2
|
Tamura T, Cheng C, Villaseñor-Altamirano A, Yamada K, Ikeda K, Hayashida K, Menon JA, Chen XD, Chung H, Varon J, Chen J, Choi J, Cullen AM, Guo J, Lin X, Olenchock BA, Pinilla-Vera MA, Manandhar R, Sheikh MDA, Hou PC, Lawler PR, Oldham WM, Seethala RR, Immunology of Cardiac Arrest Network (I-CAN), Baron RM, Bohula EA, Morrow DA, Blumberg RS, Chen F, Merriam LT, Weissman AJ, Brenner MB, Chen X, Ichinose F, Kim EY. Diverse NKT cells regulate early inflammation and neurological outcomes after cardiac arrest and resuscitation. Sci Transl Med 2024; 16:eadq5796. [PMID: 39630883 PMCID: PMC11792709 DOI: 10.1126/scitranslmed.adq5796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/30/2024] [Indexed: 12/07/2024]
Abstract
Neurological injury drives most deaths and morbidity among patients hospitalized for out-of-hospital cardiac arrest (OHCA). Despite its clinical importance, there are no effective pharmacological therapies targeting post-cardiac arrest (CA) neurological injury. Here, we analyzed circulating immune cells from a large cohort of patients with OHCA, finding that lymphopenia independently associated with poor neurological outcomes. Single-cell RNA sequencing of immune cells showed that T cells with features of both innate T cells and natural killer (NK) cells were increased in patients with favorable neurological outcomes. We more specifically identified an early increase in circulating diverse NKT (dNKT) cells in a separate cohort of patients with OHCA who had good neurological outcomes. These cells harbored a diverse T cell receptor repertoire but were consistently specific for sulfatide antigen. In mice, we found that sulfatide-specific dNKT cells trafficked to the brain after CA and resuscitation. In the brains of mice lacking NKT cells (Cd1d-/-), we observed increased inflammatory chemokine and cytokine expression and accumulation of macrophages when compared with wild-type mice. Cd1d-/- mice also had increased neuronal injury, neurological dysfunction, and worse mortality after CA. To therapeutically enhance dNKT cell activity, we treated mice with sulfatide lipid after CA, showing that it improved neurological function. Together, these data show that sulfatide-specific dNKT cells are associated with good neurological outcomes after clinical OHCA and are neuroprotective in mice after CA. Strategies to enhance the number or function of dNKT cells may thus represent a treatment approach for CA.
Collapse
Affiliation(s)
- Tomoyoshi Tamura
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School; Boston, MA 02115
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Changde Cheng
- Department of Computational Biology, St Jude Children’s Research Hospital, Nashville 38105, TN
- Department of Medicine, Division of Hematology and Oncology, Stem Cell Biology Program, University of Alabama at Birmingham, Birmingham 35233, AL
| | - Ana Villaseñor-Altamirano
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School; Boston, MA 02115
| | - Kohei Yamada
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School; Boston, MA 02115
| | - Kohei Ikeda
- Harvard Medical School; Boston, MA 02115
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston 02114, MA
| | - Kei Hayashida
- Harvard Medical School; Boston, MA 02115
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston 02114, MA
| | - Jaivardhan A Menon
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School; Boston, MA 02115
| | - Xi Dawn Chen
- Broad Institute of Harvard and MIT, Cambridge 02138, MA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
| | - Hattie Chung
- Broad Institute of Harvard and MIT, Cambridge 02138, MA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
| | - Jack Varon
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School; Boston, MA 02115
| | - Jiani Chen
- Department of Computational Biology, St Jude Children’s Research Hospital, Nashville 38105, TN
| | - Jiyoung Choi
- Department of Medicine, Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Boston 02115, MA
| | - Aidan M. Cullen
- Department of Medicine, Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Boston 02115, MA
| | - Jingyu Guo
- Department of Medicine, Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Boston 02115, MA
| | - Xi Lin
- Harvard Medical School; Boston, MA 02115
- Department of Medicine, Division of Gastroenterology, Brigham and Women’s Hospital, Boston, MA 02142, USA
| | - Benjamin A. Olenchock
- Harvard Medical School; Boston, MA 02115
- Department of Medicine, Division of Cardiovascular Division, Brigham and Women’s Hospital, Boston 02115, MA
| | - Mayra A. Pinilla-Vera
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115
| | - Reshmi Manandhar
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School; Boston, MA 02115
| | - Muhammad Dawood Amir Sheikh
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115
| | - Peter C. Hou
- Harvard Medical School; Boston, MA 02115
- Department of Emergency Medicine, Division of Emergency and Critical Care Medicine, Brigham and Women’s Hospital, Boston 02115, MA
| | - Patrick R. Lawler
- McGill University Health Centre, Montreal, Quebec H3A 2B4, Canada
- University of Toronto, Toronto, Ontario M5R 0A3, Canada
| | - William M. Oldham
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School; Boston, MA 02115
| | - Raghu R. Seethala
- Harvard Medical School; Boston, MA 02115
