1
|
Kang B, Murphy M, Ng CW, Leventhal MJ, Huynh N, Im E, Danquah S, Housman DE, Nehme R, Farhi SL, Fraenkel E. CellFIE: Integrating Pathway Discovery With Pooled Profiling of Perturbations Uncovers Pathways of Huntington's Disease, Including Genetic Modifiers of Neuronal Development and Morphology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639023. [PMID: 40027702 PMCID: PMC11870572 DOI: 10.1101/2025.02.19.639023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Genomic screens and GWAS are powerful tools for identifying disease-modifying genes, but it is often challenging to understand the pathways by which these genes function. Here, we take an integrated approach that combines network analysis and an imaging-based pooled genetic perturbation study to examine modifiers of Huntington's disease (HD). The computational analysis highlighted several genes in a subnetwork enriched for modifiers of neuronal development and morphology. To test the functional roles of these genes, we developed an experimental pipeline that allows pooled CRISPRi KD of 21 genes in human iPSC-derived neurons followed by optical analysis of genotypes, neuronal arborization, multiplexed pathway activity and morphological fingerprint readout. This approach recovered known genes involved in morphology and confirmed unexpected links from the network between several genetic modifiers of HD and morphology. Our approach overcomes challenges in pooled measurement of neuronal function and health and could be adapted for other phenotypes in HD and other neurological diseases.
Collapse
Affiliation(s)
- Byunguk Kang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Spatial Technology Platform, Broad Institute of Harvard and MIT, Cambridge, MA USA
| | - Michael Murphy
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christopher W. Ng
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew Joseph Leventhal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- MIT Ph.D. Program in Computational and Systems Biology, Cambridge, MA, USA
| | - Nhan Huynh
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Egun Im
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Serwah Danquah
- Spatial Technology Platform, Broad Institute of Harvard and MIT, Cambridge, MA USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - David E. Housman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ralda Nehme
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Samouil L. Farhi
- Spatial Technology Platform, Broad Institute of Harvard and MIT, Cambridge, MA USA
| | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
2
|
Azman KF, Zakaria R. Brain-Derived Neurotrophic Factor (BDNF) in Huntington's Disease: Neurobiology and Therapeutic Potential. Curr Neuropharmacol 2025; 23:384-403. [PMID: 40123457 DOI: 10.2174/1570159x22666240530105516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2025] Open
Abstract
Huntington's disease is a hereditary neurodegenerative disorder marked by severe neurodegeneration in the striatum and cortex. Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family of growth factors. It plays a crucial role in maintaining the survival and proper function of striatal neurons. Depletion of BDNF has been linked to impairment and death of striatal neurons, leading to the manifestation of motor, cognitive, and behavioral dysfunctions characteristic of Huntington's disease. This review highlights the current update on the neurobiology of BDNF in the pathogenesis of Huntington's disease. The molecular evidence and the affected signaling pathways are also discussed. In addition, the impact of experimental manipulation of BDNF levels and its pharmaceutical potential for Huntington's disease treatment are explicitly reviewed.
Collapse
Affiliation(s)
- Khairunnuur Fairuz Azman
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| | - Rahimah Zakaria
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
3
|
Akyuz E, Aslan FS, Gokce E, Ilmaz O, Topcu F, Kakac S. Extracellular vesicle and CRISPR gene therapy: Current applications in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease. Eur J Neurosci 2024; 60:6057-6090. [PMID: 39297377 DOI: 10.1111/ejn.16541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 10/17/2024]
Abstract
Neurodegenerative diseases are characterized by progressive deterioration of the nervous system. Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD) are prominently life-threatening examples of neurodegenerative diseases. The complexity of the pathophysiology in neurodegenerative diseases causes difficulties in diagnosing. Although the drugs temporarily help to correct specific symptoms including memory loss and degeneration, a complete treatment has not been found yet. New therapeutic approaches have been developed to understand and treat the underlying pathogenesis of neurodegenerative diseases. With this purpose, clustered-regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas) technology has recently suggested a new treatment option. Editing of the genome is carried out by insertion and deletion processes on DNA. Safe delivery of the CRISPR/Cas system to the targeted cells without affecting surrounding cells is frequently investigated. Extracellular vesicles (EVs), that is exosomes, have recently been used in CRISPR/Cas studies. In this review, CRISPR/Cas and EV approaches used for diagnosis and/or treatment in AD, PD, ALS, and HD are reviewed. CRISPR/Cas and EV technologies, which stand out as new therapeutic approaches, may offer a definitive treatment option in neurodegenerative diseases.
Collapse
Affiliation(s)
- Enes Akyuz
- Department of Biophysics, International School of Medicine, University of Health Sciences, Istanbul, Türkiye
| | | | - Enise Gokce
- School of Medicine, Pamukkale University, Denizli, Türkiye
| | - Oguzkan Ilmaz
- School of Medicine, Giresun University, Giresun, Türkiye
| | | | - Seda Kakac
- Department of Molecular Biology and Genetics, Faculty of Science, Gebze Technical University, Kocaeli, Türkiye
| |
Collapse
|
4
|
Liu Z, Cheng L, Cao W, Shen C, Qiu Y, Li C, Xiong Y, Yang SB, Chen Z, Yin X, Zhang X. Present and future use of exosomes containing proteins and RNAs in neurodegenerative diseases for synaptic function regulation: A comprehensive review. Int J Biol Macromol 2024; 280:135826. [PMID: 39322147 DOI: 10.1016/j.ijbiomac.2024.135826] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Neurodegenerative diseases (NDDs) are increasingly prevalent with global aging, demanding effective treatments. Exosomes, which contain biological macromolecules such as RNA (including miRNAs) and proteins like α-synuclein, tau, and amyloid-beta, are gaining attention as innovative therapeutics. This comprehensive review systematically explores the potential roles of exosomes in NDDs, with a particular focus on their role in synaptic dysfunction. We present the synaptic pathophysiology of NDDs and discuss the mechanisms of exosome formation, secretion, and action. Subsequently, we review the roles of exosomes in different types of NDDs, such as Alzheimer's disease and Parkinson's disease, with a special focus on their regulation of synaptic function. In addition, we explore the potential use of exosomes as biomarkers, as well as the challenges and opportunities in their clinical application. We provide perspectives on future research directions and development trends to provide a more comprehensive understanding of and guidance for the application of exosomes in the treatment of NDDs. In conclusion, exosomes rich in biological macromolecules, as a novel therapeutic strategy, have opened up new possibilities for the treatment of NDDs and brought new hope to patients.
