1
|
Tang S, Harrison DM, Bardhoshi A, Cureton R, Yan X, Parcon PA, Morse CL, Ecker C, Choi S, Pike VW, Innis RB, Zanotti-Fregonara P. Cyclooxygenase-1 and cyclooxygenase-2 densities measured using positron emission tomography are not altered in the brains of individuals with stable multiple sclerosis. J Cereb Blood Flow Metab 2025:271678X251332490. [PMID: 40367389 PMCID: PMC12078256 DOI: 10.1177/0271678x251332490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/03/2025] [Accepted: 03/14/2025] [Indexed: 05/16/2025]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease affecting the central nervous system that involves immune-mediated demyelination and axonal degeneration. Clinical imaging techniques play a critical role in diagnosing and assessing the prognosis of MS. Magnetic resonance imaging has been most frequently used to visualize demyelination and detect acute and chronic active lesions, which are key indicators of clinical course of illness. Previous research has also highlighted the effectiveness of translocator protein 18-kDa (TSPO) positron emission tomography (PET) imaging for identifying chronic active lesions and progressive pathology. Building on this work, the present study used PET imaging to explore the role of cyclooxygenase-1 and -2 (COX-1 and COX-2)-key enzymes involved in neuroinflammation-in individuals with MS. Five participants with MS were recruited, and lesions were identified using 7 Tesla MRI. No significant differences in COX radioligand binding were observed in the co-registered PET images between lesioned areas and normal-appearing brain tissues, nor between individuals with MS and healthy volunteers. The negative findings underscore the complexity of MS pathology and raise several important considerations for planning future studies using COX PET for imaging in MS.
Collapse
Affiliation(s)
- Shiyu Tang
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Daniel M Harrison
- Dept of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Dept of Neurology, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA
| | - Amanda Bardhoshi
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Raven Cureton
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Xuefeng Yan
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Paul A Parcon
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Cheryl L Morse
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Christina Ecker
- Dept of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Seongjin Choi
- Dept of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland, USA
| | | |
Collapse
|
2
|
Nowaczewska-Kuchta A, Ksiazek-Winiarek D, Glabinski A. Interaction Between Neutrophils and Elements of the Blood-Brain Barrier in the Context of Multiple Sclerosis and Ischemic Stroke. Int J Mol Sci 2025; 26:4437. [PMID: 40362673 PMCID: PMC12072651 DOI: 10.3390/ijms26094437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 05/03/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025] Open
Abstract
The blood-brain barrier (BBB) is a semi-permeable membrane in physiological conditions, but in pathologies like multiple sclerosis (MS) and ischemic stroke (IS), its permeability increases. In this review, we focus on neutrophils and their interaction with cellular components of the BBB: endothelial cells (EC), pericytes (PC), and astrocytes (AC). Nowadays, neutrophils receive more attention, mostly due to advanced research techniques that show the complexity of their population. Additionally, neutrophils have the ability to secrete extracellular vesicles (EVs), reactive oxygen species (ROS) and cytokines, which both destroy and restore the BBB. Astrocytes, PCs, and ECs also have dual roles in the pathogenesis of MS and IS. The interaction between neutrophils and cellular components of the BBB provides us with a wider insight into the pathogenesis of common diseases in the central nervous system. Further, we comprehensively review knowledge about the influence of neutrophils on the BBB in the context of MS and IS. Moreover, we describe new therapeutic strategies for patients with MS and IS like cell-based therapies and therapies that use the neutrophil function.
Collapse
Affiliation(s)
| | | | - Andrzej Glabinski
- Department of Neurology and Stroke, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland; (A.N.-K.); (D.K.-W.)
| |
Collapse
|
3
|
Zhang M, Wang P, Wu Y, Jin L, Liu J, Deng P, Luo R, Chen X, Zhao M, Zhang X, Guo Y, Yan Y, Di Y, Qin J. A microengineered 3D human neurovascular unit model to probe the neuropathogenesis of herpes simplex encephalitis. Nat Commun 2025; 16:3701. [PMID: 40251168 PMCID: PMC12008363 DOI: 10.1038/s41467-025-59042-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 04/07/2025] [Indexed: 04/20/2025] Open
Abstract
Herpes simplex encephalitis (HSE) caused by HSV-1 is the most common non-epidemic viral encephalitis, and the neuropathogenesis of HSE remains elusive. This work describes a 3D human neurovascular unit (NVU) model that allows to explore the neuropathogenesis of HSE in vitro. This model is established by co-culturing human microvascular endothelial cells, astrocytes, microglia and neurons on a multi-compartment chip. Upon HSV-1 infection, this NVU model exhibited HSE-associated pathological changes, including cytopathic effects, blood-brain barrier dysfunction and pro-inflammatory cytokines release. Besides, significant innate immune responses were observed with the infiltration of peripheral immune cells and microglial activation. Transcriptomic analysis revealed broadly inflammatory and chemotactic responses in host cells. Mechanistically, we found HSV-1 could induce severe suppression of autophagic flux in glial cells, especially in microglia. Autophagy activators could effectively inhibit HSV-1 replication and rescue neurovascular injuries, indicating the utility of this unique platform for studying neurological diseases and new therapeutics.
Collapse
Affiliation(s)
- Min Zhang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Peng Wang
- University of Science and Technology of China, Hefei, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China
| | - Yunsong Wu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lin Jin
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Jiayue Liu
- University of Science and Technology of China, Hefei, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China
| | - Pengwei Deng
- University of Science and Technology of China, Hefei, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China
| | - Rongcan Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xiyue Chen
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengqian Zhao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Xu Zhang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yaqiong Guo
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Ying Yan
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, China
| | - Yingtong Di
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jianhua Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
- University of Science and Technology of China, Hefei, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Mazahery H, Black LJ, Daly A, Banjac M, Bondonno CP, Zhong L, Blekkenhorst LC, Hodgson JM, Dunlop E. Higher dietary nitrate intake is associated with lower likelihood of first clinical diagnosis of central nervous system demyelination in Australian women. Mult Scler Relat Disord 2025; 96:106376. [PMID: 40068474 DOI: 10.1016/j.msard.2025.106376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/12/2024] [Accepted: 03/04/2025] [Indexed: 04/15/2025]
Abstract
Dietary nitrate is a precursor to nitric oxide, for which plausible mechanisms exist for both beneficial and detrimental influences in first clinical diagnosis of central nervous system demyelination (FCD), a common precursor to the diagnosis of multiple sclerosis (MS). Whether dietary nitrate has any role in FCD onset is unclear. We tested associations between nitrate intake from food sources (plant, vegetable, animal, processed meat, and unprocessed meat) and likelihood of FCD. We used data from the Ausimmune Study (264 cases, 474 controls) and logistic regression with full propensity score matching. In females, higher nitrate intake from plant-based foods (odds ratio [OR] per 60 mg/day = 0.50; 95 % confidence interval [CI] 0.31, 0.81; p = <0.01) and vegetables (OR per 60 mg/day = 0.39; 95 % CI 0.22, 0.70; p = <0.01), but not other sources, was statistically significantly associated with lower likelihood of FCD. In males, no associations were found between any source of nitrate intake and likelihood of FCD. Our results support further research to explore a possible beneficial role for plant-derived nitrate in people at higher risk of MS.
Collapse
Affiliation(s)
- Hajar Mazahery
- Curtin School of Population Health, Curtin University, Perth, WA, Australia
| | - Lucinda J Black
- Curtin School of Population Health, Curtin University, Perth, WA, Australia; Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia.
| | - Alison Daly
- Curtin School of Population Health, Curtin University, Perth, WA, Australia
| | - Maja Banjac
- Curtin School of Population Health, Curtin University, Perth, WA, Australia
| | - Catherine P Bondonno
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia; Medical School, The University of Western Australia, Perth, WA, Australia; Royal Perth Hospital Medical Research Foundation, Perth, WA, Australia
| | - Liezhou Zhong
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Lauren C Blekkenhorst
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia; Medical School, The University of Western Australia, Perth, WA, Australia; Royal Perth Hospital Medical Research Foundation, Perth, WA, Australia
| | - Jonathan M Hodgson
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia; Medical School, The University of Western Australia, Perth, WA, Australia; Royal Perth Hospital Medical Research Foundation, Perth, WA, Australia
| | - Eleanor Dunlop
- Curtin School of Population Health, Curtin University, Perth, WA, Australia; Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
5
|
Babić A, Bonifačić D, Komen V, Kovačić S, Mamić M, Vuletić V. Blood Biomarkers in Ischemic Stroke Diagnostics and Treatment-Future Perspectives. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:514. [PMID: 40142325 PMCID: PMC11943631 DOI: 10.3390/medicina61030514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/12/2025] [Accepted: 03/15/2025] [Indexed: 03/28/2025]
Abstract
Stroke is a leading cause of disability and the second most common cause of death worldwide, with its incidence increasing due to an aging population. Early diagnosis is crucial for timely medical intervention. Biomarkers serve as objective indicators to predict outcomes, monitor treatment responses, and assess prognosis. This review examines the evolving landscape of stroke biomarkers, highlighting their potential clinical applications and the challenges hindering their widespread use. Blood biomarkers are readily accessible and provide insight into the pathophysiological processes underlying stroke. This review focuses on neuronal and glial biomarkers, as well as those associated with inflammation, thrombosis, excitotoxicity, and neuroprotection. Also, it focuses on genetic biomarkers. The timing of biomarker measurement is particularly critical in the early stages of stroke, when rapid decision-making is essential, and it requires systematic investigation. Although numerous molecules have been proposed as stroke biomarkers in recent years, none have yet been integrated into routine clinical practice. Stroke biomarkers hold great promise for enhancing diagnosis, risk stratification, and personalized treatment strategies. However, well-designed studies and rigorous validation are necessary to bridge the gap between research findings and clinical implementation. Integrating biomarkers with existing diagnostic tools could revolutionize stroke management and improve patient outcomes. Continued research into blood biomarkers and their clinical utility remains imperative for advancing stroke care.
