1
|
Wang Y, Yu T, Ma Y, Cui W, Wang X, Ren L, Li Y. Pre-ictal causal connectivity reveals the epileptic network characteristics for deep brain stimulation. Neuroscience 2025; 579:S0306-4522(25)00707-9. [PMID: 40513637 DOI: 10.1016/j.neuroscience.2025.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 06/05/2025] [Accepted: 06/11/2025] [Indexed: 06/16/2025]
Abstract
Deep brain stimulation of anterior nucleus of the thalamus (ANT-DBS) is an effective clinical treatment for drug-resistant focal epilepsy. However, the complex epileptic network characteristics underlying ANT-stimulation effectiveness remain unknown, owing to currently unclear connectivity between ANT and seizure-related cortex in pre-ictal periods. Here, we developed a novel individualized pre-ictal ANT-cortical tripartite connectivity network (PANT-CTCNet), aiming to reveal epileptic network characteristics using intracranial stereo-electroencephalography (sEEG) recordings in five patients with focal epilepsy for 90 trials. Each trial represented a pre-ictal or post-stimulus sEEG duration, which was used to construct the epileptic network. By employing conditional Granger causality, we constructed individualized ANT-cortical connectivity networks and found a common epileptic network centred on ANT closely connected with seizure-related cortex in pre-ictal periods. After ANT stimulation for clinical validation, strengthened pre-ictal connectivity between ANT and epileptogenic zones led to significant decline in the causal intensity of epileptic networks. The PANT-CTCNet can give a quantitative reference for clinical preoperative evaluation of patient suitability for ANT-DBS treatment. These findings regarding epileptic network characteristics provide theoretical basis in the selection of optimal surgical candidates for personalized ANT-DBS.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
| | - Tao Yu
- Beijing Institute of Functional Neurosurgery, Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yulan Ma
- Department of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
| | - Weigang Cui
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Xueyuan Wang
- Beijing Institute of Functional Neurosurgery, Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Liankun Ren
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yang Li
- Beijing Advanced Innovation Center for Big Data and Brain Computing, State Key Laboratory of Virtual Reality Technology and Systems, Department of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China.
| |
Collapse
|
2
|
Ho JC, Aung T, Damiani A, Tang L, Mallela AN, Crammond DJ, González-Martínez JA. Refining centromedian nucleus stimulation for generalized epilepsy with targeting and mechanistic insights from intraoperative electrophysiology. Nat Commun 2025; 16:5272. [PMID: 40480982 PMCID: PMC12144090 DOI: 10.1038/s41467-025-60183-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/16/2025] [Indexed: 06/11/2025] Open
Abstract
Epilepsy affects 65 million people worldwide, with 30% suffering from drug-resistant epilepsy. While surgical resection is the primary treatment, its application is limited in generalized epilepsy. Centromedian nucleus neurostimulation offers a promising alternative, yet its mechanisms remain unclear, limiting target optimization. We present a multimodal approach integrating intraoperative thalamic and sub-scalp electroencephalogram recordings with post-implant reconstructions to define neural targets affected by centromedian nucleus stimulation. We find that stimulating low-activity regions near the centromedian nucleus, particularly the white matter of internal medullary lamina, induces significant cortical delta power increases greater than stimulation within high-activity areas inside the nucleus. Implantation in these low-activity targets results in greater than 50% seizure reduction in all three subjects. These findings suggest that seizure control primarily involves stimulating white matter regions such as the internal medullary lamina rather than the centromedian nucleus itself. A personalized, electrophysiology-guided implantation approach may enhance neurostimulation efficacy in drug-resistant epilepsy.
Collapse
Affiliation(s)
- Jonathan C Ho
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thandar Aung
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Arianna Damiani
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lilly Tang
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
| | - Arka N Mallela
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Donald J Crammond
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jorge A González-Martínez
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Kokkinos V, Hussein H, Rosenow J, Schuele SU. Sawtooth delta of the thalamus: A physiological variant and the intracranial generator of rapid-eye movement sleep sawtooth waves. Clin Neurophysiol 2025; 174:84-95. [PMID: 40222213 DOI: 10.1016/j.clinph.2025.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 03/07/2025] [Accepted: 03/31/2025] [Indexed: 04/15/2025]
Abstract
OBJECTIVE To describe slow wave activity in the thalamic centro-median nucleus (CMN) region during rapid eye-movement (REM) sleep and its relation to the scalp EEG sawtooth waves. METHODS Five (5) patients undergoing stereo-electroencephalography were implanted in the CMN. Sleep was scored using the concurrent scalp EEG, eye-movement artifacts in Fp1, Fp2, F7, and F8, and chin EMG. RESULTS In the CMN region, blocks of successive delta waves assuming a sawtooth morphology were observed, presenting with high specificity for REM (pWvsREM < 0.00001; pNREMvsREM < 0.00001). Sawtooth delta of the thalamus (SDT) presented with discrete high-delta biphasic (∼2.5-4 Hz) and low-delta triphasic (∼1-2.5 Hz) morphologies; the former maximized in CMN space, while the latter in the adjacent ventro-lateral nucleus (VLN). The biphasic SDT's negative peaks were time-locked to the positive peaks of REM sawtooth waves on scalp (mean lag. 16.7 ± 5.6 msec). SDT was not specific to tonic or phasic REM (p = 0.179), and was not associated with REM intracranial interictal or ictal activity. CONCLUSIONS SDT is a physiological variant, specific to REM sleep, manifesting with two morphologically distinct subtypes, one of them generating REM sawtooth waves on scalp. SIGNIFICANCE Discriminating between this physiological variant and actual ictal neurophysiological signatures is imperative for efficient therapeutic CMN neurostimulation.
Collapse
Affiliation(s)
- Vasileios Kokkinos
- Comprehensive Epilepsy Center, Northwestern Memorial Hospital, Chicago, IL, USA; Department of Neurology, Feinberg School of Medicine, Northwestern University, IL, USA.
| | - Helweh Hussein
- Department of General Surgery, Trident Medical Center, North Charleston, SC, USA
| | - Joshua Rosenow
- Comprehensive Epilepsy Center, Northwestern Memorial Hospital, Chicago, IL, USA; Department of Neurosurgery, Feinberg School of Medicine, Northwestern University, IL, USA
| | - Stephan U Schuele
- Comprehensive Epilepsy Center, Northwestern Memorial Hospital, Chicago, IL, USA; Department of Neurology, Feinberg School of Medicine, Northwestern University, IL, USA
| |
Collapse
|
4
|
Faingold CL. Lethal Interactions of neuronal networks in epilepsy mediated by both synaptic and volume transmission indicate approaches to prevention. Prog Neurobiol 2025; 249:102770. [PMID: 40258456 PMCID: PMC12103271 DOI: 10.1016/j.pneurobio.2025.102770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/24/2025] [Accepted: 04/17/2025] [Indexed: 04/23/2025]
Abstract
Neuronal network interactions are important in normal brain physiology and also in brain disorders. Many mesoscopic networks, including the auditory and respiratory network, mediate a single brain function. Macroscopic networks, including the locomotor network, central autonomic network (CAN), and many seizure networks involve interactions among multiple mesoscopic networks. Network interactions are mediated by neuroactive substances, acting via synaptic transmission, which mediate rapid interactions between networks. Slower, but vitally important network interactions, are mediated by volume transmission. Changes in the interactions between networks, mediated by neuroactive substances, can significantly alter network function and interactions. The acoustic startle response involves interactions between auditory and locomotor networks, and also includes brainstem reticular formation (BRF) nuclei, which participate in many different networks. In the fear-potentiated startle paradigm this network interacts positively with the amygdala, induced by conditioning. Seizure networks can interact negatively with the respiratory network, which becomes lethal in sudden unexpected death in epilepsy (SUDEP), a tragic emergent property of the seizure network. SUDEP models that exhibit audiogenic seizures (AGSz) involve interactions between the auditory and locomotor networks with BRF nuclei. In the DBA/1 mouse SUDEP model the AGSz network interacts negatively with the respiratory network, resulting in postictal apnea. The apnea is lethal unless the CAN is able to initiate autoresuscitation. These network interactions involve synaptic transmission, mediated by GABA and glutamate and volume transmission mediated by adenosine, CO2 and serotonin. Altering these interaction mechanisms may prevent SUDEP. These epilepsy network interactions illustrate the complex mechanisms that can occur among neuronal networks.
Collapse
Affiliation(s)
- Carl L Faingold
- Departments of Pharmacology and Neurology, Southern Illinois University, School of Medicine, Springfield, IL 62701 USA, United States.
| |
Collapse
|
5
|
Salami P, Paulk AC, Soper DJ, Bourdillon P, Hadar PN, Alamoudi OA, Sisterson ND, Richardson RM, Pati S, Cash SS. Inter-seizure variability in thalamic recruitment and its implications for precision thalamic neuromodulation. COMMUNICATIONS MEDICINE 2025; 5:190. [PMID: 40404918 PMCID: PMC12098681 DOI: 10.1038/s43856-025-00920-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 05/15/2025] [Indexed: 05/24/2025] Open
Abstract
BACKGROUND Thalamic stimulation is a promising approach to controlling seizures in patients with intractable epilepsy. It does not, however, provide good control for everyone. A big issue is that the role of the thalamus in seizure organization and propagation is unclear. When using responsive stimulation devices, they must detect seizure activity before sending stimulation. So, it's important to know which parts of the thalamus are involved in different seizures. METHODS To better choose thalamic targets for stimulation, we studied how different seizures spread to each stimulation target. Expert reviews and automated tools were used to identify seizure spread recorded from invasive recordings. We categorized seizures based on how they start and spread, and determined whether seizures reached thalamic areas early or late. We used generalized linear models (GLM) to evaluate which seizure properties are predictive of time of spread to the thalamus, testing effect significance using Wald tests. RESULTS We show that seizures with <2 Hz synchronized-spiking patterns do not spread early to the thalamus, while seizures starting with faster activity (<20 Hz) spread early to all thalamic areas. Most importantly, seizures that begin broadly across the brain quickly recruit the centromedian and pulvinar areas, suggesting these may be better stimulation targets in such cases. Alternatively, seizures that start deep in the temporal lobe tend to involve the anterior part of the thalamus, meaning the centromedian might not be the best choice for those seizures. CONCLUSIONS Our results suggest that by analyzing electrical activity during seizures, we can better predict which parts of the thalamus are involved. This could lead to more effective stimulation treatments for people with epilepsy.
Collapse
Affiliation(s)
- Pariya Salami
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, USA.
| | - Angelique C Paulk
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, USA
| | - Daniel J Soper
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, USA
| | - Pierre Bourdillon
- Department of Neurosurgery, Hospital Foundation Adolphe de Rothschild, Paris, France
| | - Peter N Hadar
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, USA
| | - Omar A Alamoudi
- Texas Comprehensive Epilepsy Program, Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Biomedical Engineering Program, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nathaniel D Sisterson
- Brain Modulation Lab, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - R Mark Richardson
- Brain Modulation Lab, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sandipan Pati
- Texas Comprehensive Epilepsy Program, Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
6
|
Bartolomei F, Makhalova J, Benoit J, Lagarde S. The different subtypes of temporal lobe seizures networks. Rev Neurol (Paris) 2025; 181:368-381. [PMID: 40158910 DOI: 10.1016/j.neurol.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 04/02/2025]
Abstract
Temporal lobe epilepsies (TLEs) are among the forms of epilepsy most frequently encountered in surgical evaluations, characterized by a wide range of anatomical, functional, and electroclinical subtypes. Traditional classifications, such as mesial and lateral TLE, have been broadened by advances in stereoelectroencephalography (SEEG), revealing more complex forms such as mesio-lateral and temporal-plus seizures. These findings support the concept of epileptogenic networks, emphasizing interconnected regions rather than isolated focal areas in the genesis of seizures. Quantitative tools, such as the epileptogenicity index (EI), are improving the accuracy of SEEG interpretation, which is closely correlated with surgical results. Temporal-plus epilepsies, in particular, require full SEEG exploration due to their broader involvement in the network, necessitating tailored surgical approaches. A better understanding of TLEs subtypes and epileptogenic networks is an essential basis for advancing minimally invasive surgical techniques, including laser interstitial thermal therapy (LITT) and neuromodulation. These methods rely on the precise localization of epileptogenic networks. This network-based framework represents an important step towards optimizing surgical outcomes and advancing personalized epilepsy care.