Collapse
Affiliation(s)
- Ziying Liu
- Department of Pathology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Lin Cheng
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Wa Cao
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; Department of Respiratory Medicine, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Chunxiao Shen
- Department of Pathology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Yuemin Qiu
- Department of Pathology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Chuan Li
- Department of Pathology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Yinyi Xiong
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; Department of Rehabilitation, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Seung Bum Yang
- Department of Medical Non-commissioned Officer, Wonkwang Health Science University Iksan-si, Jeollabuk-do 54538, South Korea
| | - Zhiying Chen
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China.
| | - Xiaoping Yin
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China.
| | - Xiaorong Zhang
- Department of Pathology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China.
| |
Collapse
|
5
|
Skv M, Abraham SM, Eshwari O, Golla K, Jhelum P, Maity S, Komal P. Tremendous Fidelity of Vitamin D3 in Age-related Neurological Disorders. Mol Neurobiol 2024; 61:7211-7238. [PMID: 38372958 DOI: 10.1007/s12035-024-03989-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024]
Abstract
Vitamin D3 (VD) is a secosteroid hormone and shows a pleiotropic effect in brain-related disorders where it regulates redox imbalance, inflammation, apoptosis, energy production, and growth factor synthesis. Vitamin D3's active metabolic form, 1,25-dihydroxy Vitamin D3 (1,25(OH)2D3 or calcitriol), is a known regulator of several genes involved in neuroplasticity, neuroprotection, neurotropism, and neuroinflammation. Multiple studies suggest that VD deficiency can be proposed as a risk factor for the development of several age-related neurological disorders. The evidence for low serum levels of 25-hydroxy Vitamin D3 (25(OH)D3 or calcidiol), the major circulating form of VD, is associated with an increased risk of Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), dementia, and cognitive impairment. Despite decades of evidence on low VD association with neurological disorders, the precise molecular mechanism behind its beneficial effect remains controversial. Here, we will be delving into the neurobiological importance of VD and discuss its benefits in different neuropsychiatric disorders. The focus will be on AD, PD, and HD as they share some common clinical, pathological, and epidemiological features. The central focus will be on the different attributes of VD in the aspect of its anti-oxidative, anti-inflammatory, anti-apoptotic, anti-cholinesterase activity, and psychotropic effect in different neurodegenerative diseases.
Collapse
Affiliation(s)
- Manjari Skv
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Sharon Mariam Abraham
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Omalur Eshwari
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Kishore Golla
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Priya Jhelum
- Centre for Research in Neuroscience and Brain Program, The Research Instituteof the, McGill University Health Centre , Montreal, QC, Canada
| | - Shuvadeep Maity
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Pragya Komal
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India.
| |
Collapse
|
6
|
Shan Q, Yu X, Lin X, Tian Y. Reduced inhibitory synaptic transmission onto striatopallidal neurons may underlie aging-related motor skill deficits. Neurobiol Dis 2024; 199:106582. [PMID: 38942325 DOI: 10.1016/j.nbd.2024.106582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/03/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024] Open
Abstract
Human beings are living longer than ever before and aging is accompanied by an increased incidence of motor deficits, including those associated with the neurodegenerative conditions, Parkinson's disease (PD) and Huntington's disease (HD). However, the biological correlates underlying this epidemiological finding, especially the functional basis at the synapse level, have been elusive. This study reveals that motor skill performance examined via rotarod, beam walking and pole tests is impaired in aged mice. This study, via electrophysiology recordings, further identifies an aging-related reduction in the efficacy of inhibitory synaptic transmission onto dorsolateral striatum (DLS) indirect-pathway medium spiny neurons (iMSNs), i.e., a disinhibition effect on DLS iMSNs. In addition, pharmacologically enhancing the activity of DLS iMSNs by infusing an adenosine A2A receptor (A2AR) agonist, which presumably mimics the disinhibition effect, impairs motor skill performance in young mice, simulating the behavior in aged naïve mice. Conversely, pharmacologically suppressing the activity of DLS iMSNs by infusing an A2AR antagonist, in order to offset the disinhibition effect, restores motor skill performance in aged mice, mimicking the behavior in young naïve mice. In conclusion, this study identifies a functional inhibitory synaptic plasticity in DLS iMSNs that likely contributes to the aging-related motor skill deficits, which would potentially serve as a striatal synaptic basis underlying age being a prominent risk factor for neurodegenerative motor deficits.
