1
|
Huang P, Sun H, Wang Y, Wang N. Tong-Qiao-Huo-Xue Decoction mitigates post-stroke inflammatory response via suppression of the FIB-NLRP3 signaling pathway. Metab Brain Dis 2025; 40:206. [PMID: 40381107 DOI: 10.1007/s11011-025-01633-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 05/09/2025] [Indexed: 05/19/2025]
Abstract
BACKGROUND The post-stroke inflammatory response denotes the inflammatory damage inflicted upon brain tissue following stroke. Plasma fibrinogen (FIB) can permeate the compromised blood-brain barrier (BBB) after ischemic stroke, leading to the activation of the NLRP3 inflammasome. Tong-Qiao-Huo-Xue-Decoction (TQHXD), a traditional formula used to promote blood circulation and resolve blood stasis, has shown potential in this context. Nevertheless, the precise therapeutic mechanisms of TQHXD in mitigating cerebral ischemia-reperfusion injury remain to be fully elucidated. Objective. To examine the reparative effects and underlying mechanisms of TQHXD-CSF on inflammatory damage in BV-2 cells subjected to oxygen and glucose deprivation/reoxygenation (OGD/R) injury. Methods. To establish an in vitro model of OGD/R injury and an inflammatory BV-2 cells model induced by FIB. The protective effects of TQHXD-CSF on OGD/R-injured cells were verified using CCK-8 and LDH assays. Immunofluorescence, SEM, Western blotting, and CHIP-PCR were employed to confirm that TQHXD reduces the inflammatory response by downregulating FIB levels. Pull-down and co-immunoprecipitation (CO-IP) assays were conducted to detect the interaction between FIB and NLRP3. Results. TQHXD-CSF can significantly inhibit the abnormal increase in LDH levels induced by OGD/R, enhance cell viability, and mitigate cell pyroptosis. Additionally, TQHXD-CSF reversed the marked upregulation of FIB, NLRP3, and GSDMD fluorescence intensity and protein expression caused by the FIB inflammation model, demonstrating an effect comparable to that of lumbrokinase, a fibrinolytic agent for FIB. Furthermore, it notably reduced the acetylation of H3 and H4 in the NLRP3 promoter. Importantly, the pull-down and CO-IP results indicated a robust binding affinity between FIB and NLRP3. Conclusion. TQHXD-CSF can inhibit inflammation by downregulating the FIB-NLRP3 pathway and exert a protective effect on BV-2 cells under OGD/R and FIB inflammatory injury.
Collapse
Affiliation(s)
- Ping Huang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, College of Life Science), Anhui University of Chinese Medicine, Hefei, 230000, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, PR China
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui University of Chinese Medicine, Hefei Anhui, 230012, PR China
| | - Hao Sun
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, PR China
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui University of Chinese Medicine, Hefei Anhui, 230012, PR China
| | - Yan Wang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, College of Life Science), Anhui University of Chinese Medicine, Hefei, 230000, China.
- Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Ning Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, PR China.
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui University of Chinese Medicine, Hefei Anhui, 230012, PR China.
- Anhui University of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
2
|
Gong Y, Wu M, Huang Y, He X, Yuan J, Dang B. Research developments in the neurovascular unit and the blood‑brain barrier (Review). Biomed Rep 2025; 22:88. [PMID: 40166412 PMCID: PMC11956146 DOI: 10.3892/br.2025.1966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/05/2025] [Indexed: 04/02/2025] Open
Abstract
The neurovascular unit (NVU) is composed of neurons, glial cells, brain microvascular endothelial cells (BMECs), pericytes, and the extracellular matrix. The NVU controls the permeability of the blood-brain barrier (BBB) and protects the brain from harmful blood-borne and endogenous and exogenous substances. Among these, neurons transmit signals, astrocytes provide nutrients, microglia regulate inflammation, and BMECs and pericytes strengthen barrier tightness and coverage. These cells, due to their physical structure, anatomical location, or physiological function, maintain the microenvironment required for normal brain function. In this review, the BBB structure and mechanisms are examined to obtain a better understanding of the factors that influence BBB permeability. The findings may aid in safeguarding the BBB and provide potential therapeutic targets for drugs affecting the central nervous system.
Collapse
Affiliation(s)
- Yating Gong
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Muyao Wu
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Yaqian Huang
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Xiaoyi He
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Jiaqi Yuan
- Department of Neurosurgery, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Baoqi Dang
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| |
Collapse
|
3
|
Wu K, Wang J, Li X, Xin Z, Wang W, Guo L, He F, Jiang B, Kang C, Xie Y, Li Q, Wang X, Lu C. Association between fibrinogen and cognitive impairment in patients with ischemic cerebrovascular disease. J Stroke Cerebrovasc Dis 2025; 34:108227. [PMID: 39952449 DOI: 10.1016/j.jstrokecerebrovasdis.2025.108227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 12/21/2024] [Accepted: 01/06/2025] [Indexed: 02/17/2025] Open
Abstract
OBJECTIVES Fibrinogen has been reported as a potential risk factor for vascular dementia (VaD). However, the association between fibrinogen and cognition in patients with ischemic cerebrovascular disease (ICVD) has not been studied adequately. We aimed to examine the association of fibrinogen with cognitive impairment among patients with ICVD and to test whether white matter hyperintensities (WMH) and brain atrophy play a role under the association. METHODS In this case-control study, ICVD patients were recruited from the Neurology Department. Cognitive function was assessed using the Montreal Cognitive Assessment. WMH and brain atrophy were quantified by brain magnetic resonance imaging (MRI). The associations of fibrinogen with cognition and MRI markers were investigated by conditional logistic regression models and generalized additive models. RESULTS The risk of cognitive impairment increased with each unit increase in fibrinogen (AOR = 1.92, 95 % CI = 1.06 - 3.48). Individuals with fibrinogen levels > 4 g/L presented a substantially higher risk of cognitive impairment than those with fibrinogen levels of 2-4 g/L (AOR = 5.72, 95 % CI = 1.22- 26.82). Fibrinogen was negatively correlated with global cognitive function (rs = -0.235) and visuospatial/executive function (rs = -0.251). A negative correlation between fibrinogen and normal-appearing white matter (NAWM) volume was observed (rs = -0.282). CONCLUSIONS Fibrinogen is associated with cognitive impairment among patients with ICVD, and significantly negatively impacts global cognitive function and visuospatial/executive function. Furthermore, the negative correlation between fibrinogen and NAWM volume supports further exploration of potential mechanistic paths.
