1
|
Yang X, Huang YWA. Unraveling the Roles of UBE3A in Neurodevelopment and Neurodegeneration. Int J Mol Sci 2025; 26:2304. [PMID: 40076922 PMCID: PMC11900312 DOI: 10.3390/ijms26052304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/18/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
The ubiquitin-protein ligase E3A (UBE3A, aka E6-AP), an E3 ligase belonging to the HECT family, plays crucial roles in the stability of various proteins through the proteasomal degradation system. Abnormal UBE3A activity is essential for the initiation and progression of several cancers. A gain of function and an overdosage of maternal UBE3A is associated with an increased risk of autism spectrum disorders. Conversely, a loss of function due to mutations, deletions, paternal duplications, or imprinting defects in neurons leads to Angelman syndrome. Emerging evidence suggests that abnormal UBE3A activity may also contribute to the development of various brain disorders, including schizophrenia, Huntington's disease, Parkinson's disease, and Alzheimer's disease, making UBE3A a protein of significant interest. However, research on UBE3A's functions in the brain has primarily focused on neurons due to the imprinting of UBE3A in mature neuronal cells, while being obscured in glia. This review outlines the expression of UBE3A in neurons and glial cells based on published studies, highlights newly identified patterns of UBE3A, such as its secretion, and emphasizes the involvement of UBE3A in neurodegenerative diseases. Furthermore, we summarize glial UBE3A and propose a model of bi-directional interactions between the neurons and glia mediated by UBE3A that underlies brain functions. Insights gained from this research could provide new avenues for therapeutic interventions targeting various brain disorders.
Collapse
Affiliation(s)
- Xin Yang
- The Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02903, USA
| | - Yu-Wen Alvin Huang
- The Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02903, USA
- Carney Institute for Brain Science, Brown University, Providence, RI 02903, USA
- Center for Translational Neuroscience in Brown Institute for Translational Sciences, Brown University, Providence, RI 02903, USA
| |
Collapse
|
2
|
Biagioni M, Baronchelli F, Fossati M. Multiscale spatio-temporal dynamics of UBE3A gene in brain physiology and neurodevelopmental disorders. Neurobiol Dis 2024; 201:106669. [PMID: 39293689 DOI: 10.1016/j.nbd.2024.106669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024] Open
Abstract
The UBE3A gene, located in the chromosomal region 15q11-13, is subject to neuron-specific genomic imprinting and it plays a critical role in brain development. Genetic defects of UBE3A cause severe neurodevelopmental disorders, namely the Angelman syndrome (AS) and the 15q11.2-q13.3 duplication syndrome (Dup15q). In the last two decades, the development of in vitro and in vivo models of AS and Dup15q were fundamental to improve the understanding of UBE3A function in the brain. However, the pathogenic mechanisms of these diseases remain elusive and effective treatments are lacking. Recent evidence suggests that UBE3A functions are both spatially and temporally specific, varying across subcellular compartments, brain regions, and neuronal circuits. In the present review, we summarize current knowledge on the role of UBE3A in neuronal pathophysiology under this spatio-temporal perspective. Additionally, we propose key research questions that will be instrumental to better understand the pathogenic mechanisms underpinning AS and Dup15q disorders and provide the rationale to develop novel therapies.
Collapse
Affiliation(s)
- Martina Biagioni
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano 20089, MI, Italy
| | - Federica Baronchelli
- CNR - Institute of Neuroscience, Section of Milano, via Manzoni 56, Rozzano 20089, MI, Italy; Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini, 20072 Pieve Emanuele, MI, Italy
| | - Matteo Fossati
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano 20089, MI, Italy; CNR - Institute of Neuroscience, Section of Milano, via Manzoni 56, Rozzano 20089, MI, Italy.
| |
Collapse
|
3
|
Yang X, Duckhorn J, Marshall J, Huang YWA. Interlinked destinies: How ubiquitin-proteasome and autophagy systems underpin neurocognitive outcomes. Exp Neurol 2024; 379:114869. [PMID: 38901755 PMCID: PMC11283956 DOI: 10.1016/j.expneurol.2024.114869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
The protein homeostasis, or proteostasis, is maintained through the coupling of two pivotal systems: the ubiquitin-proteasome and autophagy. Cumulative evidence has suggested E3 ubiquitin ligases specifically play a central role in this coupling, ensuring the regulation of synaptic and cognitive functions. Defects in these ligases have been identified as hallmarks in a range of neurodevelopmental and neurodegenerative disorders. Recent literature has spotlighted the E3 ubiquitin ligase, UBE3A, as a key player in this domain. Dysregulation or loss of UBE3A function has been linked to disrupted proteostasis, leading to synaptic and cognitive anomalies. Notably, such defects are prominently observed in conditions like Angelman syndrome, a neurodevelopmental disorder characterized by severe cognitive impairments. The emerging understanding of UBE3A's role in bridging the ubiquitin-proteasome and autophagy systems offers a promising therapeutic avenue. Targeting the defective pathways caused by UBE3A loss could pave the way for innovative treatments, potentially ameliorating the cognitive deficits observed in neurological disorders like Angelman syndrome. As the scientific community delves deeper into the molecular intricacies of E3 ubiquitin ligases, there is burgeoning hope for devising effective interventions for associated neurological conditions.