Collapse
Affiliation(s)
- Anja Babić
- Department of Neurology, Clinical Hospital Centre Rijeka, 51000 Rijeka, Croatia
- Department of Neurology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - David Bonifačić
- Department of Neurology, Clinical Hospital Centre Rijeka, 51000 Rijeka, Croatia
- Department of Neurology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Vita Komen
- Department of Neurology, Clinical Hospital Centre Rijeka, 51000 Rijeka, Croatia
- Department of Neurology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Slavica Kovačić
- Department of Diagnostic and Interventional Radiology, Clinical Hospital Centre Rijeka, 51000 Rijeka, Croatia
- Department of Radiology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Melani Mamić
- Department of Neurology, Clinical Hospital Centre Rijeka, 51000 Rijeka, Croatia
- Department of Neurology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Vladimira Vuletić
- Department of Neurology, Clinical Hospital Centre Rijeka, 51000 Rijeka, Croatia
- Department of Neurology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
6
|
Hollingworth BYA, Pallier PN, Jenkins SI, Chen R. Hypoxic Neuroinflammation in the Pathogenesis of Multiple Sclerosis. Brain Sci 2025; 15:248. [PMID: 40149770 PMCID: PMC11940507 DOI: 10.3390/brainsci15030248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/17/2025] [Accepted: 02/22/2025] [Indexed: 03/29/2025] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease that damages the myelin sheath around the central nervous system axons, leading to neurological dysfunction. Although the initial damage is driven by inflammation, hypoxia has been reported in several brain regions of MS patients, but the significance of this for prognosis and treatment remains unclear. Neuroinflammation can induce hypoxia, and hypoxia can induce and exacerbate neuroinflammation, forming a vicious cycle. Within MS lesions, demyelination is often followed by remyelination, which may restore neurological function. However, demyelinated axons are vulnerable to damage, which leads to the accumulation of the permanent neurological dysfunction typical in MS, with this vulnerability heightened during hypoxia. Clinically approved therapies for MS are immunomodulatory, which can reduce relapse frequency/severity, but there is a lack of pro-regenerative therapies for MS, for example promoting remyelination. All tissues have protective responses to hypoxia, which may be relevant to MS lesions, especially during remyelinating episodes. When oxygen levels are reduced in the brain, constitutively expressed hypoxia-inducible factors (HIF) are stabilised, upregulating hundreds of genes, including neuroprotective factors. Furthermore, astrocytes upregulate heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF) in the early stage of MS. HB-EGF promotes protective mechanisms and induces oligodendrocyte and neuron differentiation and survival. This review article outlines the neuroinflammation and hypoxia cycle in MS pathology and identifies potential therapeutic targets to limit neurodegeneration and/or promote regeneration. Both HIF and HB-EGF signalling pathways induce endogenous protection mechanisms in the CNS, promoting neuroprotection and remyelination directly, but also indirectly by modulating the immune response in MS. Promoting such endogenous protective signalling pathways could be an effective therapy for MS patients.
Collapse
Affiliation(s)
| | - Patrick N. Pallier
- Centre for Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK;
| | - Stuart I. Jenkins
- Neural Tissue Engineering Keele (NTEK), School of Medicine, Keele University, Staffordshire ST5 5BG, UK;
| | - Ruoli Chen
- School of Allied Health Professions and Pharmacy, Keele University, Staffordshire ST5 5BG, UK;
| |
Collapse
|
7
|
Chmiel J, Kurpas D, Stępień-Słodkowska M. The Potential of Transcranial Direct Current Stimulation (tDCS) in Improving Quality of Life in Patients with Multiple Sclerosis: A Review and Discussion of Mechanisms of Action. J Clin Med 2025; 14:373. [PMID: 39860377 PMCID: PMC11766291 DOI: 10.3390/jcm14020373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Multiple sclerosis (MS) is the most prevalent incurable nontraumatic neurological disability in young individuals. It causes numerous symptoms, including tingling, fatigue, muscle spasms, cognitive deficits, and neuropsychiatric disorders. This disease significantly worsens quality of life (QoL), and this dimension of general functioning provides valuable information about the effectiveness of treatment and well-being. There are psychological interventions that can improve QoL, but their number is limited. Therefore, searching for new methods that are as effective and safe as possible is ongoing. Methods: This review examines the potential effectiveness of transcranial direct current stimulation (tDCS) in improving the quality of life in patients with MS. Searches were conducted in the PubMed/Medline, Research Gate, and Cochrane databases. Results: The search yielded seven studies in which QoL was a primary or secondary outcome. Stimulation protocols displayed heterogeneity, especially concerning the choice of the stimulation site. Four studies demonstrated the effectiveness of tDCS in improving QoL, all of which (two) used anodal stimulation of the left DLPFC. Stimulation of the motor cortex has produced mixed results. The potential mechanisms of action of tDCS in improving QoL in MS are explained. These include improved synaptic plasticity, increased cerebral blood flow, salience network engagement through tDCS, and reduction of beta-amyloid deposition. The limitations are also detailed, and recommendations for future research are made. Conclusions: While the evidence is limited, tDCS has shown potential to improve QoL in MS patients in some studies. Prefrontal stimulation appears promising, and further research is recommended to explore this approach.
Collapse
Affiliation(s)
- James Chmiel
- Faculty of Physical Culture and Health, Institute of Physical Culture Sciences, University of Szczecin, Al. Piastów 40B Block 6, 71-065 Szczecin, Poland
| | - Donata Kurpas
- Department of Family and Pediatric Nursing, Faculty of Health Sciences, Wrocław Medical University, 51-618 Wrocław, Poland;
| | - Marta Stępień-Słodkowska
- Faculty of Physical Culture and Health, Institute of Physical Culture Sciences, University of Szczecin, Al. Piastów 40B Block 6, 71-065 Szczecin, Poland
| |
Collapse
|
8
|
Levin OS, Zakharova MN, Shemiakina AV. [Cognitive impairment in patients with multiple sclerosis]. Zh Nevrol Psikhiatr Im S S Korsakova 2025; 125:67-73. [PMID: 40420453 DOI: 10.17116/jnevro202512504267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Cognitive impairment (CI), along with physical disability, is the most important clinical manifestation of multiple sclerosis MS and is detected in 40-70% of patients. Present in all types and forms of MS, it has a significant negative impact on social adaptation, ability to work and daily activity. Most often, CI includes problems with information processing speed, memory, visual-spatial perception and regulatory functions. At the moment, there is no single theory explaining the pathogenesis of CI. It is believed to be associated with lesions in white and gray matter, which are not visible on MRI, as well as neuroimmunological processes that disrupt synaptic transmission and plasticity. Therapeutic strategies in the treatment of CI are also ambiguous: there is evidence of minimal to moderate efficacy of drugs that alter the course of MS (PITMS), especially PITMS 2 lines, and symptomatic therapy. However, the greatest effect was noted in cognitive training. Screening for CI during routine examination of patients with MS becomes more convenient thanks to short scales and tools, which in turn allows specialists to carry out timely therapeutic and preventive measures. In our review, we tried to analyze updated data on the prevalence, structure, pathogenesis and therapy of CI in MS patients.
Collapse
Affiliation(s)
- O S Levin
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | | | - A V Shemiakina
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| |
Collapse
|
9
|
Cashion JM, Brown LS, Morris GP, Fortune AJ, Courtney JM, Makowiecki K, Premilovac D, Cullen CL, Young KM, Sutherland BA. Pericyte ablation causes hypoactivity and reactive gliosis in adult mice. Brain Behav Immun 2025; 123:681-696. [PMID: 39406266 DOI: 10.1016/j.bbi.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 09/16/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024] Open
Abstract
Capillary pericytes are important regulators of cerebral blood flow, blood-brain barrier integrity and neuroinflammation, but can become lost or dysfunctional in disease. The consequences of pericyte loss or dysfunction is extremely difficult to discern when it forms one component of a complex disease process. To evaluate this directly, we examined the effect of adult pericyte loss on mouse voluntary movement and motor function, and physiological responses such as hypoxia, blood-brain barrier (BBB) integrity and glial reactivity. Tamoxifen delivery to Pdgfrβ-CreERT2:: Rosa26-DTA transgenic mice was titrated to produce a dose-dependent ablation of pericytes in vivo. 100mg/kg of tamoxifen ablated approximately half of all brain pericytes, while two consecutive daily doses of 300mg/kg tamoxifen ablated >80% of brain pericytes. In the open field test, mice with ∼50% pericyte loss spent more time immobile and travelled half the distance of control mice. Mice with >80% pericyte ablation also slipped more frequently while performing the beam walk task. Our histopathological analyses of the brain revealed that blood vessel density was unchanged, but vessel lumen width was increased. Pericyte-ablated mice also exhibited: mild BBB disruption; increased neuronal hypoxia; astrogliosis and increased IBA1+ immunoreactivity, suggestive of microgliosis and/or macrophage infiltration. Our results highlight the importance of pericytes in the brain, as pericyte loss can directly compromise brain health and induce behavioural alterations in mice.
