1
|
Chen T, Jia J, Gao C, Zhong Q, Tang L, Sui X, Li S, Chen C, Zhang Z. Integrative metabolomics and transcriptomics analysis of hippocampus reveals taurine metabolism and sphingolipid metabolism dysregulation associated with sleep deprivation-induced memory impairment. Brain Res Bull 2025; 227:111397. [PMID: 40409601 DOI: 10.1016/j.brainresbull.2025.111397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 05/06/2025] [Accepted: 05/20/2025] [Indexed: 05/25/2025]
Abstract
Sleep plays a crucial role in restoring and repairing the body, consolidating memory, regulating emotions, maintaining metabolic and so on. Sleep deprivation is known to impair cognitive functions. In this study, we investigated the mechanisms underlying memory impairment induced by sleep deprivation through a combined metabolomic and transcriptomic analysis of hippocampus. Eight-week-old mice were selected as the study subjects and the sleep deprivation chamber was used to establish a sleep deprivation model. Novel object recognition tests (NOR), and Y-maze tests were used to assess the behavioral outcomes in mice. The hippocampus were extracted and studied using the untargeted metabolomics or transcriptomics high-throughput sequencing method. An integrative analysis was conducted to elucidate the metabolic and genetic changes. Behavioral tests showed that sleep-deprived mice exhibited memory impairment. Metabolomic analysis identified 84 differentially expressed metabolites (DEMs), including 12 under the positive ion mode and 72 under the negative ion mode. The analysis revealed that sleep deprivation caused abnormalities in several metabolic pathways, with particularly pronounced effects observed in glycerophospholipid metabolism, linoieic acid metabolism, alanine, aspartate, glutamate metabolism, taurine and hypotaurine metabolism, and purine metabolism. While transcriptomic analysis releaved 97 differentially expressed genes (DEGs) (51 were down-regulated and 46 were up-regulated DEGs). Integrative analysis of the metabolomic and transcriptomic identified profiles showed that sleep deprivation may regulate taurine and hypotaurine metabolism and sphingolipid metabolism, there by influencing memory. Our results prompt severe metabolic disturbances occur in the hippocampus with sleep deprivation in mice, which can provide a basis for the mechanism research.
Collapse
Affiliation(s)
- Ting Chen
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China.
| | - Junke Jia
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Chenyi Gao
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China; Department of Anesthesiology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang 315040, China
| | - Qi Zhong
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Lijuan Tang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Xiaokai Sui
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Shuang Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China; Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Chang Chen
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China.
| | - Zongze Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China.
| |
Collapse
|
2
|
Zhang N, Dong X. Causal relationship between gut microbiota, lipids, and neuropsychiatric disorders: A Mendelian randomization mediation study. J Affect Disord 2025; 379:19-35. [PMID: 40049531 DOI: 10.1016/j.jad.2025.02.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Numerous studies have shown an interconnection between the gut microbiota and the brain via the "gut-brain" axis. However, the causal relationships between gut microbiota, lipids, and neuropsychiatric disorders remain unclear. This study aimed to analyze potential associations among gut microbiota, lipids, and neuropsychiatric disorders-including AD, PD, ALS, MS, SCZ, MDD, and BD-using summary data from large-scale GWAS. METHODS Bidirectional Mendelian randomization (MR) with inverse variance weighting (IVW) was the primary method. Supplementary analyses included sensitivity analyses, Steiger tests, and Bayesian weighted MR (BWMR). Mediation analyses used two-step MR (TSMR) and multivariable MR (MVMR). RESULTS The analyses revealed 51 positive correlations (risk factors) (β > 0, P < 0.05) and 47 negative correlations (protective factors) (β < 0, P < 0.05) between gut microbiota and neuropsychiatric disorders. In addition, 35 positive correlations (β > 0, P < 0.05) and 22 negative correlations (β < 0, P < 0.05) between lipids and neuropsychiatric disorders were observed. Assessment of reverse causality with the seven neuropsychiatric disorders as exposures and the identified gut microbiota and lipids as outcomes revealed no evidence of reverse causality (P > 0.05). Mediation analysis indicated that the effect of the species Bacteroides plebeius on MDD is partially mediated through the regulation of phosphatidylcholine (16:0_20:4) levels (mediation proportion = 10.9 % [95 % CI = 0.0110-0.2073]). CONCLUSION This study provides evidence of a causal relationship between gut microbiota and neuropsychiatric disorders, suggesting lipids as mediators. These findings offer new insights into the mechanisms by which gut microbiota may influence neuropsychiatric disorders.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Neurology, the Seventh Clinical College of China Medical University, No. 24 Central Street, Xinfu District, Fushun 113000, Liaoning, China
| | - Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110000, Liaoning, China.
| |
Collapse
|
3
|
Marzouk NH, Rashwan HH, El-Hadidi M, Ramadan R, Mysara M. Proinflammatory and GABA eating bacteria in Parkinson's disease gut microbiome from a meta-analysis prospective. NPJ Parkinsons Dis 2025; 11:145. [PMID: 40461531 PMCID: PMC12134241 DOI: 10.1038/s41531-025-00950-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 04/14/2025] [Indexed: 06/16/2025] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, characterized by motor dysfunction coupled with gastrointestinal disturbances. Recent studies implicate the gut microbiome with the development of PD, yet pinpointing the exact microbial players is still to be determined. This meta-analysis is the first to consolidate five homogenous case-control studies, covering the same variable regions of the 16S rRNA of 1007 fecal samples. Utilizing our unified pipeline, we identified several key players potentially contributing to PD. Our findings reveal higher microbial diversity characterized by elevated levels GABA consuming species particularly Evtepia gabavorous, contributing to neuronal excitability. We also report the abundance of the proinflammatory Klebsiella variicola and the H2S-producing Streptococcus anginosus bacteria, potentially promoting α-synuclein accumulation in the brain. This comprehensive analysis highlights the potential of gut microbiota as a biomarker and a therapeutic strategy to mitigate the progression of PD, possibly facilitating diagnosis and enhancing patient outcomes.