Collapse
Affiliation(s)
- F Bartolomei
- Aix-Marseille université, Inserm, INS, Institut de Neurosciences des Systèmes, 13005 Marseille, France; AP-HM, Timone Hospital, Epileptology and Cerebral Rhythmology, 13005 Marseille, France.
| | - J Makhalova
- Aix-Marseille université, Inserm, INS, Institut de Neurosciences des Systèmes, 13005 Marseille, France; AP-HM, Timone Hospital, Epileptology and Cerebral Rhythmology, 13005 Marseille, France; Aix Marseille University, CNRS,CRMBM, Marseille, France
| | - J Benoit
- Aix-Marseille université, Inserm, INS, Institut de Neurosciences des Systèmes, 13005 Marseille, France; UF EEG-Épileptologie, Service de neurologie, University Hospitals of Nice, Nice, France; Université Côte d'Azur, CHU Nice, UR2CA-URRIS, Nice, France
| | - S Lagarde
- Aix-Marseille université, Inserm, INS, Institut de Neurosciences des Systèmes, 13005 Marseille, France; AP-HM, Timone Hospital, Epileptology and Cerebral Rhythmology, 13005 Marseille, France
| |
Collapse
|
7
|
Joseph Tomy LI, Köksal-Ersöz E, Nica A, Yochum M, Benquet P, Wendling F. Computational modeling of frequency-dependent neocortical response to thalamic neurostimulation in epilepsy. PLoS Comput Biol 2025; 21:e1012943. [PMID: 40294031 DOI: 10.1371/journal.pcbi.1012943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 03/09/2025] [Indexed: 04/30/2025] Open
Abstract
The therapeutic application of centromedian nucleus stimulation (CMS) has been limited by uncertainties regarding its mechanism of action. In this study, we used stereoelectro-encephalography (SEEG) signals recorded from a patient with refractory epilepsy, caused by focal cortical dysplasia, which is a malformation of cortical development. SEEG recordings revealed that neocortical interictal discharges could be suppressed by CMS. These effects were found to be frequency-dependent: while 50 Hz CMS induced no change in neocortical epileptiform activity, CMS at 70 Hz, 100 Hz and 150 Hz led to periods of suppression of neocortical epileptiform activity. These periods were shown to have different durations depending on the stimulation protocol. We developed a neurophysiologically-plausible thalamocortical model to explain these observations. This model included glutamatergic subpopulations and GABAergic subpopulations in the neocortical and the thalamic compartments. Synaptic inhibition and short-term plasticity mechanisms were integrated into the latter compartment. We hypothesized that the enhanced activation of thalamic inhibitory subpopulations during high frequency CMS (>70Hz) would result in GABA spillover which activated synaptic GABAergic receptors on the thalamocortical relay cells. This decreased the thalamic driving-input to the neocortex, hence suppressing interictal discharges in the dysplastic neocortical tissue. While inhibition of thalamocortical relay cells was maximal for CMS at 70 Hz and 100 Hz, this was not the case for 150 Hz CMS, suggesting that presynaptic GABAergic receptors were activated and that the rate of GABA reuptake was increased. Thus, our model suggests that the transient suppression of the neocortical epileptic activity with CMS may be primarily due to extra-synaptic tonic inhibition in the thalamocortical relay cells. These findings contribute to a deeper understanding of high-frequency CMS in epilepsy and pave the way for further research and optimization of this therapeutic approach.
Collapse
Affiliation(s)
| | - Elif Köksal-Ersöz
- University of Rennes, Inserm-U1099, LTSI, Rennes, France
- Inria Lyon Research Center, Villeurbanne, France
- Cophy Team, Lyon Neuroscience Research Center, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Bron, France
| | - Anca Nica
- University of Rennes, Inserm-U1099, LTSI, Rennes, France
- "Van Gogh" Epilepsy Surgery Unit, Neurology Department, CIC 1414, University Hospital, Rennes, France
| | - Maxime Yochum
- University of Rennes, Inserm-U1099, LTSI, Rennes, France
| | - Pascal Benquet
- University of Rennes, Inserm-U1099, LTSI, Rennes, France
| | | |
Collapse
|
8
|
Acerbo E, Jegou A, Lagarde S, Pizzo F, Makhalova J, Trébuchon A, Bénar CG, Bartolomei F, Carron R. Frequency-specific alterations in brain connectivity induced by pulvinar stimulation. Epilepsia 2025. [PMID: 40252213 DOI: 10.1111/epi.18405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/21/2025]
Abstract
OBJECTIVE Deep brain stimulation (DBS) is emerging as a promising therapy for patients with drug-resistant epilepsy, particularly those who are either unsuitable for or unresponsive to resective surgery. The potential benefit of DBS in these patients may stem from its ability to reduce excessive brain functional connectivity (FC). Given that patients undergoing presurgical evaluation in our institution are implanted with stereoelectroencephalographic (SEEG) electrodes in the thalamus, specifically in the pulvinar medialis (PuM), our aim was to investigate the impact of different stimulation frequencies on brain FC. We sought to determine whether specific frequencies were more effective in modulating FC. METHODS SEEG was used to investigate the effects of PuM stimulation across a broad frequency range (1-200 Hz) in a cohort of 14 patients with drug-resistant focal epilepsy. FC was assessed using the nonlinear correlation coefficient (h2) and node strength calculations. RESULTS Our findings revealed a reduction in FC at stimulation frequencies of 10 Hz and >90 Hz, contrasting with an increase in FC in the 20-80-Hz range. This modulation of FC extended beyond the epileptogenic zone, influencing all assessed brain lobes, with the parietal, insular, and subcortical regions particularly affected by high-frequency stimulation. Within the epileptogenic zone, however, the observed FC changes were notably more complex. SIGNIFICANCE These results underscore the potential of high-frequency stimulation to decrease interictal FC in epilepsy patients, although intermediate frequencies may exacerbate it and warrant caution. Crucially, this study highlights the effects of PuM stimulation on FC patterns, supporting the role of high-frequency thalamic stimulation as a promising DBS parameter for improving epilepsy management strategies.
Collapse
Affiliation(s)
- Emma Acerbo
- Aix Marseille Université, INSERM, Institut de Neurosciences des Systèmes, Marseille, France
| | - Aude Jegou
- Aix Marseille Université, INSERM, Institut de Neurosciences des Systèmes, Marseille, France
| | - Stanislas Lagarde
- Aix Marseille Université, INSERM, Institut de Neurosciences des Systèmes, Marseille, France
- Epileptology Department, Timone Hospital, Assistance Publique Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Francesca Pizzo
- Aix Marseille Université, INSERM, Institut de Neurosciences des Systèmes, Marseille, France
- Epileptology Department, Timone Hospital, Assistance Publique Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Julia Makhalova
- Aix Marseille Université, INSERM, Institut de Neurosciences des Systèmes, Marseille, France
- Epileptology Department, Timone Hospital, Assistance Publique Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Agnès Trébuchon
- Aix Marseille Université, INSERM, Institut de Neurosciences des Systèmes, Marseille, France
- Epileptology Department, Timone Hospital, Assistance Publique Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Christian-George Bénar
- Aix Marseille Université, INSERM, Institut de Neurosciences des Systèmes, Marseille, France
| | - Fabrice Bartolomei
- Aix Marseille Université, INSERM, Institut de Neurosciences des Systèmes, Marseille, France
- Epileptology Department, Timone Hospital, Assistance Publique Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Romain Carron
- Aix Marseille Université, INSERM, Institut de Neurosciences des Systèmes, Marseille, France
- Medicosurgical Unit of Epileptology, Functional and Stereotactic Neurosurgery, Timone University Hospital, Marseille, France
| |
Collapse
|
9
|
Yadala S, Zahoor S, Escalona-Vargas D, Palys V. Acute Disruption of Cortical Epileptiform Discharges With Thalamic Stimulation. J Clin Neurophysiol 2025:00004691-990000000-00218. [PMID: 40237588 DOI: 10.1097/wnp.0000000000001163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
SUMMARY Thalamic neuromodulation has emerged as a promising treatment for drug-resistant epilepsy, with deep brain stimulation of the anterior nucleus of the thalamus currently Food and Drug Administration approved for this purpose. The Stimulation of the Anterior Nucleus of Thalamus for Epilepsy trial demonstrated that chronic anterior nucleus of the thalamus stimulation can significantly reduce seizure burden. In addition, the centromedian nucleus is gaining interest as a potential neuromodulation target among epilepsy experts, though its use remains off-label. Effective selection of neuromodulation targets requires reliable biomarkers, ideally with real-time feedback, yet studies on the acute effects of thalamic stimulation on epileptiform activity remain limited. Our cases provide novel evidence of acute suppression of epileptiform activity in the cerebral cortex-specifically, the cingulate and insular cortices-after anterior nucleus of the thalamus and centromedian nucleus stimulation, respectively, through stereoelectroencephalography electrodes. This finding enhances our understanding of cortical responses to thalamic stimulation and supports its therapeutic potential in both chronic and acute settings. Emerging research suggests that other thalamic nuclei may also play a role in managing epilepsy originating from different brain regions. We emphasize that routine stereoelectroencephalography implantation in thalamic nuclei may provide valuable clinical insights and aid in selecting the optimal target for stimulation. This case mini-series contributes to the growing evidence supporting the therapeutic potential of thalamic neuromodulation in epilepsy treatment.
Collapse
Affiliation(s)
- Sisira Yadala
- Department of Neurology, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, U.S.A
| | - Salman Zahoor
- Department of Neurology, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, U.S.A
| | - Diana Escalona-Vargas
- Division of Neurology, Department of Pediatrics, University of Arkansas for Medical Sciences (UAMS), Arkansas Children's Hospital (ACH), Little Rock, Arkansas, U.S.A.; and
| | - Viktoras Palys
- Department of Neurosurgery, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, U.S.A
| |
Collapse
|
10
|
Uchitel J, Lui A, Knowles J, Parker JJ, Phillips HW, Halpern CH, Grant GA, Buch VP, Hyslop A, Kumar KK. Intracranial neuromodulation for pediatric drug-resistant epilepsy: early institutional experience. Front Surg 2025; 12:1569360. [PMID: 40264742 PMCID: PMC12011735 DOI: 10.3389/fsurg.2025.1569360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/21/2025] [Indexed: 04/24/2025] Open
Abstract
Introduction Pediatric drug-resistant epilepsy (DRE) is defined as epilepsy that is not controlled by two or more appropriately chosen and dosed anti-seizure medications (ASMs). When alternative therapies or surgical intervention is not viable or efficacious, advanced options like deep brain stimulation (DBS) or responsive neurostimulation (RNS) may be considered. Objective Describe the Stanford early institutional experience with DBS and RNS in pediatric DRE patients. Methods Retrospective chart review of seizure characteristics, prior therapies, neurosurgical operative reports, and postoperative outcome data in pediatric DRE patients who underwent DBS or RNS placement. Results Nine patients had DBS at 16.0 ± 0.9 years and 8 had RNS at 15.3 ± 1.7 years (mean ± SE). DBS targets included the centromedian nucleus of the thalamus (78% of DBS patients), anterior nucleus of the thalamus (11%), and pulvinar (11%). RNS placement was guided by stereo-EEG and/or intracranial monitoring in all RNS patients (100%). RNS targets included specific seizure onset zones (63% of RNS patients), bilateral hippocampi (25%) and bilateral temporal lobes (12%). Only DBS patients had prior trials of ketogenic diet (56%) and VNS therapy (67%). Four DBS patients (44%) had prior neurosurgical interventions, including callosotomy (22%) and focal resection (11%). One RNS patient (13%) and one DBS patient (11%) required revision surgery. Two DBS patients (22%) developed postoperative complications. Three RNS patients (38%) underwent additional resections; one RNS patient had electrocorticography recordings for seizure mapping before surgery. For patients with a follow-up of at ≥1 year (n = 7 for DBS and n = 5 for RNS), all patients had reduced seizure burden. Clinical seizure freedom was achieved in 80% of RNS patients and 20% had a >90% reduction in seizure burden. The majority (71%) of DBS patients had a ≥50% reduction in seizures. No patients experienced no change or worsening of seizure frequency. Conclusion In the early Stanford experience, DBS was used as a palliatively for generalized or mixed DRE refractory to other resective or modulatory approaches. RNS was used for multifocal DRE with a clear seizure focus on stereo-EEG and no prior surgical interventions. Both modalities reduced seizure burden across all patients. RNS offers the additional benefit of providing data to guide future surgical planning.
Collapse
Affiliation(s)
- Julie Uchitel
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Austin Lui
- College of Osteopathic Medicine, Touro University California, Vallejo, CA, United States
| | - Juliet Knowles
- Department of Pediatric Neurology, Stanford University School of Medicine, Stanford, CA, United States
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, United States
| | | | - H. Westley Phillips
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
- Division of Pediatric Neurosurgery, Lucile Packard Children’s Hospital, Palo Alto, CA, United States
| | - Casey H. Halpern
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Gerald A. Grant
- Department of Neurosurgery, Duke University, Durham, NC, United States
| | - Vivek P. Buch
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
- Division of Pediatric Neurosurgery, Lucile Packard Children’s Hospital, Palo Alto, CA, United States
| | - Ann Hyslop
- Department of Pediatric Neurology, Stanford University School of Medicine, Stanford, CA, United States
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, United States
| | - Kevin K. Kumar
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
11
|
Kremen V, Sladky V, Mivalt F, Gregg NM, Brinkmann BH, Balzekas I, Marks V, Kucewicz M, Lundstrom BN, Cui J, St Louis EK, Croarkin P, Alden EC, Joseph B, Fields J, Crockett K, Adolf J, Bilderbeek J, Hermes D, Messina S, Miller KJ, Van Gompel J, Denison T, Worrell GA. Modulating limbic circuits in temporal lobe epilepsy: impacts on seizures, memory, mood and sleep. Brain Commun 2025; 7:fcaf106. [PMID: 40196395 PMCID: PMC11972686 DOI: 10.1093/braincomms/fcaf106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/11/2025] [Accepted: 03/07/2025] [Indexed: 04/09/2025] Open
Abstract
Temporal lobe epilepsy is a common neurological disease characterized by recurrent seizures that often originate within limbic networks involving amygdala and hippocampus. The limbic network is involved in crucial physiologic functions involving memory, emotion and sleep. Temporal lobe epilepsy is frequently drug-resistant, and people often experience comorbidities related to memory, mood and sleep. Deep brain stimulation targeting the anterior nucleus of the thalamus (ANT-DBS) is an established therapy for temporal lobe epilepsy. However, the optimal stimulation parameters and their impact on memory, mood and sleep comorbidities remain unclear. We used an investigational brain sensing-stimulation implanted device to accurately track seizures, interictal epileptiform spikes (IES), and memory, mood and sleep comorbidities in five ambulatory subjects. Wireless streaming of limbic network local field potentials (LFPs) and subject behaviour were captured on a mobile device integrated with a cloud environment. Automated algorithms applied to the continuous LFPs were used to accurately cataloged seizures, IES and sleep-wake brain state. Memory and mood assessments were remotely administered to densely sample cognitive and behavioural response during ANT-DBS in ambulatory subjects living in their natural home environment. We evaluated the effect of continuous low-frequency and duty cycle high-frequency ANT-DBS on epileptiform activity and memory, mood and sleep comorbidities. Both low-frequency and high-frequency ANT-DBS paradigms reduced seizures. However, continuous low-frequency ANT-DBS showed greater reductions in IES, electrographic seizures and better sleep and memory outcomes. These results highlight the potential of synchronized brain sensing and dense behavioural tracking during ANT-DBS for optimizing neuromodulation therapy. While studies with larger patient numbers are needed to validate the benefits of low-frequency ANT-DBS, these findings are potentially translatable to individuals currently implanted with ANT-DBS systems.