Collapse
Affiliation(s)
- Qiang Shan
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, Guangdong 515041, China.
| | - Xiaoxuan Yu
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Xiaoli Lin
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Yao Tian
- Chern Institute of Mathematics, Nankai University, Tianjin 300071, China
| |
Collapse
|
7
|
Boulos A, Maroun D, Ciechanover A, Ziv NE. Peripheral sequestration of huntingtin delays neuronal death and depends on N-terminal ubiquitination. Commun Biol 2024; 7:1014. [PMID: 39155290 PMCID: PMC11330980 DOI: 10.1038/s42003-024-06733-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 08/13/2024] [Indexed: 08/20/2024] Open
Abstract
Huntington's disease (HD) is caused by a glutamine repeat expansion in the protein huntingtin. Mutated huntingtin (mHtt) forms aggregates whose impacts on neuronal survival are still debated. Using weeks-long, continual imaging of cortical neurons, we find that mHtt is gradually sequestrated into peripheral, mainly axonal aggregates, concomitant with dramatic reductions in cytosolic mHtt levels and enhanced neuronal survival. in-situ pulse-chase imaging reveals that aggregates continually gain and lose mHtt, in line with these acting as mHtt sinks at equilibrium with cytosolic pools. Mutating two N-terminal lysines found to be ubiquitinated in HD animal models suppresses peripheral aggregate formation and reductions in cytosolic mHtt, promotes nuclear aggregate formation, stabilizes aggregates and leads to pervasive neuronal death. These findings demonstrate the capacity of aggregates formed at peripheral locations to sequester away cytosolic, presumably toxic mHtt forms and support a crucial role for N-terminal ubiquitination in promoting these processes and delaying neuronal death.
Collapse
Affiliation(s)
- Ayub Boulos
- Technion Faculty of Medicine, Rappaport Institute and Network Biology Research Laboratories, Fishbach Building, Technion City, Haifa, Israel
- Department of Neurology, Massachusetts General Hospital, and Harvard Medical School, Charlestown, MA, USA
| | - Dunia Maroun
- Technion Faculty of Medicine, Rappaport Institute and Network Biology Research Laboratories, Fishbach Building, Technion City, Haifa, Israel
| | - Aaron Ciechanover
- Rappaport Faculty of Medicine and Rappaport Technion Integrated Cancer Center (RTICC), Technion-Israel Institute of Technology, Haifa, Israel
| | - Noam E Ziv
- Technion Faculty of Medicine, Rappaport Institute and Network Biology Research Laboratories, Fishbach Building, Technion City, Haifa, Israel.
| |
Collapse
|
8
|
Galimberti M, Nucera MR, Bocchi VD, Conforti P, Vezzoli E, Cereda M, Maffezzini C, Iennaco R, Scolz A, Falqui A, Cordiglieri C, Cremona M, Espuny-Camacho I, Faedo A, Felsenfeld DP, Vogt TF, Ranzani V, Zuccato C, Besusso D, Cattaneo E. Huntington's disease cellular phenotypes are rescued non-cell autonomously by healthy cells in mosaic telencephalic organoids. Nat Commun 2024; 15:6534. [PMID: 39095390 PMCID: PMC11297310 DOI: 10.1038/s41467-024-50877-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
Huntington's disease (HD) causes selective degeneration of striatal and cortical neurons, resulting in cell mosaicism of coexisting still functional and dysfunctional cells. The impact of non-cell autonomous mechanisms between these cellular states is poorly understood. Here we generated telencephalic organoids with healthy or HD cells, grown separately or as mosaics of the two genotypes. Single-cell RNA sequencing revealed neurodevelopmental abnormalities in the ventral fate acquisition of HD organoids, confirmed by cytoarchitectural and transcriptional defects leading to fewer GABAergic neurons, while dorsal populations showed milder phenotypes mainly in maturation trajectory. Healthy cells in mosaic organoids restored HD cell identity, trajectories, synaptic density, and communication pathways upon cell-cell contact, while showing no significant alterations when grown with HD cells. These findings highlight cell-type-specific alterations in HD and beneficial non-cell autonomous effects of healthy cells, emphasizing the therapeutic potential of modulating cell-cell communication in disease progression and treatment.
Collapse
Affiliation(s)
- Maura Galimberti
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Maria R Nucera
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
- Stem Cell Biology Department; Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
| | - Vittoria D Bocchi
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
- Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Paola Conforti
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Elena Vezzoli
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
- ALEMBIC Advanced Light and Electron Microscopy BioImaging Center, San Raffaele Scientific Institute, DIBIT 1, Via Olgettina 58, 20132, Milan, Italy
| | - Matteo Cereda
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Camilla Maffezzini
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Raffaele Iennaco
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Andrea Scolz
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Andrea Falqui
- Department of Physics "Aldo Pontremoli", University of Milan, Via Celoria 16, 20133, Milan, Italy
| | - Chiara Cordiglieri
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Martina Cremona
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
- Swiss Stem Cell Foundation, Via Petrini 2, 6900, Lugano, Switzerland
| | - Ira Espuny-Camacho
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
- GIGA-Neuroscience, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, 4000, Liège, Belgium
| | - Andrea Faedo
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
- Axxam, OpenZone, Via Meucci 3, 20091, Bresso, Milan, Italy
| | | | | | - Valeria Ranzani
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Chiara Zuccato
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Dario Besusso
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Elena Cattaneo
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122, Milan, Italy.