Collapse
Affiliation(s)
- Jake M Cashion
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Lachlan S Brown
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Gary P Morris
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Alastair J Fortune
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Jo-Maree Courtney
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Kalina Makowiecki
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Dino Premilovac
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Carlie L Cullen
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Kaylene M Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Brad A Sutherland
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia.
| |
Collapse
|
10
|
Chmiel J, Stępień-Słodkowska M. Efficacy of Transcranial Direct Current Stimulation (tDCS) on Neuropsychiatric Symptoms in Multiple Sclerosis (MS)-A Review and Insight into Possible Mechanisms of Action. J Clin Med 2024; 13:7793. [PMID: 39768715 PMCID: PMC11728448 DOI: 10.3390/jcm13247793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Introduction: Neuropsychiatric symptoms such as depression and anxiety are a significant burden on patients with multiple sclerosis (MS). Their pathophysiology is complex and yet to be fully understood. There is an urgent need for non-invasive treatments that directly target the brain and help patients with MS. One such possible treatment is transcranial direct current stimulation (tDCS), a popular and effective non-invasive brain stimulation technique. Methods: This mechanistic review explores the efficacy of tDCS in treating depression and anxiety in MS while focusing on the underlying mechanisms of action. Understanding these mechanisms is crucial, as neuropsychiatric symptoms in MS arise from complex neuroinflammatory and neurodegenerative processes. This review offers insights that may direct more focused and efficient therapeutic approaches by investigating the ways in which tDCS affects inflammation, brain plasticity, and neural connections. Searches were conducted using the PubMed/Medline, ResearchGate, Cochrane, and Google Scholar databases. Results: The literature search yielded 11 studies to be included in this review, with a total of 175 patients participating in the included studies. In most studies, tDCS did not significantly reduce depression or anxiety scores as the studied patients did not have elevated scores indicating depression and anxiety. In the few studies where the patients had scores indicating mild/moderate dysfunction, tDCS was more effective. The risk of bias in the included studies was assessed as moderate. Despite the null or near-null results, tDCS may still prove to be an effective treatment option for depression and anxiety in MS, because tDCS produces a neurobiological effect on the brain and nervous system. To facilitate further work, several possible mechanisms of action of tDCS have been reported, such as the modulation of the frontal-midline theta, reductions in neuroinflammation, the modulation of the HPA axis, and cerebral blood flow regulation. Conclusions: Although tDCS did not overall demonstrate positive effects in reducing depression and anxiety in the studied MS patients, the role of tDCS in this area should not be underestimated. Evidence from other studies indicates the effectiveness of tDCS in reducing depression and anxiety, but the studies included in this review did not include patients with sufficient depression or anxiety. Future studies are needed to confirm the effectiveness of tDCS in neuropsychiatric dysfunctions in MS.
Collapse
Affiliation(s)
- James Chmiel
- Faculty of Physical Culture and Health, Institute of Physical Culture Sciences, University of Szczecin, Al. Piastów 40B blok 6, 71-065 Szczecin, Poland
- Doctoral School of the University of Szczecin, University of Szczecin, Mickiewicza 16, 70-384 Szczecin, Poland
| | - Marta Stępień-Słodkowska
- Faculty of Physical Culture and Health, Institute of Physical Culture Sciences, University of Szczecin, Al. Piastów 40B blok 6, 71-065 Szczecin, Poland
| |
Collapse
|
11
|
Qiu J, Peng S, Qu R, Wu L, Xing L, Zhang L, Sun J. New evidence of vascular defects in neurodegenerative diseases revealed by single cell RNA sequencing. Clin Sci (Lond) 2024; 138:1377-1394. [PMID: 39469930 DOI: 10.1042/cs20241658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/07/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
Neurodegenerative diseases (NDs) involve the progressive loss of neuronal structure or function in the brain and spinal cord. Despite their diverse etiologies, NDs manifest similar pathologies. Emerging research identifies vascular defects as a previously neglected hallmark of NDs. The development and popularization of single-cell RNA sequencing (scRNA-seq) technologies have significantly advanced our understanding of brain vascular cell types and their molecular characteristics, including gene expression changes at the single-cell level in NDs. These unprecedented insights deepen our understanding of the pathogenic mechanisms underlying NDs. However, the occurrence and role of vascular defects in disease progression remain largely unexplored. In this paper, we systematically summarize recent advances in the structure and organization of the central nervous system vasculature in mice, healthy individuals, and patients with NDs, focussing primarily on disease-specific alterations in vascular cell types or subtypes. Combining scRNA-seq with pathology evidence, we propose that vascular defects, characterized by disruptions in cell types and structural integrity, may serve as common early features of NDs. Finally, we discuss several pathways through which vascular defects in NDs lead to neuronal degeneration. A deeper understanding of the causes and contributions of vascular defects to NDs aids in elucidating the pathogenic mechanisms and developing meaningful therapeutic interventions.
Collapse
Affiliation(s)
- Jiaying Qiu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Department of Prenatal Screening and Diagnosis Center, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, China
| | - Siwan Peng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ruobing Qu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Liucheng Wu
- Laboratory Animal Center, Nantong University, Nantong 226001, China
| | - Lingyan Xing
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Luzhong Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Junjie Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
12
|
Chen B, Yu X, Horvath-Diano C, Ortuño MJ, Tschöp MH, Jastreboff AM, Schneeberger M. GLP-1 programs the neurovascular landscape. Cell Metab 2024; 36:2173-2189. [PMID: 39357509 DOI: 10.1016/j.cmet.2024.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
Readily available nutrient-rich foods exploit our inherent drive to overconsume, creating an environment of overnutrition. This transformative setting has led to persistent health issues, such as obesity and metabolic syndrome. The development of glucagon-like peptide-1 receptor (GLP-1R) agonists reveals our ability to pharmacologically manage weight and address metabolic conditions. Obesity is directly linked to chronic low-grade inflammation, connecting our metabolic environment to neurodegenerative diseases. GLP-1R agonism in curbing obesity, achieved by impacting appetite and addressing associated metabolic defects, is revealing additional benefits extending beyond weight loss. Whether GLP-1R agonism directly impacts brain health or does so indirectly through improved metabolic health remains to be elucidated. In exploring the intricate connection between obesity and neurological conditions, recent literature suggests that GLP-1R agonism may have the capacity to shape the neurovascular landscape. Thus, GLP-1R agonism emerges as a promising strategy for addressing the complex interplay between metabolic health and cognitive well-being.
Collapse
Affiliation(s)
- Bandy Chen
- Laboratory of Neurovascular Control of Homeostasis, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.
| | - Xiaofei Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Claudia Horvath-Diano
- Departments of Medicine (Endocrinology & Metabolism) and Pediatrics (Pediatric Endocrinology), Yale University School of Medicine, New Haven, CT, USA
| | - María José Ortuño
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Matthias H Tschöp
- Helmholtz Zentrum München, Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, München, Germany
| | - Ania M Jastreboff
- Departments of Medicine (Endocrinology & Metabolism) and Pediatrics (Pediatric Endocrinology), Yale University School of Medicine, New Haven, CT, USA
| | - Marc Schneeberger
- Laboratory of Neurovascular Control of Homeostasis, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA; Wu Tsai Institute for Mind and Brain, Yale University, New Haven, CT, USA.
| |
Collapse
|
13
|
D’Aversa E, Salvatori F, Vaccarezza M, Antonica B, Grisafi M, Singh AV, Secchiero P, Zauli G, Tisato V, Gemmati D. circRNAs as Epigenetic Regulators of Integrity in Blood-Brain Barrier Architecture: Mechanisms and Therapeutic Strategies in Multiple Sclerosis. Cells 2024; 13:1316. [PMID: 39195206 PMCID: PMC11352526 DOI: 10.3390/cells13161316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative disease leading to progressive demyelination and neuronal loss, with extensive neurological symptoms. As one of the most widespread neurodegenerative disorders, with an age onset of about 30 years, it turns out to be a socio-health and economic issue, thus necessitating therapeutic interventions currently unavailable. Loss of integrity in the blood-brain barrier (BBB) is one of the distinct MS hallmarks. Brain homeostasis is ensured by an endothelial cell-based monolayer at the interface between the central nervous system (CNS) and systemic bloodstream, acting as a selective barrier. MS results in enhanced barrier permeability, mainly due to the breakdown of tight (TJs) and adherens junctions (AJs) between endothelial cells. Specifically, proinflammatory mediator release causes failure in cytoplasmic exposure of junctions, resulting in compromised BBB integrity that enables blood cells to cross the barrier, establishing iron deposition and neuronal impairment. Cells with a compromised cytoskeletal protein network, fiber reorganization, and discontinuous junction structure can occur, resulting in BBB dysfunction. Recent investigations on spatial transcriptomics have proven circularRNAs (circRNAs) to be powerful multi-functional molecules able to epigenetically regulate transcription and structurally support proteins. In the present review, we provide an overview of the recent role ascribed to circRNAs in maintaining BBB integrity/permeability via cytoskeletal stability. Increased knowledge of the mechanisms responsible for impairment and circRNA's role in driving BBB damage and dysfunction might be helpful for the recognition of novel therapeutic targets to overcome BBB damage and unrestrained neurodegeneration.