Collapse
Affiliation(s)
- Vaclav Kremen
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague, Prague 16000, Czech Republic
| | - Vladimir Sladky
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno 27201, Czech Republic
| | - Filip Mivalt
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno 61600, Czech Republic
| | - Nicholas M Gregg
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Benjamin H Brinkmann
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Irena Balzekas
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Victoria Marks
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Michal Kucewicz
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- BioTechMed Center, Brain and Mind Electrophysiology Lab, Multimedia Systems Department, Faculty of Electronics, Telecommunication and Informatics, Gdansk University of Technology, Gdansk 80-233, Poland
| | - Brian Nils Lundstrom
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Jie Cui
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Erik K St Louis
- Divisions of Sleep Neurology and Pulmonary and Critical Care Medicine, Departments of Neurology and Medicine, Center for Sleep Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Paul Croarkin
- Departments of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | - Eva C Alden
- Departments of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | - Boney Joseph
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Julie Fields
- Departments of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | - Karla Crockett
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Jindrich Adolf
- Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague, Prague 16000, Czech Republic
| | - Jordan Bilderbeek
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Dora Hermes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Steven Messina
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kai Joshua Miller
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Jamie Van Gompel
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Timothy Denison
- Department of Engineering Science, Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford OX3 7DQ, UK
| | - Gregory A Worrell
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
12
|
Vassallo M, Picozzi M. From DBS to Noninvasive Neuromodulation: Ethical Solutions for MCI Treatment. AJOB Neurosci 2025; 16:91-94. [PMID: 40208676 DOI: 10.1080/21507740.2025.2474225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
|
13
|
Kamila G, Jauhari P, Kumar A, Singh S, Chakrabarty B, Gulati S, Pandey RM. Thalamic volumetric analysis in Developmental and/or Epileptic Encephalopathy with Spike Wave Activation in Sleep (D/EE-SWAS): A cross-sectional study. Seizure 2025; 127:94-100. [PMID: 40120364 DOI: 10.1016/j.seizure.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025] Open
Abstract
OBJECTIVES This cross-sectional study compared the thalamic volume (TV) of children with Developmental and/or Epileptic Encephalopathy with Spike-Wave Activation in Sleep (D/EE-SWAS) with age matched children with well-controlled epilepsy(WCE). METHODS An unaided eye assessment of T1-weighted brain MRI sequences and quantitative volumetric analysis through "volBrain" online software was performed in children (5-12 years) with steroid-naïve D/EE-SWAS {spike-wave-index(SWI) in sleep≥50 %} and typically developing children with WCE (seizure-free period ≥1-year). The absolute and relative thalamic volume (ATV/RTV) (RTV: thalamic volume as percentage of the total intracranial volume), were compared between the two groups. RESULTS Twenty-children each with D/EE-SWAS (14 boys; mean age: 8.05±1.76 years) and WCE (15 boys; mean age: 9.1 ± 1.74 years) were analysed. In the D/EE-SWAS group, (16/20) 80% of participants had a structural lesion while all the children in the WCE group had a presumed genetic etiology. Volumetric analysis detected low ATV (<2 standard deviation) in 12/20 (60 %) children with D/EE-SWAS while unaided eye assessment could pick up thalamic involvement only in six (30 %). On comparison with WCE group (N = 20), mean ATV and RTV in structural D/EE-SWAS (n = 16) [(7.25 cm3 ± 1.66 versus 11.17 cm3 ± 1.22; p < 0.0001)(0.73 % ± 0.17 versus 0.87 % ± 0.05; p < 0.001)] and presumed genetic D/EE-SWAS (n = 4) [(9.25 cm3 ± 0.55, versus 11.17 cm3 ± 1.22, p < 0.01)(0.74 % ± 0.04 versus 0.87 % ± 0.05; p < 0.0001)] were significantly reduced. ATV did not correlate with SWI in sleep EEG (r =-0.25) in D/EE-SWAS. CONCLUSION Thalamic volume is reduced in majority of children with D/EE-SWAS in both structural and presumed genetic etiology.
Collapse
Affiliation(s)
- Gautam Kamila
- Child Neurology Division, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Prashant Jauhari
- Child Neurology Division, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India.
| | - Atin Kumar
- Department of Radiodiagnosis & Interventional Radiology, All India Institute of Medical Sciences, New Delhi, India
| | - Sonali Singh
- Child Neurology Division, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Biswaroop Chakrabarty
- Child Neurology Division, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Sheffali Gulati
- Child Neurology Division, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - R M Pandey
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
14
|
Segovia‐Oropeza M, Rauf EHU, Heide E, Focke NK. Quantitative EEG signatures in patients with and without epilepsy development after a first seizure. Epilepsia Open 2025; 10:427-440. [PMID: 40040314 PMCID: PMC12014921 DOI: 10.1002/epi4.13128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 11/05/2024] [Accepted: 12/12/2024] [Indexed: 03/06/2025] Open
Abstract
OBJECTIVE Diagnosing epilepsy after a first unprovoked seizure in the absence of visible epileptogenic lesions and interictal epileptiform discharges (IED) in the electroencephalogram (EEG) is challenging. Quantitative EEG analysis and functional connectivity (FC) have shown promise in identifying patterns across epilepsy syndromes. Hence, we retrospectively investigated whether there were differences in FC (imaginary part of coherency) and spectral band power in non-lesional, IED-free, unmedicated patients after a first unprovoked seizure in contrast to controls. Further, we investigated if there were differences between the patients who developed epilepsy and those who remained with a single seizure for at least 6 months after the first seizure. METHODS We used 240 s of resting-state EEG (19 channels) recordings of patients (n = 41) after a first unprovoked seizure and age and sex-matched healthy controls (n = 46). Twenty-one patients developed epilepsy (epilepsy group), while 20 had no further seizures during follow-up (single-seizure group). We computed source-reconstructed power and FC in five frequency bands (1 ± 29 Hz). Group differences were assessed using permutation analysis of linear models. RESULTS Patients who developed epilepsy showed increased theta power and FC, increased delta power, and decreased delta FC compared to healthy controls. The single-seizure group exhibited reduced beta-1 FC relative to the control group. In comparison with the single-seizure group, patients with epilepsy demonstrated elevated delta and theta power and decreased delta FC. SIGNIFICANCE Source-reconstructed data from routine EEGs identified distinct network patterns between non-lesional, IED-free, unmedicated patients who developed epilepsy and those who remained with a single seizure. Increased delta and theta power, along with decreased delta FC, could be a potential epilepsy biomarker. Further, decreases in beta-1 FC after a single seizure may point toward a protective mechanism for patients without further seizures. PLAIN LANGUAGE SUMMARY After a first seizure, some people develop epilepsy, while others do not. We looked at brain activity in people who had a seizure but showed no clear signs of epilepsy. By comparing those who later developed epilepsy to those who did not, we found that certain slow brain wave patterns (delta and theta) might indicate a higher risk of developing epilepsy. This could help doctors identify high-risk patients sooner.
Collapse
Affiliation(s)
- Marysol Segovia‐Oropeza
- Clinic of NeurologyUniversity Medical Center GöttingenGöttingenGermany
- University of GöttingenGöttingenGermany
| | | | - Ev‐Christin Heide
- Clinic of NeurologyUniversity Medical Center GöttingenGöttingenGermany
| | - Niels K. Focke
- Clinic of NeurologyUniversity Medical Center GöttingenGöttingenGermany
| |
Collapse
|
15
|
Chandran AS, Joshi S, Suresh S, Savarraj J, Snyder K, Vasconcellos FDN, Vakilna YS, Modiano YA, Pati S, Tandon N. Efficacy of neuromodulation of the pulvinar nucleus for drug-resistant epilepsy. Epilepsia 2025; 66:1059-1070. [PMID: 39797738 DOI: 10.1111/epi.18244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/13/2025]
Abstract
OBJECTIVE The pulvinar nucleus of the thalamus has extensive cortical connections with the temporal, parietal, and occipital lobes. Deep brain stimulation (DBS) targeting the pulvinar nucleus, therefore, carries the potential for therapeutic benefit in patients with drug-resistant posterior quadrant epilepsy (PQE) and neocortical temporal lobe epilepsy (TLE). Here, we present a single-center experience of patients managed via bilateral DBS of the pulvinar nucleus. METHODS A single-institution retrospective review of five patients who underwent bilateral pulvinar DBS for drug-resistant TLE or PQE was performed. Stimulation parameters were adjusted monthly as needed, and side effects were monitored. The primary outcome was the percentage reduction in patient-reported seizure frequency in comparison to the preimplant baseline. The location of the active electrode contacts in relation to pulvinar thalami that produced the best seizure outcome was identified. Chronic sensing of the pulvinar local field potentials (LFPs) and circadian pattern of modulation of the LFP amplitudes were analyzed. RESULTS Four patients (80%) experienced a >70% reduction in seizure frequency, whereas one patient had >50% reduction in seizure. Mean seizure reduction was 79% at a median follow-up of 13 months (range = 9-21 months). No significant side effects were noted. Of all the pulvinar subnuclei, stimulation of the medial pulvinar nucleus (MPN) produced the best seizure outcome in all patients except for two, in whom active contacts in the MPN but also in more lateral and inferior locations resulted in the most significant reduction in seizures. Chronic timeline data identified changes in LFP amplitude associated with stimulation and seizure occurrences. SIGNIFICANCE In this first ever report on a series of patients undergoing bilateral pulvinar DBS for drug-resistant epilepsy, we demonstrate that stimulation of the pulvinar and in particular the MPN is a safe and viable option for patients with nonlesional PQE or TLE. The optimal target for stimulation and relative merits of open versus closed loop stimulation should be delineated in future studies.
Collapse
Affiliation(s)
- Arjun Suresh Chandran
- Texas Comprehensive Epilepsy Program, Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Stuti Joshi
- Texas Comprehensive Epilepsy Program, Department of Neurology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Surya Suresh
- Texas Comprehensive Epilepsy Program, Department of Neurology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jude Savarraj
- Texas Comprehensive Epilepsy Program, Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Kathryn Snyder
- Texas Comprehensive Epilepsy Program, Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Fernando De Nigris Vasconcellos
- Texas Comprehensive Epilepsy Program, Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yash S Vakilna
- Texas Comprehensive Epilepsy Program, Department of Neurology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yosefa A Modiano
- Texas Comprehensive Epilepsy Program, Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Sandipan Pati
- Texas Comprehensive Epilepsy Program, Department of Neurology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Nitin Tandon
- Texas Comprehensive Epilepsy Program, Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
16
|
Zhong C, Yang K, Wang N, Yang L, Yang Z, Xu L, Wang J, Zhang L. Advancements in Surgical Therapies for Drug-Resistant Epilepsy: A Paradigm Shift towards Precision Care. Neurol Ther 2025; 14:467-490. [PMID: 39928287 PMCID: PMC11906941 DOI: 10.1007/s40120-025-00710-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/03/2025] [Indexed: 02/11/2025] Open
Abstract
Epilepsy, a prevalent neurological disorder characterized by recurrent seizures, affects millions worldwide, with a significant proportion resistant to pharmacological treatments. Surgical interventions have emerged as pivotal in managing drug-resistant epilepsy (DRE), aiming to reduce seizure frequency or achieve seizure freedom. Traditional resective surgeries have evolved with technological advances, enhancing precision and safety. Neurostimulation techniques, such as responsive neurostimulation (RNS) and deep brain stimulation (DBS), now provide personalized, real-time seizure management, offering alternatives to traditional surgery. Minimally invasive ablative methods, such as laser interstitial thermal therapy (LITT) and Magnetic Resonance-guided Focused Ultrasound (MRgFUS), allow for targeted destruction of epileptogenic tissue with reduced risks and faster recovery times. The use of stereo-electroencephalography (SEEG) and robotic assistance has further refined surgical precision, enhancing outcomes. These advancements mark a paradigm shift towards precision medicine in epilepsy care, promising improved seizure management and quality of life for patients globally. This review outlines the latest innovations in epilepsy surgery, emphasizing their mechanisms and clinical implications to improve outcomes for patients with DRE.
Collapse
Affiliation(s)
- Chen Zhong
- Departments of Neurosurgery, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), 818 Renmin Street, Wuling District, Changde, 415003, Hunan, China
| | - Kang Yang
- Departments of Neurosurgery, and National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Nianhua Wang
- Departments of Neurosurgery, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), 818 Renmin Street, Wuling District, Changde, 415003, Hunan, China
| | - Liang Yang
- Department of Neurosurgery, The 3rd Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Zhuanyi Yang
- Departments of Neurosurgery, and National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Lixin Xu
- Departments of Neurosurgery, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), 818 Renmin Street, Wuling District, Changde, 415003, Hunan, China
| | - Jun Wang
- Departments of Neurosurgery, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), 818 Renmin Street, Wuling District, Changde, 415003, Hunan, China
| | - Longbo Zhang
- Departments of Neurosurgery, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), 818 Renmin Street, Wuling District, Changde, 415003, Hunan, China.