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy.
| |
Collapse
|
9
|
Gu Y, Pope A, Smith C, Carmona C, Johnstone A, Shi L, Chen X, Santos S, Bacon-Brenes CC, Shoff T, Kleczko KM, Frydman J, Thompson LM, Mobley WC, Wu C. BDNF and TRiC-inspired reagent rescue cortical synaptic deficits in a mouse model of Huntington's disease. Neurobiol Dis 2024; 195:106502. [PMID: 38608784 PMCID: PMC11890210 DOI: 10.1016/j.nbd.2024.106502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024] Open
Abstract
Synaptic changes are early manifestations of neuronal dysfunction in Huntington's disease (HD). However, the mechanisms by which mutant HTT protein impacts synaptogenesis and function are not well understood. Herein we explored HD pathogenesis in the BACHD mouse model by examining synaptogenesis and function in long term primary cortical cultures. At DIV14 (days in vitro), BACHD cortical neurons showed no difference from WT neurons in synaptogenesis as revealed by colocalization of a pre-synaptic (Synapsin I) and a post-synaptic (PSD95) marker. From DIV21 to DIV35, BACHD neurons showed progressively reduced colocalization of Synapsin I and PSD95 relative to WT neurons. The deficits were effectively rescued by treatment of BACHD neurons with BDNF. The recombinant apical domain of CCT1 (ApiCCT1) yielded a partial rescuing effect. BACHD neurons also showed culture age-related significant functional deficits as revealed by multielectrode arrays (MEAs). These deficits were prevented by BDNF, whereas ApiCCT1 showed a less potent effect. These findings are evidence that deficits in BACHD synapse and function can be replicated in vitro and that BDNF or a TRiC-inspired reagent can potentially be protective against these changes in BACHD neurons. Our findings support the use of cellular models to further explicate HD pathogenesis and potential treatments.
Collapse
Affiliation(s)
- Yingli Gu
- Department of Neurology, The Fourth Hospital of Harbin Medical University, 150001, China; Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America
| | - Alexander Pope
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America
| | - Charlene Smith
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697, United States of America
| | - Christopher Carmona
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America; Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697, United States of America; Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, United States of America; Beckman Laser Institute & Medical Clinic, University of California, Irvine, Irvine, CA, United States; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Aaron Johnstone
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America
| | - Linda Shi
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697, United States of America; Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, United States of America; Beckman Laser Institute & Medical Clinic, University of California, Irvine, Irvine, CA, United States; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Xuqiao Chen
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America
| | - Sarai Santos
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America
| | | | - Thomas Shoff
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America
| | - Korbin M Kleczko
- Department of Biology and Genetics, Stanford University, Stanford, CA 94305-5430, United States of America
| | - Judith Frydman
- Department of Biology and Genetics, Stanford University, Stanford, CA 94305-5430, United States of America
| | - Leslie M Thompson
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697, United States of America; Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, United States of America; Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, United States of America; Sue and Bill Gross Stem Cell Center, University of California, Irvine, CA 92697, United States of America
| | - William C Mobley
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America.
| | - Chengbiao Wu
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America.
| |
Collapse
|
10
|
Jellinger KA. Mild cognitive impairment in Huntington's disease: challenges and outlooks. J Neural Transm (Vienna) 2024; 131:289-304. [PMID: 38265518 DOI: 10.1007/s00702-024-02744-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
Although Huntington's disease (HD) has classically been viewed as an autosomal-dominant inherited neurodegenerative motor disorder, cognitive and/or behavioral changes are predominant and often an early manifestation of disease. About 40% of individuals in the presymptomatic period of HD meet the criteria for mild cognitive impairment, later progressing to dementia. The heterogenous spectrum of cognitive decline is characterized by deficits across multiple domains, particularly executive dysfunctions, but the underlying pathogenic mechanisms are still poorly understood. Investigating the pathophysiology of cognitive changes may give insight into important and early neurodegenerative events. Multimodal imaging revealed circuit-wide gray and white matter degenerative processes in several key brain regions, affecting prefronto-striatal/cortico-basal ganglia circuits and many other functional brain networks. Studies in transgenic animal models indicated early synaptic dysfunction, deficient neurotrophic transport and other molecular changes contributing to neuronal death. Synaptopathy within the cerebral cortex, striatum and hippocampus may be particularly important in mediating cognitive and neuropsychiatric manifestations of HD, although many other neuronal systems are involved. The interaction of mutant huntingtin protein (mHTT) with tau and its implication for cognitive impairment in HD is a matter of discussion. Further neuroimaging and neuropathological studies are warranted to better elucidate early pathophysiological mechanisms and to develop validated biomarkers to detect patients' cognitive status during the early stages of the condition significantly to implement effective preventing or management strategies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
11
|
Pressl C, Mätlik K, Kus L, Darnell P, Luo JD, Paul MR, Weiss AR, Liguore W, Carroll TS, Davis DA, McBride J, Heintz N. Selective vulnerability of layer 5a corticostriatal neurons in Huntington's disease. Neuron 2024; 112:924-941.e10. [PMID: 38237588 DOI: 10.1016/j.neuron.2023.12.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/18/2023] [Accepted: 12/13/2023] [Indexed: 01/30/2024]
Abstract
The properties of the cell types that are selectively vulnerable in Huntington's disease (HD) cortex, the nature of somatic CAG expansions of mHTT in these cells, and their importance in CNS circuitry have not been delineated. Here, we employed serial fluorescence-activated nuclear sorting (sFANS), deep molecular profiling, and single-nucleus RNA sequencing (snRNA-seq) of motor-cortex samples from thirteen predominantly early stage, clinically diagnosed HD donors and selected samples from cingulate, visual, insular, and prefrontal cortices to demonstrate loss of layer 5a pyramidal neurons in HD. Extensive mHTT CAG expansions occur in vulnerable layer 5a pyramidal cells, and in Betz cells, layers 6a and 6b neurons that are resilient in HD. Retrograde tracing experiments in macaque brains identify layer 5a neurons as corticostriatal pyramidal cells. We propose that enhanced somatic mHTT CAG expansion and altered synaptic function act together to cause corticostriatal disconnection and selective neuronal vulnerability in HD cerebral cortex.
