
- Neela K. Codadu
- Institute of NeuroscienceMedical SchoolNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Robert T. Graham
- Institute of NeuroscienceMedical SchoolNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Richard J. Burman
- Division of Cell BiologyDepartment of Human Biology, Neuroscience Institute and Institute of Infectious Disease and Molecular MedicineFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | | | - Joseph V. Raimondo
- Division of Cell BiologyDepartment of Human Biology, Neuroscience Institute and Institute of Infectious Disease and Molecular MedicineFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Andrew J. Trevelyan
- Institute of NeuroscienceMedical SchoolNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - R. Ryley Parrish
- Institute of NeuroscienceMedical SchoolNewcastle UniversityNewcastle upon TyneUnited Kingdom
| |
Collapse
|
8
|
Rizwan G, Sabetghadam A, Wu C, Liu J, Zhang L, Reid AY. Increased seizure susceptibility in a mouse model of neurofibromatosis type 1. Epilepsy Res 2019; 156:106190. [PMID: 31445228 DOI: 10.1016/j.eplepsyres.2019.106190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 11/27/2022]
Abstract
Neurofibromatosis type 1 (NF1) is a neurocutaneous disorder linked to higher rates of epilepsy as compared with the general population. Although some epilepsy cases in NF1 are related to intracranial lesions, epileptogenic lesions are not always identified. It is unknown whether the genetic mutation itself, which leads to lower levels of the tumor suppressor protein neurofibromin, alters seizure susceptibility. The purpose of this research was to determine whether Nf1+/- mice have altered seizure susceptibility to the chemical convulsants kainic acid and pilocarpine. Young adult Nf1+/- or WT control (Nf1+/+) mice were injected with either 20 mg/kg kainic acid or scopolamine 1 mg/kg and pilocarpine 300 mg/kg and assessed for various behavioral seizure parameters. Another subset of mice were implanted with intracranial electrodes and injected with 10 mg/kg kainic acid for electrographic seizure testing. Histological analyses were performed one week after kainic acid challenge to assess hippocampal damage. A higher proportion of Nf1+/- mice had behavioral seizures after kainic acid or pilocarpine challenge, with shorter seizure latency, longer seizure duration, and higher Racine scores compared to WT mice. Nf1+/- and WT mice with severe behavioral seizures demonstrated similar levels of hippocampal damage. EEG recordings confirmed decreased seizure latency and longer seizure duration in response to KA in the Nf1+/- group. These data demonstrate increased seizure susceptibility in a mouse model of NF1 and support the use of the Nf1+/- mouse for further investigations into the mechanistic link between NF1 and seizures.
Collapse
Affiliation(s)
- Gohar Rizwan
- University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada.
| | - Azadeh Sabetghadam
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, Ontario, M5T 0S8, Canada.
| | - Chiping Wu
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, Ontario, M5T 0S8, Canada.
| | - Jackie Liu
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, Ontario, M5T 0S8, Canada.
| | - Liang Zhang
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, Ontario, M5T 0S8, Canada; Department of Medicine (Neurology), University of Toronto, Toronto, Ontario, Canada.
| | - Aylin Y Reid
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, Ontario, M5T 0S8, Canada; Department of Medicine (Neurology), University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
9
|
Schevon CA, Tobochnik S, Eissa T, Merricks E, Gill B, Parrish RR, Bateman LM, McKhann GM, Emerson RG, Trevelyan AJ. Multiscale recordings reveal the dynamic spatial structure of human seizures. Neurobiol Dis 2019; 127:303-311. [PMID: 30898669 PMCID: PMC6588430 DOI: 10.1016/j.nbd.2019.03.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 02/07/2023] Open
Abstract
The cellular activity underlying human focal seizures, and its relationship to key signatures in the EEG recordings used for therapeutic purposes, has not been well characterized despite many years of investigation both in laboratory and clinical settings. The increasing use of microelectrodes in epilepsy surgery patients has made it possible to apply principles derived from laboratory research to the problem of mapping the spatiotemporal structure of human focal seizures, and characterizing the corresponding EEG signatures. In this review, we describe results from human microelectrode studies, discuss some data interpretation pitfalls, and explain the current understanding of the key mechanisms of ictogenesis and seizure spread.
Collapse
Affiliation(s)
- Catherine A Schevon
- Department of Neurology, Columbia University Medical Center, New York, NY, USA.
| | - Steven Tobochnik
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Tahra Eissa
- Department of Applied Mathematics, University of Colorado at Boulder, Boulder, CO, USA
| | - Edward Merricks
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Brian Gill
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, USA
| | - R Ryley Parrish
- Institute for Aging, Newcastle University, Newcastle-Upon-Tyne, UK
| | - Lisa M Bateman
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Guy M McKhann
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, USA
| | - Ronald G Emerson
- Department of Neurology, Weill Cornell Medical Center, New York, NY, USA
| | - Andrew J Trevelyan
- Department of Neurology, Columbia University Medical Center, New York, NY, USA; Institute for Aging, Newcastle University, Newcastle-Upon-Tyne, UK
| |
Collapse
|
10
|
Avoli M. Inhibition, oscillations and focal seizures: An overview inspired by some historical notes. Neurobiol Dis 2019; 130:104478. [PMID: 31125597 DOI: 10.1016/j.nbd.2019.104478] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
GABA (i.e., γ-amino-butyric acid) is the main inhibitory neurotransmitter in the adult mammalian brain. Once released from inhibitory cells, it activates pre- and post-synaptic GABA receptors that have been categorized into type A and type B. GABAA receptors open ionotropic anionic channels while GABAB receptors are metabotropic, acting through second messengers. In the 1980s, decreased GABA receptor signaling was considered an appealing factor in making cortical neurons generate synchronous epileptiform oscillations and thus a good, perhaps obvious, candidate for causing focal epileptic disorders. However, studies published during the last four decades have demonstrated that interneuron firing - which causes GABA release and thus GABAA receptor activation - can lead to the generation of both physiological (e.g., theta and gamma oscillations or sharp wave-ripples) and pathological oscillations including focal interictal spikes, high frequency oscillations and seizures. Taken together, the reviews published in this special issue of Neurobiology of Disease highlight the key role of inhibition, and in particular of GABAA receptor signaling, in neuronal network functions under physiological and pathological conditions that include epilepsy and Alzheimer's disease.
Collapse
Affiliation(s)
- Massimo Avoli
- Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada; Department of Neurology & Neurosurgery, McGill University, Montreal, H3A 2B4, QC, Canada; Department of Experimental Medicine, Facoltà di Medicina e Odontoiatria, Sapienza University of Rome, 00185 Roma, Italy; Department of Physiology, McGill University, Montreal, H3A 2B4, QC, Canada.
| |
Collapse
|