Collapse
Affiliation(s)
- Keying Wu
- Sun Yat-sen University, School of Public Health, Guangzhou, Guangdong 510080, China.
| | - Jing Wang
- Shenzhen Qianhai Shekou Free Trade Zone Hospital, Department of Neurology, 3. Shenzhen, Guangdong 518067, China
| | - Xiuwen Li
- Sun Yat-sen University, School of Public Health, Guangzhou, Guangdong 510080, China
| | - Zhiyao Xin
- Sun Yat-sen University, School of Public Health, Guangzhou, Guangdong 510080, China
| | - Wanxin Wang
- Sun Yat-sen University, School of Public Health, Guangzhou, Guangdong 510080, China
| | - Lan Guo
- Sun Yat-sen University, School of Public Health, Guangzhou, Guangdong 510080, China
| | - Fenfen He
- Shenzhen Qianhai Shekou Free Trade Zone Hospital, Department of Radiology, 4. Shenzhen, Guangdong 518067, China
| | - Bin Jiang
- Shenzhen Qianhai Shekou Free Trade Zone Hospital, Department of Radiology, 4. Shenzhen, Guangdong 518067, China
| | - Chenyao Kang
- Shenzhen Qianhai Shekou Free Trade Zone Hospital, Department of Radiology, 4. Shenzhen, Guangdong 518067, China
| | - Yunliang Xie
- Shenzhen Qianhai Shekou Free Trade Zone Hospital, Department of Radiology, 4. Shenzhen, Guangdong 518067, China
| | - Qian Li
- Shenzhen Qianhai Shekou Free Trade Zone Hospital, Department of Radiology, 4. Shenzhen, Guangdong 518067, China
| | - Xiaojie Wang
- Shenzhen Qianhai Shekou Free Trade Zone Hospital, Department of Radiology, 4. Shenzhen, Guangdong 518067, China.
| | - Ciyong Lu
- Sun Yat-sen University, School of Public Health, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
4
|
An Y, Su G, Chen W, Song J, Chai M, Zhu L, Zhang Z. Research progress on the mechanisms of microglial extracellular vesicles affecting the prognosis of ischemic stroke. Neurochem Int 2025; 185:105949. [PMID: 40015338 DOI: 10.1016/j.neuint.2025.105949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/26/2025] [Accepted: 02/13/2025] [Indexed: 03/01/2025]
Abstract
Ischemic stroke is the major type of stroke and one of the main causes of morbidity, mortality, and long-term disability worldwide. Microglia play a complex and crucial role in stroke. They are the primary immune cells in the brain and can rapidly respond to the pathological changes caused by stroke. They promote neuroprotection and repair after ischemic stroke through various mechanisms, such as activation and polarization, dynamic interactions with other cells (neurons, astrocytes, oligodendrocytes, vascular endothelial cells, etc.), and phagocytosis to clear dead cell debris. Among the multiple pathways through which microglia exert their neuroprotective effects, the secretion of extracellular vesicles is one of the most important. The focus of this review is to analyze the latest progress in research on ischemic stroke related to microglia-derived extracellular vesicles, discuss their mechanisms of action, and provide new strategies for improving stroke prognosis. To obtain relevant articles, we conducted a comprehensive search in Pubmed and Web of Science, with keywords related to ischemic stroke and microglia-derived extracellular vesicles or exosomes. A total of 59 articles were included in the review. Existing studies have shown that after a stroke occurs, microglia release extracellular vesicles containing proteins, nucleic acids, metabolites, etc. These vesicles target corresponding receptor cells and can slow down the development of stroke and improve stroke outcomes through various means, such as reducing neuronal apoptosis, inhibiting neuronal autophagy, suppressing neuronal ferroptosis, preventing neuronal pyroptosis, alleviating inflammatory responses, reducing glial scar formation, promoting myelin regeneration and repair, and facilitating blood-brain barrier repair.
Collapse
Affiliation(s)
- Yang An
- Department of Neurology, Lanzhou University Second Hospital, 730030 Lanzhou, Gansu, China
| | - Gang Su
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, 730030 Lanzhou, Gansu, China
| | - Wei Chen
- Department of Neurology, Lanzhou University Second Hospital, 730030 Lanzhou, Gansu, China
| | - Jinyang Song
- Department of Neurology, Lanzhou University Second Hospital, 730030 Lanzhou, Gansu, China
| | - Miao Chai
- Department of Neurology, Lanzhou University Second Hospital, 730030 Lanzhou, Gansu, China
| | - Longni Zhu
- Department of Neurology, Lanzhou University Second Hospital, 730030 Lanzhou, Gansu, China
| | - Zhenchang Zhang
- Department of Neurology, Lanzhou University Second Hospital, 730030 Lanzhou, Gansu, China.
| |
Collapse
|
5
|
Chen L, Wang W. Microglia-derived sEV: Friend or foe in the pathogenesis of cognitive impairment. Prog Neuropsychopharmacol Biol Psychiatry 2025; 137:111287. [PMID: 39954801 DOI: 10.1016/j.pnpbp.2025.111287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 01/26/2025] [Accepted: 02/06/2025] [Indexed: 02/17/2025]
Abstract
As immune cells, microglia serve a dual role in cognition. Microglia-derived sEV actively contribute to the development of cognitive impairment by selectively targeting specific cells through various substances such as proteins, RNA, DNA, lipids, and metabolic waste. In recent years, there has been an increasing focus on understanding the pathogenesis and therapeutic potential of sEV. This comprehensive review summarizes the detrimental effects of M1 microglial sEV on pathogenic protein transport, neuroinflammation, disruption of the blood-brain barrier (BBB), neuronal death and synaptic dysfunction in relation to cognitive damage. Additionally, it highlights the beneficial effects of M2 microglia on alleviating cognitive impairment based on evidence from cellular experiments and animal studies. Furthermore, since microglial-secreted sEV can be found in cerebrospinal fluid or cross the BBB into plasma circulation, they play a crucial role in diagnosing cognitive impairment. However, using sEV as biomarkers is still at an experimental stage and requires further clinical validation. Future research should aim to explore the mechanisms underlying microglial involvement in various nervous system disorders to identify novel targets for clinical interventions.
