1
|
Vanegas MJ, Gómez S, Cappelli C, Miscione GP. Exploring Membrane Cholesterol Binding to the CB1 Receptor: A Computational Perspective. J Phys Chem B 2025; 129:4350-4365. [PMID: 40268728 DOI: 10.1021/acs.jpcb.4c08076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Cholesterol (CHOL) is a potential allosteric modulator of the CB1 receptor. In this work, we use atomistic molecular dynamics simulations to study how CHOL interacts with CB1 and to identify its binding sites (BS) and residence times on specific receptor zones. Our results evince minimal changes in CB1 conformational dynamics and secondary structure due to CHOL. We report five BSs, three of which coincide with previously described interaction regions (BS1, BS2, and BS3), while BS4 and BS5 are proposed as new BSs. Quantum descriptors of bonding such as Natural Bond Orbitals (NBO), Quantum Theory of Atoms in Molecules (QTAIM), and Noncovalent Interactions (NCI) analyses are employed to characterize the CHOL-BS interactions. The results show an exponential correlation between the strength of the interactions (mainly hydrogen bonds and hydrophobic contacts) and the residence time at the BSs. Although other approaches exist to identify high-affinity protein sites, our methodology integrates classical and quantum descriptions to better characterize BSs and predict ligand residence times in CB1, distinguishing persistent from transitory contacts. Since CHOL has been suggested as a potential endogenous allosteric ligand, our flexible strategy allows studying interactions that stabilize CHOL in CB1, could be extended to cannabinoid binding, and contribute to designing improved receptor ligands.
Collapse
Affiliation(s)
- Manuela J Vanegas
- COBO, Computational Bio-Organic Chemistry, Chemistry Department, Universidad de Los Andes, Carrera 1 18A-12, 111711, Bogota, Colombia
| | - Sara Gómez
- Universidad Nacional de Colombia, Departamento de Química, Av. Cra 30 45-03, 111321, Bogotá, Colombia
| | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Gian Pietro Miscione
- COBO, Computational Bio-Organic Chemistry, Chemistry Department, Universidad de Los Andes, Carrera 1 18A-12, 111711, Bogota, Colombia
| |
Collapse
|
2
|
Zikereya T, Liu C, Wei L, Wang Y, Zhang Z, Han C, Shi K, Chen W. The cannabinoid receptor 1 mediates exercise-induced improvements of motor skill learning and performance in parkinsonian mouse. Exp Neurol 2025; 391:115289. [PMID: 40340015 DOI: 10.1016/j.expneurol.2025.115289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 04/26/2025] [Accepted: 05/02/2025] [Indexed: 05/10/2025]
Abstract
The endocannabinoid system (eCBs) modulates corticostriatal circuits through cannabinoid receptor 1 (CB1R). These circuits are crucial for encoding goal-directed and habitual learning behaviors and are implicated in the occurrence and progression of Parkinson's disease (PD). While exercise has been shown to enhance motor performance and reverse learning deficits in PD patients, the underlying molecular mechanisms remain unclear. We hypothesized that a treadmill training program could rescue changes in striatal plasticity and ameliorate early motor and cognitive deficits in mice subjected to an intrastriatal 6-hydroxydopamine injection. Our findings demonstrated that exercise training would improve motor performance and learning abilities in PD mice. Moreover, both immunofluorescence and reverse transcription polymerase chain reaction results suggested that corticostriatal activation decreased CB1R expression in the dorsomedial striatum of PD mice but increased expression in the substantia nigra pars reticulata following treadmill exercise. These results suggest that dysregulated CB1R expression is associated with the pathogenesis of Parkinsonism, highlighting the vital role of the CB1R in corticostriatal pathway functionality enhanced by exercise. Our results suggest the potential benefits of treadmill exercise in alleviating Parkinsonism, providing valuable insights into future potential treating strategies.