Collapse
Affiliation(s)
- Christina Pressl
- Laboratory of Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Kert Mätlik
- Laboratory of Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Laura Kus
- Laboratory of Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Paul Darnell
- Laboratory of Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Ji-Dung Luo
- Bioinformatics Resource Center, The Rockefeller University, New York, NY, USA
| | - Matthew R Paul
- Bioinformatics Resource Center, The Rockefeller University, New York, NY, USA
| | - Alison R Weiss
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
| | - William Liguore
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Thomas S Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, NY, USA
| | - David A Davis
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jodi McBride
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Nathaniel Heintz
- Laboratory of Molecular Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
12
|
Wang Y, Ramandi D, Sepers MD, Mackay JP, Raymond LA. Age- and region-dependent cortical excitability in the zQ175 Huntington disease mouse model. Hum Mol Genet 2024; 33:387-399. [PMID: 37947186 PMCID: PMC10877458 DOI: 10.1093/hmg/ddad191] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/29/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
The neurodegenerative disorder, Huntington disease (HD), manifests as disorders of movement, cognition and mood. Although studies report abnormal corticostriatal synaptic function early in HD mouse models, less is known about cortical-cortical activity across brain regions and disease stages. Recently, we reported enhanced mesoscale spread of cortical responses to sensory stimulation in vivo at early-manifest stages of two HD mouse models. Here, we investigated cortical excitability of zQ175 HD-model mice compared to their wild-type littermates across different cell types, ages and/or cortical regions using ex vivo electrophysiology. Cortical pyramidal neurons (CPNs) in somatosensory cortex of zQ175 mice showed intrinsic hyper-excitability at 3-4 months, but hypo-excitability at early-manifest stage (8-9 months); reduced frequency of spontaneous excitatory postsynaptic currents (sEPSCs) was seen at both ages. In contrast, motor cortex CPNs in early-manifest zQ175 mice showed increased intrinsic excitability and sEPSC frequency. Large-amplitude excitatory discharges recorded from CPNs in early-manifest zQ175 mice showed increased frequency only in somatosensory cortex, suggesting the intrinsic hypo-excitability of these CPNs may be compensatory against cortical network hyper-excitability. Similarly, in early-manifest zQ175 mice, region-dependent differences were seen in fast-spiking interneurons (FSIs): somatosensory but not motor FSIs from early-manifest zQ175 mice had reduced intrinsic excitability. Moreover, CPNs showed decreased frequency of spontaneous inhibitory postsynaptic currents and increased excitatory-inhibitory (E-I) balance of evoked synaptic currents in somatosensory cortex. Aberrant large-amplitude discharges and reduced inhibitory drive may therefore underlie E-I imbalances that result in circuit changes and synaptic dysfunction in early-manifest HD.
Collapse
Affiliation(s)
- Yundi Wang
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, 2215 Wesbrook Mall, Vancouver, V6T 1Z3, Canada
| | - Daniel Ramandi
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, 2215 Wesbrook Mall, Vancouver, V6T 1Z3, Canada
- Graduate Program in Cell and Developmental Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, V6T 2A1, Canada
| | - Marja D Sepers
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, 2215 Wesbrook Mall, Vancouver, V6T 1Z3, Canada
| | - James P Mackay
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, 2215 Wesbrook Mall, Vancouver, V6T 1Z3, Canada
| | - Lynn A Raymond
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, 2215 Wesbrook Mall, Vancouver, V6T 1Z3, Canada
| |
Collapse
|
13
|
Wiprich MT, da Rosa Vasques R, Gusso D, Rübensam G, Kist LW, Bogo MR, Bonan CD. Locomotor Behavior and Memory Dysfunction Induced by 3-Nitropropionic Acid in Adult Zebrafish: Modulation of Dopaminergic Signaling. Mol Neurobiol 2024; 61:609-621. [PMID: 37648841 DOI: 10.1007/s12035-023-03584-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 08/15/2023] [Indexed: 09/01/2023]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disease characterized by neuropsychiatric disturbance, cognitive impairment, and locomotor dysfunction. In the early stage (chorea) of HD, expression of dopamine D2 receptors (D2R) is reduced, whereas dopamine (DA) levels are increased. Contrary, in the late stage (bradykinesia), DA levels and the expression of D2R and dopamine D1 receptors (D1R) are reduced. 3-Nitropropionic acid (3-NPA) is a toxin that may replicate HD behavioral phenotypes and biochemical aspects. This study assessed the neurotransmitter levels, dopamine receptor gene expression, and the effect of acute exposure to quinpirole (D2R agonist) and eticlopride (D2R antagonist) in an HD model induced by 3-NPA in adult zebrafish. Quinpirole and eticlopride were acutely applied by i.p. injection in adult zebrafish after chronic treatment of 3-NPA (60 mg/kg). 3-NPA treatment caused a reduction in DA, glutamate, and serotonin levels. Quinpirole reversed the bradykinesia and memory loss induced by 3-NPA. Together, these data showed that 3-NPA acts on the dopaminergic system and causes biochemical alterations similar to late-stage HD. These data reinforce the hypothesis that DA levels are linked with locomotor and memory deficits. Thus, these findings may suggest that the use of DA agonists could be a pharmacological strategy to improve the bradykinesia and memory deficits in the late-stage HD.
