1
|
Ünal F, Kurbetli İ, Eğerci Y, Cavusoglu A. Effects of chemical fungicides combined with plant resistance inducers against Bipolaris sorokiniana in turfgrass. PeerJ 2025; 13:e18943. [PMID: 39959830 PMCID: PMC11829629 DOI: 10.7717/peerj.18943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/16/2025] [Indexed: 02/18/2025] Open
Abstract
One of the most common and causative diseases problems disease in turfgrass areas in Türkiye is leaf blight, root and crown rot caused by Bipolaris sorokiniana. The fungus causes great damage especially in parks, refuges, and golf courses, and needs to be managed. This study aimed to determine some activators alone or in combination with effective fungicides at different doses against B. sorokiniana, to reduce the use of fungicides in the control of the disease. In the study, the effects of combinations of different doses of some fungicides with Lactobacillus acidophilus, Arthrobacter sp. and a harpin protein determined to be effective in in vitro studies were investigated in greenhouse and field conditions in two different provinces. The highest effect was obtained in the combination of (Lactobacillus acidophilus-(Azoxystrobin+Difenocazole)), which was used at the recommended dose (94.70% effect) and the recommended dose of Azoxystrobin+Difenocazole (92.57% effect). The (Lactobacillus acidophilus-(Azoxystrobin+Difenocazole 1st subdose)) application, in which a lower dose of fungicide was used, ranked 4th with an 89.50% effect. When Lactobacillus acidophilus, Arthrobacter sp. and Harpin were used alone, they were found to be 82.53%, 72.17%, and 66.63% effective against the disease, respectively. As a result, environmentally friendly low-dose fungicide, and activator combination (Lactobacillus acidophilus-(Azoxystrobin+Difenocazole 1. subdose)), and (Arthrobacter sp.-(Epoxiconazole+Pyraclostrobin 1st sub-dose)) applications were found to be promising in the control of B. sorokiniana in turfgrass areas. When considered only as an activator application, the 82.53% effect value obtained in Lactobacillus acidophilus applications was found to be promising for the disease. It can be recommended as a disease suppressant, and at the same time environmentally friendly application.
Collapse
Affiliation(s)
- Filiz Ünal
- Faculty of Agriculture, Eskişehir Osmangazi University, Eskişehir, Türkiye
| | - İlker Kurbetli
- Plant Health Department, Batı Akdeniz Agricultural Research Institute, Antalya, Türkiye
| | - Yeşim Eğerci
- Department of Cereal Diseases, Plant Protection Research Institute, İzmir, Türkiye
| | - Aysun Cavusoglu
- Faculty of Agriculture, Kocaeli University, Kocaeli, Türkiye
| |
Collapse
|
2
|
Paweer MMZ, Namikoye ES, Nchore SB, Akutse KS. Can fungal endophytes suppress Trialeurodes vaporariorum and the transmission of tomato infectious chlorosis and chlorosis viruses in field conditions? Front Cell Infect Microbiol 2025; 15:1470821. [PMID: 39967792 PMCID: PMC11832475 DOI: 10.3389/fcimb.2025.1470821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/16/2025] [Indexed: 02/20/2025] Open
Abstract
Field trials were conducted for two seasons in two experimental sites (Mwea in Kirinyaga and Ngoliba in Kiambu counties of Kenya) to assess the efficacy of fungal endophytes Hypocrea lixii F3ST1 and Trichoderma asperellum M2RT4 in the control of Trialeurodes vaporariorum vector of tomato infectious chlorosis virus (TICV) and tomato chlorosis virus (ToCV) through seeds inoculation. TICV and ToCV's disease incidence, severity and the yield were also evaluated. All the fungal endophytes successfully colonized all the tomato plant parts, but the highest root colonization was observed in H. lixii F3ST1 compared to the T. asperellum M2RT4 in both seasons. The number of nymphs was significantly lower in the endophytically colonized tomato plants than the control treatments in all the seasons and at both sites. However, the lowest number of nymphs was recorded in H. lixii F3ST1 compared to T. asperellum M2RT4. On the other hand, the TICV and ToCV disease incidence and severity rates were lower in endophytically colonized tomato crops compared to the control plots. This could be attributed to the reduction in the virus replication and lower feeding ability of T. vaporariorum that was characterized by less excretion of honeydew causing sooty mold. However, no significant difference was observed in ToCV disease severity rates among the treatments and across the seasons. The yield was significantly higher in endophyte plots than the control treatments in both sites and across the two seasons. This study demonstrates that H. lixii F3ST1 and T. asperellum M2RT4 endophytically colonized tomato plants and conferred systemic resistance against T. vaporariorum vector, and significantly reduced the transmission of TICV and ToCV, contributing to high reduction of both diseases' incidence and severity in the field. However, further studies are warranted to confirm these results at large scale trials.
Collapse
Affiliation(s)
- Marial Makur Zechariah Paweer
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Agricultural Science and Technology, Kenyatta University, Nairobi, Kenya
| | | | - Shem Bonuke Nchore
- Department of Agricultural Science and Technology, Kenyatta University, Nairobi, Kenya
| | - Komivi Senyo Akutse
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Unit of Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
3
|
Tamang A, Swarnkar M, Kumar P, Kumar D, Pandey SS, Hallan V. Endomicrobiome of in vitro and natural plants deciphering the endophytes-associated secondary metabolite biosynthesis in Picrorhiza kurrooa, a Himalayan medicinal herb. Microbiol Spectr 2023; 11:e0227923. [PMID: 37811959 PMCID: PMC10715050 DOI: 10.1128/spectrum.02279-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/25/2023] [Indexed: 10/10/2023] Open
Abstract
IMPORTANCE Picrorhiza kurrooa is a major source of picrosides, potent hepatoprotective molecules. Due to the ever-increasing demands, overexploitation has caused an extensive decline in its population in the wild and placed it in the endangered plants' category. At present plant in-vitro systems are widely used for the sustainable generation of P. kurrooa plants, and also for the conservation of other commercially important, rare, endangered, and threatened plant species. Furthermore, the in-vitro-generated plants had reduced content of therapeutic secondary metabolites compared to their wild counterparts, and the reason behind, not well-explored. Here, we revealed the loss of plant-associated endophytic communities during in-vitro propagation of P. kurrooa plants which also correlated to in-planta secondary metabolite biosynthesis. Therefore, this study emphasized to consider the essential role of plant-associated endophytic communities in in-vitro practices which may be the possible reason for reduced secondary metabolites in in-vitro plants.
