1
|
Acosta-Rodríguez VA, Rijo-Ferreira F, van Rosmalen L, Izumo M, Park N, Joseph C, Hepler C, Thorne AK, Stubblefield J, Bass J, Green CB, Takahashi JS. Misaligned feeding uncouples daily rhythms within brown adipose tissue and between peripheral clocks. Cell Rep 2024; 43:114523. [PMID: 39046875 DOI: 10.1016/j.celrep.2024.114523] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 04/24/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024] Open
Abstract
Extended food consumption during the rest period perturbs the phase relationship between circadian clocks in the periphery and the brain, leading to adverse health effects. Beyond the liver, how metabolic organs respond to a timed hypocaloric diet is largely unexplored. We investigated how feeding schedules impacted circadian gene expression in epididymal white and brown adipose tissue (eWAT and BAT) compared to the liver and hypothalamus. We restricted food to either daytime or nighttime in C57BL/6J male mice, with or without caloric restriction. Unlike the liver and eWAT, rhythmic clock genes in the BAT remained insensitive to feeding time, similar to the hypothalamus. We uncovered an internal split within the BAT in response to conflicting environmental cues, displaying inverted oscillations on a subset of metabolic genes without modifying its local core circadian machinery. Integrating tissue-specific responses on circadian transcriptional networks with metabolic outcomes may help elucidate the mechanism underlying the health burden of eating at unusual times.
Collapse
Affiliation(s)
- Victoria A Acosta-Rodríguez
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| | - Filipa Rijo-Ferreira
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA; Berkeley Public Health, Molecular Cell Biology Department, University of California, Berkeley, Berkeley, CA, USA
| | - Laura van Rosmalen
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA; The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Mariko Izumo
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Noheon Park
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Chryshanthi Joseph
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Chelsea Hepler
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Anneke K Thorne
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jeremy Stubblefield
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA; Benedictine College, Atchison, KS, USA
| | - Joseph Bass
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Carla B Green
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| | - Joseph S Takahashi
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| |
Collapse
|
2
|
Qu Y, Wang Y, Wu T, Liu X, Wang H, Ma D. A comprehensive multiomics approach reveals that high levels of sphingolipids in cardiac cachexia adipose tissue are associated with inflammatory and fibrotic changes. Lipids Health Dis 2023; 22:211. [PMID: 38041133 PMCID: PMC10691093 DOI: 10.1186/s12944-023-01967-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/10/2023] [Indexed: 12/03/2023] Open
Abstract
Cardiac cachexia is a deadly consequence of advanced heart failure that is characterised by the dysregulation of adipose tissue homeostasis. Once cachexia occurs with heart failure, it prevents the normal treatment of heart failure and increases the risk of death. Targeting adipose tissue is an important approach to treating cardiac cachexia, but the pathogenic mechanisms are still unknown, and there are no effective therapies available. Transcriptomics, metabolomics, and lipidomics were used to examine the underlying mechanisms of cardiac cachexia. Transcriptomics investigation of cardiac cachexia adipose tissue revealed that genes involved in fibrosis and monocyte/macrophage migration were increased and strongly interacted. The ECM-receptor interaction pathway was primarily enriched, as shown by KEGG enrichment analysis. In addition, gene set enrichment analysis revealed that monocyte chemotaxis/macrophage migration and fibrosis gene sets were upregulated in cardiac cachexia. Metabolomics enrichment analysis demonstrated that the sphingolipid signalling pathway is important for adipose tissue remodelling in cardiac cachexia. Lipidomics analysis showed that the adipose tissue of rats with cardiac cachexia had higher levels of sphingolipids, including Cer and S1P. Moreover, combined multiomics analysis suggested that the sphingolipid metabolic pathway was associated with inflammatory-fibrotic changes in adipose tissue. Finally, the key indicators were validated by experiments. In conclusion, this study described a mechanism by which the sphingolipid signalling pathway was involved in adipose tissue remodelling by inducing inflammation and fat fibrosis in cardiac cachexia.