Collapse
Affiliation(s)
- Nour H Marzouk
- Bioinformatics Group, Centre for Informatics Science (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt
| | - Hannah H Rashwan
- Bioinformatics Group, Centre for Informatics Science (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt
| | - Mohamed El-Hadidi
- Bioinformatics Group, Centre for Informatics Science (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt
- Cancer and Genomic Sciences, School of Medical Sciences, College of Medicine and Health (CME), University of Birmingham Dubai, Dubai, United Arab Emirates
| | | | - Mohamed Mysara
- Bioinformatics Group, Centre for Informatics Science (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt.
| |
Collapse
|
4
|
Qin B, Fu Y, Raulin AC, Kong S, Li H, Liu J, Liu C, Zhao J. Lipid metabolism in health and disease: Mechanistic and therapeutic insights for Parkinson's disease. Chin Med J (Engl) 2025:00029330-990000000-01566. [PMID: 40419446 DOI: 10.1097/cm9.0000000000003627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Indexed: 05/28/2025] Open
Abstract
ABSTRACT Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons and the accumulation of Lewy bodies, leading to motor and nonmotor symptoms. While both genetic and environmental factors contribute to PD, recent studies highlight the crucial role of lipid metabolism disturbances in disease progression. Altered lipid homeostasis promotes protein aggregation and oxidative stress, with significant changes in lipid classes such as sphingolipids and glycerolipids observed in patients with PD. These disturbances are involved in key pathological processes, such as α-synuclein aggregation, organelle dysfunction, lipid-mediated neuroinflammation, and impaired lipid homeostasis. This review examines the relationship between lipid species and PD progression, focusing on the physiological roles of lipids in the central nervous system. It explores the mechanistic links between lipid metabolism and PD pathology, along with lipid-related genetic risk factors. Furthermore, this review discusses lipid-targeting therapeutic strategies to mitigate PD progression, emphasizing the potential of lipid modulation for effective treatment development.
Collapse
Affiliation(s)
- Bingqing Qin
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215004, China
| | - Yuan Fu
- Department of Neurology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Ana-Caroline Raulin
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Shuangyu Kong
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215004, China
| | - Han Li
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215004, China
| | - Junyi Liu
- Department of Neurology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215000, China
| | - Chunfeng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215004, China
| | - Jing Zhao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215004, China
| |
Collapse
|
5
|
Drath I, Richter F, Feja M. Nose-to-brain drug delivery: from bench to bedside. Transl Neurodegener 2025; 14:23. [PMID: 40390100 PMCID: PMC12090632 DOI: 10.1186/s40035-025-00481-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/18/2025] [Indexed: 05/21/2025] Open
Abstract
There is increasing interest in nose-to-brain delivery as an innovative drug delivery strategy for neurodegenerative disorders such as Parkinson's or Alzheimer's disease. The unique anatomy of the nose-brain interface facilitates direct drug transport via the olfactory and trigeminal pathways to the brain, bypassing the blood-brain barrier. Different administration techniques as well as advanced drug formulations like targeted nanoparticles and thermoresponsive systems have been explored to improve the delivery efficiency and the therapeutic efficacy. This review provides an up-to-date perspective on this fast-developing field, and discusses different studies on safety and pharmacokinetic properties. A thorough evaluation of preclinical and clinical studies reveals both promises and challenges of this delivery method, highlighting approved drugs for the treatment of epilepsy and migraine that successfully utilize intranasal routes. The current landscape of research on nose-to-brain delivery is critically discussed, and a rationale is provided for ongoing research to optimize therapeutic strategies.
Collapse
Affiliation(s)
- Isabell Drath
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Franziska Richter
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany.
- Center for Systems Neuroscience (ZSN), Hannover, Germany.
| | - Malte Feja
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany.
- Center for Systems Neuroscience (ZSN), Hannover, Germany.
| |
Collapse
|
6
|
Xu J, Lei H, Yang C, Qiu Y, Wu X. HucMSCs-Derived Extracellular Vesicles Deliver RPS27A Protein to Manipulate the MDM2-P53 Axis and Ameliorate Neurological Dysfunction in Parkinson's Disease. J Neuroimmune Pharmacol 2025; 20:52. [PMID: 40338442 DOI: 10.1007/s11481-025-10209-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 04/16/2025] [Indexed: 05/09/2025]
Abstract
Extracellular vesicles released from mesenchymal stem cells (MSCs-EV) have shown anti-inflammatory effects in Parkinson's disease (PD). This study was designed to assess the neuroprotective effects of human umbilical cord MSCs (hucMSCs) and the possible mechanisms involved. SH-SY5Y cells were induced with MPP+, and the impact of hucMSCs-EV on the damage to SH-SY5Y cells was examined. Mice were induced with PD-like symptoms by MPTP and the effects of hucMSCs-EV on neurological damage in mouse brain tissue were detected as well. HucMSCs-EV inhibited apoptosis and oxidative stress in MPP+-induced SH-SY5Y cells. HucMSCs-EV suppressed behavioral deficits and neuronal apoptosis in MPTP-induced mice, with an increased number of dopamine neurons in brain tissues and decreased p-alpha-syn expression in dopamine neurons. The expression of ribosomal protein S27A (RPS27A) in SH-SY5Y cells was elevated after co-culture of neurons and hucMSCs-EV, and RPS27A silencing abated the effect of hucMSCs-EV in vivo and in vitro. RPS27A bound to the MDM2 promoter, thus promoting P53 ubiquitination and degradation. MDM2 overexpression strengthened the therapeutic effect of hucMSCs-EV. We conclude that hucMSCs-EV promote the interaction between RPS27A and MDM2 by delivering RPS27A, which regulates the MDM2-P53 axis to promote degradation of P53 to ameliorate neurological damage in PD.