Collapse
Affiliation(s)
- Anish Tamang
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Mohit Swarnkar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, India
| | - Pawan Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Dinesh Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Shiv Shanker Pandey
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Vipin Hallan
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| |
Collapse
|
4
|
Kumar M, Ansari WA, Zeyad MT, Singh A, Chakdar H, Kumar A, Farooqi MS, Sharma A, Srivastava S, Srivastava AK. Core microbiota of wheat rhizosphere under Upper Indo-Gangetic plains and their response to soil physicochemical properties. FRONTIERS IN PLANT SCIENCE 2023; 14:1186162. [PMID: 37255554 PMCID: PMC10226189 DOI: 10.3389/fpls.2023.1186162] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/21/2023] [Indexed: 06/01/2023]
Abstract
Wheat is widely cultivated in the Indo-Gangetic plains of India and forms the major staple food in the region. Understanding microbial community structure in wheat rhizosphere along the Indo-Gangetic plain and their association with soil properties can be an important base for developing strategies for microbial formulations. In the present study, an attempt was made to identify the core microbiota of wheat rhizosphere through a culture-independent approach. Rhizospheric soil samples were collected from 20 different sites along the upper Indo-Gangetic plains and their bacterial community composition was analyzed based on sequencing of the V3-V4 region of the 16S rRNA gene. Diversity analysis has shown significant variation in bacterial diversity among the sites. The taxonomic profile identified Proteobacteria, Chloroflexi, Actinobacteria, Bacteroidetes, Acidobacteria, Gemmatimonadetes, Planctomycetes, Verrucomicrobia, Firmicutes, and Cyanobacteria as the most dominant phyla in the wheat rhizosphere in the region. Core microbiota analysis revealed 188 taxa as core microbiota of wheat rhizosphere with eight genera recording more than 0.5% relative abundance. The order of most abundant genera in the core microbiota is Roseiflexus> Flavobacterium> Gemmatimonas> Haliangium> Iamia> Flavisolibacter> Ohtaekwangia> Herpetosiphon. Flavobacterium, Thermomonas, Massilia, Unclassified Rhizobiaceae, and Unclassified Crenarchaeota were identified as keystone taxa of the wheat rhizosphere. Correlation studies revealed, pH, organic carbon content, and contents of available nitrogen, phosphorus, and iron as the major factors driving bacterial diversity in the wheat rhizosphere. Redundancy analysis has shown the impact of different soil properties on the relative abundance of different genera of the core microbiota. The results of the present study can be used as a prelude to be developing microbial formulations based on core microbiota.
Collapse
Affiliation(s)
- Murugan Kumar
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| | - Waquar Akhter Ansari
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| | - Mohammad Tarique Zeyad
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| | - Arjun Singh
- ICAR-Central Soil Salinity Research Institute, Regional Research Station (RRS), Lucknow, Uttar Pradesh, India
| | - Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| | - Adarsh Kumar
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| | | | - Anu Sharma
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Sudhir Srivastava
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Alok Kumar Srivastava
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| |
Collapse
|
5
|
Pagliarini E, Gaggìa F, Quartieri M, Toselli M, Di Gioia D. Yield and Nutraceutical Value of Lettuce and Basil Improved by a Microbial Inoculum in Greenhouse Experiments. PLANTS (BASEL, SWITZERLAND) 2023; 12:1700. [PMID: 37111923 PMCID: PMC10145599 DOI: 10.3390/plants12081700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 06/19/2023]
Abstract
Members of Bacillus spp. have been widely used to enrich the soil/root interface to provide plant growth promoting activities. A new isolate, namely to Bacillus sp. VWC18, has been tested under greenhouse conditions in lettuce (Lactuca sativa L.) pots at different concentrations (103, 105, 107, and 109 CFU·mL-1) and application time (single inoculum at transplant and multiple inoculum every ten days) to evaluate the best application dose and frequency. Analysis of foliar yield, main nutrients, and minerals evidenced a significant response for all applications. The lowest (103 CFU·mL-1) and the highest doses (109 CFU·mL-1), applied every ten days until harvest, had the greatest efficacy; the nutrient yield (N, K, P, Na, Ca, Fe, Mg, Mn, Cu, and B) increased more than twice. A new randomized block design with three replicates was then performed in lettuce and basil (Ocinum basilicum L.), with the two best performing concentrations applied every ten days. In addition to previous analysis, root weight, chlorophyll, and carotenoids were also examined. Both experiments confirmed the previous results: inoculation of the substrate with Bacillus sp. VWC18 promoted plant growth, chlorophyll, and mineral uptake in both crop species. Root weight duplicated or triplicated compared to control plants, and chlorophyll concentration reached even higher values. Both parameters had a dose-dependent increase.
Collapse
|
6
|
Bosi S, Negri L, Accorsi M, Baffoni L, Gaggia F, Gioia DD, Dinelli G, Marotti I. Biostimulants for Sustainable Management of Sport Turfgrass. PLANTS (BASEL, SWITZERLAND) 2023; 12:539. [PMID: 36771623 PMCID: PMC9921520 DOI: 10.3390/plants12030539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Research on the efficacy of innovative, ecofriendly biostimulants in sport turf management is scarce, with less information available from open-field experiments, and even less pertaining to thatch control-related problems. The objective was to investigate the open-field effectiveness of a commercial product, EM-1, and two newly developed products, ExpA and ExpB, in improving both rhizosphere and turfgrass, Agrostis stoloniferous L., characteristics on a golf green. ExpA and ExpB, identical in microbial composition, were equally effective in significantly increasing chlorophyll synthesis and visual turf quality, as well as in resistance to tearing out, compared to the untreated control 56 days after treatment (DAT). EM-1 showed intermediate trends between the control and novel biostimulants. The inclusion of humic acids and mycorrhizal fungi to the microbial composition in ExpB significantly improved some rhizosphere properties 56 DAT relative to the control. Results on ExpB evidenced a significant decrease in the thatch layer thickness and fresh leaf weight, associated with a significant increase in the humus thickness, organic matter decomposition and evapotranspiration efficiency. An increased dry leaf biomass was also shown. ExpA and EM-1 showed either marginal or intermediate improvements relative to the control. ExpB represents a promising alternative to alleviate negative environmental impacts associated with turf maintenance-related activities.