Collapse
Affiliation(s)
- Xin Yang
- Department of Molecular Biology, Cell Biology and Biochemistry, Center for Translational Neuroscience, Carney Institute for Brain Science, Brown University, Providence, RI, United States
| | - Julia Duckhorn
- Department of Molecular Biology, Cell Biology and Biochemistry, Center for Translational Neuroscience, Carney Institute for Brain Science, Brown University, Providence, RI, United States
| | - John Marshall
- Department of Molecular Biology, Cell Biology and Biochemistry, Center for Translational Neuroscience, Carney Institute for Brain Science, Brown University, Providence, RI, United States
| | - Yu-Wen Alvin Huang
- Department of Molecular Biology, Cell Biology and Biochemistry, Center for Translational Neuroscience, Carney Institute for Brain Science, Brown University, Providence, RI, United States.
| |
Collapse
|
4
|
Shi Z, Wu H. CTPredictor: A comprehensive and robust framework for predicting cell types by integrating multi-scale features from single-cell Hi-C data. Comput Biol Med 2024; 173:108336. [PMID: 38513390 DOI: 10.1016/j.compbiomed.2024.108336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/01/2024] [Accepted: 03/17/2024] [Indexed: 03/23/2024]
Abstract
Single-cell Hi-C (scHi-C) has emerged as a powerful technology for deciphering cell-to-cell variability in three-dimensional (3D) chromatin organization, providing insights into genome-wide chromatin interactions and their correlation with cellular functions. Nevertheless, the accurate identification of cell types across different datasets remains a formidable challenge, hindering comprehensive investigations into genome structure. In response, we introduce CTPredictor, an innovative computational method that integrates multi-scale features to accurately predict cell types in various datasets. CTPredictor strategically incorporates three distinct feature sets, namely, small intra-domain contact probability (SICP), smoothed small intra-domain contact probability (SSICP), and smoothed bin contact probability (SBCP). The resulting fusion classification model significantly enhances the accuracy of cell type prediction based on single-cell Hi-C data (scHi-C). Rigorous benchmarking against established methods and three conventional machine learning approaches demonstrates the robust performance of CTPredictor, positioning it as an advanced tool for cell type prediction within scHi-C data. Beyond its prediction capabilities, CTPredictor holds promise in illuminating 3D genome structures and their functional significance across a wide array of biological processes.
Collapse
Affiliation(s)
- Zhenqi Shi
- School of Software, Shandong University, 250100, Jinan, China
| | - Hao Wu
- School of Software, Shandong University, 250100, Jinan, China.
| |
Collapse
|
5
|
Lau KA, Yang X, Rioult-Pedotti MS, Tang S, Appleman M, Zhang J, Tian Y, Marino C, Yao M, Jiang Q, Tsuda AC, Huang YWA, Cao C, Marshall J. A PSD-95 peptidomimetic mitigates neurological deficits in a mouse model of Angelman syndrome. Prog Neurobiol 2023; 230:102513. [PMID: 37536482 DOI: 10.1016/j.pneurobio.2023.102513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
Angelman Syndrome (AS) is a severe cognitive disorder caused by loss of neuronal expression of the E3 ubiquitin ligase UBE3A. In an AS mouse model, we previously reported a deficit in brain-derived neurotrophic factor (BDNF) signaling, and set out to develop a therapeutic that would restore normal signaling. We demonstrate that CN2097, a peptidomimetic compound that binds postsynaptic density protein-95 (PSD-95), a TrkB associated scaffolding protein, mitigates deficits in PLC-CaMKII and PI3K/mTOR pathways to restore synaptic plasticity and learning. Administration of CN2097 facilitated long-term potentiation (LTP) and corrected paired-pulse ratio. As the BDNF-mTORC1 pathway is critical for inhibition of autophagy, we investigated whether autophagy was disrupted in AS mice. We found aberrantly high autophagic activity attributable to a concomitant decrease in mTORC1 signaling, resulting in decreased levels of synaptic proteins, including Synapsin-1 and Shank3. CN2097 increased mTORC1 activity to normalize autophagy and restore hippocampal synaptic protein levels. Importantly, treatment mitigated cognitive and motor dysfunction. These findings support the use of neurotrophic therapeutics as a valuable approach for treating AS pathology.