Collapse
Affiliation(s)
- Jinyu Xu
- Department of Neurosurgery, Changhai Hospital, The First Affiliated Hospital of Naval Medical University, No.168, Changhai Road, Yangpu District, Shanghai, 200433, P.R. China
- Department of Neurosurgery, 411 Hospital Affiliated to Shanghai University, Shanghai, 200081, P.R. China
| | - Hongbing Lei
- Department of Neurosurgery, Shanghai Mental Health Center, Shanghai, 201108, P.R. China
| | - Chunhui Yang
- Department of Neurosurgery, Changhai Hospital, The First Affiliated Hospital of Naval Medical University, No.168, Changhai Road, Yangpu District, Shanghai, 200433, P.R. China
- Department of Neurosurgery, The Yang Zhi Rehabilitation Hospital Affiliated to Tongji University, Shanghai, 201613, P.R. China
| | - Yiqing Qiu
- Department of Neurosurgery, Changhai Hospital, The First Affiliated Hospital of Naval Medical University, No.168, Changhai Road, Yangpu District, Shanghai, 200433, P.R. China
| | - Xi Wu
- Department of Neurosurgery, Changhai Hospital, The First Affiliated Hospital of Naval Medical University, No.168, Changhai Road, Yangpu District, Shanghai, 200433, P.R. China.
| |
Collapse
|
7
|
Sabnis RW. Novel Pyrido[3,4- d]pyrimidin-4-one and Pyrimido[5,4- d]pyrimidin-4-one Derivatives as TREM2 Agonists for Treating Parkinson's Disease. ACS Med Chem Lett 2025; 16:715-716. [PMID: 40365414 PMCID: PMC12067106 DOI: 10.1021/acsmedchemlett.5c00145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Indexed: 05/15/2025] Open
Abstract
Provided herein are novel pyrido[3,4-d]pyrimidin-4-one and pyrimido[5,4-d]pyrimidin-4-one derivatives as TREM2 agonists, pharmaceutical compositions, use of such compounds in treating Parkinson's disease, and processes for preparing such compounds.
Collapse
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell LLP, 1105 W. Peachtree Street NE, Atlanta, Georgia 30309, United States
| |
Collapse
|
8
|
Aqeel A, Akram A, Ali M, Iqbal M, Aslam M, Rukhma, Shah FI. Mechanistic insights into impaired β-oxidation and its role in mitochondrial dysfunction: A comprehensive review. Diabetes Res Clin Pract 2025; 223:112129. [PMID: 40132731 DOI: 10.1016/j.diabres.2025.112129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/16/2025] [Accepted: 03/20/2025] [Indexed: 03/27/2025]
Abstract
Mitochondria, also known as the powerhouse of cells, have an important role in cellular metabolism and energy production. However, during Mitochondrial Dysfunction (MD), it is known to generate reactive oxidative species and induce cellular apoptosis. A number of research findings have linked MD to various diseases, highlighting its critical role in maintaining health and contributing to disease development. In this regard, recent research has revealed that disruptions in lipid metabolism, especially in fatty acid oxidation, are significant contributors to MD. However, the precise mechanisms by which these defects lead to disease remain poorly understood. This review explores how disruptions in lipid metabolism are responsible for triggering oxidative stress, inflammation, and cellular damage, leading to impaired mitochondrial function. By examining specific fatty acid oxidation disorders, such as carnitine palmitoyltransferase deficiency, medium-chain acyl-CoA dehydrogenase deficiency, and very long-chain acyl-CoA dehydrogenase deficiency, this review aims to uncover the underlying molecular pathways connecting lipid metabolism to mitochondrial dysfunction. Furthermore, MD is a common underlying mechanism in a wide array of diseases, including neurodegenerative disorders and metabolic syndromes. Understanding the mechanisms behind mitochondrial malfunction may aid in the development of tailored therapies to restore mitochondrial health and treat intricate health conditions.
Collapse
Affiliation(s)
- Amna Aqeel
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University Lahore, Pakistan; University Institute of Medical Lab Technology, the University of Lahore, Pakistan.