Collapse
Affiliation(s)
- Lilin Chen
- Pulmonary and Critical Care Medicine, Heping District, Shenyang City, Liaoning Province, China
| | - Wei Wang
- Pulmonary and Critical Care Medicine, Heping District, Shenyang City, Liaoning Province, China.
| |
Collapse
|
6
|
Hashemi E, Srivastava IN, Aguirre A, Yoseph ET, Kaushal E, Awani A, Ryu JK, Akassoglou K, Talebian S, Chu P, Pisani L, Musolino P, Steinman L, Doyle K, Robinson WH, Sharpe O, Cayrol R, Orchard PJ, Lund T, Vogel H, Lenail M, Han MH, Bonkowsky JL, Van Haren KP. A Novel Mouse Model for Cerebral Inflammatory Demyelination in X-Linked Adrenoleukodystrophy: Insights into Pathogenesis and Potential Therapeutic Targets. Ann Neurol 2025; 97:296-312. [PMID: 39467011 PMCID: PMC11747894 DOI: 10.1002/ana.27117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024]
Abstract
OBJECTIVE X-linked adrenoleukodystrophy (ALD) is caused by mutations in ABCD1, a peroxisomal gene. More than half of males with an ABCD1 mutation develop inflammatory cerebral demyelination (cALD), but underlying mechanisms remain unknown and therapies are limited. We sought to develop and characterize a mouse model of cALD to facilitate study of disease mechanisms and therapy development. METHODS We used immunoassays and immunohistochemistry to assess novel (interleukin 18 [IL-18]) and established molecular markers in cerebrospinal fluid (CSF) and postmortem brain tissue from cALD patients. We generated a cALD phenotype in Abcd1-knockout mice using a 2-hit method that combines cuprizone and experimental autoimmune encephalomyelitis models. We then used magnetic resonance imaging (MRI) and immunohistochemistry to assess the fidelity of cALD molecular markers in the mice. RESULTS Human and mouse cALD lesions shared histologic features of myelin phagocytosis, myelin loss, abundant microglial activation, T and B-cell infiltration, and astrogliosis. Compared to wild-type controls, Abcd1-knockout mice displayed more cerebral demyelination, blood-brain barrier disruption, and perivascular immune cell infiltration. This enhanced inflammatory response was associated with higher levels of fibrin deposition, oxidative stress, demyelination, and axonal injury. IL-18 immunoreactivity co-localized with perivascular monocytes/macrophages in both human and mouse brain tissue. In cALD patients, CSF IL-18 levels correlated with MRI lesion severity. INTERPRETATION Our results suggest loss of Abcd1 function in mice predisposes to more severe blood-brain barrier disruption, cerebral inflammation driven by the infiltration of peripheral immune cells, demyelination, and axonal damage, replicating human cALD features. This novel mouse model could shed light on cALD mechanisms and accelerate cALD therapy development. ANN NEUROL 2025;97:296-312.
Collapse
Affiliation(s)
- Ezzat Hashemi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Isha N. Srivastava
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Alejandro Aguirre
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Ezra T. Yoseph
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Esha Kaushal
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Avni Awani
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Jae Kyu Ryu
- Gladstone Institute for Neurological Disease; San Francisco, CA, USA
- Center for Neurovascular Brain Immunology at Gladstone and UCSF; San Francisco, CA USA
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco; San Francisco, CA, USA
| | - Katerina Akassoglou
- Gladstone Institute for Neurological Disease; San Francisco, CA, USA
- Center for Neurovascular Brain Immunology at Gladstone and UCSF; San Francisco, CA USA
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco; San Francisco, CA, USA
| | - Shahrzad Talebian
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Pauline Chu
- Stanford Human Research Histology Core, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura Pisani
- Department of Radiology, Stanford University School of Medicine Stanford, CA, USA
| | - Patricia Musolino
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Kristian Doyle
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| | - William H Robinson
- Department of Immunology & Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Orr Sharpe
- Department of Immunology & Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Romain Cayrol
- Department of Pathology, Clinical Department of Laboratory Medicine, University of Montreal, Quebec, Canada
| | - Paul J. Orchard
- Division of Pediatric Blood & Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Troy Lund
- Division of Pediatric Blood & Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Hannes Vogel
- Departments of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Max Lenail
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - May H. Han
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Joshua L. Bonkowsky
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
- Brain and Spine Center, Primary Children’s Hospital, Salt Lake City, Utah
- Primary Children’s Center for Personalized Medicine, Salt Lake City, Utah
| | - Keith P. Van Haren
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
7
|
Zhou Y, Zhang Y, Xu D, Yang C, Lin X, Jin K, Xia L, Zhuge Q, Yang S. Exosomes from polarized Microglia: Proteomic insights into potential mechanisms affecting intracerebral hemorrhage. Gene 2025; 935:149080. [PMID: 39510328 DOI: 10.1016/j.gene.2024.149080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Intracerebral hemorrhage (ICH) is a devastating form of stroke associated with significant morbidity and mortality. Microglia are intracranial innate immune cell that play critical roles in Intracerebral hemorrhage through direct or indirect means. Vesicle transport is a fundamental mechanism of intercellular communication. Recent studies have identified microglia in specific polarized states correlate with pathogenesis, material and signal transmission in ICH through derived extracellular vesicles. Diverse polarization states trigger distinct functions, however, the exosome proteomes across these states remain poorly characterized. Here, we hypothesized that microglia exosomal profiles vary with polarization states, impacting their functional repertoire and influencing outcomes in cerebral hemorrhage. In vitro model of cerebral hemorrhage, administration of 20 μg/ml LPS-induced M1 microglia derived exosomes (M1-Exo) with HT22 enhanced hemin-induced neuronal death, while IL-4-induced M2 microglia derived exosomes (M2-Exo) significantly reduced hemin-induced cell apoptosis and inflammation. Then we identified novel state-specific proteomic profiles of microglia-derived exosomes under these polarization conditions through label-free quantitative mass spectrometry (LFQ-MS). Analysis of protein content identified several exosomal signature proteins and hundreds of differentially expressed proteins across polarization states. Specifically, proteins including UMOD, NLRP3, ACOD1, IL1RN, heme oxygenase 1 (HMOX1), CCL4, and TNFRSF1B in M1-Exo were enriched in inflammatory pathways, while those in M2-Exo exhibited enrichment in autophagy, ubiquitination, and mitochondrial respiration. The analysis of those diverse exosomal proteins suggested unique proteomic profiles and possible intracellular signal transmission and regulation mechanisms. Together, these findings offer new insights and resources for studying microglia-derived exosome and pave the way for the development of novel therapeutic strategies targeting microglial exosome-mediated pathways.