Collapse
Affiliation(s)
- Sara Bosi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy
| | - Lorenzo Negri
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy
| | | | - Loredana Baffoni
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy
| | - Francesca Gaggia
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy
| | - Diana Di Gioia
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy
| | - Giovanni Dinelli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy
| | - Ilaria Marotti
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy
| |
Collapse
|
7
|
Liu Y, Chen J, Lang H, Zheng H. Bartonella choladocola sp. nov. and Bartonella apihabitans sp. nov., two novel species isolated from honey bee gut. Syst Appl Microbiol 2022; 45:126372. [DOI: 10.1016/j.syapm.2022.126372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022]
|
8
|
Mizzi J, Gaggìa F, Bozzi Cionci N, Di Gioia D, Attard E. Selection of Acetic Acid Bacterial Strains and Vinegar Production From Local Maltese Food Sources. Front Microbiol 2022; 13:897825. [PMID: 35928157 PMCID: PMC9343879 DOI: 10.3389/fmicb.2022.897825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022] Open
Abstract
This study investigates the isolation, identification, and fermentation performance of autochthonous acetic acid bacteria (AAB) from local niche habitats on the Island of Gozo (Malta) and their further use for vinegar production, employing local raw materials. The bacteria were isolated from grapevine berries and vinegar produced in the cottage industry. Following phenotype and genotype identification, the AAB were ascribed to the genera Acetobacter, Gluconobacter, and Komagataeibacter. A mixture of selected AAB was tested as an inoculum for vinegar production in bench fermenters, under different conditions and substrates, namely, grapes, honey, figs, onions, prickly pear, and tomatoes. The bench fermenters were operated under semi-continuous fermentation where working volumes were maintained by discharging and subsequent recharging accordingly to maintain the acidity in fermenters by adding 30-50 g/l of acetic acid for optimal Acetobacteraceae performance. Finally, the vinegar products obtained from the different substrates were evaluated for their quality, including organoleptic properties, which showed the superior quality of wood-treated vinegar samples with respect to neat vinegar samples.
Collapse
Affiliation(s)
- Joseph Mizzi
- Division of Rural Sciences and Food Systems, Institute of Earth Systems, University of Malta, Msida, Malta
| | - Francesca Gaggìa
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Nicole Bozzi Cionci
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Diana Di Gioia
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Everaldo Attard
- Division of Rural Sciences and Food Systems, Institute of Earth Systems, University of Malta, Msida, Malta
| |
Collapse
|
9
|
Palla M, Turrini A, Cristani C, Bonora L, Pellegrini D, Primicerio J, Grassi A, Hilaj F, Giovannetti M, Agnolucci M. Impact of sheep wool residues as soil amendments on olive beneficial symbionts and bacterial diversity. BIORESOUR BIOPROCESS 2022; 9:45. [PMID: 38647844 PMCID: PMC10992544 DOI: 10.1186/s40643-022-00534-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/31/2022] [Indexed: 11/10/2022] Open
Abstract
In recent years the use of organic matter soil amendments, such as agricultural by-products, has been implemented with the aim of increasing soil fertility, while minimizing the environmental impact of agriculture. Sheep wool residues (SWR) have shown beneficial effects on plant nutrition and soil properties, while only few works assessed their impact on soil microbial communities. The main aim of this work was to investigate the possible valorization of two SWR types (scoured residues, white wool, WW, and carbonized scoured residues, black wool, BW) as organic soil amendments, in pot-grown olive trees, by evaluating their impact on soil bacterial communities and mycorrhizal symbionts. The two SWR types did not negatively impact on the diversity and composition of soil bacterial communities, as revealed by PCR-denaturating gradient gel electrophoresis (PCR-DGGE) of partial 16S rRNA gene, and on the activity of native arbuscular mycorrhizal fungi (AMF), while positively affecting plant growth. Only the highest doses of one SWR type (2% BW) caused a decrease in bacterial diversity and native AMF ability to colonize olive roots. DGGE bands sequencing allowed the identification of the major bacterial taxa. Sequences corresponding to Ohtaekwangia spp., Beta proteobacterium, Blastocatella sp., Ramlibacter monticola and Massilia frigida/rubra, Dongia sp. and Chloroflexi were mainly represented in SWR-amended soils, while those represented by Chryseolinea soli and Acidobacteria were abundant in control soil. Overall, this work showed that SWR may be valorized as organic soil amendments, as soil bacteria and AMF, representing key factors of biological soil fertility, were not negatively affected, while the activity of bacterial genera and species known for their ability to decompose complex compounds was boosted. Further studies will investigate the biodegradation efficiency of the diverse bacterial taxa developing in SWR-amended soils.
Collapse
Affiliation(s)
- Michela Palla
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Alessandra Turrini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Caterina Cristani
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Laura Bonora
- National Research Council-Institute of BioEconomy (CNR-IBE), via Madonna del Piano 10, 50019, Sesto Fiorentino (FI), Italy
| | - David Pellegrini
- National Research Council-Institute of BioEconomy (CNR-IBE), via Madonna del Piano 10, 50019, Sesto Fiorentino (FI), Italy
| | - Jacopo Primicerio
- National Research Council-Institute of BioEconomy (CNR-IBE), via Madonna del Piano 10, 50019, Sesto Fiorentino (FI), Italy
| | - Arianna Grassi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Filip Hilaj
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Manuela Giovannetti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Monica Agnolucci
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| |
Collapse
|
10
|
Paradza VM, Khamis FM, Yusuf AA, Subramanian S, Ekesi S, Akutse KS. Endophytic Colonisation of Solanum lycopersicum and Phaseolus vulgaris by Fungal Endophytes Promotes Seedlings Growth and Hampers the Reproductive Traits, Development, and Survival of the Greenhouse Whitefly, Trialeurodes vaporariorum. FRONTIERS IN PLANT SCIENCE 2021; 12:771534. [PMID: 34868170 PMCID: PMC8640138 DOI: 10.3389/fpls.2021.771534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/18/2021] [Indexed: 06/01/2023]
Abstract
In the scope of mitigating the negative impacts of pesticide use and managing greenhouse whiteflies, Trialeurodes vaporariorum sustainably, 16 endophytic fungal isolates from five different genera (Beauveria, Trichoderma, Hypocrea, Bionectria, and Fusarium) were screened for their ability to colonise two preferred host plant species, namely, tomato (Solanum lycopersicum L.) and French bean (Phaseolus vulgaris L.), through seed inoculation. Seven and nine isolates were endophytic to P. vulgaris and S. lycopersicum, respectively, where significant differences in the endophytic colonisation rates were observed among the fungal isolates in P. vulgaris and its plant parts, with a significant interaction between the isolates and plant parts in S. lycopersicum. Hypocrea lixii F3ST1, Trichoderma asperellum M2RT4, Trichoderma atroviride F5S21, and T. harzianum KF2R41 successfully colonised all the plant parts of both hosts and therefore were selected and further evaluated for their endophytic persistence, effect on plant growth, and pathogenicity to T. vaporariorum adults and F1 progeny. The four endophytes remained in both host plants for the 5-week assessment with varied colonisation rates related to the strong interaction with the time, isolates, and plant parts in both hosts. The effect of the same endophytes on the different host growth parameters varied in P. vulgaris and S. lycopersicum, with T. asperellum M2RT4 not boosting the growth in both host plants while T. atroviride F5S21 resulted in enhanced shoot biomass in S. lycopersicum. T. atroviride F5S21 and T. harzianum KF2R41 inoculated S. lycopersicum plants and H. lixii F3ST1, T. asperellum M2RT4, and T. harzianum KF2R41 inoculated P. vulgaris plants had significantly lower oviposition, while nymph development in both hosts was significantly prolonged in all the endophytically-colonised plants. The endophytes H. lixii F3ST1 and T. asperellum M2RT4 significantly reduced the longevity/survival of the exposed T. vaporariorum adults and the progeny in both S. lycopersicum and P. vulgaris. The findings demonstrate the attributes of the various endophytes in host plant growth promotion as well as their effects on the life-history parameters of T. vaporariorum and could consequently be developed as potential endophytic fungal-based biopesticides for the sustainable management of the pest in S. lycopersicum and P. vulgaris cropping systems.