| | - Areeba Akram
- Department of Biotechnology, Lahore College for Women University, Pakistan
| | - Minahil Ali
- Department of Biotechnology, Lahore College for Women University, Pakistan
| | - Maryam Iqbal
- Department of Biotechnology, Lahore College for Women University, Pakistan
| | - Mehral Aslam
- Department of Nutrition and Health Promotion, University of Home Economics Lahore, Pakistan
| | - Rukhma
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University Lahore, Pakistan
| | - Fatima Iftikhar Shah
- University Institute of Medical Lab Technology, the University of Lahore, Pakistan
| |
Collapse
|
9
|
Bourboula A, Mantzourani C, Chalatsa I, Machalia C, Emmanouilidou E, Kokotou MG, Kokotos G. A Lipidomic Approach to Studying the Downregulation of Free Fatty Acids by Cytosolic Phospholipase A 2 Inhibitors. Biomolecules 2025; 15:626. [PMID: 40427519 PMCID: PMC12108850 DOI: 10.3390/biom15050626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/29/2025] Open
Abstract
Inhibitors of cytosolic phospholipase A2 (GIVA cPLA2) have received great attention, since this enzyme is involved in a number of inflammatory diseases, including cancer and auto-immune and neurodegenerative diseases. Traditionally, the effects of GIVA cPLA2 inhibitors in cells have been studied by determining the inhibition of arachidonic acid release. However, although to a lesser extent, GIVA cPLA2 may also hydrolyze glycerophospholipids, releasing other free fatty acids (FFAs), such as linoleic acid or oleic acid. In the present work, we applied a liquid chromatography-high-resolution mass spectrometry method to study the levels of intracellular FFAs, after treating cells with selected GIVA cPLA2 inhibitors. Six inhibitors belonging to different chemical classes were studied, using SH-SY5Y neuroblastoma cells as a model. This lipidomic approach revealed that treatment with each inhibitor created a distinct intracellular FFA profile, suggesting not only inhibitory potency against GIVA cPLA2, but also other parameters affecting the outcome. Potent inhibitors were found to reduce not only arachidonic acid, but also other long-chain FAs, such as adrenic or linoleic acid, even medium-chain FAs, such as caproic or caprylic acid, suggesting that GIVA cPLA2 inhibitors may affect FA metabolic pathways in general. The downregulation of intracellular FFAs may have implications in reprogramming FA metabolism in neurodegenerative diseases and cancer.
Collapse
Affiliation(s)
- Asimina Bourboula
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.B.); (C.M.)
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Christiana Mantzourani
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.B.); (C.M.)
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Ioanna Chalatsa
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (I.C.); (C.M.); (E.E.)
| | - Christina Machalia
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (I.C.); (C.M.); (E.E.)
| | - Evangelia Emmanouilidou
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (I.C.); (C.M.); (E.E.)
| | - Maroula G. Kokotou
- Laboratory of Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - George Kokotos
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.B.); (C.M.)
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, 15771 Athens, Greece
| |
Collapse
|
10
|
Volarevic A, Harrell CR, Arsenijevic A, Djonov V, Volarevic V. Therapeutic Potential of Mesenchymal Stem Cell-Derived Extracellular Vesicles in the Treatment of Parkinson's Disease. Cells 2025; 14:600. [PMID: 40277925 PMCID: PMC12025905 DOI: 10.3390/cells14080600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 04/26/2025] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the gradual loss of dopamine-producing neurons. Oxidative stress, mitochondrial dysfunction, detrimental immune response, and neuroinflammation are mainly responsible for the injury and degeneration of dopaminergic neurons in the brains of patients suffering from PD. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have emerged as a promising therapeutic approach for treating PD due to their ability to suppress the activation of inflammatory immune cells and enhance the viability and function of dopamine-producing neurons. MSC-EVs can easily bypass the blood-brain barrier and deliver their cargo (neuroprotective factors, immunosuppressive proteins, and microRNAs) to injured dopamine-producing neurons and brain-infiltrated inflammatory immune cells. A large number of recently published experimental studies demonstrated that MSC-EVs efficiently alleviated PD-related motor and behavioral deficits in animal models, indicating that MSC-EVs should be considered as potentially new therapeutic agents for the treatment of PD. Accordingly, in this review article, we summarized current knowledge about the therapeutic potential of MSCs-EVs in the treatment of PD, paving the way for their future clinical use in the treatment of neurodegenerative and neuroinflammatory disorders.
Collapse
Affiliation(s)
- Ana Volarevic
- Departments of Psychology, Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences University of Kragujevac, 69 Svetozara Markovica Street, 34000 Kragujevac, Serbia;
| | - Carl Randall Harrell
- Regenerative Processing Plant, LLC, 34176 US Highway 19 N, Palm Harbor, FL 34684, USA
| | - Aleksandar Arsenijevic
- Departments of Genetics, Microbiology and Immunology, Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences University of Kragujevac, 69 Svetozara Markovica Street, 34000 Kragujevac, Serbia;
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland;
| | - Vladislav Volarevic
- Departments of Genetics, Microbiology and Immunology, Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences University of Kragujevac, 69 Svetozara Markovica Street, 34000 Kragujevac, Serbia;
| |
Collapse
|
11
|
Zaini A, Morgan PK, Cardwell B, Vlassopoulos E, Sgro M, Li CN, Salberg S, Mellett NA, Christensen J, Meikle PJ, Murphy AJ, Marsland BJ, Mychasiuk R, Yamakawa GR. Time restricted feeding alters the behavioural and physiological outcomes to repeated mild traumatic brain injury in male and female rats. Exp Neurol 2025; 385:115108. [PMID: 39662793 DOI: 10.1016/j.expneurol.2024.115108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/24/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Mild traumatic brain injury (mTBI) research has had limited success translating treatments from preclinical models to clinical application for concussion. One major factor that has been overlooked is the near 24-hour availability of food, both for experimental nocturnal rodents and patients suffering from mTBI. Here, we characterised the impact of food restriction limited to either the inactive (day) or the active phase (night), on repetitive mTBI (RmTBI) - induced outcomes in male and female rats. We found that active phase fed rats consumed more food, had increased body weight, and reduced brain weights. Behaviourally, active phase feeding increased motor coordination deficits and caused changes to thermal nociceptive processing following RmTBI. Hypothalamic transcriptomic analysis revealed minor changes in response to RmTBI, and genes associated with oxytocin-vasopressin regulation in response to inactive phase, but not active phase feeding. These transcript changes were absent in females, where the overall effect of RmTBI was minor. Prefrontal cortex lipidomics revealed an increase in sphingomyelin synthesis following injury and marked sex differences in response to feeding. Of the lipids that changed and overlapped between the prefrontal cortex and serum, dihydroceramides, sphingomyelins, and hexosylceramides, were higher in the serum but lower in the prefrontal cortex. Together, these results demonstrate that feeding time alters outcomes to RmTBI, independent of the hypothalamic transcriptome, and injury-specific lipids may serve as useful biomarkers in RmTBI diagnosis.