Collapse
Affiliation(s)
- Kara A Lau
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, United States.
| | - Xin Yang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, United States.
| | - Mengia S Rioult-Pedotti
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, United States.
| | - Stephen Tang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, United States.
| | - Mark Appleman
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, United States.
| | - Jianan Zhang
- Institute of Neuroscience, Soochow University, Suzhou 215000, China.
| | - Yuyang Tian
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, United States.
| | - Caitlin Marino
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, United States.
| | - Mudi Yao
- The Fourth School of Clinical Medicine, The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210029, China.
| | - Qin Jiang
- The Fourth School of Clinical Medicine, The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210029, China.
| | - Ayumi C Tsuda
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, United States.
| | - Yu-Wen Alvin Huang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, United States.
| | - Cong Cao
- Institute of Neuroscience, Soochow University, Suzhou 215000, China.
| | - John Marshall
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, United States.
| |
Collapse
|
6
|
Liu L, Tong H, Sun Y, Chen X, Yang T, Zhou G, Li XJ, Li S. Huntingtin Interacting Proteins and Pathological Implications. Int J Mol Sci 2023; 24:13060. [PMID: 37685866 PMCID: PMC10488016 DOI: 10.3390/ijms241713060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Huntington's disease (HD) is caused by an expansion of a CAG repeat in the gene that encodes the huntingtin protein (HTT). The exact function of HTT is still not fully understood, and previous studies have mainly focused on identifying proteins that interact with HTT to gain insights into its function. Numerous HTT-interacting proteins have been discovered, shedding light on the functions and structure of HTT. Most of these proteins interact with the N-terminal region of HTT. Among the various HTT-interacting proteins, huntingtin-associated protein 1 (HAP1) and HTT-interacting protein 1 (HIP1) have been extensively studied. Recent research has uncovered differences in the distribution of HAP1 in monkey and human brains compared with mice. This finding suggests that there may be species-specific variations in the regulation and function of HTT-interacting proteins. Understanding these differences could provide crucial insights into the development of HD. In this review, we will focus on the recent advancements in the study of HTT-interacting proteins, with particular attention to the differential distributions of HTT and HAP1 in larger animal models.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shihua Li
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of Central Nervous System Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510623, China; (L.L.); (H.T.); (Y.S.); (X.C.); (T.Y.); (G.Z.); (X.-J.L.)
| |
Collapse
|
7
|
Aria F, Pandey K, Alberini CM. Excessive Protein Accumulation and Impaired Autophagy in the Hippocampus of Angelman Syndrome Modeled in Mice. Biol Psychiatry 2023; 94:68-83. [PMID: 36764852 PMCID: PMC10276539 DOI: 10.1016/j.biopsych.2022.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 11/03/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Angelman syndrome (AS), a neurodevelopmental disorder caused by abnormalities of the 15q11.2-q13.1 chromosome region, is characterized by impairment of cognitive and motor functions, sleep problems, and seizures. How the genetic defects of AS produce these neurological symptoms is unclear. Mice modeling AS (AS mice) accumulate activity-regulated cytoskeleton-associated protein (ARC/ARG3.1), a neuronal immediate early gene (IEG) critical for synaptic plasticity. This accumulation suggests an altered protein metabolism. METHODS Focusing on the dorsal hippocampus (dHC), a brain region critical for memory formation and cognitive functions, we assessed levels and tissue distribution of IEGs, de novo protein synthesis, and markers of protein synthesis, endosomes, autophagy, and synaptic functions in AS mice at baseline and following learning. We also tested autophagic flux and memory retention following autophagy-promoting treatment. RESULTS AS dHC exhibited accumulation of IEGs ARC, FOS, and EGR1; autophagy proteins MLP3B, SQSTM1, and LAMP1; and reduction of the endosomal protein RAB5A. AS dHC also had increased levels of de novo protein synthesis, impaired autophagic flux with accumulation of autophagosome, and altered synaptic protein levels. Contextual fear conditioning significantly increased levels of IEGs and autophagy proteins, de novo protein synthesis, and autophagic flux in the dHC of normal mice, but not in AS mice. Enhancing autophagy in the dHC alleviated AS-related memory and autophagic flux impairments. CONCLUSIONS A major biological deficit of AS brain is a defective protein metabolism, particularly that dynamically regulated by learning, resulting in stalled autophagy and accumulation of neuronal proteins. Activating autophagy ameliorates AS cognitive impairments and dHC protein accumulation.