Collapse
Affiliation(s)
- Yinan Zhou
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ying Zhang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Zhejiang-US Joint Laboratory for Aging and Neurological Disease Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Dongchen Xu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chenguang Yang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiao Lin
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Lei Xia
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Zhejiang-US Joint Laboratory for Aging and Neurological Disease Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Su Yang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Zhejiang-US Joint Laboratory for Aging and Neurological Disease Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
8
|
Zhang R, Ding N, Feng X, Liao W. The gut microbiome, immune modulation, and cognitive decline: insights on the gut-brain axis. Front Immunol 2025; 16:1529958. [PMID: 39911400 PMCID: PMC11794507 DOI: 10.3389/fimmu.2025.1529958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/07/2025] [Indexed: 02/07/2025] Open
Abstract
The gut microbiome has emerged as a pivotal area of research due to its significant influence on the immune system and cognitive functions. Cognitive disorders, including dementia and Parkinson's disease, represent substantial global health challenges. This review explores the relationship between gut microbiota, immune modulation, and cognitive decline, with a particular focus on the gut-brain axis. Research indicates that gut bacteria produce metabolites, including short-chain fatty acids (SCFAs), which affect mucosal immunity, antigen presentation, and immune responses, thereby influencing cognitive functions. A noteworthy correlation has been identified between imbalances in the gut microbiome and cognitive impairments, suggesting novel pathways for the treatment of cognitive disorders. Additionally, factors such as diet, environment, and pharmaceuticals play a role in shaping the composition of the gut microbiome, subsequently impacting both immune and cognitive health. This article aims to clarify the complex interactions among gut microbiota, immune regulation, and cognitive disorders, evaluating their potential as therapeutic targets. The goal is to promote microbiome-based treatments and lay the groundwork for future research in this field.
Collapse
Affiliation(s)
- Ruyi Zhang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Basic Medical School, Hubei University of Science and Technology, Xianning, China
| | - Ning Ding
- Basic Medical School, Hubei University of Science and Technology, Xianning, China
| | - Xicui Feng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Wenli Liao
- Basic Medical School, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
9
|
Li H, Ke X, Feng B, Tian H, Cai Z, Zhang A, Man Q. Research progress on the mechanism and markers of metabolic disorders in the occurrence and development of cognitive dysfunction after ischemic stroke. Front Endocrinol (Lausanne) 2025; 16:1500650. [PMID: 39911922 PMCID: PMC11794095 DOI: 10.3389/fendo.2025.1500650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/03/2025] [Indexed: 02/07/2025] Open
Abstract
Post-stroke cognitive impairment (PSCI) is a common complication following a stroke that significantly affects patients' quality of life and rehabilitation outcomes. It also imposes a heavy economic burden. There is an urgent need to better understand the pathophysiology and pathogenesis of PSCI, as well as to identify markers that can predict PSCI early in the clinical stage, facilitating early prevention, monitoring, and treatment. Although the mechanisms underlying PSCI are complex and multifaceted, involving factors such as atherosclerosis and neuroinflammation, metabolic disorders also play a critical role. This article primarily reviews the relationship between metabolic disorders of the three major nutrients-sugar, fat, and protein-and the development of cognitive dysfunction following ischemic stroke (IS). It aims to elucidate how these metabolic disturbances contribute to cognitive dysfunction post-stroke and to explore potential metabolic biomarkers for PSCI. We believe that this review will offer new insights into the early identification, treatment, and prognostic assessment of PSCI.
Collapse
Affiliation(s)
- Huaqiang Li
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohua Ke
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bianying Feng
- Department of Clinical Laboratory, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huan Tian
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenzhen Cai
- Department of Clinical Laboratory, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Anren Zhang
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qiuhong Man
- Department of Clinical Laboratory, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
10
|
Akif A, My Nguyen TT, Liu L, Xu X, Kulkarni A, Jiang J, Zhang Y, Hao J. Targeting NLRP3 signaling with a novel sulfonylurea compound for the treatment of vascular cognitive impairment and dementia. RESEARCH SQUARE 2024:rs.3.rs-5611378. [PMID: 39764140 PMCID: PMC11702818 DOI: 10.21203/rs.3.rs-5611378/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Background As a key inflammatory factor, the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome plays a crucial role in neuroinflammation and the progression of neurodegenerative diseases. Dysregulation of NLRP3 signaling can trigger various inflammatory responses in the brain, contributing to the development of neurodegenerative diseases such as ischemic stroke, vascular dementia (VaD), Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Therefore, the NLRP3 signaling pathway is a promising therapeutic target for the treatment of neurodegenerative diseases, including VaD. Methods In this study, we investigated the therapeutic effects of a synthetic sulfonylurea NLRP3 inhibitor, AMS-17, in a VaD mouse model using bilateral common carotid artery stenosis (BCAS) and elucidated the underlying mechanisms. All mice were randomly divided into three groups: Sham, VaD + Vehicle, and VaD + AMS-17. Cognitive function was assessed using the Y-maze and Morris water maze (MWM) on the 50th day after BCAS. Brain sections and blood serum samples were collected for biomarker analysis and immunohistochemistry. Neurodegeneration, expressions of the molecules involved in the NLRP3 signaling pathways, tight junction proteins, and myelination were assessed using western blotting and immunofluorescence (IF). The levels of Interleukin-1 beta (IL-1β), Tumor Necrosis Factor-alpha (TNF-α) and Interleukin-4 (IL-4) in the blood were measured using ELISA. Results AMS-17 treatment improved cognitive function, enhanced blood-brain barrier (BBB) integrity, and promoted remyelination in VaD mice. Additionally, AMS-17 reduced neurodegeneration and decreased the expression of NLRP3 and its associated proteins, Apoptosis-associated speck-like protein (ASC), and cleaved caspase-1 in the brain. It also lowered pro-inflammatory TNF-α and IL-1β levels, while increasing the anti-inflammatory IL-4 level in the blood. Conclusions The findings of this study provide the first promising evidence for the use of AMS-17 in VaD treatment in mice. This study introduces AMS-17 as a novel chemical scaffold with NLRP3 inhibitory activity, which can be further developed for the treatment of VaD in humans.