Collapse
Affiliation(s)
- A Zaini
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Gastroenterology, Immunology, and Neuroscience Discovery Program, Monash University, Melbourne, Victoria, Australia
| | - P K Morgan
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - B Cardwell
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Gastroenterology, Immunology, and Neuroscience Discovery Program, Monash University, Melbourne, Victoria, Australia
| | - E Vlassopoulos
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - M Sgro
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - C N Li
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - S Salberg
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - N A Mellett
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - J Christensen
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - P J Meikle
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, Victoria, Australia
| | - A J Murphy
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - B J Marsland
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Gastroenterology, Immunology, and Neuroscience Discovery Program, Monash University, Melbourne, Victoria, Australia
| | - R Mychasiuk
- Gastroenterology, Immunology, and Neuroscience Discovery Program, Monash University, Melbourne, Victoria, Australia; Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - G R Yamakawa
- Gastroenterology, Immunology, and Neuroscience Discovery Program, Monash University, Melbourne, Victoria, Australia; Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
12
|
Zeng J, Lo CH. Editorial: Lipid metabolism dysregulation in obesity-related diseases and neurodegeneration. Front Endocrinol (Lausanne) 2025; 16:1564003. [PMID: 40007811 PMCID: PMC11850260 DOI: 10.3389/fendo.2025.1564003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Affiliation(s)
- Jialiu Zeng
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, United States
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY, United States
| | - Chih Hung Lo
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY, United States
- Department of Biology, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
13
|
Gao A, Lv J, Su Y. The Inflammatory Mechanism of Parkinson's Disease: Gut Microbiota Metabolites Affect the Development of the Disease Through the Gut-Brain Axis. Brain Sci 2025; 15:159. [PMID: 40002492 PMCID: PMC11853208 DOI: 10.3390/brainsci15020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/30/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Parkinson's disease is recognized as the second most prevalent neurodegenerative disorder globally, with its incidence rate projected to increase alongside ongoing population growth. However, the precise etiology of Parkinson's disease remains elusive. This article explores the inflammatory mechanisms linking gut microbiota to Parkinson's disease, emphasizing alterations in gut microbiota and their metabolites that influence the disease's progression through the bidirectional transmission of inflammatory signals along the gut-brain axis. Building on this mechanistic framework, this article further discusses research methodologies and treatment strategies focused on gut microbiota metabolites, including metabolomics detection techniques, animal model investigations, and therapeutic approaches such as dietary interventions, probiotic treatments, and fecal transplantation. Ultimately, this article aims to elucidate the relationship between gut microbiota metabolites and the inflammatory mechanisms underlying Parkinson's disease, thereby paving the way for novel avenues in the research and treatment of this condition.
Collapse
Affiliation(s)
| | | | - Yanwei Su
- Department of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (A.G.); (J.L.)
| |
Collapse
|
14
|
Ortiz-Islas E, Montes P, Rodríguez-Pérez CE, Ruiz-Sánchez E, Sánchez-Barbosa T, Pichardo-Rojas D, Zavala-Tecuapetla C, Carvajal-Aguilera K, Campos-Peña V. Evolution of Alzheimer's Disease Therapeutics: From Conventional Drugs to Medicinal Plants, Immunotherapy, Microbiotherapy and Nanotherapy. Pharmaceutics 2025; 17:128. [PMID: 39861773 PMCID: PMC11768419 DOI: 10.3390/pharmaceutics17010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Alzheimer's disease (AD) represents an escalating global health crisis, constituting the leading cause of dementia among the elderly and profoundly impairing their quality of life. Current FDA-approved drugs, such as rivastigmine, donepezil, galantamine, and memantine, offer only modest symptomatic relief and are frequently associated with significant adverse effects. Faced with this challenge and in line with advances in the understanding of the pathophysiology of this neurodegenerative condition, various innovative therapeutic strategies have been explored. Here, we review novel approaches inspired by advanced knowledge of the underlying pathophysiological mechanisms of the disease. Among the therapeutic alternatives, immunotherapy stands out, employing monoclonal antibodies to specifically target and eliminate toxic proteins implicated in AD. Additionally, the use of medicinal plants is examined, as their synergistic effects among components may confer neuroprotective properties. The modulation of the gut microbiota is also addressed as a peripheral strategy that could influence neuroinflammatory and degenerative processes in the brain. Furthermore, the therapeutic potential of emerging approaches, such as the use of microRNAs to regulate key cellular processes and nanotherapy, which enables precise drug delivery to the central nervous system, is analyzed. Despite promising advances in these strategies, the incidence of Alzheimer's disease continues to rise. Therefore, it is proposed that achieving effective treatment in the future may require the integration of combined approaches, maximizing the synergistic effects of different therapeutic interventions.
Collapse
Affiliation(s)
- Emma Ortiz-Islas
- Laboratorio de Neurofarmacologia Molecular y Nanotecnologia, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico; (E.O.-I.); (C.E.R.-P.)
| | - Pedro Montes
- Laboratorio de Neuroinmunoendocrinología, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico;
| | - Citlali Ekaterina Rodríguez-Pérez
- Laboratorio de Neurofarmacologia Molecular y Nanotecnologia, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico; (E.O.-I.); (C.E.R.-P.)
| | - Elizabeth Ruiz-Sánchez
- Laboratorio de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico;
| | - Talía Sánchez-Barbosa
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico; (T.S.-B.); (C.Z.-T.)