Collapse
Affiliation(s)
- Francesca Aria
- Center for Neural Science, New York University, New York, New York
| | - Kiran Pandey
- Center for Neural Science, New York University, New York, New York
| | | |
Collapse
|
8
|
Hao X, Sun J, Zhong L, Baudry M, Bi X. UBE3A deficiency-induced autophagy is associated with activation of AMPK-ULK1 and p53 pathways. Exp Neurol 2023; 363:114358. [PMID: 36849003 PMCID: PMC10073344 DOI: 10.1016/j.expneurol.2023.114358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/03/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Angelman Syndrome (AS) is a neurodevelopmental disorder caused by deficiency of the maternally expressed UBE3A gene. The UBE3A proteins functions both as an E3 ligase in the ubiquitin-proteasome system (UPS), and as a transcriptional co-activator for steroid hormone receptors. Here we investigated the effects of UBE3A deficiency on autophagy in the cerebellum of AS mice and in COS1 cells. Numbers and size of LC3- and LAMP2-immunopositive puncta were increased in cerebellar Purkinje cells of AS mice, as compared to wildtype mice. Western blot analysis showed an increase in the conversion of LC3I to LC3II in AS mice, as expected from increased autophagy. Levels of active AMPK and of one of its substrates, ULK1, a factor involved in autophagy initiation, were also increased. Colocalization of LC3 with LAMP2 was increased and p62 levels were decreased, indicating an increase in autophagy flux. UBE3A deficiency was also associated with reduced levels of phosphorylated p53 in the cytosol and increased levels in nuclei, which favors autophagy induction. UBE3A siRNA knockdown in COS-1 cells resulted in increased size and intensity of LC3-immunopositive puncta and increased the LC3 II/I ratio, as compared to control siRNA-treated cells, confirming the results found in the cerebellum of AS mice. These results indicate that UBE3A deficiency enhances autophagic activity through activation of the AMPK-ULK1 pathway and alterations in p53.
Collapse
Affiliation(s)
- Xiaoning Hao
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Jiandong Sun
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Li Zhong
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Michel Baudry
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Xiaoning Bi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA.
| |
Collapse
|
9
|
Karpathiou G, Dridi M, Papoudou-Bai A, Perard M, Clemenson A, Chauleur C, Peoc'h M. The Presence of the Autophagic Markers LC3B and Sequestosome 1/p62 in the Hydatidiform Mole. Int J Gynecol Pathol 2023; 42:301-307. [PMID: 35512216 DOI: 10.1097/pgp.0000000000000886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Autophagy is implicated in normal pregnancy and various pathologic pregnancy conditions. Its presence in hydatidiform moles (HM) is unknown. We immunohistochemically studied 36 HM for LC3B and p62 to precisely determine their expression in the decidua, endometrium, and villi. Nineteen nonmolar pregnancies were also studied. LC3B was found in almost half of the villi and p62 was found in almost all villi. LC3B expression was significantly higher in complete HM than in partial HM. LC3B showed different expression patterns in trophoblast layers. LC3B and p62 expression was higher in molar than nonmolar pregnancies. Autophagic markers are present in HM and their expression differs between complete and partial moles.
Collapse
|
10
|
Dentel B, Angeles-Perez L, Ren C, Jakkamsetti V, Holley AJ, Caballero D, Oh E, Gibson J, Pascual JM, Huber KM, Tu BP, Tsai PT. Increased glycine contributes to synaptic dysfunction and early mortality in Nprl2 seizure model. iScience 2022; 25:104334. [PMID: 35602938 PMCID: PMC9118754 DOI: 10.1016/j.isci.2022.104334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 09/16/2021] [Accepted: 04/26/2022] [Indexed: 10/25/2022] Open
Abstract
Targeted therapies for epilepsies associated with the mTORC1 signaling negative regulator GATOR1 are lacking. NPRL2 is a subunit of the GATOR1 complex and mutations in GATOR1 subunits, including NPRL2, are associated with epilepsy. To delineate the mechanisms underlying NPRL2-related epilepsies, we created a mouse (Mus musculus) model with neocortical loss of Nprl2. Mutant mice have increased mTORC1 signaling and exhibit spontaneous seizures. They also display abnormal synaptic function characterized by increased evoked and spontaneous EPSC and decreased evoked and spontaneous IPSC frequencies, respectively. Proteomic and metabolomics studies of Nprl2 mutants revealed alterations in known epilepsy-implicated proteins and metabolic pathways, including increases in the neurotransmitter, glycine. Furthermore, glycine actions on the NMDA receptor contribute to the electrophysiological and survival phenotypes of these mice. Taken together, in this neuronal Nprl2 model, we delineate underlying molecular, metabolic, and electrophysiological mechanisms contributing to mTORC1-related epilepsy, providing potential therapeutic targets for epilepsy.