Collapse
Affiliation(s)
- Vongai M. Paradza
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - Fathiya M. Khamis
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Abdullahi A. Yusuf
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Hatfield, South Africa
| | - Sevgan Subramanian
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Sunday Ekesi
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Komivi S. Akutse
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| |
Collapse
|
11
|
Chen J, Wang J, Zheng H. Characterization of Bifidobacterium apousia sp. nov., Bifidobacterium choladohabitans sp. nov., and Bifidobacterium polysaccharolyticum sp. nov., three novel species of the genus Bifidobacterium from honey bee gut. Syst Appl Microbiol 2021; 44:126247. [PMID: 34482030 DOI: 10.1016/j.syapm.2021.126247] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 11/30/2022]
Abstract
Bifidobacterium is one of the dominating bacterial genera in the honey bee gut, and they are the key degrader of diet polysaccharides for the host. Previous genomic analysis shows that they belong to separate phylogenetic clusters and exhibited different functional potentials in hemicellulose digestion. Here, three novel strains from the genus Bifidobacterium were isolated from the guts of the honey bee (Apis mellifera). Phylogenomic analysis showed that the isolates could be grouped into four phylogenetic clusters. The average nucleotide identity values between strains from different clusters are <95%, while strains in Cluster IV belong to the characterized species Bifidobacterium asteroides. Carbohydrate-active enzyme annotation confirmed that the metabolic capacity for carbohydrates varied between clusters of strains. Cells are Gram-positive rods; they grew both anaerobically and in a CO2-enriched atmosphere. All strains grew at a temperature range of 20-42 °C, with optimum growth at 35 °C. The pH range for growth was 5-9. Strains from different phylogenetic clusters varied in multiple phenotypic and chemotaxonomic characterizations. Thus, we propose three novel species Bifidobacterium apousia sp. nov. whose type strain is W8102T (=CGMCC 1.18893 T = JCM 34587 T), Bifidobacterium choladohabitans sp. nov., whose type strain is B14384H11T (=CGMCC 1.18892 T = JCM 34586 T), and Bifidobacterium polysaccharolyticum sp. nov. whose type strain is W8117T (=CGMCC 1.18894 T = JCM 34588 T).
Collapse
Affiliation(s)
- Jieteng Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, China
| | - Jieni Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, China
| | - Hao Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, China.
| |
Collapse
|
12
|
Viscardi S, Marileo L, Barra PJ, Durán P, Inostroza-Blancheteau C. From farm to fork: it could be the case of Lactic Acid Bacteria in the stimulation of folates biofortification in food crops. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2020.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Nuzzo A, Satpute A, Albrecht U, Strauss SL. Impact of Soil Microbial Amendments on Tomato Rhizosphere Microbiome and Plant Growth in Field Soil. MICROBIAL ECOLOGY 2020; 80:398-409. [PMID: 32144464 DOI: 10.1007/s00248-020-01497-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
There is increased interest by the agricultural industry in microbial amendments that leverage natural beneficial interactions between plants and soil microbes to improve crop production. However, translating fundamental knowledge from laboratory experiments into efficient field application often has mixed results, and there is less clarity about the interaction between added microbes and the native microbial community, where microorganisms belonging to the same phylogenic clades often reside. In this study, four commercially available microbial amendments were examined in two greenhouse experiments using field soil to assess their impact on tomato plant growth and the native soil microbial communities. The amendments contained different formulations of plant growth-promoting bacteria (Lactobacilli, Rhizobia, etc.), yeasts, and mycorrhizal fungi. The application of the tested amendments in greenhouse conditions resulted in no significant impact on plant growth. A deeper statistical analysis detected variations in the microbial communities that accounted only for 0.25% of the total species, particularly in native taxa not related to the inoculated species and represented less than 1% of the total variance. This suggests that under commercial field conditions, additional confounding variables may play a role in the efficacy of soil microbial amendments. This study confirms the necessity of more in-depth validation requirements for the formulations of soil microbial amendments before delivery to the agricultural market in order to leverage their benefits for the producers, the consumers, and the environment.