Collapse
Affiliation(s)
- Elisabetta D’Aversa
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Francesca Salvatori
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Mauro Vaccarezza
- Curtin Medical School & Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Bianca Antonica
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Miriana Grisafi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Paola Secchiero
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh 11462, Saudi Arabia
| | - Veronica Tisato
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- University Strategic Centre for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- University Strategic Centre for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- Centre Haemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
14
|
Yang P, Li Y, Qian K, Zhou L, Cheng Y, Wu J, Xu M, Wang T, Yang X, Mu Y, Liu X, Zhang Q. Precise Modulation of Pericyte Dysfunction by a Multifunctional Nanoprodrug to Ameliorate Alzheimer's Disease. ACS NANO 2024; 18:14348-14366. [PMID: 38768086 DOI: 10.1021/acsnano.4c00480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Pericyte dysfunction severely undermines cerebrovascular integrity and exacerbates neurodegeneration in Alzheimer's disease (AD). However, pericyte-targeted therapy is a yet-untapped frontier for AD. Inspired by the elevation of vascular cell adhesion molecule-1 (VCAM-1) and reactive oxygen species (ROS) levels in pericyte lesions, we fabricated a multifunctional nanoprodrug by conjugating the hybrid peptide VLC, a fusion of the VCAM-1 high-affinity peptide VHS and the neuroprotective apolipoprotein mimetic peptide COG1410, to curcumin (Cur) through phenylboronic ester bond (VLC@Cur-NPs) to alleviate complex pericyte-related pathological changes. Importantly, VLC@Cur-NPs effectively homed to pericyte lesions via VLC and released their contents upon ROS stimulation to maximize their regulatory effects. Consequently, VLC@Cur-NPs markedly increased pericyte regeneration to form a positive feedback loop and thus improved neurovascular function and ultimately alleviated memory defects in APP/PS1 transgenic mice. We present a promising therapeutic strategy for AD that can precisely modulate pericytes and has the potential to treat other cerebrovascular diseases.
Collapse
Affiliation(s)
- Peng Yang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Yixian Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Kang Qian
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Lingling Zhou
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Yunlong Cheng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Jing Wu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Minjun Xu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Tianying Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Xiyu Yang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Yongkang Mu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Xuan Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Qizhi Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| |
Collapse
|
15
|
Elkjaer ML, Hartebrodt A, Oubounyt M, Weber A, Vitved L, Reynolds R, Thomassen M, Rottger R, Baumbach J, Illes Z. Single-Cell Multi-Omics Map of Cell Type-Specific Mechanistic Drivers of Multiple Sclerosis Lesions. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200213. [PMID: 38564686 PMCID: PMC11073880 DOI: 10.1212/nxi.0000000000200213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/19/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND AND OBJECTIVES In progressive multiple sclerosis (MS), compartmentalized inflammation plays a pivotal role in the complex pathology of tissue damage. The interplay between epigenetic regulation, transcriptional modifications, and location-specific alterations within white matter (WM) lesions at the single-cell level remains underexplored. METHODS We examined intracellular and intercellular pathways in the MS brain WM using a novel dataset obtained by integrated single-cell multi-omics techniques from 3 active lesions, 3 chronic active lesions, 3 remyelinating lesions, and 3 control WM of 6 patients with progressive MS and 3 non-neurologic controls. Single-nucleus RNA-seq and ATAC-seq were combined and additionally enriched with newly conducted spatial transcriptomics from 1 chronic active lesion. Functional gene modules were then validated in our previously published bulk tissue transcriptome data obtained from 73 WM lesions of patients with progressive MS and 25 WM of non-neurologic disease controls. RESULTS Our analysis uncovered an MS-specific oligodendrocyte genetic signature influenced by the KLF/SP gene family. This modulation has potential associations with the autocrine iron uptake signaling observed in transcripts of transferrin and its receptor LRP2. In addition, an inflammatory profile emerged within these oligodendrocytes. We observed unique cellular endophenotypes both at the periphery and within the chronic active lesion. These include a distinct metabolic astrocyte phenotype, the importance of FGF signaling among astrocytes and neurons, and a notable enrichment of mitochondrial genes at the lesion edge populated predominantly by astrocytes. Our study also identified B-cell coexpression networks indicating different functional B-cell subsets with differential location and specific tendencies toward certain lesion types. DISCUSSION The use of single-cell multi-omics has offered a detailed perspective into the cellular dynamics and interactions in MS. These nuanced findings might pave the way for deeper insights into lesion pathogenesis in progressive MS.
Collapse
Affiliation(s)
- Maria L Elkjaer
- From the Department of Neurology (M.L.E., A.W., Z.I.), Odense University Hospital; BRIDGE (M.L.E., A.W., M.T., Z.I.), Department of Clinical Research; Department of Molecular Medicine (M.L.E., A.W., L.V., Z.I.), University of Southern Denmark, Odense, Denmark; Biomedical Network Science Lab (A.H.), Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Department of Mathematics and Computer Science (A.H., Richard Rottger, J.B.), University of Southern Denmark, Odense, Denmark; Institute for Computational Systems Biology (M.O., J.B.), University of Hamburg, Germany; Department of Brain Sciences (Richard Reynolds), Imperial College, London, United Kingdom; and Clinical Genome Center (M.T.), Research Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Anne Hartebrodt
- From the Department of Neurology (M.L.E., A.W., Z.I.), Odense University Hospital; BRIDGE (M.L.E., A.W., M.T., Z.I.), Department of Clinical Research; Department of Molecular Medicine (M.L.E., A.W., L.V., Z.I.), University of Southern Denmark, Odense, Denmark; Biomedical Network Science Lab (A.H.), Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Department of Mathematics and Computer Science (A.H., Richard Rottger, J.B.), University of Southern Denmark, Odense, Denmark; Institute for Computational Systems Biology (M.O., J.B.), University of Hamburg, Germany; Department of Brain Sciences (Richard Reynolds), Imperial College, London, United Kingdom; and Clinical Genome Center (M.T.), Research Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Mhaned Oubounyt
- From the Department of Neurology (M.L.E., A.W., Z.I.), Odense University Hospital; BRIDGE (M.L.E., A.W., M.T., Z.I.), Department of Clinical Research; Department of Molecular Medicine (M.L.E., A.W., L.V., Z.I.), University of Southern Denmark, Odense, Denmark; Biomedical Network Science Lab (A.H.), Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Department of Mathematics and Computer Science (A.H., Richard Rottger, J.B.), University of Southern Denmark, Odense, Denmark; Institute for Computational Systems Biology (M.O., J.B.), University of Hamburg, Germany; Department of Brain Sciences (Richard Reynolds), Imperial College, London, United Kingdom; and Clinical Genome Center (M.T.), Research Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Anna Weber
- From the Department of Neurology (M.L.E., A.W., Z.I.), Odense University Hospital; BRIDGE (M.L.E., A.W., M.T., Z.I.), Department of Clinical Research; Department of Molecular Medicine (M.L.E., A.W., L.V., Z.I.), University of Southern Denmark, Odense, Denmark; Biomedical Network Science Lab (A.H.), Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Department of Mathematics and Computer Science (A.H., Richard Rottger, J.B.), University of Southern Denmark, Odense, Denmark; Institute for Computational Systems Biology (M.O., J.B.), University of Hamburg, Germany; Department of Brain Sciences (Richard Reynolds), Imperial College, London, United Kingdom; and Clinical Genome Center (M.T.), Research Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Lars Vitved
- From the Department of Neurology (M.L.E., A.W., Z.I.), Odense University Hospital; BRIDGE (M.L.E., A.W., M.T., Z.I.), Department of Clinical Research; Department of Molecular Medicine (M.L.E., A.W., L.V., Z.I.), University of Southern Denmark, Odense, Denmark; Biomedical Network Science Lab (A.H.), Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Department of Mathematics and Computer Science (A.H., Richard Rottger, J.B.), University of Southern Denmark, Odense, Denmark; Institute for Computational Systems Biology (M.O., J.B.), University of Hamburg, Germany; Department of Brain Sciences (Richard Reynolds), Imperial College, London, United Kingdom; and Clinical Genome Center (M.T.), Research Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Richard Reynolds
- From the Department of Neurology (M.L.E., A.W., Z.I.), Odense University Hospital; BRIDGE (M.L.E., A.W., M.T., Z.I.), Department of Clinical Research; Department of Molecular Medicine (M.L.E., A.W., L.V., Z.I.), University of Southern Denmark, Odense, Denmark; Biomedical Network Science Lab (A.H.), Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Department of Mathematics and Computer Science (A.H., Richard Rottger, J.B.), University of Southern Denmark, Odense, Denmark; Institute for Computational Systems Biology (M.O., J.B.), University of Hamburg, Germany; Department of Brain Sciences (Richard Reynolds), Imperial College, London, United Kingdom; and Clinical Genome Center (M.T.), Research Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Mads Thomassen
- From the Department of Neurology (M.L.E., A.W., Z.I.), Odense University Hospital; BRIDGE (M.L.E., A.W., M.T., Z.I.), Department of Clinical Research; Department of Molecular Medicine (M.L.E., A.W., L.V., Z.I.), University of Southern Denmark, Odense, Denmark; Biomedical Network Science Lab (A.H.), Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Department of Mathematics and Computer Science (A.H., Richard Rottger, J.B.), University of Southern Denmark, Odense, Denmark; Institute for Computational Systems Biology (M.O., J.B.), University of Hamburg, Germany; Department of Brain Sciences (Richard Reynolds), Imperial College, London, United Kingdom; and Clinical Genome Center (M.T.), Research Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Richard Rottger