Collapse
Affiliation(s)
| | | | - Langni Liu
- The University of Texas Health Science Center at Houston
| | - Xiaotian Xu
- The Affiliated Hospital of Yangzhou University
| | | | | | | | | |
Collapse
|
11
|
Deutloff J, Pöhner I, Rößler J, Kipp M, Tauber SC, Brandenburg LO. The Formyl Peptid Receptor Ligand Ac2-26 Improves the Integrity of the Blood-Brain Barrier in the Course of Pneumococcal Meningitis. Cells 2024; 13:2104. [PMID: 39768195 PMCID: PMC11674053 DOI: 10.3390/cells13242104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND The brain is protected from invading pathogens by the blood-brain barrier (BBB) and the innate immune system. Pattern recognition receptors play a crucial role in detecting bacteria and initiating the innate immune response. Among these are G-protein-coupled formyl peptide receptors (FPR), which are expressed by immune cells in the central nervous system. In this study, we investigated the influence of the FPR ligand Ac2-26 on the integrity of the BBB during pneumococcal meningitis. METHODS Wild-type (WT) and Fpr1- and Fpr2-deficient mice were intrathecally infected with Streptococcus pneumoniae. Subsequently, different groups of mice were treated with intraperitoneal injections of Ac2-26. The integrity of the BBB was analyzed using various markers through immunohistochemistry and immunofluorescence. RESULTS The results showed reduced BBB integrity during the course of bacterial meningitis. Treatment with Ac2-26 in WT mice significantly prolonged the maintenance of BBB integrity. However, this effect was not observed in Fpr2-deficient mice. CONCLUSIONS This study extends previous findings on the anti-inflammatory properties of Ac2-26 by demonstrating that Ac2-26 positively affects BBB integrity via FPR2 during pneumococcal meningitis. These findings suggest that further investigation of Ac2-26 and other FPR modulators as potential therapies for Streptococcus pneumoniae-induced meningitis is warranted.
Collapse
Affiliation(s)
- Johannes Deutloff
- Institute of Anatomy, Rostock University Medical Center, Rostock, Gertrudenstraße 9, 18057 Rostock, Germany (M.K.)
| | - Irina Pöhner
- Institute of Anatomy, Rostock University Medical Center, Rostock, Gertrudenstraße 9, 18057 Rostock, Germany (M.K.)
| | - Johann Rößler
- Institute of Anatomy, Rostock University Medical Center, Rostock, Gertrudenstraße 9, 18057 Rostock, Germany (M.K.)
| | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, Rostock, Gertrudenstraße 9, 18057 Rostock, Germany (M.K.)
| | - Simone C. Tauber
- Department of Neurology, RWTH University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Lars-Ove Brandenburg
- Institute of Anatomy, Rostock University Medical Center, Rostock, Gertrudenstraße 9, 18057 Rostock, Germany (M.K.)
| |
Collapse
|
12
|
Zheng Y, Zhang X, Wang Z, Zhang R, Wei H, Yan X, Jiang X, Yang L. MCC950 as a promising candidate for blocking NLRP3 inflammasome activation: A review of preclinical research and future directions. Arch Pharm (Weinheim) 2024; 357:e2400459. [PMID: 39180246 DOI: 10.1002/ardp.202400459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/26/2024]
Abstract
The NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome is a key component of the innate immune system that triggers inflammation and pyroptosis and contributes to the development of several diseases. Therefore, blocking the activation of the NLRP3 inflammasome has therapeutic potential for the treatment of these diseases. MCC950, a selective small molecule inhibitor, has emerged as a promising candidate for blocking NLRP3 inflammasome activation. Ongoing research is focused on elucidating the specific targets of MCC950 as well as assessfing its metabolism and safety profile. This review discusses the diseases that have been studied in relation to MCC950, with a focus on stroke, Alzheimer's disease, liver injury, atherosclerosis, diabetes mellitus, and sepsis, using bibliometric analysis. It then summarizes the potential pharmacological targets of MCC950 and discusses its toxicity. Furthermore, it traces the progression from preclinical to clinical research for the treatment of these diseases. Overall, this review provides a solid foundation for the clinical therapeutic potential of MCC950 and offers insights for future research and therapeutic approaches.