- Department of Emergency Medicine, Division of Emergency and Critical Care Medicine, Brigham and Women’s Hospital, Boston 02115, MA
| | | | - Rebecca M. Baron
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School; Boston, MA 02115
| | - Erin A. Bohula
- Harvard Medical School; Boston, MA 02115
- Department of Medicine, Division of Cardiovascular Division, Brigham and Women’s Hospital, Boston 02115, MA
| | - David A. Morrow
- Harvard Medical School; Boston, MA 02115
- Department of Medicine, Division of Cardiovascular Division, Brigham and Women’s Hospital, Boston 02115, MA
| | - Richard S. Blumberg
- Harvard Medical School; Boston, MA 02115
- Department of Medicine, Division of Gastroenterology, Brigham and Women’s Hospital, Boston, MA 02142, USA
| | - Fei Chen
- Broad Institute of Harvard and MIT, Cambridge 02138, MA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
| | - Louis T. Merriam
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115
| | - Alexandra J. Weissman
- Department of Emergency Medicine, University of Pittsburgh School of Medicine; Pittsburgh 15261, PA
| | - Michael B. Brenner
- Harvard Medical School; Boston, MA 02115
- Department of Medicine, Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Boston 02115, MA
| | - Xiang Chen
- Department of Computational Biology, St Jude Children’s Research Hospital, Nashville 38105, TN
| | - Fumito Ichinose
- Harvard Medical School; Boston, MA 02115
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston 02114, MA
| | - Edy Y. Kim
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School; Boston, MA 02115
| |
Collapse
|
3
|
Curto Y, Carceller H, Klimczak P, Perez-Rando M, Wang Q, Grewe K, Kawaguchi R, Rizzoli S, Geschwind D, Nave KA, Teruel-Marti V, Singh M, Ehrenreich H, Nácher J. Erythropoietin restrains the inhibitory potential of interneurons in the mouse hippocampus. Mol Psychiatry 2024; 29:2979-2996. [PMID: 38622200 PMCID: PMC11449791 DOI: 10.1038/s41380-024-02528-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 04/17/2024]
Abstract
Severe psychiatric illnesses, for instance schizophrenia, and affective diseases or autism spectrum disorders, have been associated with cognitive impairment and perturbed excitatory-inhibitory balance in the brain. Effects in juvenile mice can elucidate how erythropoietin (EPO) might aid in rectifying hippocampal transcriptional networks and synaptic structures of pyramidal lineages, conceivably explaining mitigation of neuropsychiatric diseases. An imminent conundrum is how EPO restores synapses by involving interneurons. By analyzing ~12,000 single-nuclei transcriptomic data, we generated a comprehensive molecular atlas of hippocampal interneurons, resolved into 15 interneuron subtypes. Next, we studied molecular alterations upon recombinant human (rh)EPO and saw that gene expression changes relate to synaptic structure, trans-synaptic signaling and intracellular catabolic pathways. Putative ligand-receptor interactions between pyramidal and inhibitory neurons, regulating synaptogenesis, are altered upon rhEPO. An array of in/ex vivo experiments confirms that specific interneuronal populations exhibit reduced dendritic complexity, synaptic connectivity, and changes in plasticity-related molecules. Metabolism and inhibitory potential of interneuron subgroups are compromised, leading to greater excitability of pyramidal neurons. To conclude, improvement by rhEPO of neuropsychiatric phenotypes may partly owe to restrictive control over interneurons, facilitating re-connectivity and synapse development.
Collapse
Affiliation(s)
- Yasmina Curto
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
- Neuroplasticity Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Héctor Carceller
- Neuroplasticity Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
- Spanish National Network for Research in Mental Health (CIBERSAM), Madrid, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| | - Patrycja Klimczak
- Neuroplasticity Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
- Spanish National Network for Research in Mental Health (CIBERSAM), Madrid, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| | - Marta Perez-Rando
- Neuroplasticity Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
- Spanish National Network for Research in Mental Health (CIBERSAM), Madrid, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| | - Qing Wang
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Katharina Grewe
- Department of Neuro- & Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Riki Kawaguchi
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Silvio Rizzoli
- Department of Neuro- & Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Daniel Geschwind
- Institute of Precision Health, University of California Los Angeles, Los Angeles, CA, USA
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| | - Vicent Teruel-Marti
- Neuronal Circuits Laboratory, Department of Anatomy and Human Embryology, University of Valencia, Valencia, Spain
| | - Manvendra Singh
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany.
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany.
- Georg-August-University, Göttingen, Germany.
- Experimental Medicine, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J 5, Mannheim, Germany.
| | - Juan Nácher
- Neuroplasticity Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain.
- Spanish National Network for Research in Mental Health (CIBERSAM), Madrid, Spain.