- From the Department of Neurology (M.L.E., A.W., Z.I.), Odense University Hospital; BRIDGE (M.L.E., A.W., M.T., Z.I.), Department of Clinical Research; Department of Molecular Medicine (M.L.E., A.W., L.V., Z.I.), University of Southern Denmark, Odense, Denmark; Biomedical Network Science Lab (A.H.), Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Department of Mathematics and Computer Science (A.H., Richard Rottger, J.B.), University of Southern Denmark, Odense, Denmark; Institute for Computational Systems Biology (M.O., J.B.), University of Hamburg, Germany; Department of Brain Sciences (Richard Reynolds), Imperial College, London, United Kingdom; and Clinical Genome Center (M.T.), Research Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jan Baumbach
- From the Department of Neurology (M.L.E., A.W., Z.I.), Odense University Hospital; BRIDGE (M.L.E., A.W., M.T., Z.I.), Department of Clinical Research; Department of Molecular Medicine (M.L.E., A.W., L.V., Z.I.), University of Southern Denmark, Odense, Denmark; Biomedical Network Science Lab (A.H.), Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Department of Mathematics and Computer Science (A.H., Richard Rottger, J.B.), University of Southern Denmark, Odense, Denmark; Institute for Computational Systems Biology (M.O., J.B.), University of Hamburg, Germany; Department of Brain Sciences (Richard Reynolds), Imperial College, London, United Kingdom; and Clinical Genome Center (M.T.), Research Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Zsolt Illes
- From the Department of Neurology (M.L.E., A.W., Z.I.), Odense University Hospital; BRIDGE (M.L.E., A.W., M.T., Z.I.), Department of Clinical Research; Department of Molecular Medicine (M.L.E., A.W., L.V., Z.I.), University of Southern Denmark, Odense, Denmark; Biomedical Network Science Lab (A.H.), Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Department of Mathematics and Computer Science (A.H., Richard Rottger, J.B.), University of Southern Denmark, Odense, Denmark; Institute for Computational Systems Biology (M.O., J.B.), University of Hamburg, Germany; Department of Brain Sciences (Richard Reynolds), Imperial College, London, United Kingdom; and Clinical Genome Center (M.T.), Research Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
16
|
Dziedzic A, Maciak K, Miller ED, Starosta M, Saluk J. Targeting Vascular Impairment, Neuroinflammation, and Oxidative Stress Dynamics with Whole-Body Cryotherapy in Multiple Sclerosis Treatment. Int J Mol Sci 2024; 25:3858. [PMID: 38612668 PMCID: PMC11011409 DOI: 10.3390/ijms25073858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/05/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Multiple sclerosis (MS), traditionally perceived as a neurodegenerative disease, exhibits significant vascular alternations, including blood-brain barrier (BBB) disruption, which may predispose patients to increased cardiovascular risks. This vascular dysfunction is intricately linked with the infiltration of immune cells into the central nervous system (CNS), which plays a significant role in perpetuating neuroinflammation. Additionally, oxidative stress serves not only as a byproduct of inflammatory processes but also as an active contributor to neural damage. The synthesis of these multifaceted aspects highlights the importance of understanding their cumulative impact on MS progression. This review reveals that the triad of vascular damage, chronic inflammation, and oxidative imbalance may be considered interdependent processes that exacerbate each other, underscoring the need for holistic and multi-targeted therapeutic approaches in MS management. There is a necessity for reevaluating MS treatment strategies to encompass these overlapping pathologies, offering insights for future research and potential therapeutic interventions. Whole-body cryotherapy (WBCT) emerges as one of the potential avenues for holistic MS management approaches which may alleviate the triad of MS progression factors in multiple ways.
Collapse
Affiliation(s)
- Angela Dziedzic
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (A.D.); (K.M.)
| | - Karina Maciak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (A.D.); (K.M.)
| | - Elżbieta Dorota Miller
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113 Lodz, Poland; (E.D.M.); (M.S.)
| | - Michał Starosta
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113 Lodz, Poland; (E.D.M.); (M.S.)
| | - Joanna Saluk
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (A.D.); (K.M.)
| |
Collapse
|
17
|
King NE, Courtney JM, Brown LS, Fortune AJ, Blackburn NB, Fletcher JL, Cashion JM, Talbot J, Pébay A, Hewitt AW, Morris GP, Young KM, Cook AL, Sutherland BA. Induced pluripotent stem cell derived pericytes respond to mediators of proliferation and contractility. Stem Cell Res Ther 2024; 15:59. [PMID: 38433209 PMCID: PMC10910734 DOI: 10.1186/s13287-024-03671-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Pericytes are multifunctional contractile cells that reside on capillaries. Pericytes are critical regulators of cerebral blood flow and blood-brain barrier function, and pericyte dysfunction may contribute to the pathophysiology of human neurological diseases including Alzheimers disease, multiple sclerosis, and stroke. Induced pluripotent stem cell (iPSC)-derived pericytes (iPericytes) are a promising tool for vascular research. However, it is unclear how iPericytes functionally compare to primary human brain vascular pericytes (HBVPs). METHODS We differentiated iPSCs into iPericytes of either the mesoderm or neural crest lineage using established protocols. We compared iPericyte and HBVP morphologies, quantified gene expression by qPCR and bulk RNA sequencing, and visualised pericyte protein markers by immunocytochemistry. To determine whether the gene expression of neural crest iPericytes, mesoderm iPericytes or HBVPs correlated with their functional characteristics in vitro, we quantified EdU incorporation following exposure to the key pericyte mitogen, platelet derived growth factor (PDGF)-BB and, contraction and relaxation in response to the vasoconstrictor endothelin-1 or vasodilator adenosine, respectively. RESULTS iPericytes were morphologically similar to HBVPs and expressed canonical pericyte markers. However, iPericytes had 1864 differentially expressed genes compared to HBVPs, while there were 797 genes differentially expressed between neural crest and mesoderm iPericytes. Consistent with the ability of HBVPs to respond to PDGF-BB signalling, PDGF-BB enhanced and a PDGF receptor-beta inhibitor impaired iPericyte proliferation. Administration of endothelin-1 led to iPericyte contraction and adenosine led to iPericyte relaxation, of a magnitude similar to the response evoked in HBVPs. We determined that neural crest iPericytes were less susceptible to PDGFR beta inhibition, but responded most robustly to vasoconstrictive mediators. CONCLUSIONS iPericytes express pericyte-associated genes and proteins and, exhibit an appropriate physiological response upon exposure to a key endogenous mitogen or vasoactive mediators. Therefore, the generation of functional iPericytes would be suitable for use in future investigations exploring pericyte function or dysfunction in neurological diseases.
Collapse
Affiliation(s)
- Natalie E King
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Level 4, Medical Sciences Precinct, 17 Liverpool St, Hobart, TAS, 7000, Australia
| | - Jo-Maree Courtney
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Level 4, Medical Sciences Precinct, 17 Liverpool St, Hobart, TAS, 7000, Australia
| | - Lachlan S Brown
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Level 4, Medical Sciences Precinct, 17 Liverpool St, Hobart, TAS, 7000, Australia
| | - Alastair J Fortune
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Nicholas B Blackburn
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Jessica L Fletcher
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Jake M Cashion
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Level 4, Medical Sciences Precinct, 17 Liverpool St, Hobart, TAS, 7000, Australia
| | - Jana Talbot
- Wicking Dementia Education and Research Centre, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Alice Pébay
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Australia
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
| | - Alex W Hewitt
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Level 4, Medical Sciences Precinct, 17 Liverpool St, Hobart, TAS, 7000, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Australia
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | - Gary P Morris
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Level 4, Medical Sciences Precinct, 17 Liverpool St, Hobart, TAS, 7000, Australia
| | - Kaylene M Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Anthony L Cook
- Wicking Dementia Education and Research Centre, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Brad A Sutherland
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Level 4, Medical Sciences Precinct, 17 Liverpool St, Hobart, TAS, 7000, Australia.
| |
Collapse
|
18
|
Li L, Wang L, Zhang L. Therapeutic Potential of Natural Compounds from Herbs and Nutraceuticals in Alleviating Neurological Disorders: Targeting the Wnt Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2411-2433. [PMID: 38284360 DOI: 10.1021/acs.jafc.3c07536] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
As an important signaling pathway in multicellular eukaryotes, the Wnt signaling pathway participates in a variety of physiological processes. Recent studies have confirmed that the Wnt signaling pathway plays an important role in neurological disorders such as stroke, Alzheimer's disease, and Parkinson's disease. The regulation of Wnt signaling by natural compounds in herbal medicines and nutraceuticals has emerged as a potential strategy for the development of new drugs for neurological disorders. Purpose: The aim of this review is to evaluate the latest research results on the efficacy of natural compounds derived from herbs and nutraceuticals in the prevention and treatment of neurological disorders by regulating the Wnt pathway in vivo and in vitro. A manual and electronic search was performed for English articles available from PubMed, Web of Science, and ScienceDirect from the January 2010 to February 2023. Keywords used for the search engines were "natural products,″ "plant derived products,″ "Wnt+ clinical trials,″ and "Wnt+,″ and/or paired with "natural products″/″plant derived products", and "neurological disorders." A total of 22 articles were enrolled in this review, and a variety of natural compounds from herbal medicine and nutritional foods have been shown to exert therapeutic effects on neurological disorders through the Wnt pathway, including curcumin, resveratrol, and querctrin, etc. These natural products possess antioxidant, anti-inflammatory, and angiogenic properties, confer neurovascular unit and blood-brain barrier integrity protection, and affect neural stem cell differentiation, synaptic formation, and neurogenesis, to play a therapeutic role in neurological disorders. In various in vivo and in vitro studies and clinical trials, these natural compounds have been shown to be safe and tolerable with few adverse effects. Natural compounds may serve a therapeutic role in neurological disorders by regulating the Wnt pathway. This summary of the research progress of natural compounds targeting the Wnt pathway may provide new insights for the treatment of neurological disorders and potential targets for the development of new drugs.