Collapse
Affiliation(s)
- Yiwei Qu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yong Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tao Wu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xue Liu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huaizhe Wang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dufang Ma
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
3
|
Kashiwabara L, Pirard L, Debier C, Crocker D, Khudyakov J. Effects of cortisol, epinephrine, and bisphenol contaminants on the transcriptional landscape of marine mammal blubber. Am J Physiol Regul Integr Comp Physiol 2023; 325:R504-R522. [PMID: 37602383 DOI: 10.1152/ajpregu.00165.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/04/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023]
Abstract
Top ocean predators such as marine mammals are threatened by intensifying anthropogenic activity, and understanding the combined effects of multiple stressors on their physiology is critical for conservation efforts. We investigated potential interactions between stress hormones and bisphenol contaminants in a model marine mammal, the northern elephant seal (NES). We exposed precision-cut adipose tissue slices (PCATS) from blubber of weaned NES pups to cortisol (CORT), epinephrine (EPI), bisphenol A (BPA), bisphenol S (BPS), or their combinations (CORT-EPI, BPA-EPI, and BPS-EPI) ex vivo and identified hundreds of genes that were differentially regulated in response to these treatments. CORT altered expression of genes associated with lipolysis and adipogenesis, whereas EPI and CORT-EPI-regulated genes were associated with responses to hormones, lipid and protein turnover, immune function, and transcriptional and epigenetic regulation of gene expression, suggesting that EPI has wide-ranging and prolonged impacts on the transcriptional landscape and function of blubber. Bisphenol treatments alone had a weak impact on gene expression compared with stress hormones. However, the combination of EPI with bisphenols altered expression of genes associated with inflammation, cell stress, DNA damage, regulation of nuclear hormone receptor activity, cell cycle, mitochondrial function, primary ciliogenesis, and lipid metabolism in blubber. Our results suggest that CORT, EPI, bisphenols, and their combinations impact cellular, immune, and metabolic homeostasis in marine mammal blubber, which may affect the ability of marine mammals to sustain prolonged fasting during reproduction and migration, renew tissues, and mount appropriate responses to immune challenges and additional stressors.
Collapse
Affiliation(s)
- Lauren Kashiwabara
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States
| | - Laura Pirard
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la Neuve, Belgium
| | - Cathy Debier
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la Neuve, Belgium
| | - Daniel Crocker
- Department of Biology, Sonoma State University, Rohnert Park, California, United States
| | - Jane Khudyakov
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States
| |
Collapse
|
4
|
Piperine Improves Lipid Dysregulation by Modulating Circadian Genes Bmal1 and Clock in HepG2 Cells. Int J Mol Sci 2022; 23:ijms23105611. [PMID: 35628429 PMCID: PMC9144199 DOI: 10.3390/ijms23105611] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 01/27/2023] Open
Abstract
Metabolic disorders are closely associated with the dysregulation of circadian rhythms. Many bioactive components with lipid metabolism-regulating effects have been reported to function through circadian clock-related mechanisms. As the main pungent principle of black pepper, piperine (PIP) has been demonstrated to possess anti-obesity bioactivity by affecting hepatic lipid metabolism-related factors. However, whether the circadian clock genes Bmal1 and Clock are involved in the protective effect of PIP against lipid metabolism disorders remains unknown. In this work, oleic acid (OA) induced lipid accumulation in HepG2 cells. The effect of PIP on redox status, mitochondrial functions, and circadian rhythms of core clock genes were evaluated. Results revealed that PIP alleviated circadian desynchrony, ROS overproduction, and mitochondrial dysfunction. A mechanism study showed that PIP could activate the SREBP-1c/PPARγ and AMPK/AKT-mTOR signaling pathways in a Bmal1/Clock-dependent manner in HepG2 cells. These results indicated that Bmal1 and Clock played important roles in the regulating effect of PIP on hepatic lipid homeostasis.