- Departments of Neurosurgery, and National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Departments of Neurosurgery, and Cellular & Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8082, USA.
| |
Collapse
|
17
|
Sanger ZT, Zhang X, Leppik IE, Lisko T, Netoff TI, McGovern RA. Anterior nucleus of thalamus deep brain stimulation for medication refractory epilepsy modulates theta and low-frequency gamma activity: a case study. Ther Adv Neurol Disord 2025; 18:17562864251323052. [PMID: 40144042 PMCID: PMC11938492 DOI: 10.1177/17562864251323052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 02/05/2025] [Indexed: 03/28/2025] Open
Abstract
A 35-year-old gentleman with a traumatic brain injury was diagnosed with refractory epilepsy with electroencephalogram and imaging findings supporting a broad seizure onset pattern in bilateral frontotemporal regions. He therefore received a Medtronic Percept PC Deep Brain Stimulator (DBS) placed bilaterally in the anterior nucleus of the thalamus (ANT). While most refractory epilepsy patients' stimulation parameters use the SANTE trial standard clinical settings of 145 Hz, 90 μs, with cycling 1-min stimulation on and 5 min stimulation off, this participant underwent 7 different stimulation parameter tests at home following testing in the clinic of 24 different stimulation parameters across 12 neurologist visits. This device allows for simultaneous stimulation of the ANT while recording the ANT local field potential (LFP) response under different stimulation parameters. Slepian multitaper analysis, modified Fitting Oscillations, and One Over F method for detrending the aperiodic component were performed to analyze neural oscillations in the frequency domain captured in the clinic. This participant was participating in a clinical study examining the effectiveness of nonstandard DBS settings to minimize broadband neural activity in the ANT. Statistically significant neuromodulatory suppression of gamma oscillations was observed in the clinic under multiple stimulation settings. We compared the ability of these research stimulation parameters to suppress at-home ANT neural activity against the standard clinical settings and examined the effects of both sets of parameters on LFP power nonstationarity. At home, theta/alpha LFP power suppression was statistically significantly reduced under the 125 Hz, 50 μs setting as opposed to the clinical setting of 145 Hz, 90 μs. The participant has achieved greater than 50% seizure reduction for over 1 year since the last neurology visit. Suppression of gamma in the clinic in the right hemisphere and suppression of theta at home in the left hemisphere show promise as quantitative feedback biomarkers for ANT-DBS. Understanding the local and network relationships of theta and slow gamma oscillations in the thalamus would further explain how these modulated oscillations may relate to the onset and propagation of seizures.
Collapse
Affiliation(s)
- Zachary T. Sanger
- Department of Biomedical Engineering, University of Minnesota, Nils Hasselmo Hall, 7-105, 312 Church St SE, Minneapolis, MN 55455, USA
| | - Xinbing Zhang
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Ilo E. Leppik
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Thomas Lisko
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
| | - Theoden I. Netoff
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Robert A. McGovern
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
18
|
Naegele JR. From Stumbling Blocks to Stepping Stones: Progress in Treating Temporal Lobe Epilepsy With Stem Cell Transplantation. Epilepsy Curr 2025:15357597251318571. [PMID: 40124466 PMCID: PMC11924067 DOI: 10.1177/15357597251318571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025] Open
Abstract
The last three decades of scientific research provided a wealth of data on the brain origins, development, and functional roles of GABAergic interneurons and new insights into GABAergic interneuron dysfunction in different types of epilepsy. A stumbling block in treating GABAergic interneuron dysfunction in acquired temporal lobe epilepsy (TLE) has been the incapacity of the adult human brain to replace interneurons through adult neurogenesis. Recent advances in the field of stem cell biology led to the development of pluripotent stem cells (iPSCs), and this technology has been used in combination with effective differentiation protocols for generating GABAergic neurons from human iPSCs. Neuroscientists have now established that transplanting human iPSC-derived GABAergic interneurons into the hippocampus in rodent models of TLE can suppress spontaneous recurrent seizures. Basic research studies in mice further showed that interneuron transplants prevent some of the neuropathological hallmarks of TLE that contribute to hyperexcitability and epileptogenesis by forming new inhibitory synaptic connections within the host hippocampus and preventing neuropathological changes from developing. These basic scientific findings paved the way for a recent clinical trial testing human neuron transplantation in patients with severe TLE that is having promising early results.
Collapse
Affiliation(s)
- Janice R. Naegele
- Biology Department, Hall-Atwater Laboratory, Wesleyan University, Middletown, CT, USA
| |
Collapse
|
19
|
Pang N, Wang Q, Pei J, Zhang H, Yuan Y, Yan J. Low-intensity transcranial ultrasound stimulation inhibits epileptic seizures in motor cortex by modulating hippocampus neural activity. IEEE Trans Neural Syst Rehabil Eng 2025; PP:366-371. [PMID: 40030858 DOI: 10.1109/tnsre.2025.3525516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Prior studies indicate that applying low-intensity transcranial ultrasound stimulation (TUS) to the hippocampus can suppress epileptic seizures. Nevertheless, it is unclear how TUS regulates hippocampal neural activity, and whether and how epileptic discharges in the motor cortex are suppressed by modulating hippocampal neural activity. To explore the answers of above questions, ultrasound was utilized to investigate the responses to the aforementioned inquiries by stimulating the hippocampus of mice with penicillin-induced epilepsy, while simultaneously recording the local field potentials (LFPs) in the hippocampus and the motor cortex (M1) throughout the experiment. The results showed that TUS (1) reduced the amplitude and the strength of the θ frequency band in LFPs in the hippocampus and M1, (2) decreased the coupling strength of the δ-γ, θ-γ and α-γ frequency bands in the hippocampus and M1, (3) weakened the correlation of neural activity between the hippocampus and M1. The above results indicated that TUS effectively suppressed abnormal slow neural oscillations in the hippocampus, had a significant decoupling effect on slow-fast neural oscillations, and reduced the correlation of hippocampus-cortical neural activity. TUS of the hippocampus may be through the hippocampus-cortical circuits to suppress abnormal neural firing activity in M1.
Collapse
|
20
|
Wheless JW, Raskin JS, Fine AL, Knupp KG, Schreiber J, Ostendorf AP, Albert GW, Kossoff EH, Madsen JR, Kotagal P, Numis AL, Gadgil N, Holder DL, Thiele EA, Ibrahim GM. Expert opinion on use of vagus nerve stimulation therapy in the management of pediatric epilepsy: A Delphi consensus study. Seizure 2024; 123:97-103. [PMID: 39536380 DOI: 10.1016/j.seizure.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/10/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
PURPOSE To provide consensus-based recommendations for use of vagus nerve stimulation (VNS) therapy in the management of pediatric epilepsy. METHODS Delphi methodology with two rounds of online survey was used to build consensus. A steering committee developed 43 statements related to pediatric epilepsy and the use of VNS therapy, which were evaluated by a panel of 12 neurologists/neurosurgeons with expertise in pediatric epilepsy, who graded their agreement with each statement on a scale of 1 ("I do not agree at all") to 5 ("I strongly agree"). For each statement, consensus was established if ≥70% of the agreement scores were 4 or 5 and <30% were 1 or 2 in the final survey. RESULTS Twenty-four statements regarding the need for seizure reduction in pediatric epilepsy, the recommended treatment algorithm, the benefits and safety of VNS therapy, management of side effects of VNS therapy, patient selection for VNS therapy, and the use, dosing, and titration of VNS therapy achieved consensus. VNS and other neuromodulation therapies should be considered for pediatric patients with drug-resistant epilepsy who are not candidates for resective surgery, or who do not remain seizure free after resective surgery. When VNS therapy is initiated, the target dose range should be achieved via the fastest and safest titration schedule for each patient. Scheduled programming can be helpful in dose titration. CONCLUSION The expert consensus statements represent the panelists' collective opinion on the best practice use of VNS therapy to optimize outcomes in the management of pediatric epilepsy.
Collapse
Affiliation(s)
- James W Wheless
- Le Bonheur Children's Hospital, University of Tennessee Health Science Center, 49 N Dunlap Ave, 3rd Floor FOB, Memphis, TN 38105, United States.
| | - Jeffrey S Raskin
- Lurie Children's Hospital, 225 E Chicago Ave, Northwestern University Feinberg School of Medicine, 420 E Superior St, Chicago, IL 60611, United States.
| | - Anthony L Fine
- Mayo Clinic, 200 1st St SW, Rochester, MN 55905, United States.
| | - Kelly G Knupp
- University of Colorado, Anschutz Campus, 13001 E 17th Pl, Aurora, CO 80045, United States.
| | - John Schreiber
- Children's National Medical Center, 111 Michigan Ave, NW, Washington District of Columbia, United States.
| | - Adam P Ostendorf
- Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, United States.
| | - Gregory W Albert
- Arkansas Children's Hospital, 1 Children's Way, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, United States.
| | - Eric H Kossoff
- Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, United States.
| | - Joseph R Madsen
- Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, United States.
| | - Prakash Kotagal
- Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, United States.
| | - Adam L Numis
- University of California San Francisco, 1825 Fourth St Fifth Floor, 5A, San Francisco, CA 94158, United States.
| | - Nisha Gadgil
- Texas Children's Hospital, 6701 Fannin Street, Houston, TX 77030, United States.
| | - Deborah L Holder
- Guerin Children's Hospital, Cedars Sinai, 127 S San Vicente Blvd a3600, Los Angeles, CA, United States.
| | - Elizabeth A Thiele
- Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, United States.
| | - George M Ibrahim
- Hospital for Sick Children, Department of Surgery, 170 Elizabeth St, University of Toronto, Toronto, ON M5G 1E8, Canada.
| |
Collapse
|
21
|
Chang B, Park JJ, Buch VP. Applying normative atlases in deep brain stimulation: a comprehensive review. Int J Surg 2024; 110:8037-8044. [PMID: 39806746 PMCID: PMC11634178 DOI: 10.1097/js9.0000000000002120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/07/2024] [Indexed: 01/16/2025]
Abstract
Deep brain stimulation (DBS) has emerged as a crucial therapeutic strategy for various neurological and psychiatric disorders. Precise target localization is essential for optimizing therapeutic outcomes, necessitating advanced neuroimaging techniques. Normative atlases provide standardized references for accurate electrode placement, enhancing treatment customization and efficacy. This comprehensive review explores the application of normative atlases in DBS, emphasizing their role in target identification, patient-specific electrode placement, and predicting stimulation outcomes. Challenges, such as variability across atlases and technical complexities, are addressed alongside future directions and innovations, including advancements in neuroimaging technologies and the integration of machine learning (ML) and artificial intelligence (AI). Normative atlases play a pivotal role in enhancing DBS precision and patient outcomes, promising a future of personalized and effective therapies in neurology and psychiatry.
Collapse
Affiliation(s)
- Bowen Chang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, People’s Republic of China
- Department of Neurosurgery, Stanford University, Stanford, Palo Alto, California, USA
| | - Jay J. Park
- Department of Neurosurgery, Stanford University, Stanford, Palo Alto, California, USA
| | - Vivek P. Buch
- Department of Neurosurgery, Stanford University, Stanford, Palo Alto, California, USA
| |
Collapse
|
22
|
Gonzalez-Martinez J, Damiani A, Nouduri S, Ho J, Salazar S, Jegou A, Reedy E, Ikegaya N, Sarma S, Aung T, Pirondini E. Thalamocortical Hodology to Personalize Electrical Stimulation for Focal Epilepsy. RESEARCH SQUARE 2024:rs.3.rs-5507011. [PMID: 39649170 PMCID: PMC11623769 DOI: 10.21203/rs.3.rs-5507011/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Targeted electrical stimulation to specific thalamic regions offers a therapeutic approach for patients with refractory focal and generalized epilepsy who are not candidates for resective surgery. However, clinical outcome varies significantly, in particular for focal epilepsy, influenced by several factors, notably the precise anatomical and functional alignment between cortical regions generating epileptic discharges and the targeted thalamic stimulation sites. Here we hypothesized that targeting thalamic nuclei with precise anatomical and functional connections to epileptic cortical areas (an approach that we refer to as hodological matching) could enhance neuromodulatory effects on focal epileptic discharges. To investigate this, we examined three thalamic subnuclei (pulvinar nucleus, anterior nucleus, and ventral intermediate nucleus/ventral oral posterior nuclei) in a retrospective study involving 32 focal epilepsy patients. Specifically, we first identified hodologically organized thalamocortical fibers connecting these nuclei to individual seizure onset zones (SOZs), combining neuroimaging and electrophysiological techniques. Further, analysis of 216 spontaneous seizures revealed the critical role of matched thalamic nuclei in seizure development and termination. Importantly, electrical stimulation of hodologically-matched thalamic nuclei immediately suppressed intracortical interictal epileptiform discharges, contrasting with ineffective outcomes from stimulation of unmatched targets. Finally, we retrospectively evaluated 7 patients with a chronic hodologically-matched neurostimulation system, which led to a clinically relevant reduction in seizure frequency (median reduction 86.5%), that outstands the current clinical practice of unmatched targets (39%). Our results underscore the potential of hodological thalamic targeting to modulate epileptiform activity in specific cortical regions, highlighting the promise of precision medicine in thalamic neuromodulation for focal refractory epilepsy.
Collapse
|
23
|
Chen H, Miao Y, Duan H, Yi S, Lin Z, Guo Y, Zou J, Niu L. The effect of combined ultrasound stimulation and gastrodin on seizures in mice. Front Neurosci 2024; 18:1499078. [PMID: 39649662 PMCID: PMC11621076 DOI: 10.3389/fnins.2024.1499078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/12/2024] [Indexed: 12/11/2024] Open
Abstract
Both physiotherapy and medicine play essential roles in the treatment of epilepsy. The purpose of this research was to evaluate the efficacy of the combined therapy with focus ultrasound stimulation (FUS) and gastrodin (GTD) on seizures in a mouse model. Kainic acid-induced seizure mice were divided into five groups randomly: sham, FUS, saline + sham, GTD + sham and GTD + FUS. The results showed that combined therapy with ultrasound stimulation and gastrodin can significantly reduce the number and duration of seizures in GTD + FUS group. 9.4T magnetic resonance imaging and histologic staining results revealed the underlying mechanism of the combined therapy may be that ultrasound stimulation increases cell membrane permeability to increase GTD concentration in brain. In addition, we verified the safety of FUS combined with GTD therapy. This research provides a new strategy for neurological disorders combining treatment of physical neuromodulation and medicine.