Collapse
Affiliation(s)
- Lei Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning PR China
| | - Lin Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning PR China
| | - Lijuan Zhang
- Departments of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110000, Liaoning PR China
| |
Collapse
|
19
|
Schiera G, Di Liegro CM, Schirò G, Sorbello G, Di Liegro I. Involvement of Astrocytes in the Formation, Maintenance, and Function of the Blood-Brain Barrier. Cells 2024; 13:150. [PMID: 38247841 PMCID: PMC10813980 DOI: 10.3390/cells13020150] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
The blood-brain barrier (BBB) is a fundamental structure that protects the composition of the brain by determining which ions, metabolites, and nutrients are allowed to enter the brain from the blood or to leave it towards the circulation. The BBB is structurally composed of a layer of brain capillary endothelial cells (BCECs) bound to each other through tight junctions (TJs). However, its development as well as maintenance and properties are controlled by the other brain cells that contact the BCECs: pericytes, glial cells, and even neurons themselves. Astrocytes seem, in particular, to have a very important role in determining and controlling most properties of the BBB. Here, we will focus on these latter cells, since the comprehension of their roles in brain physiology has been continuously expanding, even including the ability to participate in neurotransmission and in complex functions such as learning and memory. Accordingly, pathological conditions that alter astrocytic functions can alter the BBB's integrity, thus compromising many brain activities. In this review, we will also refer to different kinds of in vitro BBB models used to study the BBB's properties, evidencing its modifications under pathological conditions.
Collapse
Affiliation(s)
- Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienzee Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.S.); (C.M.D.L.)
| | - Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienzee Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.S.); (C.M.D.L.)
| | - Giuseppe Schirò
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (G.S.); (G.S.)
- Neurology and Multiple Sclerosis Center, Unità Operativa Complessa (UOC), Foundation Institute “G. Giglio”, 90015 Cefalù, Italy
| | - Gabriele Sorbello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (G.S.); (G.S.)
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (G.S.); (G.S.)
| |
Collapse
|
20
|
Hayden MR. A Closer Look at the Perivascular Unit in the Development of Enlarged Perivascular Spaces in Obesity, Metabolic Syndrome, and Type 2 Diabetes Mellitus. Biomedicines 2024; 12:96. [PMID: 38255202 PMCID: PMC10813073 DOI: 10.3390/biomedicines12010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
The recently described perivascular unit (PVU) resides immediately adjacent to the true capillary neurovascular unit (NVU) in the postcapillary venule and contains the normal-benign perivascular spaces (PVS) and pathological enlarged perivascular spaces (EPVS). The PVS are important in that they have recently been identified to be the construct and the conduit responsible for the delivery of metabolic waste from the interstitial fluid to the ventricular cerebrospinal fluid for disposal into the systemic circulation, termed the glymphatic system. Importantly, the outermost boundary of the PVS is lined by protoplasmic perivascular astrocyte endfeet (pvACef) that communicate with regional neurons. As compared to the well-recognized and described neurovascular unit (NVU) and NVU coupling, the PVU is less well understood and remains an emerging concept. The primary focus of this narrative review is to compare the similarities and differences between these two units and discuss each of their structural and functional relationships and how they relate not only to brain homeostasis but also how they may relate to the development of multiple clinical neurological disease states and specifically how they may relate to obesity, metabolic syndrome, and type 2 diabetes mellitus. Additionally, the concept and importance of a perisynaptic astrocyte coupling to the neuronal synapses with pre- and postsynaptic neurons will also be considered as a perisynaptic unit to provide for the creation of the information transfer in the brain via synaptic transmission and brain homeostasis. Multiple electron microscopic images and illustrations will be utilized in order to help explain these complex units.
Collapse
Affiliation(s)
- Melvin R Hayden
- Department of Internal Medicine, Endocrinology Diabetes and Metabolism, Diabetes and Cardiovascular Disease Center, University of Missouri School of Medicine, One Hospital Drive, Columbia, MO 65211, USA
| |
Collapse
|
21
|
Devinney MJ, Wong MK, Wright MC, Marcantonio ER, Terrando N, Browndyke JN, Whitson HE, Cohen HJ, Nackley AG, Klein ME, Ely EW, Mathew JP, Berger M. Role of Blood-Brain Barrier Dysfunction in Delirium following Non-cardiac Surgery in Older Adults. Ann Neurol 2023; 94:1024-1035. [PMID: 37615660 PMCID: PMC10841407 DOI: 10.1002/ana.26771] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/21/2023] [Accepted: 08/12/2023] [Indexed: 08/25/2023]
Abstract
OBJECTIVE Although animal models suggest a role for blood-brain barrier dysfunction in postoperative delirium-like behavior, its role in postoperative delirium and postoperative recovery in humans is unclear. Thus, we evaluated the role of blood-brain barrier dysfunction in postoperative delirium and hospital length of stay among older surgery patients. METHODS Cognitive testing, delirium assessment, and cerebrospinal fluid and blood sampling were prospectively performed before and after non-cardiac, non-neurologic surgery. Blood-brain barrier dysfunction was assessed using the cerebrospinal fluid-to-plasma albumin ratio (CPAR). RESULTS Of 207 patients (median age = 68 years, 45% female) with complete CPAR and delirium data, 26 (12.6%) developed postoperative delirium. Overall, CPAR increased from before to 24 hours after surgery (median change = 0.28, interquartile range [IQR] = -0.48 to 1.24, Wilcoxon p = 0.001). Preoperative to 24 hours postoperative change in CPAR was greater among patients who developed delirium versus those who did not (median [IQR] = 1.31 [0.004 to 2.34] vs 0.19 [-0.55 to 1.08], p = 0.003). In a multivariable model adjusting for age, baseline cognition, and surgery type, preoperative to 24 hours postoperative change in CPAR was independently associated with delirium occurrence (per CPAR increase of 1, odds ratio = 1.30, 95% confidence interval [CI] = 1.03-1.63, p = 0.026) and increased hospital length of stay (incidence rate ratio = 1.15, 95% CI = 1.09-1.22, p < 0.001). INTERPRETATION Postoperative increases in blood-brain barrier permeability are independently associated with increased delirium rates and postoperative hospital length of stay. Although these findings do not establish causality, studies are warranted to determine whether interventions to reduce postoperative blood-brain barrier dysfunction would reduce postoperative delirium rates and hospital length of stay. ANN NEUROL 2023;94:1024-1035.
Collapse
Affiliation(s)
- Michael J. Devinney
- Department of Anesthesiology, Duke University School of Medicine, Durham NC
- Duke Center for the Study of Aging and Human Development, Duke University Medical Center, Durham NC
- Duke/UNC Alzheimer’s Disease Research Center, Duke University and University of North Carolina at Chapel Hill, Durham/Chapel Hill NC
| | | | - Mary Cooter Wright
- Department of Anesthesiology, Duke University School of Medicine, Durham NC
| | - Edward R. Marcantonio
- Division of General Medicine and Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA
| | - Niccolò Terrando
- Department of Anesthesiology, Duke University School of Medicine, Durham NC
- Department of Cell Biology, Duke University School of Medicine, Durham NC
- Department of Immunology, Duke University School of Medicine, Durham NC
| | - Jeffrey N. Browndyke
- Department of Psychiatry & Behavioral Sciences, Duke University School of Medicine, Durham NC
| | - Heather E. Whitson
- Duke Center for the Study of Aging and Human Development, Duke University Medical Center, Durham NC
- Duke/UNC Alzheimer’s Disease Research Center, Duke University and University of North Carolina at Chapel Hill, Durham/Chapel Hill NC
- Division of Geriatric Medicine, Department of Medicine, Duke University School of Medicine, Durham NC
| | - Harvey J. Cohen
- Duke Center for the Study of Aging and Human Development, Duke University Medical Center, Durham NC
- Duke/UNC Alzheimer’s Disease Research Center, Duke University and University of North Carolina at Chapel Hill, Durham/Chapel Hill NC
- Division of Geriatric Medicine, Department of Medicine, Duke University School of Medicine, Durham NC
| | - Andrea G. Nackley
- Department of Anesthesiology, Duke University School of Medicine, Durham NC
| | | | - E. Wesley Ely
- Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Vanderbilt University Medical Center Tennessee Valley Veteran’s Affairs Geriatric Research Education Clinical Center (GRECC), Nashville, TN
| | - Joseph P. Mathew
- Department of Anesthesiology, Duke University School of Medicine, Durham NC
| | - Miles Berger
- Department of Anesthesiology, Duke University School of Medicine, Durham NC
- Duke Center for the Study of Aging and Human Development, Duke University Medical Center, Durham NC
- Duke/UNC Alzheimer’s Disease Research Center, Duke University and University of North Carolina at Chapel Hill, Durham/Chapel Hill NC
| |
Collapse
|
22
|
Wakid M, Almeida D, Aouabed Z, Rahimian R, Davoli MA, Yerko V, Leonova-Erko E, Richard V, Zahedi R, Borchers C, Turecki G, Mechawar N. Universal method for the isolation of microvessels from frozen brain tissue: A proof-of-concept multiomic investigation of the neurovasculature. Brain Behav Immun Health 2023; 34:100684. [PMID: 37822873 PMCID: PMC10562768 DOI: 10.1016/j.bbih.2023.100684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 10/13/2023] Open
Abstract
The neurovascular unit, comprised of vascular cell types that collectively regulate cerebral blood flow to meet the needs of coupled neurons, is paramount for the proper function of the central nervous system. The neurovascular unit gatekeeps blood-brain barrier properties, which experiences impairment in several central nervous system diseases associated with neuroinflammation and contributes to pathogenesis. To better understand function and dysfunction at the neurovascular unit and how it may confer inflammatory processes within the brain, isolation and characterization of the neurovascular unit is needed. Here, we describe a singular, standardized protocol to enrich and isolate microvessels from archived snap-frozen human and frozen mouse cerebral cortex using mechanical homogenization and centrifugation-separation that preserves the structural integrity and multicellular composition of microvessel fragments. For the first time, microvessels are isolated from postmortem ventromedial prefrontal cortex tissue and are comprehensively investigated as a structural unit using both RNA sequencing and Liquid Chromatography with tandem mass spectrometry (LC-MS/MS). Both the transcriptome and proteome are obtained and compared, demonstrating that the isolated brain microvessel is a robust model for the NVU and can be used to generate highly informative datasets in both physiological and disease contexts.