Collapse
Affiliation(s)
- Andrea Nuzzo
- University of Florida/Institute of Food and Agricultural Sciences Southwest Florida Research and Education Center, Immokalee, FL, 34142, USA
- GlaxoSmithKline US, Human Genetics, Collegeville, PA, 19426, USA
| | - Aditi Satpute
- University of Florida/Institute of Food and Agricultural Sciences Southwest Florida Research and Education Center, Immokalee, FL, 34142, USA
| | - Ute Albrecht
- University of Florida/Institute of Food and Agricultural Sciences Southwest Florida Research and Education Center, Immokalee, FL, 34142, USA
| | - Sarah L Strauss
- University of Florida/Institute of Food and Agricultural Sciences Southwest Florida Research and Education Center, Immokalee, FL, 34142, USA.
| |
Collapse
|
14
|
Santos LFD, Lana RP, Silva MCSDA, Veloso TGR, Kasuya MCM, Ribeiro KG. Effective microorganisms inoculant: Diversity and effect on the germination of palisade grass seeds. AN ACAD BRAS CIENC 2020; 92:e20180426. [PMID: 32159585 DOI: 10.1590/0001-3765202020180426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 12/28/2018] [Indexed: 11/22/2022] Open
Abstract
Effective microorganisms (EM) are inoculants formed by fungi and bacteria isolated from soil. EM are commonly used by farmers on agronomic crops to stimulate plant growth, but their composition and their benefits has been controverted. This study aimed to analyze the diversity of microorganisms growing in three EM inoculants, as well as to evaluate their efficiency in the germination of palisade grass seeds. The total DNA of the three EM inoculants was extracted, the 16S rRNA and ITS genes were amplified by PCR and sequenced on the Illumina MiSeq platform. Germination tests were conducted with three type of the EM, in three concentration and two times of the immersion. The bacterial group was the most abundant in EM, followed by fungi. Bacterial operational taxonomic units OTUs were shared by all EMs. Pre-treatments of palisade grass seeds with EMs resulted in a higher germination percentage (% G) and germination speed index (IVG) when EM was used at concentration of 1 or 2% in water. Seed immersion for 5 min was more efficient than immersion for 24 h. We can conclude that EM of different origin can share microbial groups and diversity of microorganisms, besides being an alternative to increase palisade grass seeds germination.
Collapse
Affiliation(s)
- Lidiane F Dos Santos
- Departamento de Agroecologia, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, 36571-000 Viçosa, MG, Brazil
| | - Rogério P Lana
- Departamento de Zootecnia, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, 36571-000 Viçosa, MG, Brazil
| | - Marliane C S DA Silva
- Departamento de Microbiologia, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, 36571-000 Viçosa, MG, Brazil
| | - Tomás G R Veloso
- Departamento de Microbiologia, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, 36571-000 Viçosa, MG, Brazil
| | - Maria Catarina M Kasuya
- Departamento de Microbiologia, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, 36571-000 Viçosa, MG, Brazil
| | - Karina G Ribeiro
- Departamento de Zootecnia, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, 36571-000 Viçosa, MG, Brazil
| |
Collapse
|
15
|
Alberoni D, Gaggìa F, Baffoni L, Modesto MM, Biavati B, Di Gioia D. Bifidobacterium xylocopae sp. nov. and Bifidobacterium aemilianum sp. nov., from the carpenter bee (Xylocopa violacea) digestive tract. Syst Appl Microbiol 2018; 42:205-216. [PMID: 30551956 DOI: 10.1016/j.syapm.2018.11.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 11/09/2018] [Accepted: 11/21/2018] [Indexed: 12/17/2022]
Abstract
Social bees harbor a community of gut mutualistic bacteria, among which bifidobacteria occupy an important niche. Recently, four novel species have been isolated from guts of different bumblebees, thus allowing to suppose that a core bifidobacterial population may be present in wild solitary bees. To date there is sparse information about bifidobacteria in solitary bees such as Xylocopa and Osmia spp., this study is therefore focused on the isolation and characterization of bifidobacterial strains from solitary bees, in particular carpenter bee (Xylocopa violacea), builder bee (Osmia cornuta), and red mason bee (Osmia rufa). Among the isolates from Osmia spp. no new species have been detected whereas among Xylocopa isolates four strains (XV2, XV4, XV10, XV16) belonging to putative new species were found. Isolated strains are Gram-positive, lactate- and acetate-producing and possess the fructose-6-phosphate phosphoketolase enzyme. Full genome sequencing and genome annotation were performed for XV2 and XV10. Phylogenetic relationships were determined using partial and complete 16S rRNA sequences and hsp60 restriction analysis that confirmed the belonging of the new strains to Bifidobacterium genus and the relatedness of the strains XV2 and XV10 with XV16 and XV4, respectively. Phenotypic tests were performed for the proposed type strains, reference strains and their closest neighbor in the phylogenetic tree. The results support the proposal of two novel species Bifidobacterium xylocopae sp. nov. whose type strain is XV2 (=DSM 104955T=LMG 30142T), reference strain XV16 and Bifidobacterium aemilianum sp. nov. whose type strain is XV10 (=DSM 104956T=LMG 30143T), reference strain XV4.
Collapse
Affiliation(s)
- Daniele Alberoni
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Viale Fanin 44, 40127, Bologna, Italy
| | - Francesca Gaggìa
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Viale Fanin 44, 40127, Bologna, Italy
| | - Loredana Baffoni
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Viale Fanin 44, 40127, Bologna, Italy.
| | - Monica Marianna Modesto
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Viale Fanin 44, 40127, Bologna, Italy
| | - Bruno Biavati
- Institute of Earth Systems, Division of Rural Sciences Food Systems, University of Malta, Msida, Malta
| | - Diana Di Gioia
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Viale Fanin 44, 40127, Bologna, Italy
| |
Collapse
|
16
|
Pontonio E, Di Cagno R, Tarraf W, Filannino P, De Mastro G, Gobbetti M. Dynamic and Assembly of Epiphyte and Endophyte Lactic Acid Bacteria During the Life Cycle of Origanum vulgare L. Front Microbiol 2018; 9:1372. [PMID: 29997592 PMCID: PMC6029521 DOI: 10.3389/fmicb.2018.01372] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/06/2018] [Indexed: 12/02/2022] Open
Abstract
Origanum vulgare L. (oregano) was chosen as suitable model to investigate the ability of the endophyte-microbiome, especially that of lactic acid bacteria, to develop specific interactions with the plant, mediated by the essential oils (EOs). Combined culture-dependent and -independent approaches analyzed the bacterial dynamic and assembly of Origanum vulgare L. throughout the life cycle. Epiphyte bacteria were more abundant than the endophyte ones. The number of presumptive lactic acid bacteria increased throughout oregano life cycle, according to the plant organ. Diverse species of lactic acid bacteria populated the plant, but Lactobacillus plantarum stably dominated both epiphyte and endophyte populations. High-throughput DNA sequencing showed highest epiphyte bacterial diversity at early vegetative and full-flowering stages, with blooming signing the main microbial differentiation among plant organs. Proteobacteria, Actinobacteria and Bacteroidetes, and Firmicutes and Cyanobacteria at lower abundance were the main phyla. Various genera were detectable, but oregano harbored mainly Methylobacterium, Sphingomonas, Rhizobium and Aurantimonas throughout phenological stages. Firmicutes epiphyte and endophyte microbiotas were different, with a core microbiota consisting of Bacillus, Exiguobacterium, Streptococcus, Staphylococcus and Lactobacillus genera. Bacillus dominated throughout phenological stages. High-throughput DNA sequencing confirmed the dominance of L. plantarum within the epiphyte and endophyte populations of lactic acid bacteria. Yields of EOs varied among plant organs and throughout plant life cycle. L. plantarum strains were the most resistant to the total EOs (mainly thymol and carvacrol) as extracted from the plant. The positive correlation among endophyte lactic acid bacteria and the EOs content seems confirm the hypothesis that the colonization within plant niches may be regulated by mechanisms linked to the synthesis of the secondary metabolites.