Collapse
Affiliation(s)
- Talifu Zikereya
- Department of Physical Education, China University of Geosciences, Beijing, China
| | - Chuang Liu
- Department of Physical Education, China University of Geosciences, Beijing, China
| | - Longwei Wei
- Physical Education College, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Yinhao Wang
- Physical Education College, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Zhizhen Zhang
- Department of Mathematics and Statistics, University of Massachusetts at Amherst, Amherst, USA
| | - Chuanliang Han
- School of Biomedical Sciences and Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Kaixuan Shi
- Department of Physical Education, China University of Geosciences, Beijing, China.
| | - Wei Chen
- Physical Education College, Hebei Normal University, Shijiazhuang, Hebei, China.
| |
Collapse
|
3
|
Chwastek J, Kędziora M, Borczyk M, Korostyński M, Piscitelli F, Di Marzo V, Starowicz K. The emerging role of endocannabinoid system modulation in human fibroblast-like synoviocytes: Exploring new biomarkers and potential therapeutic targets. Biomed Pharmacother 2025; 186:118040. [PMID: 40215649 DOI: 10.1016/j.biopha.2025.118040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/28/2025] [Accepted: 04/03/2025] [Indexed: 04/25/2025] Open
Abstract
Human fibroblast-like synoviocytes (HFLS) are the predominant cellular component of the joint synovium. Their inflammation, known as synovitis, may contribute to the development of osteoarthritis (OA). HFLS secrete signaling factors that regulate joint function in response to mechanical trauma or OA progression. Among these factors, prostaglandin E2 (PGE2) is a key pro-inflammatory mediator, whereas prostamides, such as prostamide E2 (PME2), are synthesized from anandamide (AEA) by the same enzymes that produce PGE2. HFLS were isolated from both control subjects and OA patients (HFLS-OA) and stimulated with lipopolysaccharide (LPS, 10 ng/mL). Liquid chromatography-tandem mass spectrometry (LC-MS) was used to analyze PGE2 and PME2 secretion. Additionally, transcriptome and miRNA sequencing were conducted to identify changes in gene expression between HFLS and HFLS-OA cells. Five endocannabinoid-related genes were further validated by qPCR. Baseline PGE2 secretion differed between HFLS and HFLS-OA, with OA-related cells showing increased levels, while control cells primarily produced PME2. Upon pro-inflammatory stimulation, both cell types secreted PGE2. Changes in endocannabinoid levels and expression of endocannabinoid-related genes were observed in HFLS-OA following stimulation. miRNA sequencing revealed significant differences in miRNA expression between HFLS and HFLS-OA. Notably, HFLS-OA exhibited upregulation of Diacylglycerol lipase B (DAGLB) and downregulation of Fatty Acid-Binding Protein 4 and 5 (FABP4 and FABP5) gene expression compared to controls. The study suggests a reorganization of the endocannabinoid system in HFLS from OA patients, leading to altered cellular responses to pro-inflammatory stimuli. The molecular changes observed may drive or regulate the inflammatory response in OA synoviocytes, highlighting potential therapeutic targets. These findings provide insights into the potential mechanisms underlying OA pathogenesis and support the hypothesis of altered endocannabinoid system reactivity in HFLS in the context of inflammation.
Collapse
Affiliation(s)
- Jakub Chwastek
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland; Neuroplasticity and Metabolism Research Group, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wrocław, Poland
| | - Marta Kędziora
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland
| | - Małgorzata Borczyk
- Laboratory of Pharmacogenomics, Department of Molecular Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland
| | - Michał Korostyński
- Laboratory of Pharmacogenomics, Department of Molecular Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland
| | - Fabiana Piscitelli
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, Pozzuoli, NA 80078, Italy
| | - Vincenzo Di Marzo
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, Pozzuoli, NA 80078, Italy; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, CRIUCPQ and INAF, Centre NUTRISS, Faculties of Medicine and Agriculture and Food Sciences, Université Laval, Québec City, Canada
| | - Katarzyna Starowicz
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland.
