1
|
Lee DJ, Mai J, Huang TJ. Microfluidic approaches for cell-based molecular diagnosis. BIOMICROFLUIDICS 2018; 12:051501. [PMID: 30271515 PMCID: PMC6138474 DOI: 10.1063/1.5030891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
The search for next-generation biomarkers has enabled cell-based diagnostics in a number of disciplines ranging from oncology to pharmacogenetics. However, cell-based diagnostics are still far from clinical reality due to the complex assays and associated protocols which typically require cell isolation, lysis, DNA extraction, amplification, and detection steps. Leveraging recent advances in microfluidics, many biochemical assays have been translated onto microfluidic platforms. We have compared and summarized recent advances in modular approaches toward the realization of fully-integrated, cell-based molecular diagnostics for clinical and point-of-care applications.
Collapse
Affiliation(s)
- Dong Jun Lee
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - John Mai
- Alfred E. Mann Institute for Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA
| | | |
Collapse
|
2
|
Performance Characterization of Two-Dimensional Paper Chromatography-based Biosensors for Biodefense, Exemplified by Detection of Bacillus anthracis Spores. BIOCHIP JOURNAL 2018. [DOI: 10.1007/s13206-017-2108-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
The promise of whole-exome sequencing in medical genetics. J Hum Genet 2013; 59:5-15. [DOI: 10.1038/jhg.2013.114] [Citation(s) in RCA: 312] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 09/29/2013] [Accepted: 10/11/2013] [Indexed: 12/14/2022]
|
4
|
Profiling in situ microbial community structure with an amplification microarray. Appl Environ Microbiol 2012; 79:799-807. [PMID: 23160129 DOI: 10.1128/aem.02664-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The objectives of this study were to unify amplification, labeling, and microarray hybridization chemistries within a single, closed microfluidic chamber (an amplification microarray) and verify technology performance on a series of groundwater samples from an in situ field experiment designed to compare U(VI) mobility under conditions of various alkalinities (as HCO(3)(-)) during stimulated microbial activity accompanying acetate amendment. Analytical limits of detection were between 2 and 200 cell equivalents of purified DNA. Amplification microarray signatures were well correlated with 16S rRNA-targeted quantitative PCR results and hybridization microarray signatures. The succession of the microbial community was evident with and consistent between the two microarray platforms. Amplification microarray analysis of acetate-treated groundwater showed elevated levels of iron-reducing bacteria (Flexibacter, Geobacter, Rhodoferax, and Shewanella) relative to the average background profile, as expected. Identical molecular signatures were evident in the transect treated with acetate plus NaHCO(3), but at much lower signal intensities and with a much more rapid decline (to nondetection). Azoarcus, Thaurea, and Methylobacterium were responsive in the acetate-only transect but not in the presence of bicarbonate. Observed differences in microbial community composition or response to bicarbonate amendment likely had an effect on measured rates of U reduction, with higher rates probable in the part of the field experiment that was amended with bicarbonate. The simplification in microarray-based work flow is a significant technological advance toward entirely closed-amplicon microarray-based tests and is generally extensible to any number of environmental monitoring applications.
Collapse
|
5
|
Chandler DP, Bryant L, Griesemer SB, Gu R, Knickerbocker C, Kukhtin A, Parker J, Zimmerman C, George KS, Cooney CG. Integrated Amplification Microarrays for Infectious Disease Diagnostics. MICROARRAYS 2012; 1:107-24. [PMID: 27605339 PMCID: PMC5003434 DOI: 10.3390/microarrays1030107] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 10/31/2012] [Accepted: 11/07/2012] [Indexed: 11/17/2022]
Abstract
This overview describes microarray-based tests that combine solution-phase amplification chemistry and microarray hybridization within a single microfluidic chamber. The integrated biochemical approach improves microarray workflow for diagnostic applications by reducing the number of steps and minimizing the potential for sample or amplicon cross-contamination. Examples described herein illustrate a basic, integrated approach for DNA and RNA genomes, and a simple consumable architecture for incorporating wash steps while retaining an entirely closed system. It is anticipated that integrated microarray biochemistry will provide an opportunity to significantly reduce the complexity and cost of microarray consumables, equipment, and workflow, which in turn will enable a broader spectrum of users to exploit the intrinsic multiplexing power of microarrays for infectious disease diagnostics.
Collapse
Affiliation(s)
- Darrell P Chandler
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, MD 21701, USA.
| | - Lexi Bryant
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, MD 21701, USA.
| | - Sara B Griesemer
- Laboratory of Viral Diseases, Wadsworth Center, New York State Dept of Health, 120 New Scotland Avenue, Albany, NY 12208, USA.
| | - Rui Gu
- Laboratory of Viral Diseases, Wadsworth Center, New York State Dept of Health, 120 New Scotland Avenue, Albany, NY 12208, USA.
| | | | - Alexander Kukhtin
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, MD 21701, USA.
| | - Jennifer Parker
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, MD 21701, USA.
| | - Cynthia Zimmerman
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, MD 21701, USA.