Collapse
Affiliation(s)
- Erica Pontonio
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Raffaella Di Cagno
- Faculty of Science and Technology, Libera Università di Bolzano, Bolzano, Italy
| | - Waed Tarraf
- Department of Agricultural and Environmental Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Pasquale Filannino
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe De Mastro
- Department of Agricultural and Environmental Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Marco Gobbetti
- Faculty of Science and Technology, Libera Università di Bolzano, Bolzano, Italy
| |
Collapse
|
17
|
Multifunctional potential of endophytic and rhizospheric microbial isolates associated with Butia purpurascens roots for promoting plant growth. Antonie van Leeuwenhoek 2018; 111:2157-2174. [DOI: 10.1007/s10482-018-1108-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/24/2018] [Indexed: 01/29/2023]
|
18
|
Alberoni D, Baffoni L, Gaggìa F, Ryan PM, Murphy K, Ross PR, Stanton C, Di Gioia D. Impact of beneficial bacteria supplementation on the gut microbiota, colony development and productivity of Apis mellifera L. Benef Microbes 2018; 9:269-278. [PMID: 29380644 DOI: 10.3920/bm2017.0061] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Honey bees are important pollinators of several crops and ecosystems, having a great ecological and economic value. In Europe, the restricted use of chemicals and therapeutic agents in the beekeeping sector has stimulated the search for natural alternatives with a special focus on gut symbionts. The modulation of the gut microbiota has been recognised as a practical and successful approach in the entomological field for the management of insect-related problems. To date, only a few studies have investigated the effect of bacterial supplementation on the health status of colonies, colony productivity and gut symbionts. To this purpose, a preparation of sugar syrup containing bifidobacteria and lactobacilli isolated from bee gut was sprayed on the frames of an apiary located in open field once a week for four weeks. Treated and control hives were monitored for two months for brood extension, honey and pollen harvest. The presence of beneficial gut microorganisms within bee gut was investigated with denaturing gradient gel electrophoresis and next generation sequencing. The administered bacteria led to a significant increase of brood population (46.2%), pollen (53.4%) and harvestable honey in honey supers (59.21%). Analysis of the gut microbiota on the new generation of bees in treated hives showed an increase in relative abundance of Acetobacteraceae and Bifidobacterium spp., which are known to be involved in bee nutrition and protection.
Collapse
Affiliation(s)
- D Alberoni
- 1 Department of Agricultural Science, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - L Baffoni
- 1 Department of Agricultural Science, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - F Gaggìa
- 1 Department of Agricultural Science, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - P M Ryan
- 2 Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.,3 APC Microbiome Institute, University College Cork, Co. Cork, Ireland
| | - K Murphy
- 2 Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.,3 APC Microbiome Institute, University College Cork, Co. Cork, Ireland
| | - P R Ross
- 2 Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.,3 APC Microbiome Institute, University College Cork, Co. Cork, Ireland
| | - C Stanton
- 2 Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.,3 APC Microbiome Institute, University College Cork, Co. Cork, Ireland
| | - D Di Gioia
- 1 Department of Agricultural Science, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| |
Collapse
|
19
|
Polysaccharides from by-products of the Wonderful and Laffan pomegranate varieties: New insight into extraction and characterization. Food Chem 2017; 235:58-66. [DOI: 10.1016/j.foodchem.2017.05.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 12/22/2022]
|
20
|
Gu Y, Wang Y, Lu S, Xiang Q, Yu X, Zhao K, Zou L, Chen Q, Tu S, Zhang X. Long-term Fertilization Structures Bacterial and Archaeal Communities along Soil Depth Gradient in a Paddy Soil. Front Microbiol 2017; 8:1516. [PMID: 28861048 PMCID: PMC5559540 DOI: 10.3389/fmicb.2017.01516] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/27/2017] [Indexed: 01/23/2023] Open
Abstract
Soil microbes provide important ecosystem services. Though the effects of changes in nutrient availability due to fertilization on the soil microbial communities in the topsoil (tilled layer, 0–20 cm) have been extensively explored, the effects on communities and their associations with soil nutrients in the subsoil (below 20 cm) which is rarely impacted by tillage are still unclear. 16S rRNA gene amplicon sequencing was used to investigate bacterial and archaeal communities in a Pup-Calric-Entisol soil treated for 32 years with chemical fertilizer (CF) and CF combined with farmyard manure (CFM), and to reveal links between soil properties and specific bacterial and archaeal taxa in both the top- and subsoil. The results showed that both CF and CFM treatments increased soil organic carbon (SOC), soil moisture (MO) and total nitrogen (TN) while decreased the nitrate_N content through the profile. Fertilizer applications also increased Olsen phosphorus (OP) content in most soil layers. Microbial communities in the topsoil were significantly different from those in subsoil. Compared to the CF treatment, taxa such as Nitrososphaera, Nitrospira, and several members of Acidobacteria in topsoil and Subdivision 3 genera incertae sedis, Leptolinea, and Bellilinea in subsoil were substantially more abundant in CFM. A co-occurrence based network analysis demonstrated that SOC and OP were the most important soil parameters that positively correlated with specific bacterial and archaeal taxa in topsoil and subsoil, respectively. Hydrogenophaga was identified as the keystone genus in the topsoil, while genera Phenylobacterium and Steroidobacter were identified as the keystone taxa in subsoil. The taxa identified above are involved in the decomposition of complex organic compounds and soil carbon, nitrogen, and phosphorus transformations. This study revealed that the spatial variability of soil properties due to long-term fertilization strongly shapes the bacterial and archaeal community composition and their interactions at both high and low taxonomic levels across the whole soil profile.