| |
Collapse
|
4
|
Moreno-Rodríguez M, Martínez-Gardeazabal J, Bengoetxea de Tena I, Llorente-Ovejero A, Lombardero L, González de San Román E, Giménez-Llort L, Manuel I, Rodríguez-Puertas R. Cognitive improvement via cortical cannabinoid receptors and choline-containing lipids. Br J Pharmacol 2025; 182:1038-1058. [PMID: 39489624 DOI: 10.1111/bph.17381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND AND PURPOSE Recent research linking choline-containing lipids to degeneration of basal forebrain cholinergic neurons in neuropathological states illustrates the challenge of balancing lipid integrity with optimal acetylcholine levels, essential for memory preservation. The endocannabinoid system influences learning and memory processes regulated by cholinergic neurotransmission. Therefore, we hypothesised that activation of the endocannabinoid system may confer neuroprotection against cholinergic degeneration. EXPERIMENTAL APPROACH We examined the neuroprotective potential of sub-chronic treatments with the cannabinoid agonist WIN55,212-2, using ex vivo organotypic tissue cultures including nucleus basalis magnocellularis and cortex and in vivo rat models of specific cholinergic damage induced by 192IgG-saporin. Levels of lipids, choline and acetylcholine were measured with histochemical and immunofluorescence assays, along with [35S]GTPγS autoradiography of cannabinoid and muscarinic GPCRs and MALDI-mass spectrometry imaging analysis. Learning and memory were assessed by the Barnes maze and the novel object recognition test in rats and in the 3xTg-AD mouse model. KEY RESULTS Degeneration, induced by 192IgG-saporin, of baso-cortical cholinergic pathways resulted in memory deficits and decreased cortical levels of lysophosphatidylcholines (LPC). WIN55,212-2 restored cortical cholinergic transmission and LPC levels via activation of cannabinoid receptors. This activation altered cortical lipid homeostasis mainly by reducing sphingomyelins in lesioned animals. These modifications were crucial for memory recovery. CONCLUSION AND IMPLICATIONS We hypothesise that WIN55,212-2 facilitates an alternative choline source by breaking down sphingomyelins, leading to elevated cortical acetylcholine levels and LPCs. These results imply that altering choline-containing lipids via activation of cannabinoid receptors presents a promising therapeutic approach for dementia linked to cholinergic dysfunction.
Collapse
Affiliation(s)
- Marta Moreno-Rodríguez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Jonatan Martínez-Gardeazabal
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Iker Bengoetxea de Tena
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Alberto Llorente-Ovejero
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Laura Lombardero
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | | | - Lydia Giménez-Llort
- Department of Psychiatry and Forensic Medicine, School of Medicine & Institute of Neuroscience, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Iván Manuel
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
- Neurodegenerative Diseases, BioBizkaia Health Research Institute, Barakaldo, Spain
| | - Rafael Rodríguez-Puertas
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
- Neurodegenerative Diseases, BioBizkaia Health Research Institute, Barakaldo, Spain
| |
Collapse
|
5
|
Burgaz S, Navarro E, Rodríguez-Carreiro S, Navarrete C, Garrido-Rodríguez M, Lastres-Becker I, Chocarro J, Lanciego JL, Muñoz E, Fernández-Ruiz J. Investigation in the cannabigerol derivative VCE-003.2 as a disease-modifying agent in a mouse model of experimental synucleinopathy. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:28. [PMID: 39487447 PMCID: PMC11531178 DOI: 10.1186/s12993-024-00256-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND The cannabigerol derivative VCE-003.2, which has activity at the peroxisome proliferator-activated receptor-γ has afforded neuroprotection in experimental models of Parkinson's disease (PD) based on mitochondrial dysfunction (6-hydroxydopamine-lesioned mice) and neuroinflammation (LPS-lesioned mice). Now, we aim to explore VCE-003.2 neuroprotective properties in a PD model that also involves protein dysregulation, other key event in PD pathogenesis. METHODS To this end, an adeno-associated viral vector serotype 9 coding for a mutated form of the α-synuclein gene (AAV9-SynA53T) was unilaterally delivered in the substantia nigra pars compacta (SNpc) of mice. This model leads to motor impairment and progressive loss of tyrosine hydroxylase-labelled neurons in the SNpc. RESULTS Oral administration of VCE-003.2 at 20 mg/kg for 14 days improved the performance of mice injected with AAV9-SynA53T in various motor tests, correlating with the preservation of tyrosine hydroxylase-labelled neurons in the SNpc. VCE-003.2 also reduced reactive microgliosis and astrogliosis in the SNpc. Furthermore, we conducted a transcriptomic analysis in the striatum of mice injected with AAV9-SynA53T and treated with either VCE-003.2 or vehicle, as well as control animals. This analysis aimed to identify gene families specifically altered by the pathology and/or VCE-003.2 treatment. Our data revealed pathology-induced changes in genes related to mitochondrial function, lysosomal cell pathways, immune responses, and lipid metabolism. In contrast, VCE-003.2 treatment predominantly affected the immune response through interferon signaling. CONCLUSION Our study broadens the neuroprotective potential of VCE-003.2, previously described against mitochondrial dysfunction, oxidative stress, glial reactivity and neuroinflammation in PD. We now demonstrate its efficacy against another key pathogenic event in PD as α-synuclein dysregulation. Furthermore, our investigation sheds light on the molecular mechanisms underlying VCE-003.2 revealing its role in regulating interferon signaling. These findings, together with a favorable ADMET profile, enhance the preclinical interest of VCE-003.2 towards its future clinical development in PD.
Collapse
Affiliation(s)
- Sonia Burgaz
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Elisa Navarro
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Santiago Rodríguez-Carreiro
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | | | - Martin Garrido-Rodríguez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Isabel Lastres-Becker
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBSM), UAM-CSIC, Madrid, Spain
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ), Madrid, Spain
- Institute Teófilo Hernando for Drug Discovery, Universidad Autónoma de Madrid, Madrid, Spain
| | - Julia Chocarro
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- CNS Gene Therapy Department, Center for Applied Medical Research (CIMA), Universidad de Navarra, Pamplona, Spain
| | - José L Lanciego
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- CNS Gene Therapy Department, Center for Applied Medical Research (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Eduardo Muñoz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain.
- Hospital Universitario Reina Sofía, Córdoba, Spain.
| | - Javier Fernández-Ruiz
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
6
|
Pereira-Castelo G, Bengoetxea de Tena I, Martínez-Gardeazabal J, Moreno-Rodríguez M, de San Román EG, Manuel I, Rodríguez-Puertas R. Neurolipid systems: A new target for the treatment of dementia. Basic Clin Pharmacol Toxicol 2024; 135:225-236. [PMID: 39034736 DOI: 10.1111/bcpt.14059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
AbstractNeurolipids comprise a diverse class of bioactive lipids that include molecules capable of activating G protein‐coupled receptors, thereby inducing systemic effects that contribute to the maintenance of homeostasis. Dementia, a non‐specific brain disorder characterized by a common set of signs and symptoms, usually arises subsequent to brain injuries or diseases and is often associated with the aging process. Individuals affected by dementia suffer from the disruption of several neurotransmitter and neuromodulatory systems, among which neurolipids play an important role, including the endocannabinoid, lysophosphatidic acid and sphingosine 1‐phosphate systems. In this review, we present an overview of the most recent and pertinent findings regarding the involvement of these neurolipidic systems in dementia, including data from a wide range of both in vitro and in vivo experiments as well as clinical trials.