Collapse
Affiliation(s)
- Yujia Zheng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Ziyu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Ruifeng Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Huayuan Wei
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Xu Yan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Lin Yang
- School of Medicial Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, Jinghai, China
| |
Collapse
|
13
|
Huang Z, Deng C, Ma C, He G, Tao J, Zhang L, Hu X, Mo Y, Qiu L, Zhang N, Luo C, Xing S, Xie J, Yin H. Identification and validation of the surface proteins FIBG, PDGF-β, and TGF-β on serum extracellular vesicles for non-invasive detection of colorectal cancer: experimental study. Int J Surg 2024; 110:4672-4687. [PMID: 38704642 PMCID: PMC11326011 DOI: 10.1097/js9.0000000000001533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/15/2024] [Indexed: 05/06/2024]
Abstract
OBJECTIVES The absence of non-invasive biomarkers for the early diagnosis of colorectal cancer (CRC) has contributed to poor prognosis. Extracellular vesicles (EVs) have emerged as promising candidates for cancer monitoring using liquid biopsy. However, the complexity of EVs isolation procedures and the absence of clear targets for detecting serum-derived EVs have hindered the clinical application of EVs in early CRC diagnosis. METHODS In the discovery phase, we conducted a comprehensive 4D-DIA proteomic analysis of serum-derived EVs samples from 37 individuals, performing an initial screening of EVs surface proteins. In the technical validation phase, we developed an extraction-free CRC-EVArray microarray to assess the expression of these potential EVs surface proteins in a multi-centre study comprising 404 individuals. In the application phase, the authors evaluated the diagnostic efficacy of the CRC-EVArray model based on machine-learning algorithms. RESULTS Through 4D-DIA proteomic analysis, the authors identified seven potential EVs surface proteins showing significantly differential expression in CRC patients compared to healthy controls. Utilizing our developed high-throughput CRC-EVArray microarray, we further confirmed the differential expression of three EVs surface proteins, FIBG, PDGF-β and TGF-β, in a large sample population. Moreover, we established an optimal CRC-EVArray model using the NNET algorithm, demonstrating superior diagnostic efficacy with an area under the curve (AUC) of 0.882 in the train set and 0.937 in the test set. Additionally, we predicted the functions and potential origins of these EVs-derived proteins through a series of multi-omics approaches. CONCLUSIONS Our systematic exploration of surface protein expression profiles on serum-derived EVs has identified FIBG, PDGF-β, and TGF-β as novel diagnostic biomarkers for CRC. The development of CRC-EVArray diagnostic model based on these findings provided an effective tool for the large-scale CRC screening, thus facilitating its translation into clinical practice.
Collapse
Affiliation(s)
- Zhijian Huang
- Department of Pathology, The Seventh Affiliated Hospital of Sun Yat-Sen University
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University
| | - Cuncan Deng
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University
| | - Caiqi Ma
- Department of Oncology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University
| | - Guirong He
- Department of Laboratory Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen
| | - Jian Tao
- Department of Laboratory Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen
| | - Lijun Zhang
- Department of Laboratory Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen
| | - Xiaoyun Hu
- Department of Laboratory Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen
| | - Yanfang Mo
- Department of Laboratory Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen
| | - Lumei Qiu
- Department of Laboratory Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen
| | - Ningfang Zhang
- Department of Laboratory Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen
| | - Chuanghua Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Shan Xing
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center
| | - Jinye Xie
- Department of Laboratory Medicine, Zhongshan City People's Hospital, Zhongshan
| | - Haofan Yin
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University
- Department of Laboratory Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen
| |
Collapse
|
14
|
Roseborough AD, Ollen-Bittle N, Whitehead SN. Using microglia-derived extracellular vesicles to capture diversity of microglial activation phenotypes following neurological injury. Neural Regen Res 2024; 19:1633-1634. [PMID: 38103216 PMCID: PMC10960273 DOI: 10.4103/1673-5374.389632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/14/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Affiliation(s)
- Austyn D. Roseborough
- Vulnerable Brain Laboratory, Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, London, OH, Canada
| | - Nikita Ollen-Bittle
- Vulnerable Brain Laboratory, Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, London, OH, Canada
| | - Shawn N. Whitehead
- Vulnerable Brain Laboratory, Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, London, OH, Canada
| |
Collapse
|
15
|
Kuppuswamy A, Billinger S, Coupland KG, English C, Kutlubaev MA, Moseley L, Pittman QJ, Simpson DB, Sutherland BA, Wong C, Corbett D. Mechanisms of Post-Stroke Fatigue: A Follow-Up From the Third Stroke Recovery and Rehabilitation Roundtable. Neurorehabil Neural Repair 2024; 38:52-61. [PMID: 38156702 PMCID: PMC10798014 DOI: 10.1177/15459683231219266] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
BACKGROUND Post-stroke fatigue (PSF) is a significant and highly prevalent symptom, whose mechanisms are poorly understood. The third Stroke Recovery and Rehabilitation Roundtable paper on PSF focussed primarily on defining and measuring PSF while mechanisms were briefly discussed. This companion paper to the main paper is aimed at elaborating possible mechanisms of PSF. METHODS This paper reviews the available evidence that potentially explains the pathophysiology of PSF and draws parallels from fatigue literature in other conditions. We start by proposing a case for phenotyping PSF based on structural, functional, and behavioral characteristics of PSF. This is followed by discussion of a potentially significant role of early inflammation in the development of fatigue, specifically the impact of low-grade inflammation and its long-term systemic effects resulting in PSF. Of the many neurotransmitter systems in the brain, the dopaminergic systems have the most evidence for a role in PSF, along with a role in sensorimotor processing. Sensorimotor neural network dynamics are compromised as highlighted by evidence from both neurostimulation and neuromodulation studies. The double-edged sword effect of exercise on PSF provides further insight into how PSF might emerge and the importance of carefully titrating interventional paradigms. CONCLUSION The paper concludes by synthesizing the presented evidence into a unifying model of fatigue which distinguishes between factors that pre-dispose, precipitate, and perpetuate PSF. This framework will help guide new research into the biological mechanisms of PSF which is a necessary prerequisite for developing treatments to mitigate the debilitating effects of post-stroke fatigue.