Collapse
Affiliation(s)
- Yunfu Gu
- Department of Microbiology, College of Resource Science and Technology, Sichuan Agricultural UniversityChengdu, China
| | - Yingyan Wang
- Department of Microbiology, College of Resource Science and Technology, Sichuan Agricultural UniversityChengdu, China
| | - Sheng'e Lu
- Department of Microbiology, College of Resource Science and Technology, Sichuan Agricultural UniversityChengdu, China
| | - Quanju Xiang
- Department of Microbiology, College of Resource Science and Technology, Sichuan Agricultural UniversityChengdu, China
| | - Xiumei Yu
- Department of Microbiology, College of Resource Science and Technology, Sichuan Agricultural UniversityChengdu, China
| | - Ke Zhao
- Department of Microbiology, College of Resource Science and Technology, Sichuan Agricultural UniversityChengdu, China
| | - Likou Zou
- Department of Microbiology, College of Resource Science and Technology, Sichuan Agricultural UniversityChengdu, China
| | - Qiang Chen
- Department of Microbiology, College of Resource Science and Technology, Sichuan Agricultural UniversityChengdu, China
| | - Shihua Tu
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural SciencesChengdu, China
| | - Xiaoping Zhang
- Department of Microbiology, College of Resource Science and Technology, Sichuan Agricultural UniversityChengdu, China
| |
Collapse
|
21
|
Evidence of Campylobacter jejuni reduction in broilers with early synbiotic administration. Int J Food Microbiol 2017; 251:41-47. [PMID: 28390936 DOI: 10.1016/j.ijfoodmicro.2017.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/22/2017] [Accepted: 04/01/2017] [Indexed: 12/28/2022]
Abstract
C. jejuni is considered a food safety concern to both public health authorities and consumers since it is the leading bacterial cause of food-borne gastroenteritis in humans. A high incidence of C. jejuni in broiler flocks is often correlated to pathogen recovery in retail poultry meat, which is the main source of human infection. In this work broiler chickens were fed with a synbiotic product mixed with conventional feed using two different administration strategies. The synbiotic was formulated with the microencapsulated probiotic Bifidobacterium longum PCB133 and a xylo-oligosaccharide (XOS). 1-day old chicks were infected with C. jejuni strain M1 (105 cells) and the synbiotic mixture was then administered starting from the first and the 14th day of chicken life (for animal groups GrpC and GrpB respectively). The goal of this study was to monitor C. jejuni load at caecum level at different sampling time by real-time PCR, identifying the best administration strategy. The microbiological analysis of the caecal content also considered the quantification of Campylobacter spp., Bifidobacterium spp. and B. longum. The supplemented synbiotic was more successful in reducing C. jejuni and Campylobacter spp. when administered lifelong, compared to the shorter supplementation (GrpB). Bifidobacterium spp. quantification did not show significant differences among treatments and B. longum PCB133 was detected in both supplemented groups evidencing the successful colonization of the strain. Moreover, the samples of the control group (GrpA) and GrpC were analysed with PCR-denaturing gradient gel electrophoresis (PCR-DGGE) to compare the caecal microbial community profiles at the beginning and at the end of the trial. Pattern analysis evidenced the strong influence of the early synbiotic supplementation, although a physiological change in the microbial community, occurring during growth, could be observed. Experimental results demonstrate that the synbiotic approach at farm level can be an effective strategy, combined with biosecurity measures, to improve the safety of poultry meat.
Collapse
|
22
|
Development of a novel compound microbial agent for degradation of kitchen waste. Braz J Microbiol 2017; 48:442-450. [PMID: 28279600 PMCID: PMC5498451 DOI: 10.1016/j.bjm.2016.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 11/04/2016] [Accepted: 12/26/2016] [Indexed: 11/20/2022] Open
Abstract
Large quantities of kitchen waste are produced in modern society and its disposal poses serious environmental and social problems. The aim of this study was to isolate degradative strains from kitchen waste and to develop a novel and effective microbial agent. One hundred and four strains were isolated from kitchen waste and the 84 dominant strains were used to inoculate protein-, starch-, fat- and cellulose-containing media for detecting their degradability. Twelve dominant strains of various species with high degradability (eight bacteria, one actinomycetes and three fungi) were selected to develop a compound microbial agent “YH” and five strains of these species including H7 (Brevibacterium epidermidis), A3 (Paenibacillus polymyxa), E3 (Aspergillus japonicus), F9 (Aspergillus versicolor) and A5 (Penicillium digitatum), were new for kitchen waste degradation. YH was compared with three commercial microbial agents—“Tiangeng” (TG), “Yilezai” (YLZ) and Effective Microorganisms (EM), by their effects on reduction, maturity and deodorization. The results showed that YH exerted the greatest efficacy on mass loss which decreased about 65.87% after 14 days. The agent inhibited NH3 and H2S emissions significantly during composting process. The concentration of NH3 decreased from 7.1 to 3.2 ppm and that of H2S reduced from 0.7 to 0.2 ppm. Moreover, E4/E6 (Extinction value460nm/Extinction value665nm) of YH decreased from 2.51 to 1.31, which meant YH had an obvious maturity effect. These results highlighted the potential application of YH in composting kitchen waste.
Collapse
|
23
|
Baffoni L, Gaggìa F, Alberoni D, Cabbri R, Nanetti A, Biavati B, Di Gioia D. Effect of dietary supplementation of Bifidobacterium and Lactobacillus strains in Apis mellifera L. against Nosema ceranae. Benef Microbes 2016; 7:45-51. [DOI: 10.3920/bm2015.0085] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nosema ceranae is a widespread microsporidium of European honeybee Apis mellifera L. affecting bee health. The ban of Fumagillin-B (dicyclohexylammonium salt) in the European Union has driven the search for sustainable strategies to prevent and control the infection. The gut microbial symbionts, associated to the intestinal system of vertebrates and invertebrates and its impact on host health, are receiving increasing attention. In particular, bifidobacteria and lactobacilli, which are normal inhabitants of the digestive system of bees, are known to protect their hosts via antimicrobial metabolites, immunomodulation and competition. In this work, the dietary supplementation of gut bacteria was evaluated under laboratory conditions in bees artificially infected with the parasite and bees not artificially infected but evidencing a low natural infection. Supplemented bacteria were selected among bifidobacteria, previously isolated, and lactobacilli, isolated in this work from healthy honeybee gut. Four treatments were compared: bees fed with sugar syrup (CTR); bees fed with sugar syrup containing bifidobacteria and lactobacilli (PRO); bees infected with N. ceranae spores and fed with sugar syrup (NOS); bees infected with N. ceranae and fed with sugar syrup containing bifidobacteria and lactobacilli (NP). The sugar syrup, with or without microorganisms, was administered to bees from the first day of life for 13 days. N. ceranae infection was carried out individually on anesthetised 5-day-old bees. Eight days after infection, a significant (P<0.05) lower level of N. ceranae was detected by real-time PCR in both NP and PRO group, showing a positive effect of supplemented microorganisms in controlling the infection. These results represent a first attempt of application of bifidobacteria and lactobacilli against N. ceranae in honeybees.