Collapse
Affiliation(s)
- Marina Wakid
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Quebec, Canada
| | - Daniel Almeida
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Quebec, Canada
| | - Zahia Aouabed
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
| | - Reza Rahimian
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
| | | | - Volodymyr Yerko
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
| | - Elena Leonova-Erko
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
| | - Vincent Richard
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, Quebec, Canada
| | - René Zahedi
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, Quebec, Canada
| | - Christoph Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, Quebec, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Quebec, Canada
- Department of Psychiatry, McGill University, Montréal, Quebec, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Quebec, Canada
- Department of Psychiatry, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
23
|
Gao P, Yi J, Chen W, Gu J, Miao S, Wang X, Huang Y, Jiang T, Li Q, Zhou W, Zhao S, Wu M, Yin G, Chen J. Pericyte-derived exosomal miR-210 improves mitochondrial function and inhibits lipid peroxidation in vascular endothelial cells after traumatic spinal cord injury by activating JAK1/STAT3 signaling pathway. J Nanobiotechnology 2023; 21:452. [PMID: 38012616 PMCID: PMC10680350 DOI: 10.1186/s12951-023-02110-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/15/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Spinal cord injury (SCI) remains a significant health concern, with limited available treatment options. This condition poses significant medical, economic, and social challenges. SCI is typically categorized into primary and secondary injuries. Inflammation, oxidative stress, scar formation, and the immune microenvironment impede axon regeneration and subsequent functional restoration. Numerous studies have shown that the destruction of the blood-brain barrier (BBB) and microvessels is a crucial factor in severe secondary injury. Additionally, reactive oxygen species (ROS)-induced lipid peroxidation significantly contributes to endothelial cell death. Pericytes are essential constituents of the BBB that share the basement membrane with endothelial cells and astrocytes. They play a significant role in the establishment and maintenance of BBB. RESULTS Immunofluorescence staining at different time points revealed a consistent correlation between pericyte coverage and angiogenesis, suggesting that pericytes promote vascular repair via paracrine signaling. Pericytes undergo alterations in cellular morphology and the transcriptome when exposed to hypoxic conditions, potentially promoting angiogenesis. We simulated an early ischemia-hypoxic environment following SCI using glucose and oxygen deprivation and BBB models. Co-culturing pericytes with endothelial cells improved barrier function compared to the control group. However, this enhancement was reduced by the exosome inhibitor, GW4869. In vivo injection of exosomes improved BBB integrity and promoted motor function recovery in mice following SCI. Subsequently, we found that pericyte-derived exosomes exhibited significant miR-210-5p expression based on sequencing analysis. Therefore, we performed a series of gain- and loss-of-function experiments in vitro. CONCLUSION Our findings suggest that miR-210-5p regulates endothelial barrier function by inhibiting JAK1/STAT3 signaling. This process is achieved by regulating lipid peroxidation levels and improving mitochondrial function, suggesting a potential mechanism for restoration of the blood-spinal cord barrier (BSCB) after SCI.
Collapse
Affiliation(s)
- Peng Gao
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Jiang Yi
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Wenjun Chen
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
- Department of Orthopedic, Changzheng Hospital, No. 415 Fengyang Road, Shanghai, 200003, People's Republic of China
| | - Jun Gu
- Department of Orthopedic, Wuxi Xishan People's Hospital, No. 1128 Dacheng Road, Wuxi, 214105, People's Republic of China
| | - Sheng Miao
- Department of Orthopedic, Suqian First People's Hospital, No. 120 Suzhi Road, Suqian, 223812, People's Republic of China
| | - Xiaowei Wang
- Department of Orthopedic, Maanshan People's Hospital, No. 45 Hubei Road, Maanshan, 243000, Anhui, People's Republic of China
| | - Yifan Huang
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Tao Jiang
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Qingqing Li
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Wei Zhou
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Shujie Zhao
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, People's Republic of China.
| | - Mengyuan Wu
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, People's Republic of China.
| | - Guoyong Yin
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, People's Republic of China.
| | - Jian Chen
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, People's Republic of China.
| |
Collapse
|
24
|
Ahn JJ, Islam Y, Clarkson-Paredes C, Karl MT, Miller RH. B cell depletion modulates glial responses and enhances blood vessel integrity in a model of multiple sclerosis. Neurobiol Dis 2023; 187:106290. [PMID: 37709209 DOI: 10.1016/j.nbd.2023.106290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023] Open
Abstract
Multiple sclerosis (MS) is characterized by a compromised blood-brain barrier (BBB) resulting in central nervous system (CNS) entry of peripheral lymphocytes, including T cells and B cells. While T cells have largely been considered the main contributors to neuroinflammation in MS, the success of B cell depletion therapies suggests an important role for B cells in MS pathology. Glial cells in the CNS are essential components in both disease progression and recovery, raising the possibility that they represent targets for B cell functions. Here, we examine astrocyte and microglia responses to B cell depleting treatments in an animal model of MS, experimental autoimmune encephalomyelitis (EAE). B cell depleted EAE animals had markedly reduced disease severity and myelin damage accompanied by reduced microglia and astrocyte reactivity 20 days after symptom onset. To identify potential initial mechanisms mediating functional changes following B cell depletion, astrocyte and microglia transcriptomes were analyzed 3 days following B cell depletion. In control EAE animals, transcriptomic analysis revealed astrocytic inflammatory pathways were activated and microglial influence on neuronal function were inhibited. Following B cell depletion, initial functional recovery was associated with an activation of astrocytic pathways linked with restoration of neurovascular integrity and of microglial pathways associated with neuronal function. These studies reveal an important role for B cell depletion in influencing glial function and CNS vasculature in an animal model of MS.
Collapse
Affiliation(s)
- Julie J Ahn
- The George Washington University School of Medicine and Health Sciences, Department of Anatomy and Cell Biology, Ross Hall, 2300 I St NW, Washington, DC 20037, United States of America
| | - Yusra Islam
- The George Washington University School of Medicine and Health Sciences, Department of Anatomy and Cell Biology, Ross Hall, 2300 I St NW, Washington, DC 20037, United States of America
| | - Cheryl Clarkson-Paredes
- The George Washington University School of Medicine and Health Sciences, Nanofabrication and Imaging Center, Science and Engineering Hall, 800 22(nd) St NW, Washington, DC 20037, United States of America
| | - Molly T Karl
- The George Washington University School of Medicine and Health Sciences, Department of Anatomy and Cell Biology, Ross Hall, 2300 I St NW, Washington, DC 20037, United States of America
| | - Robert H Miller
- The George Washington University School of Medicine and Health Sciences, Department of Anatomy and Cell Biology, Ross Hall, 2300 I St NW, Washington, DC 20037, United States of America.
| |
Collapse
|
25
|
DuBose NG, DeJonge SR, Jeng B, Motl RW. Vascular dysfunction in multiple sclerosis: Scoping review of current evidence for informing future research directions. Mult Scler Relat Disord 2023; 78:104936. [PMID: 37619375 DOI: 10.1016/j.msard.2023.104936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/11/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND The research involving vascular comorbidity in people with multiple sclerosis (MS) could be advanced through investigations applying measurements of vascular function such as pulse wave velocity or flow mediated dilation as mechanistic endpoints in the study of physical comorbidity management in MS across the lifespan. We conducted a scoping review of research on vascular function parameters and outcomes in MS and developed a research agenda for future inquiry. METHODS We searched PubMed from inception through February 2023 for articles involving relevant central and peripheral vascular function data or correlates of vascular function (arterial stiffness, endothelial function, blood pressure parameters, etc.) in conjunction with relevant outcomes (walking function, cognition, etc.) in MS. Studies were limited to English-language and primary research articles. RESULTS Our search and subsequent screening identified 10 relevant articles. Four papers focused on arterial stiffness and reported pulse wave velocity and arterial compliance in MS compared with controls. Two papers focused on endothelial function and reported flow-mediated dilation in MS compared with controls. There was evidence that arterial stiffness and endothelial function were associated with cognition and disease progression in MS, respectively. One paper reported that physical activity was associated with arterial stiffness in MS. There was one protocol paper examining the effect of a home-based exercise program on markers of subclinical atherosclerosis; however, the results are unpublished, and there was no literature beyond this surrounding the impact of lifestyle behavior (e.g., diet) or exercise interventions on vascular function. CONCLUSION There is emerging evidence for vascular dysfunction in MS, and this is associated with cognition and disease progression; we know very little about approaches for managing vascular dysfunction in MS. To that end, we offer an agenda for research on measurements and outcomes of vascular function in relation to MS and disease attributes, along with proposed mechanisms and lifestyle changes that could aid in managing vascular dysfunction.