Collapse
Affiliation(s)
- Annapoorna Kuppuswamy
- Queen Square Institute of Neurology, University College London, London, UK
- Department of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Sandra Billinger
- Department of Neurology, University of Kansas Medical Center, University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, MO, USA
| | - Kirsten G. Coupland
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Australia Heart and Stroke Program, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Coralie English
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Australia Heart and Stroke Program, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | | | - Lorimer Moseley
- IIMPACT in Health, University of South Australia, Adelaide, SA, Australia
| | - Quentin J. Pittman
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Dawn B. Simpson
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Australia Heart and Stroke Program, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Brad A. Sutherland
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TS, Australia
| | - Connie Wong
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Dale Corbett
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
16
|
Alvarez MM, Salazar FE, Rodriguez T, D’Egidio F, Borlongan CV, Lee JY. Endogenous Extracellular Vesicles Participate in Brain Remodeling after Ischemic Stroke. Int J Mol Sci 2023; 24:16857. [PMID: 38069179 PMCID: PMC10706116 DOI: 10.3390/ijms242316857] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Brain remodeling after an ischemic stroke represents a promising avenue for exploring the cellular mechanisms of endogenous brain repair. A deeper understanding of these mechanisms is crucial for optimizing the safety and efficacy of neuroprotective treatments for stroke patients. Here, we interrogated the role of extracellular vesicles, particularly exosomes, as potential mediators of endogenous repair within the neurovascular unit (NVU). We hypothesized that these extracellular vesicles may play a role in achieving transient stroke neuroprotection. Using the established ischemic stroke model of middle cerebral artery occlusion in adult rats, we detected a surged in the extracellular vesicle marker CD63 in the peri-infarct area that either juxtaposed or co-localized with GFAP-positive glial cells, MAP2-labeled young neurons, and VEGF-marked angiogenic cells. This novel observation that CD63 exosomes spatially and temporally approximated glial activation, neurogenesis, and angiogenesis suggests that extracellular vesicles, especially exosomes, contribute to the endogenous repair of the NVU, warranting exploration of extracellular vesicle-based stroke therapeutics.
Collapse
Affiliation(s)
| | | | | | | | - Cesar V. Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA; (M.M.A.); (F.E.S.); (T.R.); (F.D.); (J.-Y.L.)
| | | |
Collapse
|
17
|
Hashemi E, Narain Srivastava I, Aguirre A, Tilahan Yoseph E, Kaushal E, Awani A, Kyu. Ryu J, Akassoglou K, Talebian S, Chu P, Pisani L, Musolino P, Steinman L, Doyle K, Robinson WH, Sharpe O, Cayrol R, Orchard P, Lund T, Vogel H, Lenail M, Han MH, Bonkowsky JL, Van Haren KP. A novel mouse model of cerebral adrenoleukodystrophy highlights NLRP3 activity in lesion pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.564025. [PMID: 37986739 PMCID: PMC10659266 DOI: 10.1101/2023.11.07.564025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Objective We sought to create and characterize a mouse model of the inflammatory, cerebral demyelinating phenotype of X-linked adrenoleukodystrophy (ALD) that would facilitate the study of disease pathogenesis and therapy development. We also sought to cross-validate potential therapeutic targets such as fibrin, oxidative stress, and the NLRP3 inflammasome, in post-mortem human and murine brain tissues. Background ALD is caused by mutations in the gene ABCD1 encoding a peroxisomal transporter. More than half of males with an ABCD1 mutation develop the cerebral phenotype (cALD). Incomplete penetrance and absence of a genotype-phenotype correlation imply a role for environmental triggers. Mechanistic studies have been limited by the absence of a cALD phenotype in the Abcd1-null mouse. Methods We generated a cALD phenotype in 8-week-old, male Abcd1-null mice by deploying a two-hit method that combines cuprizone (CPZ) and experimental autoimmune encephalomyelitis (EAE) models. We employed in vivo MRI and post-mortem immunohistochemistry to evaluate myelin loss, astrogliosis, blood-brain barrier (BBB) disruption, immune cell infiltration, fibrin deposition, oxidative stress, and Nlrp3 inflammasome activation in mice. We used bead-based immunoassay and immunohistochemistry to evaluate IL-18 in CSF and post-mortem human cALD brain tissue. Results MRI studies revealed T2 hyperintensities and post-gadolinium enhancement in the medial corpus callosum of cALD mice, similar to human cALD lesions. Both human and mouse cALD lesions shared common histologic features of myelin phagocytosis, myelin loss, abundant microglial activation, T and B-cell infiltration, and astrogliosis. Compared to wild-type controls, Abcd1-null mice had more severe cerebral inflammation, demyelination, fibrin deposition, oxidative stress, and IL-18 activation. IL-18 immunoreactivity co-localized with macrophages/microglia in the perivascular region of both human and mouse brain tissue. Interpretation This novel mouse model of cALD suggests loss of Abcd1 function predisposes to more severe cerebral inflammation, oxidative stress, fibrin deposition, and Nlrp3 pathway activation, which parallels the findings seen in humans with cALD. We expect this model to enable long-sought investigations into cALD mechanisms and accelerate development of candidate therapies for lesion prevention, cessation, and remyelination.