Collapse
Affiliation(s)
- Houminji Chen
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuqing Miao
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Haowen Duan
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shasha Yi
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhengrong Lin
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yanwu Guo
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Junjie Zou
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lili Niu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
24
|
Sabzvari T, Aflahe Iqbal M, Ranganatha A, Daher JC, Freire I, Shamsi SMF, Paul Anthony OV, Hingorani AG, Sinha AS, Nazir Z. A Comprehensive Review of Recent Trends in Surgical Approaches for Epilepsy Management. Cureus 2024; 16:e71715. [PMID: 39553057 PMCID: PMC11568833 DOI: 10.7759/cureus.71715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2024] [Indexed: 11/19/2024] Open
Abstract
Epilepsy is a neurological disorder that affects millions of people worldwide, with a significant proportion of patients experiencing drug-resistant epilepsy, where seizures remain uncontrolled despite medical treatment. This review evaluates the latest surgical techniques for managing epilepsy, focusing on their effectiveness, safety, and the ongoing challenges that hinder their broader adoption. We explored various databases including PubMed, Google Scholar, and Cochrane Library to look for relevant literature using the following keywords: Epilepsy, Resective Surgery, Corpus Collectumy, and Antiepileptic Drugs. A total of 54 relevant articles were found and thoroughly explored. Recent advancements in surgical interventions include resective procedures such as anterior temporal lobectomy, corpus callosotomy, and hemispherectomy, which have been particularly effective in reducing seizures for specific types of epilepsy. Minimally invasive techniques, including laser interstitial thermal therapy and focused ultrasound, are increasingly being used, offering promising outcomes for certain patient groups. Additionally, neuromodulation methods such as deep brain stimulation, vagus nerve stimulation, and responsive neurostimulation provide alternative treatment options, especially for patients who are not suitable candidates for resective surgery. Despite these advancements, the full potential of epilepsy surgery is often underutilized due to various challenges. Inconsistent referral practices, a lack of standardized surgical protocols, and significant socioeconomic barriers continue to limit access to these procedures. Addressing these issues through improved referral processes, better education for healthcare providers and patients, and ensuring equitable access to advanced surgical treatments is crucial for optimizing patient outcomes. Future research should focus on overcoming these barriers and assessing long-term outcomes to further enhance the care of patients with epilepsy.
Collapse
Affiliation(s)
| | - Muhammed Aflahe Iqbal
- General Practice, Muslim Educational Society (MES) Medical College Hospital, Perinthalmanna, IND
- General Practice, Naseem Medical Centre, Doha, QAT
| | - Akash Ranganatha
- Surgery, Jagadguru Jayadeva Murugarajendra (JJM) Medical College, Davangere, IND
| | - Jean C Daher
- Medicine, Lakeland Regional Health, Lakeland, USA
- Medicine, Universidad de Ciencias Médicas Andrés Vesalio Guzmán, San Jose, CRI
| | - Isabel Freire
- General Practice, Universidad Central del Ecuador, Quito, ECU
| | | | | | - Anusha G Hingorani
- Medicine and Surgery, Mahatma Gandhi Mission (MGM) Medical College and Hospital, Mumbai, IND
| | | | - Zahra Nazir
- Internal Medicine, Combined Military Hospital, Quetta, PAK
| |
Collapse
|
25
|
Rybalova E, Semenova N. Spiking activities in small neural networks induced by external forcing. CHAOS (WOODBURY, N.Y.) 2024; 34:101105. [PMID: 39441892 DOI: 10.1063/5.0226896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Neurons in an excitable mode do not show spiking activity and, therefore, do not contribute to information transfer transmission and its processing. However, some external influences, coupling, or time delay can lead to the appearance of oscillations in individual systems or networks. The main goal of this paper is to uncover the connection parameters and parameters of external influences that lead to the arising of spiking behavior in a small network of locally coupled FitzHugh-Nagumo oscillators. In this study, we analyze the dynamics of a small network in the absence and presence of several types of external influences. First, we consider the impact of periodic-pulse exposure generated as a periodic sequence of Gaussian pulses. Second, we show what behavior can be induced by far less regular pulsed influence (Lévy noise) and its special case called white Gaussian noise. For all types of influences, we have identified the appropriate parameters (local coupling strength, intensity, and frequency) that induce spiking activity in the small network.
Collapse
Affiliation(s)
- E Rybalova
- Radiophysics and Nonlinear Dynamics Department, Institute of Physics, Saratov State University, Astrakhanskaya Str. 83, Saratov 410012, Russia
| | - N Semenova
- Radiophysics and Nonlinear Dynamics Department, Institute of Physics, Saratov State University, Astrakhanskaya Str. 83, Saratov 410012, Russia
| |
Collapse
|
26
|
Hadar PN, Zelmann R, Salami P, Cash SS, Paulk AC. The Neurostimulationist will see you now: prescribing direct electrical stimulation therapies for the human brain in epilepsy and beyond. Front Hum Neurosci 2024; 18:1439541. [PMID: 39296917 PMCID: PMC11408201 DOI: 10.3389/fnhum.2024.1439541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/23/2024] [Indexed: 09/21/2024] Open
Abstract
As the pace of research in implantable neurotechnology increases, it is important to take a step back and see if the promise lives up to our intentions. While direct electrical stimulation applied intracranially has been used for the treatment of various neurological disorders, such as Parkinson's, epilepsy, clinical depression, and Obsessive-compulsive disorder, the effectiveness can be highly variable. One perspective is that the inability to consistently treat these neurological disorders in a standardized way is due to multiple, interlaced factors, including stimulation parameters, location, and differences in underlying network connectivity, leading to a trial-and-error stimulation approach in the clinic. An alternate view, based on a growing knowledge from neural data, is that variability in this input (stimulation) and output (brain response) relationship may be more predictable and amenable to standardization, personalization, and, ultimately, therapeutic implementation. In this review, we assert that the future of human brain neurostimulation, via direct electrical stimulation, rests on deploying standardized, constrained models for easier clinical implementation and informed by intracranial data sets, such that diverse, individualized therapeutic parameters can efficiently produce similar, robust, positive outcomes for many patients closer to a prescriptive model. We address the pathway needed to arrive at this future by addressing three questions, namely: (1) why aren't we already at this prescriptive future?; (2) how do we get there?; (3) how far are we from this Neurostimulationist prescriptive future? We first posit that there are limited and predictable ways, constrained by underlying networks, for direct electrical stimulation to induce changes in the brain based on past literature. We then address how identifying underlying individual structural and functional brain connectivity which shape these standard responses enable targeted and personalized neuromodulation, bolstered through large-scale efforts, including machine learning techniques, to map and reverse engineer these input-output relationships to produce a good outcome and better identify underlying mechanisms. This understanding will not only be a major advance in enabling intelligent and informed design of neuromodulatory therapeutic tools for a wide variety of neurological diseases, but a shift in how we can predictably, and therapeutically, prescribe stimulation treatments the human brain.
Collapse
Affiliation(s)
- Peter N Hadar
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Rina Zelmann
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Pariya Salami
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Angelique C Paulk
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
27
|
Liu T, Li H, Kuang S, Yuan L, Feng W, Li H, Ding P, Wei Z, Liang S. Exploratory study of short-term treatment with adaptive neurostimulation in children with drug-resistant epilepsy. Brain Stimul 2024; 17:1167-1169. [PMID: 39396799 DOI: 10.1016/j.brs.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 09/28/2024] [Indexed: 10/15/2024] Open
Affiliation(s)
- Tinghong Liu
- Functional Neurosurgery Department, National Children's Health Center of China, Beijing Children's Hospital, Capital Medical University, Beijing, China; Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.
| | - Hanlei Li
- Neuracle Technology (Changzhou) Co. Ltd., Changzhou, China.
| | - Suhui Kuang
- Department of Functional Neurosurgery, National Children's Health Center of China, Beijing Children's Hospital, Capital Medical University, Beijing, China; Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.
| | - Liu Yuan
- Functional Neurosurgery Department, National Children's Health Center of China, Beijing Children's Hospital, Capital Medical University, Beijing, China.
| | - Weixing Feng
- Neurology Department, Beijing Children's Hospital, Capital Medical University, Beijing, China.
| | - Hua Li
- Neurology Department, Beijing Children's Hospital, Capital Medical University, Beijing, China.
| | - Ping Ding
- Department of Functional Neurosurgery, National Children's Health Center of China, Beijing Children's Hospital, Capital Medical University, Beijing, China.
| | - Zhirong Wei
- Functional Neurosurgery Department, National Children's Health Center of China, Beijing Children's Hospital, Capital Medical University, Beijing, China; Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.
| | - Shuli Liang
- Functional Neurosurgery Department, National Children's Health Center of China, Beijing Children's Hospital, Capital Medical University, Beijing, China; Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.
| |
Collapse
|
28
|
Hect JL, Mallela AN, Pupi M, Anthony A, Fogg D, Ho J, Slingerland AL, Ikegaya N, Abou-Al-Shaar H, Aung T, Gonzalez-Martinez J. Safety of Concomitant Cortical and Thalamic Stereoencephalography Explorations in Patients With Drug-Resistant Epilepsies. Neurosurgery 2024; 95:634-640. [PMID: 38517164 DOI: 10.1227/neu.0000000000002919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/24/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Intracranial electrophysiology of thalamic nuclei has demonstrated involvement of thalamic areas in the propagation of seizures in focal drug-resistant epilepsy. Recent studies have argued that thalamus stereoencephalography (sEEG) may aid in understanding the epileptogenic zone and treatment options. However, the study of thalamic sEEG-associated hemorrhage incidence has not been investigated in a cohort study design. In this article, we present the largest retrospective cohort study of sEEG patients and compare hemorrhage rates between those with and without thalamic sEEG monitoring. METHODS Retrospective chart review of clinical and epilepsy history, electrode implantation, rationale, and outcomes was performed for 76 patients (age 20-69 years) with drug-resistant epilepsy who underwent sEEG monitoring at our institution (2019-2022). A subset of 38% of patients (n = 30) underwent thalamic monitoring of the anterior thalamic nucleus (n = 14), pulvinar nucleus (n = 25), or both (n = 10). Planned perisylvian orthogonal sEEG trajectories were extended to 2- to 3-cm intraparenchymally access thalamic area(s).The decision to incorporate thalamic monitoring was made by the multidisciplinary epilepsy team. Statistical comparison of hemorrhage rate, type, and severity between patients with and without thalamic sEEG monitoring was made. RESULTS Our approach for thalamic monitoring was not associated with local intraparenchymal hemorrhage of thalamic areas or found along extended cortical trajectories, and symptomatic hemorrhage rates were greater for patients with thalamic coverage (10% vs 0%, P = .056), although this was not found to be significant. Importantly, patients with perisylvian electrode trajectories, with or without thalamic coverage, did not experience a higher incidence of hemorrhage ( P = .34). CONCLUSION sEEG of the thalamus is a safe and valuable tool that can be used to interrogate the efficacy of thalamic neuromodulation for drug-resistant epilepsy. While patients with thalamic sEEG did have higher incidence of hemorrhage at any monitoring site, this finding was apparently not related to the method of perisylvian implantation and did not involve any trajectories targeting the thalamus.
Collapse
Affiliation(s)
- Jasmine L Hect
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh , Pennsylvania , USA
| | - Arka N Mallela
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh , Pennsylvania , USA
| | - Michael Pupi
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh , Pennsylvania , USA
| | - Austin Anthony
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh , Pennsylvania , USA
| | - David Fogg
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh , Pennsylvania , USA
| | - Jonathan Ho
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh , Pennsylvania , USA
| | - Anna L Slingerland
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh , Pennsylvania , USA
| | - Naoki Ikegaya
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh , Pennsylvania , USA
| | - Hussam Abou-Al-Shaar
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh , Pennsylvania , USA
| | - Thandar Aung
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh , Pennsylvania , USA
- Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh , Pennsylvania , USA
| | - Jorge Gonzalez-Martinez
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh , Pennsylvania , USA
| |
Collapse
|
29
|
Shah N, Kasture AS, Fischer FP, Sitte HH, Hummel T, Sucic S. A transporter's doom or destiny: SLC6A1 in health and disease, novel molecular targets and emerging therapeutic prospects. Front Mol Neurosci 2024; 17:1466694. [PMID: 39268250 PMCID: PMC11390516 DOI: 10.3389/fnmol.2024.1466694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
As the first member of the solute carrier 6 (SLC6) protein family, the γ-aminobutyric acid (GABA) transporter 1 (GAT1, SLC6A1), plays a pivotal role in the uptake of GABA from the synaptic cleft into neurons and astrocytes. This process facilitates the subsequent storage of GABA in presynaptic vesicles. The human SLC6A1 gene is highly susceptible to missense mutations, leading to severe clinical outcomes, such as epilepsy, in the afflicted patients. The molecular mechanisms of SLC6A1-associated disorders are discerned to some degree; many SLC6A1 mutations are now known to impair protein folding, and consequently fail to reach the plasma membrane. Inherently, once inside the endoplasmic reticulum (ER), GAT1 abides by a complex cascade of events that enable efficient intracellular trafficking. This involves association with specialized molecular chaperones responsible for steering the protein folding process, oligomerization, sorting through the Golgi apparatus, and ultimately delivery to the cell surface. The entire process is subject to stringent quality control mechanisms at multiple checkpoints. While the majority of the existing loss-of-function SLC6A1 variants interfere with folding and membrane targeting, certain mutants retain abundant surface expression. In either scenario, suppressed GAT1 activity disrupts GABAergic neurotransmission, preceding the disease manifestation in individuals harboring these mutations. The nervous system is enthralling and calls for systematic, groundbreaking research efforts to dissect the precise molecular factors associated with the onset of complex neurological disorders, and uncover additional non-canonical therapeutic targets. Recent research has given hope for some of the misfolded SLC6A1 variants, which can be salvaged by small molecules, i.e., chemical and pharmacological chaperones, acting on multiple upstream targets in the secretory pathway. We here highlight the significance of pharmacochaperoning as a therapeutic strategy for the treatment of SLC6A1-related disorders.