Collapse
Affiliation(s)
- Melissa Talita Wiprich
- Programa de Pós-Graduação Em Medicina E Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
- Laboratório de Neuroquímica E Psicofarmacologia, Escola de Ciências da Saúde E da Vida, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
- Instituto Nacional de Ciência E Tecnologia Em Doenças Cerebrais, Excitotoxicidade E Neuroproteção, Porto Alegre, RS, Brazil
| | - Rafaela da Rosa Vasques
- Laboratório de Neuroquímica E Psicofarmacologia, Escola de Ciências da Saúde E da Vida, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Darlan Gusso
- Laboratório de Neuroquímica E Psicofarmacologia, Escola de Ciências da Saúde E da Vida, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Gabriel Rübensam
- Centro de Pesquisa Em Toxicologia E Farmacologia, Escola de Ciências da Saúde E da Vida, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Luiza Wilges Kist
- Programa de Pós-Graduação Em Biologia Celular E Molecular, Escola de Ciências da Saúde E da Vida, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
- Laboratório de Biologia Genômica E Molecular, Escola de Ciências da Saúde E da Vida, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Mauricio Reis Bogo
- Programa de Pós-Graduação Em Medicina E Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação Em Biologia Celular E Molecular, Escola de Ciências da Saúde E da Vida, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
- Laboratório de Biologia Genômica E Molecular, Escola de Ciências da Saúde E da Vida, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Programa de Pós-Graduação Em Medicina E Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
- Laboratório de Neuroquímica E Psicofarmacologia, Escola de Ciências da Saúde E da Vida, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
- Instituto Nacional de Ciência E Tecnologia Em Doenças Cerebrais, Excitotoxicidade E Neuroproteção, Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação Em Biologia Celular E Molecular, Escola de Ciências da Saúde E da Vida, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
14
|
Wu C, Yin H, Fu S, Yoo H, Zhang M, Park H. Altered anterograde axonal transport of mitochondria in cultured striatal neurons of a knock-in mouse model of Huntington's disease. Biochem Biophys Res Commun 2024; 691:149246. [PMID: 38029540 DOI: 10.1016/j.bbrc.2023.149246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/12/2023] [Accepted: 11/12/2023] [Indexed: 12/01/2023]
Abstract
Huntington's disease (HD) is a progressive genetic neurodegenerative disease caused by an abnormal expansion of a cytosine-adenine-guanine trinucleotide repeat in the huntingtin gene. One pathological feature of HD is neuronal loss in the striatum. Despite many efforts, mechanisms underlying neuronal loss in HD striatum remain elusive. It was suggested that the mutant huntingtin protein interacts mitochondrial proteins and causes mitochondrial dysfunction in striatal neurons. However, whether axonal transport of mitochondria is altered in HD striatal neurons remains controversial. Here, we examined axonal transport of single mitochondria labelled with Mito-DsRed2 in cultured striatal neurons of zQ175 knock-in mice (a knock-in mouse model of HD). We observed decreased anterograde axonal transport of proximal mitochondria in HD striatal neurons compared with wild-type (WT) striatal neurons. Decreased anterograde transport in HD striatal neurons was prevented by overexpressing mitochondrial Rho GTPase 1 (Miro1). Our results offer a new insight into mechanisms underlying neuronal loss in the striatum in HD.
Collapse
Affiliation(s)
- Chao Wu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Haoran Yin
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Songdi Fu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Hanna Yoo
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Min Zhang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Hyokeun Park
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
15
|
Pressl C, Mätlik K, Kus L, Darnell P, Luo JD, Paul MR, Weiss AR, Liguore W, Carroll TS, Davis DA, McBride J, Heintz N. Selective Vulnerability of Layer 5a Corticostriatal Neurons in Huntington's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538096. [PMID: 37162977 PMCID: PMC10168234 DOI: 10.1101/2023.04.24.538096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The properties of the cell types that are selectively vulnerable in Huntington's disease (HD) cortex, the nature of somatic CAG expansions of mHTT in these cells, and their importance in CNS circuitry have not been delineated. Here we employed serial fluorescence activated nuclear sorting (sFANS), deep molecular profiling, and single nucleus RNA sequencing (snRNAseq) to demonstrate that layer 5a pyramidal neurons are vulnerable in primary motor cortex and other cortical areas of HD donors. Extensive mHTT -CAG expansions occur in vulnerable layer 5a pyramidal cells, and in Betz cells, layer 6a, layer 6b neurons that are resilient in HD. Retrograde tracing experiments in macaque brains identify the vulnerable layer 5a neurons as corticostriatal pyramidal cells. We propose that enhanced somatic mHTT -CAG expansion and altered synaptic function act together to cause corticostriatal disconnection and selective neuronal vulnerability in the HD cerebral cortex.