Collapse
Affiliation(s)
- Brianne Dentel
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX 75235, USA
| | | | - Chongyu Ren
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX 75235, USA
| | - Vikram Jakkamsetti
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX 75235, USA
| | - Andrew J. Holley
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75235, USA
| | - Daniel Caballero
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX 75235, USA
| | - Emily Oh
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX 75235, USA
| | - Jay Gibson
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75235, USA
| | - Juan M. Pascual
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX 75235, USA
| | - Kimberly M. Huber
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75235, USA
| | - Benjamin P. Tu
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75235, USA
| | - Peter T. Tsai
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX 75235, USA
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75235, USA
- Departments of Pediatrics and Psychiatry, UT Southwestern Medical Center, Dallas, TX 75235, USA
| |
Collapse
|
11
|
Li C, Yuan Q, Xu G, Yang Q, Hou J, Zheng L, Wu G. A seven-autophagy-related gene signature for predicting the prognosis of differentiated thyroid carcinoma. World J Surg Oncol 2022; 20:129. [PMID: 35459137 PMCID: PMC9034603 DOI: 10.1186/s12957-022-02590-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/07/2022] [Indexed: 12/20/2022] Open
Abstract
Background Numerous studies have implicated autophagy in the pathogenesis of thyroid carcinoma. This investigation aimed to establish an autophagy-related gene model and nomogram that can help predict the overall survival (OS) of patients with differentiated thyroid carcinoma (DTHCA). Methods Clinical characteristics and RNA-seq expression data from TCGA (The Cancer Genome Atlas) were used in the study. We also downloaded autophagy-related genes (ARGs) from the Gene Set Enrichment Analysis website and the Human Autophagy Database. First, we assigned patients into training and testing groups. R software was applied to identify differentially expressed ARGs for further construction of a protein-protein interaction (PPI) network for gene functional analyses. A risk score-based prognostic risk model was subsequently developed using univariate Cox regression and LASSO-penalized Cox regression analyses. The model’s performance was verified using Kaplan-Meier (KM) survival analysis and ROC curve. Finally, a nomogram was constructed for clinical application in evaluating the patients with DTHCA. Finally, a 7-gene prognostic risk model was developed based on gene set enrichment analysis. Results Overall, we identified 54 differentially expressed ARGs in patients with DTHCA. A new gene risk model based on 7-ARGs (CDKN2A, FGF7, CTSB, HAP1, DAPK2, DNAJB1, and ITPR1) was developed in the training group and validated in the testing group. The predictive accuracy of the model was reflected by the area under the ROC curve (AUC) values. Univariate and multivariate Cox regression analysis indicated that the model could independently predict the prognosis of patients with THCA. The constrained nomogram derived from the risk score and age also showed high prediction accuracy. Conclusions Here, we developed a 7-ARG prognostic risk model and nomogram for differentiated thyroid carcinoma patients that can guide clinical decisions and individualized therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-022-02590-6.
Collapse
Affiliation(s)
- Chengxin Li
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qianqian Yuan
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Gaoran Xu
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qian Yang
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jinxuan Hou
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Lewei Zheng
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Gaosong Wu
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
12
|
Cosgrove JA, Kelly LK, Kiffmeyer EA, Kloth AD. Sex-dependent influence of postweaning environmental enrichment in Angelman syndrome model mice. Brain Behav 2022; 12:e2468. [PMID: 34985196 PMCID: PMC8865162 DOI: 10.1002/brb3.2468] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/09/2021] [Accepted: 12/12/2021] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Angelman syndrome (AS) is a rare neurodevelopmental disorder caused by mutation or loss of UBE3A and marked by intellectual disability, ataxia, autism-like symptoms, and other atypical behaviors. One route to treatment may lie in the role that environment plays early in postnatal life. Environmental enrichment (EE) is one manipulation that has shown therapeutic potential in preclinical models of many brain disorders, including neurodevelopmental disorders. Here, we examined whether postweaning EE can rescue behavioral phenotypes in Ube3a maternal deletion mice (AS mice), and whether any improvements are sex-dependent. METHODS Male and female mice (C57BL/6J Ube3atm1Alb mice and wild-type (WT) littermates; ≥10 mice/group) were randomly assigned to standard housing (SH) or EE at weaning. EE had a larger footprint, a running wheel, and a variety of toys that promoted foraging, burrowing, and climbing. Following 6 weeks of EE, animals were submitted to a battery of tests that reliably elicit behavioral deficits in AS mice, including rotarod, open field, marble burying, and forced swim; weights were also monitored. RESULTS In male AS-EE mice, we found complete restoration of motor coordination, marble burying, and forced swim behavior to the level of WT-SH mice. We also observed a complete normalization of exploratory distance traveled in the open field, but we found no rescue of vertical behavior or center time. AS-EE mice also had weights comparable to WT-SH mice. Intriguingly, in the female AS-EE mice, we found a failure of EE to rescue the same behavioral deficits relative to female WT-SH mice. CONCLUSIONS Environmental enrichment is an effective route to correcting the most penetrant phenotypes in male AS mice but not female AS mice. This finding has important implications for the translatability of early behavioral intervention for AS patients, most importantly the potential dependency of treatment response on sex.