Collapse
|
5
|
Ribas-Latre A, Eckel-Mahan K. Nutrients and the Circadian Clock: A Partnership Controlling Adipose Tissue Function and Health. Nutrients 2022; 14:2084. [PMID: 35631227 PMCID: PMC9147080 DOI: 10.3390/nu14102084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/13/2022] [Accepted: 05/09/2022] [Indexed: 01/14/2023] Open
Abstract
White adipose tissue (WAT) is a metabolic organ with flexibility to retract and expand based on energy storage and utilization needs, processes that are driven via the coordination of different cells within adipose tissue. WAT is comprised of mature adipocytes (MA) and cells of the stromal vascular cell fraction (SVF), which include adipose progenitor cells (APCs), adipose endothelial cells (AEC) and infiltrating immune cells. APCs have the ability to proliferate and undergo adipogenesis to form MA, the main constituents of WAT being predominantly composed of white, triglyceride-storing adipocytes with unilocular lipid droplets. While adiposity and adipose tissue health are controlled by diet and aging, the endogenous circadian (24-h) biological clock of the body is highly active in adipose tissue, from adipocyte progenitor cells to mature adipocytes, and may play a unique role in adipose tissue health and function. To some extent, 24-h rhythms in adipose tissue rely on rhythmic energy intake, but individual circadian clock proteins are also thought to be important for healthy fat. Here we discuss how and why the clock might be so important in this metabolic depot, and how temporal and qualitative aspects of energy intake play important roles in maintaining healthy fat throughout aging.
Collapse
Affiliation(s)
- Aleix Ribas-Latre
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA;
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig, University Hospital Leipzig, D-04103 Leipzig, Germany
| | - Kristin Eckel-Mahan
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA;
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
| |
Collapse
|
6
|
Goutzelas Y, Kontou P, Mamuris Z, Bagos P, Sarafidou T. Meta-analysis of gene expression data in adipose tissue reveals new obesity associated genes. Gene 2022; 818:146223. [PMID: 35063573 DOI: 10.1016/j.gene.2022.146223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/28/2021] [Accepted: 01/13/2022] [Indexed: 01/16/2023]
Abstract
High-throughput transcriptomic and proteomic data like microarray data are deposited in public databases such as Gene Expression Omnibus (GEO). Omics data integration and processing from different and independent studies is achieved by using efficient and effective computational tools through meta-analysis. Meta-analysis is a statistical powerful tool combining data from numerous studies, minimizes bias and increases statistical power by increasing sample size compared to individual studies. Therefore, we performed a meta-analysis of gene expression data in adipose tissue to identify genes that are differentially expressed between obese and non-obese subjects as well as to detect gene expression signatures, pathways and networks associated with obesity. We identified 821 differentially expressed genes (DEGs) in adipose tissue of obese subjects compared to non-obese. A protein-protein interactions (PPIs) network was reconstructed consisting of 168 proteins. Functional enrichment analysis in the network revealed proteins involved in RNA and energy metabolism. The KEGG pathway analysis revealed 15 enriched pathway terms. Furthermore, multiple testing correction methods identified five statistically significant obesity associated genes (NDUFA12, SFI1, SSB, FAR2 and LACE1) that require further investigation.
Collapse
Affiliation(s)
- Yiannis Goutzelas
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Panagiota Kontou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
| | - Zissis Mamuris
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Pantelis Bagos
- Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
| | - Theologia Sarafidou
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece.
| |
Collapse
|
7
|
van Eenige R, In Het Panhuis W, Schönke M, Jouffe C, Devilee TH, Siebeler R, Streefland TCM, Sips HCM, Pronk ACM, Vorderman RHP, Mei H, van Klinken JB, van Weeghel M, Uhlenhaut NH, Kersten S, Rensen PCN, Kooijman S. Angiopoietin-like 4 governs diurnal lipoprotein lipase activity in brown adipose tissue. Mol Metab 2022; 60:101497. [PMID: 35413480 PMCID: PMC9048098 DOI: 10.1016/j.molmet.2022.101497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/29/2022] Open
Abstract
Objective Brown adipose tissue (BAT) burns fatty acids (FAs) to produce heat, and shows diurnal oscillation in glucose and triglyceride (TG)-derived FA-uptake, peaking around wakening. Here we aimed to gain insight in the diurnal regulation of metabolic BAT activity. Methods RNA-sequencing, chromatin immunoprecipitation (ChIP)-sequencing, and lipidomics analyses were performed on BAT samples of wild type C57BL/6J mice collected at 3-hour intervals throughout the day. Knockout and overexpression models were used to study causal relationships in diurnal lipid handling by BAT. Results We identified pronounced enrichment of oscillating genes involved in extracellular lipolysis in BAT, accompanied by oscillations of FA and monoacylglycerol content. This coincided with peak lipoprotein lipase (Lpl) expression, and was predicted to be driven by peroxisome proliferator-activated receptor gamma (PPARγ) activity. ChIP-sequencing for PPARγ confirmed oscillation in binding of PPARγ to Lpl. Of the known LPL-modulators, angiopoietin-like 4 (Angptl4) showed the largest diurnal amplitude opposite to Lpl, and both Angptl4 knockout and overexpression attenuated oscillations of LPL activity and TG-derived FA-uptake by BAT. Conclusions Our findings highlight involvement of PPARγ and a crucial role of ANGPTL4 in mediating the diurnal oscillation of TG-derived FA-uptake by BAT, and imply that time of day is essential when targeting LPL activity in BAT to improve metabolic health. The transcriptome and lipidome of brown fat show clusters with distinct circadian phases. The peak in metabolic brown fat activity is defined by activation of lipolytic processes. PPARγ shows oscillating binding to lipolytic genes and may drive diurnal brown fat activity. Genetic modulation of the lipoprotein lipase inhibitor Angptl4 flattens rhythmic activity in brown fat. Time of day should be considered when studying the metabolic benefits of targeting brown fat.