Collapse
|
16
|
Xu C, Chen S, Chen X, Ho KH, Park C, Yoo H, Lee SH, Park H. Altered exocytosis of inhibitory synaptic vesicles at single presynaptic terminals of cultured striatal neurons in a knock-in mouse model of Huntington's disease. Front Mol Neurosci 2023; 16:1175522. [PMID: 37664244 PMCID: PMC10470468 DOI: 10.3389/fnmol.2023.1175522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023] Open
Abstract
Huntington's disease (HD) is a progressive dominantly inherited neurodegenerative disease caused by the expansion of a cytosine-adenine-guanine (CAG) trinucleotide repeat in the huntingtin gene, which encodes the mutant huntingtin protein containing an expanded polyglutamine tract. One of neuropathologic hallmarks of HD is selective degeneration in the striatum. Mechanisms underlying selective neurodegeneration in the striatum of HD remain elusive. Neurodegeneration is suggested to be preceded by abnormal synaptic transmission at the early stage of HD. However, how mutant huntingtin protein affects synaptic vesicle exocytosis at single presynaptic terminals of HD striatal neurons is poorly understood. Here, we measured synaptic vesicle exocytosis at single presynaptic terminals of cultured striatal neurons (mainly inhibitory neurons) in a knock-in mouse model of HD (zQ175) during electrical field stimulation using real-time imaging of FM 1-43 (a lipophilic dye). We found a significant decrease in bouton density and exocytosis of synaptic vesicles at single presynaptic terminals in cultured striatal neurons. Real-time imaging of VGAT-CypHer5E (a pH sensitive dye conjugated to an antibody against vesicular GABA transporter (VGAT)) for inhibitory synaptic vesicles revealed a reduction in bouton density and exocytosis of inhibitory synaptic vesicles at single presynaptic terminals of HD striatal neurons. Thus, our results suggest that the mutant huntingtin protein decreases bouton density and exocytosis of inhibitory synaptic vesicles at single presynaptic terminals of striatal neurons, causing impaired inhibitory synaptic transmission, eventually leading to the neurodegeneration in the striatum of HD.
Collapse
Affiliation(s)
- Chen Xu
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Sidong Chen
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Xingxiang Chen
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Ka Hei Ho
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Chungwon Park
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- Hong Kong Center for Construction Robotics (InnoHK-HKCRC), Hong Kong Science Park, Sha Tin, Hong Kong SAR, China
| | - Hanna Yoo
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Suk-Ho Lee
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyokeun Park
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| |
Collapse
|
17
|
Martínez-Gopar PE, Pérez-Rodríguez MJ, Angeles-López QD, Tristán-López L, González-Espinosa C, Pérez-Severiano F. Toll-Like Receptor 4 Plays a Significant Role in the Biochemical and Neurological Alterations Observed in Two Distinct Mice Models of Huntington's Disease. Mol Neurobiol 2023; 60:2678-2690. [PMID: 36701109 DOI: 10.1007/s12035-023-03234-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/14/2023] [Indexed: 01/27/2023]
Abstract
Toll-like receptors (TLRs) are central players in innate immunity responses. They are expressed in glial cells and neurons, and their overactivation leads to the production of proinflammatory molecules, neuroinflammation, and neural damage associated with many neurodegenerative pathologies, such as Huntington's disease (HD). HD is an inherited disorder caused by a mutation in the gene coding for the protein Huntingtin (Htt). Expression of mutated Htt (mHtt) causes progressive neuronal degeneration characterized by striatal loss of GABAergic neurons, oxidative damage, neuroinflammatory processes, and impaired motor behavior. The main animal models to study HD are the intrastriatal injection of quinolinic acid (QA) and the transgenic B6CBA-Tg (HDexon1)61Gpb/1 J mice (R6/1). Those models mimic neuronal damage and systemic manifestations of HD. The objective of this work was to study the participation of TLR4 in the manifestations of neuronal damage and HD symptoms in the two mentioned models. For this purpose, C57BL6/J and TLR4-KO mice were administered with QA, and after that motor activity, and neuronal and oxidative damages were measured. R6/1 and TLR4-KO were mated to study the effect of low expression of TLR4 on the phenotype manifestation in R6/1 mice. We found that TLR4 is involved in motor activity, and neurological and oxidative damage induced by intrastriatal injection of QA, and the low expression of TLR4 causes a delay in the onset of phenotypic manifestations by the mHtt expression in R6/1 mice. Our results show that TLR4 is involved in both models of HD and focuses then as a therapeutic target for some deleterious reactions in HD.
Collapse
Affiliation(s)
- Pablo E Martínez-Gopar
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Colonia Granjas Coapa, Alcaldía Tlalpan, 14330, Mexico City, CP, Mexico
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Avenida Insurgentes Sur No. 3877, Colonia La Fama, Alcaldía Tlalpan, 14269, Mexico City, CP, Mexico
| | - Marian J Pérez-Rodríguez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Colonia Granjas Coapa, Alcaldía Tlalpan, 14330, Mexico City, CP, Mexico
| | - Quetzalli D Angeles-López
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Avenida Insurgentes Sur No. 3877, Colonia La Fama, Alcaldía Tlalpan, 14269, Mexico City, CP, Mexico
| | - Luis Tristán-López
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Avenida Insurgentes Sur No. 3877, Colonia La Fama, Alcaldía Tlalpan, 14269, Mexico City, CP, Mexico
| | - Claudia González-Espinosa
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Colonia Granjas Coapa, Alcaldía Tlalpan, 14330, Mexico City, CP, Mexico
| | - Francisca Pérez-Severiano
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Avenida Insurgentes Sur No. 3877, Colonia La Fama, Alcaldía Tlalpan, 14269, Mexico City, CP, Mexico.