Collapse
Affiliation(s)
- Jameson A. Cosgrove
- Department of BiologyAugustana University2001 S. Summit AvenueSioux FallsSouth DakotaUSA
| | - Lauren K. Kelly
- Department of BiologyAugustana University2001 S. Summit AvenueSioux FallsSouth DakotaUSA
| | - Elizabeth A. Kiffmeyer
- Department of BiologyAugustana University2001 S. Summit AvenueSioux FallsSouth DakotaUSA
| | - Alexander D. Kloth
- Department of BiologyAugustana University2001 S. Summit AvenueSioux FallsSouth DakotaUSA
| |
Collapse
|
13
|
Historical perspective and progress on protein ubiquitination at glutamatergic synapses. Neuropharmacology 2021; 196:108690. [PMID: 34197891 DOI: 10.1016/j.neuropharm.2021.108690] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/07/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022]
Abstract
Transcription-translation coupling leads to the production of proteins that are key for controlling essential neuronal processes that include neuronal development and changes in synaptic strength. Although these events have been a prevailing theme in neuroscience, the regulation of proteins via posttranslational signaling pathways are equally relevant for these neuronal processes. Ubiquitin is one type of posttranslational modification that covalently attaches to its targets/substrates. Ubiquitination of proteins play a key role in multiple signaling pathways, the predominant being removal of its substrates by a large molecular machine called the proteasome. Here, I review 40 years of progress on ubiquitination in the nervous system at glutamatergic synapses focusing on axon pathfinding, synapse formation, presynaptic release, dendritic spine formation, and regulation of postsynaptic glutamate receptors. Finally, I elucidate emerging themes in ubiquitin biology that may challenge our current understanding of ubiquitin signaling in the nervous system.
Collapse
|
14
|
Basu A, Ash PEA, Wolozin B, Emili A. Protein Interaction Network Biology in Neuroscience. Proteomics 2021; 21:e1900311. [PMID: 33314619 PMCID: PMC7900949 DOI: 10.1002/pmic.201900311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/27/2020] [Indexed: 01/04/2023]
Abstract
Mapping the intricate networks of cellular proteins in the human brain has the potential to address unsolved questions in molecular neuroscience, including the molecular basis of cognition, synaptic plasticity, long-term potentiation, learning, and memory. Perturbations to the protein-protein interaction networks (PPIN) present in neurons, glia, and other cell-types have been linked to multifactorial neurological disorders. Yet while knowledge of brain PPINs is steadily improving, the complexity and dynamic nature of the heterogeneous central nervous system in normal and disease contexts poses a formidable experimental challenge. In this review, the recent applications of functional proteomics and systems biology approaches to study PPINs central to normal neuronal function, during neurodevelopment, and in neurodegenerative disorders are summarized. How systematic PPIN analysis offers a unique mechanistic framework to explore intra- and inter-cellular functional modules governing neuronal activity and brain function is also discussed. Finally, future technological advancements needed to address outstanding questions facing neuroscience are outlined.