Collapse
Affiliation(s)
- Robin van Eenige
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Wietse In Het Panhuis
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Milena Schönke
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Céline Jouffe
- Institute for Diabetes and Endocrinology (IDE), Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), Munich, Germany
| | - Thomas H Devilee
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Ricky Siebeler
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Trea C M Streefland
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Hetty C M Sips
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Amanda C M Pronk
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Ruben H P Vorderman
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Jan Bert van Klinken
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Nina H Uhlenhaut
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands; Metabolic Programming, Technical University of Munich School of Life Sciences, Freising, Germany
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen, the Netherlands
| | - Patrick C N Rensen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Sander Kooijman
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
8
|
Bjørklund G, Tippairote T, Dadar M, Lizcano F, Aaseth J, Borisova O. The Roles of Dietary, Nutritional and Lifestyle Interventions in Adipose Tissue Adaptation and Obesity. Curr Med Chem 2021; 28:1683-1702. [PMID: 32368968 DOI: 10.2174/0929867327666200505090449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/03/2020] [Accepted: 03/28/2020] [Indexed: 11/22/2022]
Abstract
The obesity and the associated non-communicable diseases (NCDs) are globally increasing in their prevalence. While the modern-day lifestyle required less ventilation of metabolic energy through muscular activities, this lifestyle transition also provided the unlimited accession to foods around the clock, which prolong the daily eating period of foods that contained high calorie and high glycemic load. These situations promote the high continuous flux of carbon substrate availability in mitochondria and induce the indecisive bioenergetic switches. The disrupted bioenergetic milieu increases the uncoupling respiration due to the excess flow of the substrate-derived reducing equivalents and reduces ubiquinones into the respiratory chain. The diversion of the uncoupling proton gradient through adipocyte thermogenesis will then alleviate the damaging effects of free radicals to mitochondria and other organelles. The adaptive induction of white adipose tissues (WAT) to beige adipose tissues (beAT) has shown beneficial effects on glucose oxidation, ROS protection and mitochondrial function preservation through the uncoupling protein 1 (UCP1)-independent thermogenesis of beAT. However, the maladaptive stage can eventually initiate with the persistent unhealthy lifestyles. Under this metabolic gridlock, the low oxygen and pro-inflammatory environments promote the adipose breakdown with sequential metabolic dysregulation, including insulin resistance, systemic inflammation and clinical NCDs progression. It is unlikely that a single intervention can reverse all these complex interactions. A comprehensive protocol that includes dietary, nutritional and all modifiable lifestyle interventions, can be the preferable choice to decelerate, stop, or reverse the NCDs pathophysiologic processes.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Torsak Tippairote
- Doctor of Philosophy Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok, Thailand
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | | | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway
| | - Olga Borisova
- Odesa I. I. Mechnikov National University, Odessa, Ukraine
| |
Collapse
|
9
|
Circadian Rhythm: Potential Therapeutic Target for Atherosclerosis and Thrombosis. Int J Mol Sci 2021; 22:ijms22020676. [PMID: 33445491 PMCID: PMC7827891 DOI: 10.3390/ijms22020676] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
Every organism has an intrinsic biological rhythm that orchestrates biological processes in adjusting to daily environmental changes. Circadian rhythms are maintained by networks of molecular clocks throughout the core and peripheral tissues, including immune cells, blood vessels, and perivascular adipose tissues. Recent findings have suggested strong correlations between the circadian clock and cardiovascular diseases. Desynchronization between the circadian rhythm and body metabolism contributes to the development of cardiovascular diseases including arteriosclerosis and thrombosis. Circadian rhythms are involved in controlling inflammatory processes and metabolisms, which can influence the pathology of arteriosclerosis and thrombosis. Circadian clock genes are critical in maintaining the robust relationship between diurnal variation and the cardiovascular system. The circadian machinery in the vascular system may be a novel therapeutic target for the prevention and treatment of cardiovascular diseases. The research on circadian rhythms in cardiovascular diseases is still progressing. In this review, we briefly summarize recent studies on circadian rhythms and cardiovascular homeostasis, focusing on the circadian control of inflammatory processes and metabolisms. Based on the recent findings, we discuss the potential target molecules for future therapeutic strategies against cardiovascular diseases by targeting the circadian clock.