Collapse
Affiliation(s)
- Gorka Pereira-Castelo
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | | | | | - Marta Moreno-Rodríguez
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, Arizona, USA
| | | | - Iván Manuel
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa, Spain
- Neurodegenerative Diseases, BioBizkaia Health Research Institute, Barakaldo, Spain
| | - Rafael Rodríguez-Puertas
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa, Spain
- Neurodegenerative Diseases, BioBizkaia Health Research Institute, Barakaldo, Spain
| |
Collapse
|
7
|
Moreno-Rodriguez M, Perez SE, Martinez-Gardeazabal J, Manuel I, Malek-Ahmadi M, Rodriguez-Puertas R, Mufson EJ. Frontal Cortex Lipid Alterations During the Onset of Alzheimer's Disease. J Alzheimers Dis 2024; 98:1515-1532. [PMID: 38578893 DOI: 10.3233/jad-231485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Background Although sporadic Alzheimer's disease (AD) is a neurodegenerative disorder of unknown etiology, familial AD is associated with specific gene mutations. A commonality between these forms of AD is that both display multiple pathogenic events including cholinergic and lipid dysregulation. Objective We aimed to identify the relevant lipids and the activity of their related receptors in the frontal cortex and correlating them with cognition during the progression of AD. Methods MALDI-mass spectrometry imaging (MSI) and functional autoradiography was used to evaluate the distribution of phospholipids/sphingolipids and the activity of cannabinoid 1 (CB1), sphingosine 1-phosphate 1 (S1P1), and muscarinic M2/M4 receptors in the frontal cortex (FC) of people that come to autopsy with premortem clinical diagnosis of AD, mild cognitive impairment (MCI), and no cognitive impairment (NCI). Results MALDI-MSI revealed an increase in myelin-related lipids, such as diacylglycerol (DG) 36:1, DG 38:5, and phosphatidic acid (PA) 40:6 in the white matter (WM) in MCI compared to NCI, and a downregulation of WM phosphatidylinositol (PI) 38:4 and PI 38:5 levels in AD compared to NCI. Elevated levels of phosphatidylcholine (PC) 32:1, PC 34:0, and sphingomyelin 38:1 were observed in discrete lipid accumulations in the FC supragranular layers during disease progression. Muscarinic M2/M4 receptor activation in layers V-VI decreased in AD compared to MCI. CB1 receptor activity was upregulated in layers V-VI, while S1P1 was downregulated within WM in AD relative to NCI. Conclusions FC WM lipidomic alterations are associated with myelin dyshomeostasis in prodromal AD, suggesting WM lipid maintenance as a potential therapeutic target for dementia.
Collapse
Affiliation(s)
- Marta Moreno-Rodriguez
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Sylvia E Perez
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, USA
| | | | - Ivan Manuel
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Spain
- Neurodegenerative Diseases, BioBizkaia Health Research Institute, Barakaldo, Spain
| | | | - Rafael Rodriguez-Puertas
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Spain
- Neurodegenerative Diseases, BioBizkaia Health Research Institute, Barakaldo, Spain
| | - Elliott J Mufson
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
8
|
Wilson G, Yang L, Su X, Ding S, Li L, Yang Y, Wang X, Wang W, Sa Y, Zhang Y, Chen J, Ma X. Exploring the therapeutic potential of natural compounds modulating the endocannabinoid system in various diseases and disorders: review. Pharmacol Rep 2023; 75:1410-1444. [PMID: 37906390 DOI: 10.1007/s43440-023-00544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023]
Abstract
Cannabinoid receptors, endogenous cannabinoids (endocannabinoids), and the enzymes involved in the biosynthesis and degradation of the endocannabinoids make up the endocannabinoid system (ECS). The components of the ECS are proven to modulate a vast bulk of various physiological and pathological processes due to their abundance throughout the human body. Such discoveries have attracted the researchers' attention and emerged as a potential therapeutical target for the treatment of various diseases. In the present article, we reviewed the discoveries of natural compounds, herbs, herbs formula, and their therapeutic properties in various diseases and disorders by modulating the ECS. We also summarize the molecular mechanisms through which these compounds elicit their properties by interacting with the ECS based on the existing findings. Our study provides the insight into the use of natural compounds that modulate ECS in various diseases and disorders, which in turn may facilitate future studies exploiting natural lead compounds as novel frameworks for designing more effective and safer therapeutics.
Collapse
Affiliation(s)
- Gidion Wilson
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Lingling Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Xiaojuan Su
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Shuqin Ding
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Liuyan Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Youyue Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Xiaoying Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Weibiao Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Yuping Sa
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Yue Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Jianyu Chen
- Fujian University of Traditional Chinese Medicine, No. 1, Huatuo Road, Minhoushangjie, Fuzhou, 350122, China.
| | - Xueqin Ma
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China.
| |
Collapse
|