Collapse
Affiliation(s)
- Avik Basu
- Center for Network Systems BiologyBoston UniversityBostonMA02118USA
- Department of BiochemistryBoston University School of MedicineBostonMA02118USA
| | - Peter EA Ash
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMA02118USA
| | - Benjamin Wolozin
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMA02118USA
| | - Andrew Emili
- Center for Network Systems BiologyBoston UniversityBostonMA02118USA
- Department of BiochemistryBoston University School of MedicineBostonMA02118USA
- Department of BiologyBoston UniversityBostonMA02215USA
| |
Collapse
|
15
|
Czeredys M. Dysregulation of Neuronal Calcium Signaling via Store-Operated Channels in Huntington's Disease. Front Cell Dev Biol 2020; 8:611735. [PMID: 33425919 PMCID: PMC7785827 DOI: 10.3389/fcell.2020.611735] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder that is characterized by motor, cognitive, and psychiatric problems. It is caused by a polyglutamine expansion in the huntingtin protein that leads to striatal degeneration via the transcriptional dysregulation of several genes, including genes that are involved in the calcium (Ca2+) signalosome. Recent research has shown that one of the major Ca2+ signaling pathways, store-operated Ca2+ entry (SOCE), is significantly elevated in HD. SOCE refers to Ca2+ flow into cells in response to the depletion of endoplasmic reticulum Ca2+ stores. The dysregulation of Ca2+ homeostasis is postulated to be a cause of HD progression because the SOCE pathway is indirectly and abnormally activated by mutant huntingtin (HTT) in γ-aminobutyric acid (GABA)ergic medium spiny neurons (MSNs) from the striatum in HD models before the first symptoms of the disease appear. The present review summarizes recent studies that revealed a relationship between HD pathology and elevations of SOCE in different models of HD, including YAC128 mice (a transgenic model of HD), cellular HD models, and induced pluripotent stem cell (iPSC)-based GABAergic medium spiny neurons (MSNs) that are obtained from adult HD patient fibroblasts. SOCE in MSNs was shown to be mediated by currents through at least two different channel groups, Ca2+ release-activated Ca2+ current (ICRAC) and store-operated Ca2+ current (ISOC), which are composed of stromal interaction molecule (STIM) proteins and Orai or transient receptor potential channel (TRPC) channels. Their role under physiological and pathological conditions in HD are discussed. The role of Huntingtin-associated protein 1 isoform A in elevations of SOCE in HD MSNs and potential compounds that may stabilize elevations of SOCE in HD are also summarized. Evidence is presented that shows that the dysregulation of molecular components of SOCE or pathways upstream of SOCE in HD MSN neurons is a hallmark of HD, and these changes could lead to HD pathology, making them potential therapeutic targets.
Collapse
Affiliation(s)
- Magdalena Czeredys
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| |
Collapse
|
16
|
Folci A, Mirabella F, Fossati M. Ubiquitin and Ubiquitin-Like Proteins in the Critical Equilibrium between Synapse Physiology and Intellectual Disability. eNeuro 2020; 7:ENEURO.0137-20.2020. [PMID: 32719102 PMCID: PMC7544190 DOI: 10.1523/eneuro.0137-20.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/08/2020] [Accepted: 06/17/2020] [Indexed: 01/04/2023] Open
Abstract
Posttranslational modifications (PTMs) represent a dynamic regulatory system that precisely modulates the functional organization of synapses. PTMs consist in target modifications by small chemical moieties or conjugation of lipids, sugars or polypeptides. Among them, ubiquitin and a large family of ubiquitin-like proteins (UBLs) share several features such as the structure of the small protein modifiers, the enzymatic cascades mediating the conjugation process, and the targeted aminoacidic residue. In the brain, ubiquitination and two UBLs, namely sumoylation and the recently discovered neddylation orchestrate fundamental processes including synapse formation, maturation and plasticity, and their alteration is thought to contribute to the development of neurological disorders. Remarkably, emerging evidence suggests that these pathways tightly interplay to modulate the function of several proteins that possess pivotal roles for brain homeostasis as well as failure of this crosstalk seems to be implicated in the development of brain pathologies. In this review, we outline the role of ubiquitination, sumoylation, neddylation, and their functional interplay in synapse physiology and discuss their implication in the molecular pathogenesis of intellectual disability (ID), a neurodevelopmental disorder that is frequently comorbid with a wide spectrum of brain pathologies. Finally, we propose a few outlooks that might contribute to better understand the complexity of these regulatory systems in regard to neuronal circuit pathophysiology.