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico
| | - Diego Pichardo-Rojas
- Programa Prioritario de Epilepsia, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico;
| | - Cecilia Zavala-Tecuapetla
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico; (T.S.-B.); (C.Z.-T.)
| | - Karla Carvajal-Aguilera
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Mexico City 04530, Mexico;
| | - Victoria Campos-Peña
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico; (T.S.-B.); (C.Z.-T.)
| |
Collapse
|
15
|
McGorum B, Pirie RS, Bano L, Davey T, Harris J, Montecucco C. Neurotoxic phospholipase A 2: A proposed cause of equine grass sickness and other animal dysautonomias (multiple system neuropathies). Equine Vet J 2025; 57:11-18. [PMID: 39630613 DOI: 10.1111/evj.14442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2024] [Indexed: 12/07/2024]
Affiliation(s)
- Bruce McGorum
- Royal Dick School of Veterinary Studies, University of Edinburgh, Roslin, UK
| | - R Scott Pirie
- Royal Dick School of Veterinary Studies, University of Edinburgh, Roslin, UK
| | - Luca Bano
- Istituto Zooprofilattico Sperimentale delle Venezie, Treviso, Italy
| | - Tracey Davey
- Electron Microscopy Research Services, Newcastle University, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - John Harris
- Medical Toxicology Centre and Institute of Neuroscience, Newcastle University, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Cesare Montecucco
- National Research Council Institute of Neuroscience and Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
16
|
Toader C, Tataru CP, Munteanu O, Covache-Busuioc RA, Serban M, Ciurea AV, Enyedi M. Revolutionizing Neuroimmunology: Unraveling Immune Dynamics and Therapeutic Innovations in CNS Disorders. Int J Mol Sci 2024; 25:13614. [PMID: 39769374 PMCID: PMC11728275 DOI: 10.3390/ijms252413614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Neuroimmunology is reshaping the understanding of the central nervous system (CNS), revealing it as an active immune organ rather than an isolated structure. This review delves into the unprecedented discoveries transforming the field, including the emerging roles of microglia, astrocytes, and the blood-brain barrier (BBB) in orchestrating neuroimmune dynamics. Highlighting their dual roles in both repair and disease progression, we uncover how these elements contribute to the intricate pathophysiology of neurodegenerative diseases, cerebrovascular conditions, and CNS tumors. Novel insights into microglial priming, astrocytic cytokine networks, and meningeal lymphatics challenge the conventional paradigms of immune privilege, offering fresh perspectives on disease mechanisms. This work introduces groundbreaking therapeutic innovations, from precision immunotherapies to the controlled modulation of the BBB using nanotechnology and focused ultrasound. Moreover, we explore the fusion of immune modulation with neuromodulatory technologies, underscoring new frontiers for personalized medicine in previously intractable diseases. By synthesizing these advancements, we propose a transformative framework that integrates cutting-edge research with clinical translation, charting a bold path toward redefining CNS disease management in the era of precision neuroimmunology.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (M.S.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Calin Petru Tataru
- Department of Opthamology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Central Military Emergency Hospital “Dr. Carol Davila”, 010825 Bucharest, Romania
| | - Octavian Munteanu
- Department of Anatomy, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (M.S.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Matei Serban
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (M.S.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (M.S.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
- Medical Section, Romanian Academy, 010071 Bucharest, Romania
| | - Mihaly Enyedi
- Department of Anatomy, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
17
|
Li D, Han X, Farrer LA, Stein TD, Jun GR. Transcriptome Signatures for Cognitive Resilience Among Individuals with Pathologically Confirmed Alzheimer Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.12.24317218. [PMID: 39606402 PMCID: PMC11601734 DOI: 10.1101/2024.11.12.24317218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
INTRODUCTION Limited success to date in development of drugs that target hallmark Alzheimer disease (AD) proteins as a means to slow AD-related cognitive decline has sparked interest in approaches focused on cognitive resilience. We sought to identify transcriptome signatures among brain donors with neuropathologically confirmed AD that distinguish those with cognitive impairment from those that were cognitively intact. METHODS We compared gene expression patterns in brain tissue from donors in four cohorts who were cognitively and pathologically normal (controls), met clinical and pathological criteria for AD (SymAD), or were cognitively normal prior to death despite pathological evidence of AD (cognitively resilient or AsymAD). Differentially expressed genes (DEGs) at the transcriptome-wide significance (TWS) level (P<10 -6 ) in the total sample and nominally significant (P<0.05) in at least two datasets were further evaluated in analyses testing association of gene expression with co-calibrated and harmonized cognitive domain scores and AD-related neuropathological traits. RESULTS We identified 52 TWS DEGs, including 14 that surpassed a significance threshold of P<5×10 -8 . The three most significant DEGs, ADAMTS2 (Log2 fold change [Log2FC]=0.46, P=2.94×10 -14 ), S100A4 (Log2FC=0.61, P=3.98×10 -11 ) and NRIP2 (Log2FC=0.32, P=9.52×10 -11 ) were up-regulated in SymAD compared to AsymAD brains. ADAMTS2 and SLC6A9 were also significantly and nominally differentially expressed between AsymAD cases and controls (FDR P=0.45 and FDR P=0.57, respectively). Significant associations (P<0.0038) were identified for executive function with expression of ADAMTS2 (P=4.15×10 -8 ) and ARSG (P=1.09×10 -3 ), and for memory with PRELP (P=3.92×10 -5 ) and EMP3 (P=7.75×10 -4 ), and for language with SLC38A2 (P=6.76×10 -5 ) and SLC6A9 (P=2.13 ×10 -3 ). Expression of ARSG and FHIP1B were associated with measures of Tau pathology (AT8: P=1.5×10 -3 , and pTau181: P=3.64×10 -3 , respectively), and SLC6A9 expression was associated with multiple pTau isoforms including pTau181 (P=1.5×10 -3 ) and pTau396 (P=2.05×10 -3 ). PRELP expression was associated with synaptic density (PSD.95: P=6.18 ×10 -6 ). DEGs were significantly enriched in pathways involving E2F targets, cholesterol homeostasis, and oxidative phosphorylation. CONCLUSION We identified multiple DEGs that differentiate neuropathologically confirmed AD cases with and without cognitive impairment prior to death. Expression of several of these genes was also associated with measures of cognitive performance and AD-related neuropathological traits, thus providing important insights into cognitive resilience mechanisms and strategies for delaying clinical symptoms of AD.