Collapse
Affiliation(s)
- Noah G DuBose
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois Chicago, 1919W Taylor St, 650 AHSB (MC517), Chicago, IL 60612, USA.
| | - Sydney R DeJonge
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois Chicago, 1919W Taylor St, 650 AHSB (MC517), Chicago, IL 60612, USA
| | - Brenda Jeng
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois Chicago, 1919W Taylor St, 650 AHSB (MC517), Chicago, IL 60612, USA
| | - Robert W Motl
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois Chicago, 1919W Taylor St, 650 AHSB (MC517), Chicago, IL 60612, USA
| |
Collapse
|
26
|
Prajjwal P, Shree A, Das S, Inban P, Ghosh S, Senthil A, Gurav J, Kundu M, Marsool Marsool MD, Gadam S, Marsool Marsoo AD, Vora N, Amir Hussin O. Vascular multiple sclerosis: addressing the pathogenesis, genetics, pro-angiogenic factors, and vascular abnormalities, along with the role of vascular intervention. Ann Med Surg (Lond) 2023; 85:4928-4938. [PMID: 37811110 PMCID: PMC10553029 DOI: 10.1097/ms9.0000000000001177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/05/2023] [Indexed: 10/10/2023] Open
Abstract
Dysfunction in the epithelium, breakdown of the blood-brain barrier, and consequent leukocyte and T-cell infiltration into the central nervous system define Vascular Multiple Sclerosis. Multiple sclerosis (MS) affects around 2.5 million individuals worldwide, is the leading cause of neurological impairment in young adults, and can have a variety of progressions and consequences. Despite significant discoveries in immunology and molecular biology, the root cause of MS is still not fully understood, as do the immunological triggers and causative pathways. Recent research into vascular anomalies associated with MS suggests that a vascular component may be pivotal to the etiology of MS, and there can be actually a completely new entity in the already available classification of MS, which can be called 'vascular multiple sclerosis'. Unlike the usual other causes of MS, vascular MS is not dependent on autoimmune pathophysiologic mechanisms, instead, it is caused due to the blood vessels pathology. This review aims to thoroughly analyze existing information and updates about the scattered available findings of genetics, pro-angiogenetic factors, and vascular abnormalities in this important spectrum, the vascular facets of MS.
Collapse
Affiliation(s)
| | - Anagha Shree
- SGT Medical College Hospital and Research Institute, Gurgaon
| | - Soumyajit Das
- Institute of Medical Sciences and SUM Hospital, Bhubaneswar
| | - Pugazhendi Inban
- Internal Medicine, Government Medical College, Omandurar, Chennai
| | | | | | | | - Mrinmoy Kundu
- Institute of Medical Sciences and SUM Hospital, Bhubaneswar
| | | | - Srikanth Gadam
- Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Neel Vora
- Internal Medicine, B.J. Medical College, Ahmedabad, India
| | | |
Collapse
|
27
|
Devinney MJ, Wong MK, Wright MC, Marcantonio ER, Terrando N, Browndyke JN, Whitson HE, Cohen HJ, Nackley AG, Klein ME, Ely EW, Mathew JP, Berger M, MADCO-PC & INTUIT Study Groups. A Role for Blood-brain Barrier Dysfunction in Delirium following Non-Cardiac Surgery in Older adults. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.07.23288303. [PMID: 37214925 PMCID: PMC10197714 DOI: 10.1101/2023.04.07.23288303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Objective Although animal models suggest a role for blood-brain barrier dysfunction in postoperative delirium-like behavior, its role in postoperative delirium and postoperative recovery in humans is unclear. Thus, we evaluated the role of blood-brain barrier dysfunction in postoperative delirium and hospital length of stay among older surgery patients. Methods Cognitive testing, delirium assessment, and cerebrospinal fluid and blood sampling were prospectively performed before and after non-cardiac, non-neurologic surgery. Blood-brain barrier dysfunction was assessed using the cerebrospinal fluid-to-plasma albumin ratio (CPAR). Results Of 207 patients (median age 68, 45% female) with complete CPAR and delirium data, 26 (12.6%) developed postoperative delirium. Overall, CPAR increased from before to 24-hours after surgery (median postoperative change 0.28, [IQR] [-0.48-1.24]; Wilcoxon p=0.001). Preoperative to 24-hour postoperative change in CPAR was greater among patients who developed delirium vs those who did not (median [IQR] 1.31 [0.004, 2.34] vs 0.19 [-0.55, 1.08]; p=0.003). In a multivariable model adjusting for age, baseline cognition, and surgery type, preoperative to 24-hour postoperative change in CPAR was independently associated with delirium incidence (per CPAR increase of 1, OR = 1.30, [95% CI 1.03-1.63]; p=0.026) and increased hospital length of stay (IRR = 1.15 [95% CI 1.09-1.22]; p<0.001). Interpretation Postoperative increases in blood-brain barrier permeability are independently associated with increased delirium rates and postoperative hospital length of stay. Although these findings do not establish causality, studies are warranted to determine whether interventions to reduce postoperative blood-brain barrier dysfunction would reduce postoperative delirium rates and hospital length of stay.
Collapse
Affiliation(s)
- Michael J. Devinney
- Department of Anesthesiology, Duke University School of Medicine, Durham NC
- Duke Center for the Study of Aging and Human Development, Duke University Medical Center, Durham NC
- Duke/UNC Alzheimer’s Disease Research Center, Duke University and University of North Carolina at Chapel Hill, Durham/Chapel Hill NC
| | | | - Mary Cooter Wright
- Department of Anesthesiology, Duke University School of Medicine, Durham NC
| | - Edward R. Marcantonio
- Division of General Medicine and Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston MA
| | - Niccolò Terrando
- Department of Anesthesiology, Duke University School of Medicine, Durham NC
- Department of Cell Biology, Duke University School of Medicine, Durham NC
- Department of Immunology, Duke University School of Medicine, Durham NC
| | - Jeffrey N. Browndyke
- Department of Psychiatry & Behavioral Sciences, Duke University School of Medicine, Durham NC
| | - Heather E. Whitson
- Duke Center for the Study of Aging and Human Development, Duke University Medical Center, Durham NC
- Duke/UNC Alzheimer’s Disease Research Center, Duke University and University of North Carolina at Chapel Hill, Durham/Chapel Hill NC
- Division of Geriatric Medicine, Department of Medicine, Duke University School of Medicine, Durham NC
| | - Harvey J. Cohen
- Duke Center for the Study of Aging and Human Development, Duke University Medical Center, Durham NC
- Duke/UNC Alzheimer’s Disease Research Center, Duke University and University of North Carolina at Chapel Hill, Durham/Chapel Hill NC
- Division of Geriatric Medicine, Department of Medicine, Duke University School of Medicine, Durham NC
| | - Andrea G. Nackley
- Department of Anesthesiology, Duke University School of Medicine, Durham NC
| | | | - E. Wesley Ely
- Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Vanderbilt University Medical Center Tennessee Valley Veteran’s Affairs Geriatric Research Education Clinical Center (GRECC), Nashville, TN
| | - Joseph P. Mathew
- Department of Anesthesiology, Duke University School of Medicine, Durham NC
| | - Miles Berger
- Department of Anesthesiology, Duke University School of Medicine, Durham NC
- Duke Center for the Study of Aging and Human Development, Duke University Medical Center, Durham NC
- Duke/UNC Alzheimer’s Disease Research Center, Duke University and University of North Carolina at Chapel Hill, Durham/Chapel Hill NC
| | | |
Collapse
|
28
|
Russo C, Valle MS, Casabona A, Malaguarnera L. Chitinase Signature in the Plasticity of Neurodegenerative Diseases. Int J Mol Sci 2023; 24:ijms24076301. [PMID: 37047273 PMCID: PMC10094409 DOI: 10.3390/ijms24076301] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Several reports have pointed out that Chitinases are expressed and secreted by various cell types of central nervous system (CNS), including activated microglia and astrocytes. These cells play a key role in neuroinflammation and in the pathogenesis of many neurodegenerative disorders. Increased levels of Chitinases, in particular Chitotriosidase (CHIT-1) and chitinase-3-like protein 1 (CHI3L1), have been found increased in several neurodegenerative disorders. Although having important biological roles in inflammation, to date, the molecular mechanisms of Chitinase involvement in the pathogenesis of neurodegenerative disorders is not well-elucidated. Several studies showed that some Chitinases could be assumed as markers for diagnosis, prognosis, activity, and severity of a disease and therefore can be helpful in the choice of treatment. However, some studies showed controversial results. This review will discuss the potential of Chitinases in the pathogenesis of some neurodegenerative disorders, such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and multiple sclerosis, to understand their role as distinctive biomarkers of neuronal cell activity during neuroinflammatory processes. Knowledge of the role of Chitinases in neuronal cell activation could allow for the development of new methodologies for downregulating neuroinflammation and consequently for diminishing negative neurological disease outcomes.
Collapse
Affiliation(s)
- Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Maria Stella Valle
- Laboratory of Neuro-Biomechanics, Section of Physiology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
- Correspondence:
| | - Antonino Casabona
- Laboratory of Neuro-Biomechanics, Section of Physiology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| |
Collapse
|