Collapse
Affiliation(s)
- Alessandra Folci
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano (MI), Italy
| | - Filippo Mirabella
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve 9 Emanuele - Milan, Italy
| | - Matteo Fossati
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano (MI), Italy
- CNR-Institute of Neuroscience, via Manzoni 56, 20089, Rozzano (MI), Italy
| |
Collapse
|
17
|
Lottes EN, Cox DN. Homeostatic Roles of the Proteostasis Network in Dendrites. Front Cell Neurosci 2020; 14:264. [PMID: 33013325 PMCID: PMC7461941 DOI: 10.3389/fncel.2020.00264] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Cellular protein homeostasis, or proteostasis, is indispensable to the survival and function of all cells. Distinct from other cell types, neurons are long-lived, exhibiting architecturally complex and diverse multipolar projection morphologies that can span great distances. These properties present unique demands on proteostatic machinery to dynamically regulate the neuronal proteome in both space and time. Proteostasis is regulated by a distributed network of cellular processes, the proteostasis network (PN), which ensures precise control of protein synthesis, native conformational folding and maintenance, and protein turnover and degradation, collectively safeguarding proteome integrity both under homeostatic conditions and in the contexts of cellular stress, aging, and disease. Dendrites are equipped with distributed cellular machinery for protein synthesis and turnover, including dendritically trafficked ribosomes, chaperones, and autophagosomes. The PN can be subdivided into an adaptive network of three major functional pathways that synergistically govern protein quality control through the action of (1) protein synthesis machinery; (2) maintenance mechanisms including molecular chaperones involved in protein folding; and (3) degradative pathways (e.g., Ubiquitin-Proteasome System (UPS), endolysosomal pathway, and autophagy. Perturbations in any of the three arms of proteostasis can have dramatic effects on neurons, especially on their dendrites, which require tightly controlled homeostasis for proper development and maintenance. Moreover, the critical importance of the PN as a cell surveillance system against protein dyshomeostasis has been highlighted by extensive work demonstrating that the aggregation and/or failure to clear aggregated proteins figures centrally in many neurological disorders. While these studies demonstrate the relevance of derangements in proteostasis to human neurological disease, here we mainly review recent literature on homeostatic developmental roles the PN machinery plays in the establishment, maintenance, and plasticity of stable and dynamic dendritic arbors. Beyond basic housekeeping functions, we consider roles of PN machinery in protein quality control mechanisms linked to dendritic plasticity (e.g., dendritic spine remodeling during LTP); cell-type specificity; dendritic morphogenesis; and dendritic pruning.
Collapse
Affiliation(s)
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
18
|
Panov J, Simchi L, Feuermann Y, Kaphzan H. Bioinformatics Analyses of the Transcriptome Reveal Ube3a-Dependent Effects on Mitochondrial-Related Pathways. Int J Mol Sci 2020; 21:ijms21114156. [PMID: 32532103 PMCID: PMC7312912 DOI: 10.3390/ijms21114156] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
The UBE3A gene encodes the ubiquitin E3-ligase protein, UBE3A, which is implicated in severe neurodevelopmental disorders. Lack of UBE3A expression results in Angelman syndrome, while UBE3A overexpression, due to genomic 15q duplication, results in autism. The cellular roles of UBE3A are not fully understood, yet a growing body of evidence indicates that these disorders involve mitochondrial dysfunction and increased oxidative stress. We utilized bioinformatics approaches to delineate the effects of murine Ube3a deletion on the expression of mitochondrial-related genes and pathways. For this, we generated an mRNA sequencing dataset from mouse embryonic fibroblasts (MEFs) in which both alleles of Ube3a gene were deleted and their wild-type controls. Since oxidative stress and mitochondrial dysregulation might not be exhibited in the resting baseline state, we also activated mitochondrial functioning in the cells of these two genotypes using TNFα application. Transcriptomes of the four groups of MEFs, Ube3a+/+ and Ube3a-/-, with or without the application of TNFα, were analyzed using various bioinformatics tools and machine learning approaches. Our results indicate that Ube3a deletion affects the gene expression profiles of mitochondrial-associated pathways. We further confirmed these results by analyzing other publicly available human transcriptome datasets of Angelman syndrome and 15q duplication syndrome.
Collapse
|
19
|
Yang X. Characterizing spine issues: If offers novel therapeutics to Angelman syndrome. Dev Neurobiol 2020; 80:200-209. [PMID: 32378784 DOI: 10.1002/dneu.22757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 05/01/2020] [Indexed: 12/28/2022]
Abstract
Angelman syndrome (AS) is a rare neurodevelopmental disorder characterized by severe mental retardation, microcephaly, speech impairment, frequent epilepsy, EEG abnormalities, ataxic movements, tongue protrusion, bursts of laughter, sleep abruptions, and hyperactivity. AS results from loss of function of the imprinted UBE3A (ubiquitin-protein ligase E3A) gene on chromosome 15q11-q13, including a mutation on the maternal allele of Ube3a, a large deletion of the maternally inherited chromosomal region 15q11-13, paternal uniparental disomy of chromosome 15q11-13, or an imprinting defect. The Ube3a maternal deleted mouse model recaptured the major phenotypes of AS patients include seizure, learning and memory impairments, sleep disturbance, and motor problems. Owing to the activity-dependent structural and functional plasticity, dendritic spines are believed as the basic subcellular compartment for learning and memory and the sites where LTP and LTD are induced. Defects of spine formation and dynamics are common among several neurodevelopmental disorders and neuropsychiatric disorders including AS and reflect the underlying synaptopathology, which drives clinically relevant behavioral deficits. This review will summarize the impaired spine density, morphology, and synaptic plasticity in AS and propose that future explorations on spine dynamics and synaptic plasticity may help develop novel interventions and therapy for neurodevelopmental disorders like AS.
Collapse
Affiliation(s)
- Xin Yang
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|