Collapse
|
18
|
Boldyreva LV, Evtushenko AA, Lvova MN, Morozova KN, Kiseleva EV. Underneath the Gut-Brain Axis in IBD-Evidence of the Non-Obvious. Int J Mol Sci 2024; 25:12125. [PMID: 39596193 PMCID: PMC11594934 DOI: 10.3390/ijms252212125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
The gut-brain axis (GBA) plays a pivotal role in human health and wellness by orchestrating complex bidirectional regulation and influencing numerous critical processes within the body. Over the past decade, research has increasingly focused on the GBA in the context of inflammatory bowel disease (IBD). Beyond its well-documented effects on the GBA-enteric nervous system and vagus nerve dysregulation, and gut microbiota misbalance-IBD also leads to impairments in the metabolic and cellular functions: metabolic dysregulation, mitochondrial dysfunction, cationic transport, and cytoskeleton dysregulation. These systemic effects are currently underexplored in relation to the GBA; however, they are crucial for the nervous system cells' functioning. This review summarizes the studies on the particular mechanisms of metabolic dysregulation, mitochondrial dysfunction, cationic transport, and cytoskeleton impairments in IBD. Understanding the involvement of these processes in the GBA may help find new therapeutic targets and develop systemic approaches to improve the quality of life in IBD patients.
Collapse
Affiliation(s)
- Lidiya V. Boldyreva
- Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia;
| | - Anna A. Evtushenko
- Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia;
| | - Maria N. Lvova
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.N.L.); (K.N.M.); (E.V.K.)
| | - Ksenia N. Morozova
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.N.L.); (K.N.M.); (E.V.K.)
| | - Elena V. Kiseleva
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.N.L.); (K.N.M.); (E.V.K.)
| |
Collapse
|
19
|
Tong B, Long C, Zhang J, Zhang X, Li Z, Qi H, Su K, Zhang D, Chen Y, Ling J, Liu J, Hu Y, Yu P. Associations of human blood metabolome with optic neurodegenerative diseases: a bi-directionally systematic mendelian randomization study. Lipids Health Dis 2024; 23:359. [PMID: 39497194 PMCID: PMC11533396 DOI: 10.1186/s12944-024-02337-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Metabolic disruptions were observed in patients with optic neurodegenerative diseases (OND). However, evidence for the causal association between metabolites and OND is limited. METHODS Two-sample Mendelian randomization (MR). Summary data for 128 blood metabolites was selected from three genome-wide association study (GWASs) involving 147,827 participants of European descent. GWASs Data for glaucoma (20906 cases and 391275 controls) and age-related macular degeneration (AMD, 9721 cases and 381339 controls) came from FinnGen consortium. A bi-directional MR was conducted to assess causality, and a Mediation MR was further applied to explore the indirect effect, a phenome-wide MR analysis was then performed to identify possible side-effects of the therapies. RESULTS All the results underwent correction for multiple testing and rigorous sensitivity analyses. We identified N-acetyl glycine, serine, uridine were linked to an elevated risk of glaucoma. 1-arachidonic-glycerol-phosphate-ethanolamine, 4-acetamido butanoate, o-methylascorbate, saturated fatty acids, monounsaturated fatty acids, VLDL cholesterol, serum total cholesterol, X-11,529 were linked to reduced risk of glaucoma. There were 4 metabolites linked to a reduced risk of AMD, including tryptophan betaine, 4-androsten-3beta-17beta-diol disulfate, apolipoprotein B, VLDL cholesterol. We discovered IOP, AS, T2D as glaucoma risk factors, while BMI, AS, GCIPL as AMD factors. And 6 metabolites showed associations with risk factors in the same direction as their associations with glaucoma/AMD. Phenome-wide MR indicated that selected metabolites had protective/adverse effects on other diseases. CONCLUSIONS By integrating genomics and metabolomics, this study supports new insights into the intricate mechanisms, and helps prevent and screen glaucoma and AMD.