Collapse
Affiliation(s)
- Nikita Shah
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Ameya S. Kasture
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Florian P. Fischer
- Department of Epileptology and Neurology, RWTH Aachen University, Aachen, Germany
| | - Harald H. Sitte
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
- Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, Jordan
- Center for Addiction Research and Science-AddRess, Medical University of Vienna, Vienna, Austria
| | - Thomas Hummel
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Sonja Sucic
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
30
|
Zhang Q, Wang Y, Wang F, Jiang D, Song Y, Yang L, Zhang M, Wang Y, Ruan Y, Fang J, Fei F. Septal stimulation attenuates hippocampal seizure with subregion specificity. Epilepsia Open 2024; 9:1445-1457. [PMID: 38831626 PMCID: PMC11296123 DOI: 10.1002/epi4.12983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/06/2024] [Accepted: 05/18/2024] [Indexed: 06/05/2024] Open
Abstract
OBJECTIVE Deep brain stimulation (DBS) is a promising approach for the treatment of epilepsy. However, the optimal target for DBS and underlying mechanisms are still not clear. Here, we compared the therapeutic effects of DBS on distinct septal subregions, aimed to find the precise targets of septal DBS and related mechanisms for the clinical treatment. METHODS Assisted by behavioral test, electroencephalography (EEG) recording and analyzing, selectively neuronal manipulation and immunohistochemistry, we assessed the effects of DBS on the three septal subregions in kainic acid (KA)-induced mouse seizure model. RESULTS DBS in the medial septum (MS) not only delayed generalized seizure (GS) development, but reduced the severity; DBS in the vertical diagonal band of Broca (VDB) only reduced the severity of GS, while DBS in the horizontal diagonal band of Broca (HDB) subregion showed no anti-seizure effect. Notably, DBS in the MS much more efficiently decreased abnormal activation of hippocampal neurons. EEG spectrum analysis indicated that DBS in the MS and VDB subregions mainly increased the basal hippocampal low-frequency (delta and theta) rhythm. Furthermore, ablation of cholinergic neurons in the MS and VDB subregions blocked the anti-seizure and EEG-modulating effects of septal DBS, suggesting the seizure-alleviating effect of DBS was dependent on local cholinergic neurons. SIGNIFICANCE DBS in the MS and VDB, rather than HDB, attenuates hippocampal seizure by activation of cholinergic neurons-augmented hippocampal delta/theta rhythm. This may be of great therapeutic significance for the clinical treatment of epilepsy with septal DBS. PLAIN LANGUAGE SUMMARY The optical target of deep brain stimulation in the septum is still not clear. This study demonstrated that stimulation in the medial septum and vertical diagonal band of Broca subregions, but not the horizontal diagonal band of Broca, could alleviate hippocampal seizure through cholinergic neurons-augmented hippocampal delta/theta rhythm. This study may shed light on the importance of precise regulation of deep brain stimulation therapy in treating epileptic seizures.
Collapse
Affiliation(s)
- Qingyang Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
- Chinese Medicine Plant Essential Oil Zhejiang Engineering Research Center, School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Yu Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Fei Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Dongxiao Jiang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Yingjie Song
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Lin Yang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Mengdi Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
- Department of Neurology, The Fourth Affiliated Hospital, School of MedicineZhejiang UniversityYiwuChina
| | - Yeping Ruan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
- Chinese Medicine Plant Essential Oil Zhejiang Engineering Research Center, School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Jiajia Fang
- Department of Neurology, The Fourth Affiliated Hospital, School of MedicineZhejiang UniversityYiwuChina
| | - Fan Fei
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
31
|
Rybalova E, Semenova N. Impact of pulse exposure on chimera state in ensemble of FitzHugh-Nagumo systems. CHAOS (WOODBURY, N.Y.) 2024; 34:071101. [PMID: 38953753 DOI: 10.1063/5.0214787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
In this article, we consider the influence of a periodic sequence of Gaussian pulses on a chimera state in a ring of coupled FitzHugh-Nagumo systems. We found that on the way to complete spatial synchronization, one can observe a number of variations of chimera states that are not typical for the parameter range under consideration. For example, the following modes were found: breathing chimera, chimera with intermittency in the incoherent part, traveling chimera with strong intermittency, and others. For comparison, here we also consider the impact of a harmonic influence on the same chimera, and to preserve the generality of the conclusions, we compare the regimes caused by both a purely positive harmonic influence and a positive-negative one.
Collapse
Affiliation(s)
- E Rybalova
- Radiophysics and Nonlinear Dynamics Department, Institute of Physics, Saratov State University, Astrakhanskaya str. 83, Saratov 410012, Russia
| | - N Semenova
- Radiophysics and Nonlinear Dynamics Department, Institute of Physics, Saratov State University, Astrakhanskaya str. 83, Saratov 410012, Russia
| |
Collapse
|
32
|
Ikegaya N, Aung T, Mallela A, Hect JL, Damiani A, Gonzalez-Martinez JA. Thalamic stereoelectroencephalography for neuromodulation target selection: Proof of concept and review of literature of pulvinar direct electrical stimulation. Epilepsia 2024; 65:e79-e86. [PMID: 38625609 DOI: 10.1111/epi.17986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024]
Abstract
In patients with drug-resistant epilepsy (DRE) who are not candidates for resective surgery, various thalamic nuclei, including the anterior, centromedian, and pulvinar nuclei, have been extensively investigated as targets for neuromodulation. However, the therapeutic effects of different targets for thalamic neuromodulation on various types of epilepsy are not well understood. Here, we present a 32-year-old patient with multifocal bilateral temporoparieto-occipital epilepsy and bilateral malformations of cortical development (MCDs) who underwent bilateral stereoelectroencephalographic (SEEG) recordings of the aforementioned three thalamic nuclei bilaterally. The change in the rate of interictal epileptiform discharges (IEDs) from baseline were compared in temporal, central, parietal, and occipital regions after direct electrical stimulation (DES) of each thalamic nucleus. A significant decrease in the rate of IEDs (33% from baseline) in the posterior quadrant regions was noted in the ipsilateral as well as contralateral hemisphere following DES of the pulvinar. A scoping review was also performed to better understand the current standpoint of pulvinar thalamic stimulation in the treatment of DRE. The therapeutic effect of neuromodulation can differ among thalamic nuclei targets and epileptogenic zones (EZs). In patients with multifocal EZs with extensive MCDs, personalized thalamic targeting could be achieved through DES with thalamic SEEG electrodes.
Collapse
Affiliation(s)
- Naoki Ikegaya
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Thandar Aung
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurology, Epilepsy Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Arka Mallela
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jasmine L Hect
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Arianna Damiani
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
33
|
Verly G, Oliveira LDB, Delfino T, Batista S, Lopes T, Carvalho V, McBenedict B, Oliveira M, Bertani R, Martins da Cunha PH, Paiva W, Lima Pessoa B. Assessing short-term and long-term security and efficacy of anterior nucleus of the thalamus deep brain stimulation for treating drug-resistant epilepsy: A systematic review and single-arm meta-analysis. Epilepsia 2024; 65:1531-1547. [PMID: 38506635 DOI: 10.1111/epi.17955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/21/2024]
Abstract
Deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) is a widespread invasive procedure for treating drug-resistant epilepsy. Nonetheless, there is a persistent debate regarding the short-term and long-term efficacy and safety of ANT-DBS. Thus we conducted a systematic review and meta-analysis. Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), we searched PubMed, Cochrane, Embase, and Web of Science for studies treating refractory epilepsy with ANT-DBS. Short-term analysis was considered for studies with a mean follow-up of 3 years or less. The following outcomes were assessed for data extraction: procedure responders and nonresponders, increased seizure frequency, complications, and procedure-related mortality. Of 650 studies, 25 fit our inclusion criteria, involving 427 patients. Previous surgical treatments have been reported in 214 patients (50.1%) and a median average baseline seizure frequency of 64.9 monthly seizures. In the short-term analysis, we observed a proportion of 67% (95% confidence interval [CI] 54%-79%) of responders and 33% (95% CI 21%-46%) of nonresponders. In addition, 4% (95% CI 0%-9%) of the patients presented increased seizure frequency. In the long-term analysis, we observed 72% (95% CI 66%-78%) responders and 27% (95% CI 21%-34%) nonresponders. Moreover, there was a 2% (95% CI 0%-5%) increase in seizure frequency. No procedure-related mortality was reported at any follow-up. ANT-DBS effectively treats refractory epilepsy, with lasting short-term and long-term benefits. It remains safe and efficient despite complications, showing no procedure-linked fatalities, high patient responsiveness, and minimal increased seizures. Consistent results over time and low morbidity/mortality rates emphasize its worth. Further research is necessary to diminish the discrepancy among results.
Collapse
Affiliation(s)
- Gabriel Verly
- Faculty of Medicine, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Thiffany Delfino
- Faculty of Medicine, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sávio Batista
- Faculty of Medicine, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thiago Lopes
- Faculty of Medicine, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vitória Carvalho
- Faculty of Medicine, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Billy McBenedict
- Faculty of Medicine, Universidade Federal Fluminense (UFF), Niterói, Rio de Janeiro, Brazil
| | - Matheus Oliveira
- Faculty of Medicine, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raphael Bertani
- Division of Neurological Surgery, Hospital das Clínicas, Universidade de São Paulo (USP), São Paulo, Brazil
| | | | - Wellingson Paiva
- Division of Neurological Surgery, Hospital das Clínicas, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Bruno Lima Pessoa
- Division of Neurological Surgery, Hospital Antônio Pedro, Universidade Federal Fluminense (UFF), Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
34
|
Zhao P, Ding X, Li L, Jiang G. A review of cell-type specific circuit mechanisms underlying epilepsy. ACTA EPILEPTOLOGICA 2024; 6:18. [PMID: 40217549 PMCID: PMC11960342 DOI: 10.1186/s42494-024-00159-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2025] Open
Abstract
Epilepsy is a prevalent neurological disorder, yet its underlying mechanisms remain incompletely understood. Accumulated studies have indicated that epilepsy is characterized by abnormal neural circuits. Understanding the circuit mechanisms is crucial for comprehending the pathogenesis of epilepsy. With advances in tracing and modulating tools for neural circuits, some epileptic circuits have been uncovered. This comprehensive review focuses on the circuit mechanisms underlying epilepsy in various neuronal subtypes, elucidating their distinct roles. Epileptic seizures are primarily characterized by the hyperactivity of glutamatergic neurons and inhibition of GABAergic neurons. However, specific activated GABAergic neurons and suppressed glutamatergic neurons exacerbate epilepsy through preferentially regulating the activity of GABAergic neurons within epileptic circuits. Distinct subtypes of GABAergic neurons contribute differently to epileptic activities, potentially due to their diverse connection patterns. Moreover, identical GABAergic neurons may assume distinct roles in different stages of epilepsy. Both GABAergic neurons and glutamatergic neurons with long-range projecting fibers innervate multiple nuclei; nevertheless, not all of these circuits contribute to epileptic activities. Epileptic circuits originating from the same nuclei may display diverse contributions to epileptic activities, and certain glutamatergic circuits from the same nuclei may even exert opposing effects on epilepsy. Neuromodulatory neurons, including cholinergic, serotonergic, dopaminergic, and noradrenergic neurons, are also implicated in epilepsy, although the underlying circuit mechanisms remain poorly understood. These studies suggest that epileptic nuclei establish intricate connections through cell-type-specific circuits and play pivotal roles in epilepsy. However, there are still limitations in knowledge and methods, and further understanding of epileptic circuits is crucial, particularly in the context of refractory epilepsy.
Collapse
Affiliation(s)
- Peilin Zhao
- Institute of Neurological Diseases, Affiliated Hospital of Clinical School of Medicine, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
- Nanomedicine Innovation Research and Development Transformation Institute, Affiliated Hospital of Clinical School of Medicine, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Xiaomi Ding
- Institute of Neurological Diseases, Affiliated Hospital of Clinical School of Medicine, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Lini Li
- Institute of Neurological Diseases, Affiliated Hospital of Clinical School of Medicine, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Guohui Jiang
- Institute of Neurological Diseases, Affiliated Hospital of Clinical School of Medicine, North Sichuan Medical College, Nanchong, Sichuan, 637000, China.