Collapse
|
10
|
Matsushita M, Nirengi S, Hibi M, Wakabayashi H, Lee SI, Domichi M, Sakane N, Saito M. Diurnal variations of brown fat thermogenesis and fat oxidation in humans. Int J Obes (Lond) 2021; 45:2499-2505. [PMID: 34341470 PMCID: PMC8528701 DOI: 10.1038/s41366-021-00927-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/09/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND/OBJECTIVES Disturbed circadian rhythm is associated with an increased risk of obesity and metabolic disorders. Brown adipose tissue (BAT) is a site of nonshivering thermogenesis (NST) and plays a role in regulating whole-body energy expenditure (EE), substrate metabolism, and body fatness. In this study, we examined diurnal variations of NST in healthy humans by focusing on their relation to BAT activity. METHODS Forty-four healthy men underwent 18F-fluoro-2-deoxy-D-glucose positron emission tomography and were divided into Low-BAT and High-BAT groups. In STUDY 1, EE, diet-induced thermogenesis (DIT), and fat oxidation (FO) were measured using a whole-room indirect calorimeter at 27 °C. In STUDY 2, EE, FO, and skin temperature in the region close to BAT depots (Tscv) and in the control region (Tc) were measured at 27 °C and after 90 min cold exposure at 19 °C in the morning and in the evening. RESULTS In STUDY 1, DIT and FO after breakfast was higher in the High-BAT group than in the Low-BAT group (P < 0.05), whereas those after dinner were comparable in the two groups. FO in the High-BAT group was higher after breakfast than after dinner (P < 0.01). In STUDY 2, cold-induced increases in EE (CIT), FO, and Tscv relative to Tc in the morning were higher in the High-BAT group than in the Low-BAT group (P < 0.05), whereas those after dinner were comparable in the two groups. CIT in the High-BAT group tended to be higher in the morning than in the evening (P = 0.056). CONCLUSION BAT-associated NST and FO were evident in the morning, but not in the evening, suggesting that the activity of human BAT is higher in the morning than in the evening, and thus may be involved in the association of an eating habit of breakfast skipping with obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Mami Matsushita
- grid.444713.10000 0004 0596 0895Department of Nutrition, Tenshi College, Sapporo, Japan
| | - Shinsuke Nirengi
- grid.410835.bDivision of Preventive Medicine, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Masanobu Hibi
- grid.419719.30000 0001 0816 944XBiological Science Research Laboratories, Kao Corporation, Tokyo, Japan
| | - Hitoshi Wakabayashi
- grid.39158.360000 0001 2173 7691Laboratory of Environmental Ergonomics, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Sang-il Lee
- grid.39158.360000 0001 2173 7691Laboratory of Environmental Ergonomics, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Masayuki Domichi
- grid.410835.bDivision of Preventive Medicine, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Naoki Sakane
- grid.410835.bDivision of Preventive Medicine, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Masayuki Saito
- grid.444713.10000 0004 0596 0895Department of Nutrition, Tenshi College, Sapporo, Japan ,grid.39158.360000 0001 2173 7691Department of Biomedical Sciences, School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
11
|
Man AWC, Xia N, Li H. Circadian Rhythm in Adipose Tissue: Novel Antioxidant Target for Metabolic and Cardiovascular Diseases. Antioxidants (Basel) 2020; 9:E968. [PMID: 33050331 PMCID: PMC7601443 DOI: 10.3390/antiox9100968] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 12/11/2022] Open
Abstract