Collapse
Affiliation(s)
- Bin Tong
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Chubing Long
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Xin Zhang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Ophthalmic Center, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhengyang Li
- The First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Haodong Qi
- The First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Kangtai Su
- The First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yixuan Chen
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Jitao Ling
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Jianping Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Yunwei Hu
- Ophthalmic Center, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
20
|
Xiong LL, Du RL, Niu RZ, Xue LL, Chen L, Huangfu LR, Cai XX, He XY, Huang J, Huang XY, Liu J, Yu CY, Wang WY, Wang TH. Single-cell RNA sequencing reveals peripheral immunological features in Parkinson's Disease. NPJ Parkinsons Dis 2024; 10:185. [PMID: 39366969 PMCID: PMC11452393 DOI: 10.1038/s41531-024-00790-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/27/2024] [Indexed: 10/06/2024] Open
Abstract
Although many researchers of Parkinson's disease (PD) have shifted their focus from the central nervous system (CNS) to the peripheral blood, a significant knowledge gap remains between PD severity and the peripheral immune response. In the current study, we aimed to map the peripheral immunity atlas in peripheral blood mononuclear cells (PBMCs) from PD patients and healthy controls using single-cell RNA sequencing (scRNA-seq). Our study employed scRNA-seq analysis to map the peripheral immunity atlas in PD by profiling PBMCs from PD-Early, PD-Late patients and matched controls. By enlarging the blood sample size, we validated the roles of NK cells in numerous immune-related biological processes. We also detected the infiltration of NK cells into the cerebral motor cortex as the disease progressed, using human brain sections, and elucidated the communication between the periphery and CNS and its implications for PD. As a result, cell subpopulation atlases in PBMCs from PD patients and healthy controls along with differentially expressed genes in NK cells were identified by scRNA-seq analysis, representing 6 major immune cell subsets among which NK cells declined in the progression of PD. We further validated NK cell reduction in increasing samples and found that they participated in numerous immune-related biological processes and infiltration into the cerebral motor cortex as the disease proceeded, evidencingd the close communication between the peripheral immune response and CNS. Strikingly, XCL2 positively correlated with PD severity, with good predictive performance of PD and specific expression in subclusters C2 and C5 of NK cells. All these findings delineated the critical role of peripheral immune response mediated by NK cells in the pathogenesis of PD. NK cell-specific XCL2 could be used as a diagnostic marker for treating PD. The indispensable function of NK cells and NK cell-specific molecular biomarkers highlighted the implication of the peripheral immune response in PD progression. Trial registration: ChiCTR, ChiCTR1900023975. Registered 20 June 2019 - Retrospectively registered, https://www.chictr.org.cn/showproj.html?proj=31035 .
Collapse
Affiliation(s)
- Liu-Lin Xiong
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China.
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| | - Ruo-Lan Du
- Institute of Neurological Disease, National-Local Joint Engineering Research Center of Translational Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Rui-Ze Niu
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
- Mental Health Center of Kunming Medical University, Kunming, 650034, Yunnan, China
| | - Lu-Lu Xue
- Institute of Neurological Disease, National-Local Joint Engineering Research Center of Translational Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Li Chen
- Institute of Neurological Disease, National-Local Joint Engineering Research Center of Translational Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Li-Ren Huangfu
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Xiao-Xing Cai
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Xiu-Ying He
- Institute of Neurological Disease, National-Local Joint Engineering Research Center of Translational Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jin Huang
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Xue-Yan Huang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Jia Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Chang-Yin Yu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Wen-Yuan Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China.
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Ting-Hua Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China.
- Institute of Neurological Disease, National-Local Joint Engineering Research Center of Translational Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
21
|
Alves BDS, Schimith LE, da Cunha AB, Dora CL, Hort MA. Omega-3 polyunsaturated fatty acids and Parkinson's disease: A systematic review of animal studies. J Neurochem 2024; 168:1655-1683. [PMID: 38923542 DOI: 10.1111/jnc.16154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. The primary pathological features of PD include the presence of α-synuclein aggregates and Lewy bodies, mitochondrial dysfunction, oxidative stress, and neuroinflammation. Recently, omega-3 fatty acids (ω-3 PUFAs) have been under investigation as a preventive and/or therapeutic strategy for PD, primarily owing to their antioxidant and anti-inflammatory properties. Therefore, the objective of this study was to conduct a systematic review of the literature, focusing on studies that assessed the effects of ω-3 PUFAs in rodent models mimicking human PD. The search was performed using the terms "Parkinson's disease," "fish oil," "omega 3," "docosahexaenoic acid," and "eicosapentaenoic acid" across databases PUBMED, Web of Science, Science Direct, Scielo, and Google Scholar. Following analysis based on predefined inclusion and exclusion criteria, 39 studies were included. Considering behavioral parameters, pathological markers of the disease, quantification of ω-3 PUFAs in the brain, as well as anti-inflammatory, antioxidant, and anti-apoptotic effects, it can be observed that ω-3 PUFAs exhibit a potential neuroprotective effect in PD. In summary, this systematic review presents significant scientific evidence regarding the effects and mechanisms underlying the neuroprotective properties of ω-3 PUFAs, offering valuable insights for the development of future clinical investigations.
Collapse
Affiliation(s)
- Barbara da Silva Alves
- Programa de Pós-graduação Em Ciências da Saúde, Faculdade de Medicina, Universidade Federal Do Rio Grande, Rio Grande, RS, Brazil
| | - Lucia Emanueli Schimith
- Programa de Pós-graduação Em Ciências da Saúde, Faculdade de Medicina, Universidade Federal Do Rio Grande, Rio Grande, RS, Brazil
| | - André Brito da Cunha
- Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande, Rio Grande, RS, Brazil
| | - Cristiana Lima Dora
- Programa de Pós-graduação Em Ciências da Saúde, Faculdade de Medicina, Universidade Federal Do Rio Grande, Rio Grande, RS, Brazil
- Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande, Rio Grande, RS, Brazil
| | - Mariana Appel Hort
- Programa de Pós-graduação Em Ciências da Saúde, Faculdade de Medicina, Universidade Federal Do Rio Grande, Rio Grande, RS, Brazil
- Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande, Rio Grande, RS, Brazil
| |
Collapse
|