- Department of Neurology, Affiliated Hospital of Clinical School of Medicine, North Sichuan Medical College, Nanchong, Sichuan, 637000, China.
| |
Collapse
|
35
|
Shen Y, Gong Y, Da X, Gao S, Zhang S, Sun M, Yang Y, Qiu X, Li M, Zheng Y, Fei F, Wang Y, Chen Z, Xu C. Low-frequency Stimulation at the Subiculum Prevents Extensive Secondary Epileptogenesis in Temporal Lobe Epilepsy. Neurosci Bull 2024; 40:564-576. [PMID: 38244139 PMCID: PMC11127896 DOI: 10.1007/s12264-023-01173-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/05/2023] [Indexed: 01/22/2024] Open
Abstract
Secondary epileptogenesis is characterized by increased epileptic susceptibility and a tendency to generate epileptiform activities outside the primary focus. It is one of the major resultants of pharmacoresistance and failure of surgical outcomes in epilepsy, but still lacks effective treatments. Here, we aimed to test the effects of low-frequency stimulation (LFS) at the subiculum for secondary epileptogenesis in a mouse model. Here, secondary epileptogenesis was simulated at regions both contralateral and ipsilateral to the primary focus by applying successive kindling stimuli. Mice kindled at the right CA3 showed higher seizure susceptibilities at both the contralateral CA3 and the ipsilateral entorhinal cortex and had accelerated kindling processes compared with naive mice. LFS at the ipsilateral subiculum during the primary kindling progress at the right CA3 effectively prevented secondary epileptogenesis at both the contralateral CA3 and the ipsilateral entorhinal cortex, characterized by decreased seizure susceptibilities and a retarded kindling process at those secondary foci. Only application along with the primary epileptogenesis was effective. Notably, the effects of LFS on secondary epileptogenesis were associated with its inhibitory effect at the secondary focus through interfering with the enhancement of synaptic connections between the primary and secondary foci. These results imply that LFS at the subiculum is an effective preventive strategy for extensive secondary epileptogenesis in temporal lobe epilepsy and present the subiculum as a target with potential translational importance.
Collapse
Affiliation(s)
- Yujia Shen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yiwei Gong
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoli Da
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shajing Gao
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shuo Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310003, China
| | - Minjuan Sun
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yuanzhi Yang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaoyun Qiu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Menghan Li
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yang Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Department of Neurology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310003, China
| | - Fan Fei
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
36
|
Fetterhoff D, Costa M, Hellerstedt R, Johannessen R, Imbach L, Sarnthein J, Strange BA. Neuronal population representation of human emotional memory. Cell Rep 2024; 43:114071. [PMID: 38592973 PMCID: PMC11063625 DOI: 10.1016/j.celrep.2024.114071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 03/07/2024] [Accepted: 03/21/2024] [Indexed: 04/11/2024] Open
Abstract
Understanding how emotional processing modulates learning and memory is crucial for the treatment of neuropsychiatric disorders characterized by emotional memory dysfunction. We investigate how human medial temporal lobe (MTL) neurons support emotional memory by recording spiking activity from the hippocampus, amygdala, and entorhinal cortex during encoding and recognition sessions of an emotional memory task in patients with pharmaco-resistant epilepsy. Our findings reveal distinct representations for both remembered compared to forgotten and emotional compared to neutral scenes in single units and MTL population spiking activity. Additionally, we demonstrate that a distributed network of human MTL neurons exhibiting mixed selectivity on a single-unit level collectively processes emotion and memory as a network, with a small percentage of neurons responding conjointly to emotion and memory. Analyzing spiking activity enables a detailed understanding of the neurophysiological mechanisms underlying emotional memory and could provide insights into how emotion alters memory during healthy and maladaptive learning.
Collapse
Affiliation(s)
- Dustin Fetterhoff
- Laboratory for Clinical Neuroscience, Center for Biomedical Technology, Universidad Politécnica de Madrid, IdISSC, Madrid, Spain.
| | - Manuela Costa
- Laboratory for Clinical Neuroscience, Center for Biomedical Technology, Universidad Politécnica de Madrid, IdISSC, Madrid, Spain
| | - Robin Hellerstedt
- Laboratory for Clinical Neuroscience, Center for Biomedical Technology, Universidad Politécnica de Madrid, IdISSC, Madrid, Spain
| | - Rebecca Johannessen
- Swiss Epilepsy Center, Klinik Lengg, Zurich, Switzerland; Department of Psychology, University of Zurich, Switzerland
| | - Lukas Imbach
- Swiss Epilepsy Center, Klinik Lengg, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Johannes Sarnthein
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland; Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Bryan A Strange
- Laboratory for Clinical Neuroscience, Center for Biomedical Technology, Universidad Politécnica de Madrid, IdISSC, Madrid, Spain; Reina Sofia Centre for Alzheimer's Research, Madrid, Spain
| |
Collapse
|
37
|
Kremen V, Sladky V, Mivalt F, Gregg NM, Balzekas I, Marks V, Brinkmann BH, Lundstrom BN, Cui J, St Louis EK, Croarkin P, Alden EC, Fields J, Crockett K, Adolf J, Bilderbeek J, Hermes D, Messina S, Miller KJ, Van Gompel J, Denison T, Worrell GA. A platform for brain network sensing and stimulation with quantitative behavioral tracking: Application to limbic circuit epilepsy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.09.24302358. [PMID: 38370724 PMCID: PMC10871449 DOI: 10.1101/2024.02.09.24302358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Temporal lobe epilepsy is a common neurological disease characterized by recurrent seizures. These seizures often originate from limbic networks and people also experience chronic comorbidities related to memory, mood, and sleep (MMS). Deep brain stimulation targeting the anterior nucleus of the thalamus (ANT-DBS) is a proven therapy, but the optimal stimulation parameters remain unclear. We developed a neurotechnology platform for tracking seizures and MMS to enable data streaming between an investigational brain sensing-stimulation implant, mobile devices, and a cloud environment. Artificial Intelligence algorithms provided accurate catalogs of seizures, interictal epileptiform spikes, and wake-sleep brain states. Remotely administered memory and mood assessments were used to densely sample cognitive and behavioral response during ANT-DBS. We evaluated the efficacy of low-frequency versus high-frequency ANT-DBS. They both reduced seizures, but low-frequency ANT-DBS showed greater reductions and better sleep and memory. These results highlight the potential of synchronized brain sensing and behavioral tracking for optimizing neuromodulation therapy.
Collapse
|
38
|
Lucas A, Mouchtaris S, Tranquille A, Sinha N, Gallagher R, Mojena M, Stein JM, Das S, Davis KA. Mapping hippocampal and thalamic atrophy in epilepsy: A 7-T magnetic resonance imaging study. Epilepsia 2024; 65:1092-1106. [PMID: 38345348 DOI: 10.1111/epi.17908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 04/16/2024]
Abstract
OBJECTIVE Epilepsy patients are often grouped together by clinical variables. Quantitative neuroimaging metrics can provide a data-driven alternative for grouping of patients. In this work, we leverage ultra-high-field 7-T structural magnetic resonance imaging (MRI) to characterize volumetric atrophy patterns across hippocampal subfields and thalamic nuclei in drug-resistant focal epilepsy. METHODS Forty-two drug-resistant epilepsy patients and 13 controls with 7-T structural neuroimaging were included in this study. We measured hippocampal subfield and thalamic nuclei volumetry, and applied an unsupervised machine learning algorithm, Latent Dirichlet Allocation (LDA), to estimate atrophy patterns across the hippocampal subfields and thalamic nuclei of patients. We studied the association between predefined clinical groups and the estimated atrophy patterns. Additionally, we used hierarchical clustering on the LDA factors to group patients in a data-driven approach. RESULTS In patients with mesial temporal sclerosis (MTS), we found a significant decrease in volume across all ipsilateral hippocampal subfields (false discovery rate-corrected p [pFDR] < .01) as well as in some ipsilateral (pFDR < .05) and contralateral (pFDR < .01) thalamic nuclei. In left temporal lobe epilepsy (L-TLE) we saw ipsilateral hippocampal and some bilateral thalamic atrophy (pFDR < .05), whereas in right temporal lobe epilepsy (R-TLE) extensive bilateral hippocampal and thalamic atrophy was observed (pFDR < .05). Atrophy factors demonstrated that our MTS cohort had two atrophy phenotypes: one that affected the ipsilateral hippocampus and one that affected the ipsilateral hippocampus and bilateral anterior thalamus. Atrophy factors demonstrated posterior thalamic atrophy in R-TLE, whereas an anterior thalamic atrophy pattern was more common in L-TLE. Finally, hierarchical clustering of atrophy patterns recapitulated clusters with homogeneous clinical properties. SIGNIFICANCE Leveraging 7-T MRI, we demonstrate widespread hippocampal and thalamic atrophy in epilepsy. Through unsupervised machine learning, we demonstrate patterns of volumetric atrophy that vary depending on disease subtype. Incorporating these atrophy patterns into clinical practice could help better stratify patients to surgical treatments and specific device implantation strategies.
Collapse
Affiliation(s)
- Alfredo Lucas
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sofia Mouchtaris
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ashley Tranquille
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nishant Sinha
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ryan Gallagher
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marissa Mojena
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joel M Stein
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sandhitsu Das
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kathryn A Davis
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
39
|
Sharma A, Parfyonov M, Tiefenbach J, Hogue O, Nero N, Jehi L, Serletis D, Bingaman W, Gupta A, Rammo R. Predictors of therapeutic response following thalamic neuromodulation for drug-resistant pediatric epilepsy: A systematic review and individual patient data meta-analysis. Epilepsia 2024; 65:542-555. [PMID: 38265348 DOI: 10.1111/epi.17883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/02/2023] [Accepted: 01/05/2024] [Indexed: 01/25/2024]
Abstract
We sought to perform a systematic review and individual participant data meta-analysis to identify predictors of treatment response following thalamic neuromodulation in pediatric patients with medically refractory epilepsy. Electronic databases (MEDLINE, Ovid, Embase, and Cochrane) were searched, with no language or data restriction, to identify studies reporting seizure outcomes in pediatric populations following deep brain stimulation (DBS) or responsive neurostimulation (RNS) implantation in thalamic nuclei. Studies featuring individual participant data of patients with primary or secondary generalized drug-resistant epilepsy were included. Response to therapy was defined as >50% reduction in seizure frequency from baseline. Of 417 citations, 21 articles reporting on 88 participants were eligible. Mean age at implantation was 13.07 ± 3.49 years. Fifty (57%) patients underwent DBS, and 38 (43%) RNS. Sixty (68%) patients were implanted in centromedian nucleus and 23 (26%) in anterior thalamic nucleus, and five (6%) had both targets implanted. Seventy-four (84%) patients were implanted bilaterally. The median time to last follow-up was 12 months (interquartile range = 6.75-26.25). Sixty-nine percent of patients achieved response to treatment. Age, target, modality, and laterality had no significant association with response in univariate logistic regression. Until thalamic neuromodulation gains widespread approval for use in pediatric patients, data on efficacy will continue to be limited to small retrospective cohorts and case series. The inherent bias of these studies can be overcome by using individual participant data. Thalamic neuromodulation appears to be a safe and effective treatment for epilepsy. Larger, prolonged prospective, multicenter studies are warranted to further evaluate the efficacy of DBS over RNS in this patient population where resection for curative intent is not a safe option.
Collapse
Affiliation(s)
- Akshay Sharma
- Department of Neurological Surgery, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Maksim Parfyonov
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Jakov Tiefenbach
- Center for Neurologic Restoration, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Olivia Hogue
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Neil Nero
- Education Institute, Floyd D. Loop Alumni Library, Cleveland Clinic, Cleveland, Ohio, USA
| | - Lara Jehi
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Demitre Serletis
- Department of Neurological Surgery, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - William Bingaman
- Department of Neurological Surgery, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Ajay Gupta
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Richard Rammo
- Department of Neurological Surgery, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Center for Neurologic Restoration, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
40
|
Marks VS, Balzekas I, Grimm JA, Richner TJ, Sladky V, Mivalt F, Gregg NM, Lundstrom BN, Miller KJ, Joseph B, Van Gompel J, Brinkmann B, Croarkin P, Alden EC, Kremen V, Kucewicz M, Worrell GA. High and low frequency anterior nucleus of thalamus deep brain stimulation: Impact on memory and mood in five patients with treatment resistant temporal lobe epilepsy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.14.24302765. [PMID: 38405801 PMCID: PMC10888989 DOI: 10.1101/2024.02.14.24302765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
High frequency anterior nucleus of the thalamus deep brain stimulation (ANT DBS) is an established therapy for treatment resistant focal epilepsies. Although high frequency-ANT DBS is well tolerated, patients are rarely seizure free and the efficacy of other DBS parameters and their impact on comorbidities of epilepsy such as depression and memory dysfunction remain unclear. The purpose of this study was to assess the impact of low vs high frequency ANT DBS on verbal memory and self-reported anxiety and depression symptoms. Five patients with treatment resistant temporal lobe epilepsy were implanted with an investigational brain stimulation and sensing device capable of ANT DBS and ambulatory intracranial electroencephalographic (iEEG) monitoring, enabling long-term detection of electrographic seizures. While patients received therapeutic high frequency (100 and 145 Hz continuous and cycling) and low frequency (2 and 7 Hz continuous) stimulation, they completed weekly free recall verbal memory tasks and thrice weekly self-reports of anxiety and depression symptom severity. Mixed effects models were then used to evaluate associations between memory scores, anxiety and depression self-reports, seizure counts, and stimulation frequency. Memory score was significantly associated with stimulation frequency, with higher free recall verbal memory scores during low frequency ANT DBS. Self-reported anxiety and depression symptom severity was not significantly associated with stimulation frequency. These findings suggest the choice of ANT DBS stimulation parameter may impact patients' cognitive function, independently of its impact on seizure rates.