Collapse
Affiliation(s)
- Ezzat Hashemi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Isha Narain Srivastava
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Alejandro Aguirre
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Ezra Tilahan Yoseph
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Esha Kaushal
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Avni Awani
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Jae Kyu. Ryu
- Gladstone Institute for Neurological Disease; San Francisco, CA, USA
- Center for Neurovascular Brain Immunology at Gladstone and UCSF; San Francisco, CA USA
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco; San Francisco, CA, USA
| | - Katerina Akassoglou
- Gladstone Institute for Neurological Disease; San Francisco, CA, USA
- Center for Neurovascular Brain Immunology at Gladstone and UCSF; San Francisco, CA USA
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco; San Francisco, CA, USA
| | - Shahrzad Talebian
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Pauline Chu
- Stanford Human Research Histology Core, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura Pisani
- Department of Radiology, Stanford University School of Medicine Stanford, CA, USA
| | - Patricia Musolino
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Kristian Doyle
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| | - William H Robinson
- Department of Immunology & Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Orr Sharpe
- Department of Immunology & Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Romain Cayrol
- Department of Pathology, Clinical Department of Laboratory Medicine, University of Montreal, Quebec, Canada
| | - Paul Orchard
- Division of Pediatric Blood & Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Troy Lund
- Division of Pediatric Blood & Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Hannes Vogel
- Departments of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Max Lenail
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - May Htwe Han
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Joshua Leith Bonkowsky
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
- Brain and Spine Center, Primary Children’s Hospital, Salt Lake City, Utah
- Primary Children’s Center for Personalized Medicine, Salt Lake City, Utah
| | - Keith P. Van Haren
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
18
|
Alruwaili M, Al-kuraishy HM, Alexiou A, Papadakis M, ALRashdi BM, Elhussieny O, Saad HM, Batiha GES. Pathogenic Role of Fibrinogen in the Neuropathology of Multiple Sclerosis: A Tale of Sorrows and Fears. Neurochem Res 2023; 48:3255-3269. [PMID: 37442896 PMCID: PMC10514123 DOI: 10.1007/s11064-023-03981-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune demyelinating neurodegenerative disease of the central nervous system (CNS) due to injury of the myelin sheath by immune cells. The clotting factor fibrinogen is involved in the pathogenesis of MS by triggering microglia and the progress of neuroinflammation. Fibrinogen level is correlated with MS severity; consequently, inhibition of the fibrinogen cascade may reduce MS neuropathology. Thus, this review aimed to clarify the potential role of fibrinogen in the pathogenesis of MS and how targeting of fibrinogen affects MS neuropathology. Accumulation of fibrinogen in the CNS may occur independently or due to disruption of blood-brain barrier (BBB) integrity in MS. Fibrinogen acts as transduction and increases microglia activation which induces the progression of inflammation, oxidative stress, and neuronal injury. Besides, brain fibrinogen impairs the remyelination process by inhibiting the differentiation of oligodendrocyte precursor cells. These findings proposed that fibrinogen is associated with MS neuropathology through interruption of BBB integrity, induction of neuroinflammation, and demyelination with inhibition of the remyelination process by suppressing oligodendrocytes. Therefore, targeting of fibrinogen and/or CD11b/CD18 receptors by metformin and statins might decrease MS neuropathology. In conclusion, inhibiting the expression of CD11b/CD18 receptors by metformin and statins may decrease the pro-inflammatory effect of fibrinogen on microglia which is involved in the progression of MS.
Collapse
Affiliation(s)
- Mubarak Alruwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Hayder M. Al-kuraishy
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770 Australia
- AFNP Med, 1030 Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283 Wuppertal, Germany
| | - Barakat M. ALRashdi
- Biology Department, College of Science, Jouf University, Sakaka, 41412 Saudi Arabia
| | - Omnya Elhussieny
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744 Egypt
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744 Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 Egypt
| |
Collapse
|
19
|
Diebold M, Fehrenbacher L, Frosch M, Prinz M. How myeloid cells shape experimental autoimmune encephalomyelitis: At the crossroads of outside-in immunity. Eur J Immunol 2023; 53:e2250234. [PMID: 37505465 DOI: 10.1002/eji.202250234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/21/2023] [Accepted: 07/27/2023] [Indexed: 07/29/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an animal model of central nervous system (CNS) autoimmunity. It is most commonly used to mimic aspects of multiple sclerosis (MS), a demyelinating disorder of the human brain and spinal cord. The innate immune response displays one of the core pathophysiological features linked to both the acute and chronic stages of MS. Hence, understanding and targeting the innate immune response is essential. Microglia and other CNS resident MUs, as well as infiltrating myeloid cells, diverge substantially in terms of both their biology and their roles in EAE. Recent advances in the field show that antigen presentation, as well as disease-propagating and regulatory interactions with lymphocytes, can be attributed to specific myeloid cell types and cell states in EAE lesions, following a distinct temporal pattern during disease initiation, propagation and recovery. Furthermore, single-cell techniques enable the assessment of characteristic proinflammatory as well as beneficial cell states, and identification of potential treatment targets. Here, we discuss the principles of EAE induction and protocols for varying experimental paradigms, the composition of the myeloid compartment of the CNS during health and disease, and systematically review effects on myeloid cells for therapeutic approaches in EAE.
Collapse
Affiliation(s)
- Martin Diebold
- Institute of Neuropathology, University Medical Center Freiburg, Freiburg, Germany
| | - Luca Fehrenbacher
- Institute of Neuropathology, University Medical Center Freiburg, Freiburg, Germany
| | - Maximilian Frosch
- Institute of Neuropathology, University Medical Center Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, University Medical Center Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
20
|
Bian Z, Hu X, Liu X, Yu H, Bian Y, Sun H, Fukui Y, Morihara R, Ishiura H, Yamashita T. Protective Effects of Rivaroxaban on White Matter Integrity and Remyelination in a Mouse Model of Alzheimer's Disease Combined with Cerebral Hypoperfusion. J Alzheimers Dis 2023; 96:609-622. [PMID: 37840489 DOI: 10.3233/jad-230413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by cognitive dysfunction and memory loss that is accompanied by pathological changes to white matter. Some clinical and animal research revealed that AD combined with chronic cerebral hypoperfusion (CCH) exacerbates AD progression by inducing blood-brain barrier dysfunction and fibrinogen deposition. Rivaroxaban, an anticoagulant, has been shown to reduce the rates of dementia in atrial fibrillation patients, but its effects on white matter and the underlying mechanisms are unclear. OBJECTIVE The main purpose of this study was to explore the therapeutic effect of rivaroxaban on the white matter of AD+CCH mice. METHODS In this study, the therapeutic effects of rivaroxaban on white matter in a mouse AD+CCH model were investigated to explore the potential mechanisms involving fibrinogen deposition, inflammation, and oxidative stress on remyelination in white matter. RESULTS The results indicate that rivaroxaban significantly attenuated fibrinogen deposition, fibrinogen-related microglia activation, oxidative stress, and enhanced demyelination in AD+CCH mice, leading to improved white matter integrity, reduced axonal damage, and restored myelin loss. CONCLUSIONS These findings suggest that long-term administration of rivaroxaban might reduce the risk of dementia.
Collapse
Affiliation(s)
- Zhihong Bian
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Xinran Hu
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Xia Liu
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haibo Yu
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Yuting Bian
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Hongming Sun
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Yusuke Fukui
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Ryuta Morihara
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Toru Yamashita
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| |
Collapse
|