Obesity is a major risk factor for most metabolic and cardiovascular disorders. Adipose tissue is an important endocrine organ that modulates metabolic and cardiovascular health by secreting signaling molecules. Oxidative stress is a common mechanism associated with metabolic and cardiovascular complications including obesity, type 2 diabetes, and hypertension. Oxidative stress can cause adipose tissue dysfunction. Accumulating data from both humans and experimental animal models suggest that adipose tissue function and oxidative stress have an innate connection with the intrinsic biological clock. Circadian clock orchestrates biological processes in adjusting to daily environmental changes according to internal or external cues. Recent studies have identified the genes and molecular pathways exhibiting circadian expression patterns in adipose tissue. Disruption of the circadian rhythmicity has been suggested to augment oxidative stress and aberrate adipose tissue function and metabolism. Therefore, circadian machinery in the adipose tissue may be a novel therapeutic target for the prevention and treatment of metabolic and cardiovascular diseases. In this review, we summarize recent findings on circadian rhythm and oxidative stress in adipose tissue, dissect the key components that play a role in regulating the clock rhythm, oxidative stress and adipose tissue function, and discuss the potential use of antioxidant treatment on metabolic and cardiovascular diseases by targeting the adipose clock.
Collapse
Affiliation(s)
| | | | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Langenbeckstr, 1, 55131 Mainz, Germany; (A.W.C.M.); (N.X.)
| |
Collapse
|
12
|
Editorial. Obes Res Clin Pract 2020; 14:107-108. [PMID: 32446616 DOI: 10.1016/j.orcp.2020.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Farzaei MH, Singh AK, Kumar R, Croley CR, Pandey AK, Coy-Barrera E, Kumar Patra J, Das G, Kerry RG, Annunziata G, Tenore GC, Khan H, Micucci M, Budriesi R, Momtaz S, Nabavi SM, Bishayee A. Targeting Inflammation by Flavonoids: Novel Therapeutic Strategy for Metabolic Disorders. Int J Mol Sci 2019; 20:4957. [PMID: 31597283 PMCID: PMC6801776 DOI: 10.3390/ijms20194957] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022] Open
Abstract
A balanced metabolic profile is essential for normal human physiological activities. Disproportions in nutrition give rise to imbalances in metabolism that are associated with aberrant immune function and an elevated risk for inflammatory-associated disorders. Inflammation is a complex process, and numerous mediators affect inflammation-mediated disorders. The available clinical modalities do not effectively address the underlying diseases but rather relieve the symptoms. Therefore, novel targeted agents have the potential to normalize the metabolic system and, thus, provide meaningful therapy to the underlying disorder. In this connection, polyphenols, the well-known and extensively studied phytochemical moieties, were evaluated for their effective role in the restoration of metabolism via various mechanistic signaling pathways. The various flavonoids that we observed in this comprehensive review interfere with the metabolic events that induce inflammation. The mechanisms via which the polyphenols, in particular flavonoids, act provide a promising treatment option for inflammatory disorders. However, detailed clinical studies of such molecules are required to decide their clinical fate.
Collapse
Affiliation(s)
- Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran.
| | - Amit Kumar Singh
- Department of Biochemistry, University of Allahabad, Allahabad 211 002, India.
| | - Ramesh Kumar
- Department of Biochemistry, University of Allahabad, Allahabad 211 002, India.
| | - Courtney R Croley
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| | - Abhay K Pandey
- Department of Biochemistry, University of Allahabad, Allahabad 211 002, India.
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Campus Nueva Granada, Universidad Militar Nueva Granada, Cajicá 250247, Colombia.
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Gyeonggi-do 10326, Korea.
| | - Gitishree Das
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Gyeonggi-do 10326, Korea.
| | - Rout George Kerry
- Post Graduate Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar 751 004, Odisha, India.
| | - Giuseppe Annunziata
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan.
| | - Matteo Micucci
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy.
| | - Roberta Budriesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy.
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, Karaj 141554364, Iran.
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran 141556451, Iran.
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran.
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|