Collapse
Affiliation(s)
- Victoria S Marks
- Department of Neurology, Bioelectronics, Neurophysiology, and Engineering Laboratory, Mayo Clinic, Rochester, MN, United States
- Biomedical Engineering and Physiology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, United States
| | - Irena Balzekas
- Department of Neurology, Bioelectronics, Neurophysiology, and Engineering Laboratory, Mayo Clinic, Rochester, MN, United States
- Biomedical Engineering and Physiology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, United States
- Mayo Clinic Alix School of Medicine, Rochester, MN, United States
- Mayo Clinic Medical Scientist Training Program, Rochester, MN, United States
| | - Jessica A Grimm
- Department of Biostatistics, Mayo Clinic, Rochester, MN, United States
| | - Thomas J Richner
- Department of Neurology, Bioelectronics, Neurophysiology, and Engineering Laboratory, Mayo Clinic, Rochester, MN, United States
| | - Vladimir Sladky
- Department of Neurology, Bioelectronics, Neurophysiology, and Engineering Laboratory, Mayo Clinic, Rochester, MN, United States
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Prague, Czechia
- International Clinic Research Center, St. Anne's University Research Hospital, Brno, Czechia
| | - Filip Mivalt
- Department of Neurology, Bioelectronics, Neurophysiology, and Engineering Laboratory, Mayo Clinic, Rochester, MN, United States
- Faculty of Electrical Engineering and Communication, Department of Biomedical Engineering, Brno University of Technology, Brno, Czechia
| | - Nicholas M Gregg
- Department of Neurology, Bioelectronics, Neurophysiology, and Engineering Laboratory, Mayo Clinic, Rochester, MN, United States
| | - Brian N Lundstrom
- Department of Neurology, Bioelectronics, Neurophysiology, and Engineering Laboratory, Mayo Clinic, Rochester, MN, United States
- Biomedical Engineering and Physiology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, United States
- Mayo Clinic Alix School of Medicine, Rochester, MN, United States
- Mayo Clinic Medical Scientist Training Program, Rochester, MN, United States
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Prague, Czechia
- Faculty of Electrical Engineering and Communication, Department of Biomedical Engineering, Brno University of Technology, Brno, Czechia
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States
- Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Prague, Czechia
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
- International Clinic Research Center, St. Anne's University Research Hospital, Brno, Czechia
- Department of Biostatistics, Mayo Clinic, Rochester, MN, United States
- BioTechMed Center, Brain & Mind Electrophysiology Lab, Multimedia Systems Department, Faculty of Electronics, Telecommunication and Informatics, Gdansk University of Technology, 80-233 Gdansk, Poland
| | - Kai J Miller
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States
| | - Boney Joseph
- Department of Neurology, Bioelectronics, Neurophysiology, and Engineering Laboratory, Mayo Clinic, Rochester, MN, United States
| | - Jamie Van Gompel
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States
| | - Benjamin Brinkmann
- Department of Neurology, Bioelectronics, Neurophysiology, and Engineering Laboratory, Mayo Clinic, Rochester, MN, United States
| | - Paul Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Eva C Alden
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Vaclav Kremen
- Department of Neurology, Bioelectronics, Neurophysiology, and Engineering Laboratory, Mayo Clinic, Rochester, MN, United States
- Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Prague, Czechia
| | - Michal Kucewicz
- BioTechMed Center, Brain & Mind Electrophysiology Lab, Multimedia Systems Department, Faculty of Electronics, Telecommunication and Informatics, Gdansk University of Technology, 80-233 Gdansk, Poland
| | - Gregory A Worrell
- Department of Neurology, Bioelectronics, Neurophysiology, and Engineering Laboratory, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
41
|
Wu D, Liu J, Ren L. Identification of a common brain network associated with lesional epilepsy. ACTA EPILEPTOLOGICA 2023; 5:26. [PMID: 40217323 PMCID: PMC11960254 DOI: 10.1186/s42494-023-00138-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/13/2023] [Indexed: 04/15/2025] Open
Abstract
Stroke is the leading cause of neurological diseases globally. Remarkably, epilepsy is a common complication of stroke, which greatly impairs the quality of life of patients and poses a significant clinical challenge. Therefore, a better understanding of the risk factors for poststroke epilepsy is crucial. A recent study published in JAMA Neurology studied the brain network associated with poststroke epilepsy in a group of 76 patients compared to a cohort of 625 control patients using lesion mapping techniques. The results showed that negative functional connectivity between lesion locations and regions in the basal ganglia and cerebellum confers a higher risk of developing epilepsy after stroke. The lesion network nodes associated with epilepsy were identical across different lesion types including hematomas, traumas, tumors, and tubers. Furthermore, the poststroke epilepsy brain network has potential therapeutic relevance to deep brain stimulation (DBS). In a cohort of 30 patients, the functional connectivity between anterior thalamic DBS sites and the lesion network nodes was found to correlate with seizure control after DBS. In summary, the finding provides a novel method for predicting the risk of poststroke epilepsy in patients and may guide brain stimulation treatments for epilepsy.
Collapse
Affiliation(s)
- Di Wu
- Department of Neurology, Clinical Center for Epilepsy, Xuanwu Hospital, Capital Medical University, NO.45 Changchun Street, Beijing, 100053, Xicheng District, China
- National Center for Neurological Disorders, Beijing, 100053, China
| | - Jinghui Liu
- Department of Neurology, Clinical Center for Epilepsy, Xuanwu Hospital, Capital Medical University, NO.45 Changchun Street, Beijing, 100053, Xicheng District, China
- National Center for Neurological Disorders, Beijing, 100053, China
| | - Liankun Ren
- Department of Neurology, Clinical Center for Epilepsy, Xuanwu Hospital, Capital Medical University, NO.45 Changchun Street, Beijing, 100053, Xicheng District, China.
- National Center for Neurological Disorders, Beijing, 100053, China.
- Chinese Institute for Brain Research, Beijing, 100053, China.
| |
Collapse
|
42
|
Piazza MG, Varga G, Welch W, Abel TJ. The Utility of Responsive Neurostimulation for the Treatment of Pediatric Drug-Resistant Epilepsy. Brain Sci 2023; 13:1455. [PMID: 37891823 PMCID: PMC10605851 DOI: 10.3390/brainsci13101455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Drug-resistant epilepsy (DRE) has a strongly negative impact on quality of life, as well as the development of pediatric patients. Surgical treatments have evolved over time, including more invasive craniotomies for resection or disconnection. More recently, neuromodulation techniques have been employed as a less invasive option for patients. Responsive neurostimulation (RNS) is the first closed-loop technology that allows for both treatment and device data collection, which allows for an internal assessment of the efficacy of treatment. This novel technology has been approved in adults and has been used off label in pediatrics. This review seeks to describe this technology, its history, and future directions.
Collapse
Affiliation(s)
- Martin G. Piazza
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15260, USA; (M.G.P.); (G.V.)
| | - Gregory Varga
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15260, USA; (M.G.P.); (G.V.)
| | - William Welch
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - Taylor J. Abel
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15260, USA; (M.G.P.); (G.V.)
| |
Collapse
|
43
|
Philipp LR, Kennedy BC. The Wild West of Pediatric Epilepsy-Thalamic Stimulation. World Neurosurg 2023; 178:262-263. [PMID: 37580189 DOI: 10.1016/j.wneu.2023.07.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Affiliation(s)
- Lucas R Philipp
- Department of Neurosurgery, Thomas Jefferson University Hospitals, Philadelphia, Pennsylvania, USA
| | - Benjamin C Kennedy
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
44
|
Moos WH, Faller DV, Glavas IP, Kanara I, Kodukula K, Pernokas J, Pernokas M, Pinkert CA, Powers WR, Sampani K, Steliou K, Vavvas DG. Epilepsy: Mitochondrial connections to the 'Sacred' disease. Mitochondrion 2023; 72:84-101. [PMID: 37582467 DOI: 10.1016/j.mito.2023.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/03/2023] [Accepted: 08/12/2023] [Indexed: 08/17/2023]
Abstract
Over 65 million people suffer from recurrent, unprovoked seizures. The lack of validated biomarkers specific for myriad forms of epilepsy makes diagnosis challenging. Diagnosis and monitoring of childhood epilepsy add to the need for non-invasive biomarkers, especially when evaluating antiseizure medications. Although underlying mechanisms of epileptogenesis are not fully understood, evidence for mitochondrial involvement is substantial. Seizures affect 35%-60% of patients diagnosed with mitochondrial diseases. Mitochondrial dysfunction is pathophysiological in various epilepsies, including those of non-mitochondrial origin. Decreased ATP production caused by malfunctioning brain cell mitochondria leads to altered neuronal bioenergetics, metabolism and neurological complications, including seizures. Iron-dependent lipid peroxidation initiates ferroptosis, a cell death pathway that aligns with altered mitochondrial bioenergetics, metabolism and morphology found in neurodegenerative diseases (NDDs). Studies in mouse genetic models with seizure phenotypes where the function of an essential selenoprotein (GPX4) is targeted suggest roles for ferroptosis in epilepsy. GPX4 is pivotal in NDDs, where selenium protects interneurons from ferroptosis. Selenium is an essential central nervous system micronutrient and trace element. Low serum concentrations of selenium and other trace elements and minerals, including iron, are noted in diagnosing childhood epilepsy. Selenium supplements alleviate intractable seizures in children with reduced GPX activity. Copper and cuproptosis, like iron and ferroptosis, link to mitochondria and NDDs. Connecting these mechanistic pathways to selenoproteins provides new insights into treating seizures, pointing to using medicines including prodrugs of lipoic acid to treat epilepsy and to potential alternative therapeutic approaches including transcranial magnetic stimulation (transcranial), photobiomodulation and vagus nerve stimulation.
Collapse
Affiliation(s)
- Walter H Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, CA, USA.
| | - Douglas V Faller
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Cancer Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Ioannis P Glavas
- Department of Ophthalmology, New York University School of Medicine, New York, NY, USA
| | | | | | - Julie Pernokas
- Advanced Dental Associates of New England, Woburn, MA, USA
| | - Mark Pernokas
- Advanced Dental Associates of New England, Woburn, MA, USA
| | - Carl A Pinkert
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Whitney R Powers
- Department of Health Sciences, Boston University, Boston, MA, USA; Department of Anatomy, Boston University School of Medicine, Boston, MA, USA
| | - Konstantina Sampani
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA; PhenoMatriX, Inc., Natick, MA, USA
| | - Demetrios G Vavvas
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| |
Collapse
|
45
|
Chen Z, Wang Y, Avoli M. Preface to the special issue neural circuit mechanisms in epilepsy and targeted therapeutics. Neurobiol Dis 2023; 185:106256. [PMID: 37562655 DOI: 10.1016/j.nbd.2023.106256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023] Open
Affiliation(s)
- Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Massimo Avoli
- Montreal Neurological Institute-Hospital, McGill University, Montreal H3A 2B4, QC, Canada.
| |
Collapse
|
46
|
Kumar VJ, Scheffler K, Grodd W. The structural connectivity mapping of the intralaminar thalamic nuclei. Sci Rep 2023; 13:11938. [PMID: 37488187 PMCID: PMC10366221 DOI: 10.1038/s41598-023-38967-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/18/2023] [Indexed: 07/26/2023] Open
Abstract
The intralaminar nuclei of the thalamus play a pivotal role in awareness, conscious experience, arousal, sleep, vigilance, as well as in cognitive, sensory, and sexual processing. Nonetheless, in humans, little is known about the direct involvement of these nuclei in such multifaceted functions and their structural connections in the brain. Thus, examining the versatility of structural connectivity of the intralaminar nuclei with the rest of the brain seems reasonable. Herein, we attempt to show the direct structural connectivity of the intralaminar nuclei to diencephalic, mesencephalic, and cortical areas using probabilistic tracking of the diffusion data from the human connectome project. The intralaminar nuclei fiber distributions span a wide range of subcortical and cortical areas. Moreover, the central medial and parafascicular nucleus reveal similar connectivity to the temporal, visual, and frontal cortices with only slight variability. The central lateral nucleus displays a refined projection to the superior colliculus and fornix. The centromedian nucleus seems to be an essential component of the subcortical somatosensory system, as it mainly displays connectivity via the medial and superior cerebellar peduncle to the brainstem and the cerebellar lobules. The subparafascicular nucleus projects to the somatosensory processing areas. It is interesting to note that all intralaminar nuclei have connections to the brainstem. In brief, the structural connectivity of the intralaminar nuclei aligns with the structural core of various functional demands for arousal, emotion, cognition, sensory, vision, and motor processing. This study sheds light on our understanding of the structural connectivity of the intralaminar nuclei with cortical and subcortical structures, which is of great interest to a broader audience in clinical and neuroscience research.
Collapse
Affiliation(s)
| | - Klaus Scheffler
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, University Clinic Tübingen, Tübingen, Germany
| | - Wolfgang Grodd
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
47
|
Madireddy S, Madireddy S. Therapeutic Strategies to Ameliorate Neuronal Damage in Epilepsy by Regulating Oxidative Stress, Mitochondrial Dysfunction, and Neuroinflammation. Brain Sci 2023; 13:brainsci13050784. [PMID: 37239256 DOI: 10.3390/brainsci13050784] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Epilepsy is a central nervous system disorder involving spontaneous and recurring seizures that affects 50 million individuals globally. Because approximately one-third of patients with epilepsy do not respond to drug therapy, the development of new therapeutic strategies against epilepsy could be beneficial. Oxidative stress and mitochondrial dysfunction are frequently observed in epilepsy. Additionally, neuroinflammation is increasingly understood to contribute to the pathogenesis of epilepsy. Mitochondrial dysfunction is also recognized for its contributions to neuronal excitability and apoptosis, which can lead to neuronal loss in epilepsy. This review focuses on the roles of oxidative damage, mitochondrial dysfunction, NAPDH oxidase, the blood-brain barrier, excitotoxicity, and neuroinflammation in the development of epilepsy. We also review the therapies used to treat epilepsy and prevent seizures, including anti-seizure medications, anti-epileptic drugs, anti-inflammatory therapies, and antioxidant therapies. In addition, we review the use of neuromodulation and surgery in the treatment of epilepsy. Finally, we present the role of dietary and nutritional strategies in the management of epilepsy, including the ketogenic diet and the intake of vitamins, polyphenols, and flavonoids. By reviewing available interventions and research on the pathophysiology of epilepsy, this review points to areas of further development for therapies that can manage epilepsy.
Collapse
Affiliation(s)
- Sahithi Madireddy
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|