| |
Collapse
|
18
|
Brondani M, Roginski AC, Ribeiro RT, de Medeiros MP, Hoffmann CIH, Wajner M, Leipnitz G, Seminotti B. Mitochondrial dysfunction, oxidative stress, ER stress and mitochondria-ER crosstalk alterations in a chemical rat model of Huntington's disease: potential benefits of bezafibrate. Toxicol Lett 2023; 381:48-59. [PMID: 37116597 DOI: 10.1016/j.toxlet.2023.04.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/28/2023] [Accepted: 04/24/2023] [Indexed: 04/30/2023]
Abstract
Redox homeostasis, mitochondrial functions, and mitochondria-endoplasmic reticulum (ER) communication were evaluated in the striatum of rats after 3-nitropropionic acid (3-NP) administration, a recognized chemical model of Huntington's disease (HD). 3-NP impaired redox homeostasis by increasing malondialdehyde levels at 28 days, decreasing glutathione (GSH) concentrations at 21 and 28 days, and the activities of glutathione peroxidase (GPx), superoxide dismutase (SOD) and glutathione S-transferase at 7, 21, and 28 days, catalase at 21 days, and glutathione reductase at 21 and 28 days. Impairment of mitochondrial respiration at 7 and 28 days after 3-NP administration was also observed, as well as reduced activities of succinate dehydrogenase (SDH) and respiratory chain complexes. 3-NP also impaired mitochondrial dynamics and the interactions between ER and mitochondria and induced ER-stress by increasing the levels of mitofusin-1, and of DRP1, VDAC1, Grp75 and Grp78. Synaptophysin levels were augmented at 7 days but reduced at 28 days after 3-NP injection. Finally, bezafibrate prevented 3-NP-induced alterations of the activities of SOD, GPx, SDH and respiratory chain complexes, DCFH oxidation and on the levels of GSH, VDAC1 and synaptophysin. Mitochondrial dysfunction and synaptic disruption may contribute to the pathophysiology of HD and bezafibrate may be considered as an adjuvant therapy for this disorder.
Collapse
Affiliation(s)
- Morgana Brondani
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ana Cristina Roginski
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rafael Teixeira Ribeiro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Paula de Medeiros
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Prédio, 21111, Porto Alegre, RS, 90035-003, Brazil
| | - Chrístofer Ian Hernandez Hoffmann
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Prédio, 21111, Porto Alegre, RS, 90035-003, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Prédio, 21111, Porto Alegre, RS, 90035-003, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-007, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Prédio, 21111, Porto Alegre, RS, 90035-003, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bianca Seminotti
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
19
|
Water-Reaching Platform for Longitudinal Assessment of Cortical Activity and Fine Motor Coordination Defects in a Huntington Disease Mouse Model. eNeuro 2023; 10:ENEURO.0452-22.2022. [PMID: 36596592 PMCID: PMC9833054 DOI: 10.1523/eneuro.0452-22.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023] Open
Abstract
Huntington disease (HD), caused by dominantly inherited expansions of a CAG repeat results in characteristic motor dysfunction. Although gross motor defects have been extensively characterized in multiple HD mouse models using tasks such as rotarod and beam walking, less is known about forelimb deficits. We develop a high-throughput alternating reward/nonreward water-reaching task and training protocol conducted daily over approximately two months to simultaneously monitor forelimb impairment and mesoscale cortical changes in GCaMP activity, comparing female zQ175 (HD) and wild-type (WT) littermate mice, starting at ∼5.5 months. Behavioral analysis of the water-reaching task reveals that HD mice, despite learning the water-reaching task as proficiently as wild-type mice, take longer to learn the alternating event sequence as evident by impulsive (noncued) reaches and initially display reduced cortical activity associated with successful reaches. At this age gross motor defects determined by tapered beam assessment were not apparent. Although wild-type mice displayed no significant changes in cortical activity and reaching trajectory throughout the testing period, HD mice exhibited an increase in cortical activity, especially in the secondary motor and retrosplenial cortices, over time, as well as longer and more variable reaching trajectories by approximately seven months. HD mice also experienced a progressive reduction in successful performance. Tapered beam and rotarod tests as well as reduced DARPP-32 expression (striatal medium spiny neuron marker) after water-reaching assessment confirmed HD pathology. The water-reaching task can be used to inform on a daily basis, HD and other movement disorder onset and manifestation, therapeutic intervention windows, and test drug efficacy.
Collapse
|
20
|
Humble J, Kozloski JR. Cannabinoid signaling and risk in Huntington's disease. Front Comput Neurosci 2022; 16:903947. [PMID: 36118134 PMCID: PMC9479462 DOI: 10.3389/fncom.2022.903947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Dysregulated endocannabinoid (eCB) signaling and the loss of cannabinoid receptors (CB1Rs) are important phenotypes of Huntington's disease (HD) but the precise contribution that eCB signaling has at the circuit level is unknown. Using a computational model of spiking neurons, synapses, and eCB signaling, we demonstrate that eCB signaling functions as a homeostatic control mechanism, minimizing excess glutamate. Furthermore, our model demonstrates that metabolic risk, quantified by excess glutamate, increases with cortico-striatal long-term depression (LTD) and/or increased cortico-striatal activity, and replicates a progressive loss of cannabinoid receptors on inhibitory terminals as a function of the excitatory/inhibitory ratio.
Collapse
|
21
|
Azman KF, Zakaria R. Recent Advances on the Role of Brain-Derived Neurotrophic Factor (BDNF) in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:6827. [PMID: 35743271 PMCID: PMC9224343 DOI: 10.3390/ijms23126827] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
Neurotrophins, such as brain-derived neurotrophic factor (BDNF), are essential for neuronal survival and growth. The signaling cascades initiated by BDNF and its receptor are the key regulators of synaptic plasticity, which plays important role in learning and memory formation. Changes in BDNF levels and signaling pathways have been identified in several neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, and have been linked with the symptoms and course of these diseases. This review summarizes the current understanding of the role of BDNF in several neurodegenerative diseases, as well as the underlying molecular mechanism. The therapeutic potential of BDNF treatment is also discussed, in the hope of discovering new avenues for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Khairunnuur Fairuz Azman
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | | |
Collapse
|