| | - Kirsten St George
- Laboratory of Viral Diseases, Wadsworth Center, New York State Dept of Health, 120 New Scotland Avenue, Albany, NY 12208, USA.
| | - Christopher G Cooney
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, MD 21701, USA.
| |
Collapse
|
6
|
Kingsmore SF, Dinwiddie DL, Miller NA, Soden SE, Saunders CJ. Adopting orphans: comprehensive genetic testing of Mendelian diseases of childhood by next-generation sequencing. Expert Rev Mol Diagn 2012; 11:855-68. [PMID: 22022947 DOI: 10.1586/erm.11.70] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Orphan diseases are individually uncommon but collectively contribute significantly to pediatric morbidity, mortality and healthcare costs. Current molecular testing for rare genetic disorders is often a lengthy and costly endeavor, and in many cases a molecular diagnosis is never achieved despite extensive testing. Diseases with locus heterogeneity or overlapping signs and symptoms are especially challenging owing to the number of potential targets. Consequently, there is immense need for scalable, economical, rapid, multiplexed diagnostic testing for rare Mendelian diseases. Recent advances in next-generation sequencing and bioinformatic technologies have the potential to change the standard of care for the diagnosis of rare genetic disorders. These advances will be reviewed in the setting of a recently developed test for 592 autosomal recessive and X-linked diseases.
Collapse
Affiliation(s)
- Stephen F Kingsmore
- Children's Mercy Hospital & Clinics, 2401 Gillham Road, Kansas City, MO 64108, USA.
| | | | | | | | | |
Collapse
|
7
|
Hoffmann J, Hin S, Stetten FV, Zengerle R, Roth G. Universal protocol for grafting PCR primers onto various lab-on-a-chip substrates for solid-phase PCR. RSC Adv 2012. [DOI: 10.1039/c2ra01250b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
8
|
Bell CJ, Dinwiddie DL, Miller NA, Hateley SL, Ganusova EE, Mudge J, Langley RJ, Zhang L, Lee CC, Schilkey FD, Sheth V, Woodward JE, Peckham HE, Schroth GP, Kim RW, Kingsmore SF. Carrier testing for severe childhood recessive diseases by next-generation sequencing. Sci Transl Med 2011; 3:65ra4. [PMID: 21228398 PMCID: PMC3740116 DOI: 10.1126/scitranslmed.3001756] [Citation(s) in RCA: 503] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Of 7028 disorders with suspected Mendelian inheritance, 1139 are recessive and have an established molecular basis. Although individually uncommon, Mendelian diseases collectively account for ~20% of infant mortality and ~10% of pediatric hospitalizations. Preconception screening, together with genetic counseling of carriers, has resulted in remarkable declines in the incidence of several severe recessive diseases including Tay-Sachs disease and cystic fibrosis. However, extension of preconception screening to most severe disease genes has hitherto been impractical. Here, we report a preconception carrier screen for 448 severe recessive childhood diseases. Rather than costly, complete sequencing of the human genome, 7717 regions from 437 target genes were enriched by hybrid capture or microdroplet polymerase chain reaction, sequenced by next-generation sequencing (NGS) to a depth of up to 2.7 gigabases, and assessed with stringent bioinformatic filters. At a resultant 160x average target coverage, 93% of nucleotides had at least 20x coverage, and mutation detection/genotyping had ~95% sensitivity and ~100% specificity for substitution, insertion/deletion, splicing, and gross deletion mutations and single-nucleotide polymorphisms. In 104 unrelated DNA samples, the average genomic carrier burden for severe pediatric recessive mutations was 2.8 and ranged from 0 to 7. The distribution of mutations among sequenced samples appeared random. Twenty-seven percent of mutations cited in the literature were found to be common polymorphisms or misannotated, underscoring the need for better mutation databases as part of a comprehensive carrier testing strategy. Given the magnitude of carrier burden and the lower cost of testing compared to treating these conditions, carrier screening by NGS made available to the general population may be an economical way to reduce the incidence of and ameliorate suffering associated with severe recessive childhood disorders.
Collapse
Affiliation(s)
- Callum J. Bell
- National Center for Genome Resources, Santa Fe, NM 87505, USA
| | - Darrell L. Dinwiddie
- National Center for Genome Resources, Santa Fe, NM 87505, USA
- Children’s Mercy Hospital, Kansas City, MO 64108, USA
| | - Neil A. Miller
- National Center for Genome Resources, Santa Fe, NM 87505, USA
- Children’s Mercy Hospital, Kansas City, MO 64108, USA
| | | | | | - Joann Mudge
- National Center for Genome Resources, Santa Fe, NM 87505, USA
| | - Ray J. Langley
- National Center for Genome Resources, Santa Fe, NM 87505, USA
| | - Lu Zhang
- Illumina Inc., Hayward, CA 94545, USA
| | | | | | | | | | | | | | - Ryan W. Kim
- National Center for Genome Resources, Santa Fe, NM 87505, USA
| | - Stephen F. Kingsmore
- National Center for Genome Resources, Santa Fe, NM 87505, USA
- Children’s Mercy Hospital, Kansas City, MO 64108, USA
| |
Collapse
|