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain.
| |
Collapse
|
4
|
Xie G, Qin Y, Wu N, Han X, Li J. Single-Nucleus Transcriptome Profiling from the Hippocampus of a PTSD Mouse Model and CBD-Treated Cohorts. Genes (Basel) 2024; 15:519. [PMID: 38674453 PMCID: PMC11050643 DOI: 10.3390/genes15040519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is the most common psychiatric disorder after a catastrophic event; however, the efficacious treatment options remain insufficient. Increasing evidence suggests that cannabidiol (CBD) exhibits optimal therapeutic effects for treating PTSD. To elucidate the cell-type-specific transcriptomic pathology of PTSD and the mechanisms of CBD against this disease, we conducted single-nucleus RNA sequencing (snRNA-seq) in the hippocampus of PTSD-modeled mice and CBD-treated cohorts. We constructed a mouse model by adding electric foot shocks following exposure to single prolonged stress (SPS+S) and tested the freezing time, anxiety-like behavior, and cognitive behavior. CBD was administrated before every behavioral test. The PTSD-modeled mice displayed behaviors resembling those of PTSD in all behavioral tests, and CBD treatment alleviated all of these PTSD-like behaviors (n = 8/group). Three mice with representative behavioral phenotypes were selected from each group for snRNA-seq 15 days after the SPS+S. We primarily focused on the excitatory neurons (ExNs) and inhibitory neurons (InNs), which accounted for 68.4% of the total cell annotations. A total of 88 differentially upregulated genes and 305 differentially downregulated genes were found in the PTSD mice, which were found to exhibit significant alterations in pathways and biological processes associated with fear response, synaptic communication, protein synthesis, oxidative phosphorylation, and oxidative stress response. A total of 63 overlapping genes in InNs were identified as key genes for CBD in the treatment of PTSD. Subsequent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that the anti-PTSD effect of CBD was related to the regulation of protein synthesis, oxidative phosphorylation, oxidative stress response, and fear response. Furthermore, gene set enrichment analysis (GSEA) revealed that CBD also enhanced retrograde endocannabinoid signaling in ExNs, which was found to be suppressed in the PTSD group. Our research may provide a potential explanation for the pathogenesis of PTSD and facilitate the discovery of novel therapeutic targets for drug development. Moreover, it may shed light on the therapeutic mechanisms of CBD.
Collapse
Affiliation(s)
| | | | | | - Xiao Han
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (G.X.); (Y.Q.); (N.W.); (J.L.)
| | | |
Collapse
|
5
|
Abstract
Neuroscience research greatly benefits from single-cell sequencing technologies, which can reveal transcriptional alterations on a cellular level. However, preparing single-cell suspensions is technically challenging, requires experience, and has several limitations that can influence the transcriptional readout. Performing sequencing of single nuclei instead of single cells alleviates several of the challenges of sample preparation and highlights acute nuclear transcription. Here, we provide a protocol to prepare a nuclei suspension for single-nucleus RNA-sequencing for cell type-specific transcriptional profiling of brain tissue using the 10x Genomics single-cell gene expression assay. Furthermore, we highlight important aspects to consider during experimental design and data analysis. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Preparation of single-nucleus suspension Basic Protocol 2: Preparation and sequencing of single-nucleus libraries for RNA-seq.
Collapse
Affiliation(s)
- Rebecca Waag
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Johannes Bohacek
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Fernández-Moya SM, Ganesh AJ, Plass M. Neural cell diversity in the light of single-cell transcriptomics. Transcription 2023; 14:158-176. [PMID: 38229529 PMCID: PMC10807474 DOI: 10.1080/21541264.2023.2295044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/02/2023] [Accepted: 11/10/2023] [Indexed: 01/18/2024] Open
Abstract
The development of highly parallel and affordable high-throughput single-cell transcriptomics technologies has revolutionized our understanding of brain complexity. These methods have been used to build cellular maps of the brain, its different regions, and catalog the diversity of cells in each of them during development, aging and even in disease. Now we know that cellular diversity is way beyond what was previously thought. Single-cell transcriptomics analyses have revealed that cell types previously considered homogeneous based on imaging techniques differ depending on several factors including sex, age and location within the brain. The expression profiles of these cells have also been exploited to understand which are the regulatory programs behind cellular diversity and decipher the transcriptional pathways driving them. In this review, we summarize how single-cell transcriptomics have changed our view on the cellular diversity in the human brain, and how it could impact the way we study neurodegenerative diseases. Moreover, we describe the new computational approaches that can be used to study cellular differentiation and gain insight into the functions of individual cell populations under different conditions and their alterations in disease.
Collapse
Affiliation(s)
- Sandra María Fernández-Moya
- Gene Regulation of Cell Identity, Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, L’Hospitalet del Llobregat, Spain
- Program for Advancing Clinical Translation of Regenerative Medicine of Catalonia, P- CMR[C], Barcelona, L’Hospitalet del Llobregat, Spain
| | - Akshay Jaya Ganesh
- Gene Regulation of Cell Identity, Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, L’Hospitalet del Llobregat, Spain
- Program for Advancing Clinical Translation of Regenerative Medicine of Catalonia, P- CMR[C], Barcelona, L’Hospitalet del Llobregat, Spain
| | - Mireya Plass
- Gene Regulation of Cell Identity, Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, L’Hospitalet del Llobregat, Spain
- Program for Advancing Clinical Translation of Regenerative Medicine of Catalonia, P- CMR[C], Barcelona, L’Hospitalet del Llobregat, Spain
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|