Collapse
Affiliation(s)
- L. Baffoni
- Department of Agricultural Science, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - F. Gaggìa
- Department of Agricultural Science, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - D. Alberoni
- Department of Agricultural Science, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - R. Cabbri
- Consiglio per la Ricerca e la sperimentazione in Agricultura, Unità di ricerca di apicoltura e bachicoltura, CRA-API, Via di Saliceto 80, 40128 Bologna, Italy
| | - A. Nanetti
- Consiglio per la Ricerca e la sperimentazione in Agricultura, Unità di ricerca di apicoltura e bachicoltura, CRA-API, Via di Saliceto 80, 40128 Bologna, Italy
| | - B. Biavati
- Department of Agricultural Science, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - D. Di Gioia
- Department of Agricultural Science, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| |
Collapse
|
24
|
Baffoni L, Gaggia F, Dalanaj N, Prodi A, Nipoti P, Pisi A, Biavati B, Di Gioia D. Microbial inoculants for the biocontrol of Fusarium spp. in durum wheat. BMC Microbiol 2015; 15:242. [PMID: 26518441 PMCID: PMC4628387 DOI: 10.1186/s12866-015-0573-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/15/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fusarium head blight (FHB) is a severe disease caused by different Fusarium species, which affects a wide range of cereal crops, including wheat. It determines from 10 to 30% of yield loss in Europe. Chemical fungicides are mainly used to reduce the incidence of FHB, but low environmental impact solutions are looked forward. Applications of soil/rhizobacteria as biocontrol agents against FHB in wheat are described in literature, whereas the potential use of lactobacilli in agriculture has scarcely been explored. RESULTS The aim of this work was to study the inhibitory effect of two bacterial strains, Lactobacillus plantarum SLG17 and Bacillus amyloliquefaciens FLN13, against Fusarium spp. in vitro and to assess their efficacy in field, coupled to the study of the microbial community profile of wheat seeds. Antimicrobial assays were performed on agar plates and showed that the two antagonistic strains possessed antimicrobial activity against Fusarium spp. In the field study, a mixture of the two strains was applied to durum wheat i) weekly from heading until anthesis and ii) at flowering, compared to untreated and fungicide treated plots. The FHB index, combining both disease incidence and disease severity, was used to evaluate the extent of the disease on wheat. A mixture of the two microorganisms, when applied in field from heading until anthesis, was capable of reducing the FHB index. Microbial community profile of seeds was studied via PCR-DGGE, showing the presence of L. plantarum SLG17 in wheat seeds and thus underlining an endophytic behavior of the strain. CONCLUSIONS L. plantarum SLG17 and B. amyloliquefaciens FLN13, applied as biocontrol agents starting from the heading period until anthesis of wheat plants, are promising agents for the reduction of FHB index.
Collapse
Affiliation(s)
- Loredana Baffoni
- Department of Agricultural Sciences, University of Bologna, Viale Fanin 44, 40127, Bologna, Italy.
| | - Francesca Gaggia
- Department of Agricultural Sciences, University of Bologna, Viale Fanin 44, 40127, Bologna, Italy.
| | - Nereida Dalanaj
- Department of Industrial Chemistry, Faculty of Natural Sciences, Tirana University, Bulevardi Zogu i Parë, Tirana, Albania.
| | - Antonio Prodi
- Department of Agricultural Sciences, University of Bologna, Viale Fanin 44, 40127, Bologna, Italy.
| | - Paola Nipoti
- Department of Agricultural Sciences, University of Bologna, Viale Fanin 44, 40127, Bologna, Italy.
| | - Annamaria Pisi
- Department of Agricultural Sciences, University of Bologna, Viale Fanin 44, 40127, Bologna, Italy.
| | - Bruno Biavati
- Institute of Earth Systems, Division of Rural Sciences & Food Systems, University of Malta, Msida, Malta.
| | - Diana Di Gioia
- Department of Agricultural Sciences, University of Bologna, Viale Fanin 44, 40127, Bologna, Italy.
| |
Collapse
|
25
|
Minervini F, Celano G, Lattanzi A, Tedone L, De Mastro G, Gobbetti M, De Angelis M. Lactic Acid Bacteria in Durum Wheat Flour Are Endophytic Components of the Plant during Its Entire Life Cycle. Appl Environ Microbiol 2015; 81:6736-48. [PMID: 26187970 PMCID: PMC4561690 DOI: 10.1128/aem.01852-15] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/14/2015] [Indexed: 11/20/2022] Open
Abstract
This study aimed at assessing the dynamics of lactic acid bacteria and other Firmicutes associated with durum wheat organs and processed products. 16S rRNA gene-based high-throughput sequencing showed that Lactobacillus, Streptococcus, Enterococcus, and Lactococcus were the main epiphytic and endophytic genera among lactic acid bacteria. Bacillus, Exiguobacterium, Paenibacillus, and Staphylococcus completed the picture of the core genus microbiome. The relative abundance of each lactic acid bacterium genus was affected by cultivars, phenological stages, other Firmicutes genera, environmental temperature, and water activity (aw) of plant organs. Lactobacilli, showing the highest sensitivity to aw, markedly decreased during milk development (Odisseo) and physiological maturity (Saragolla). At these stages, Lactobacillus was mainly replaced by Streptococcus, Lactococcus, and Enterococcus. However, a key sourdough species, Lactobacillus plantarum, was associated with plant organs during the life cycle of Odisseo and Saragolla wheat. The composition of the sourdough microbiota and the overall quality of leavened baked goods are also determined throughout the phenological stages of wheat cultivation, with variations depending on environmental and agronomic factors.
Collapse
Affiliation(s)
- Fabio Minervini
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Celano
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Anna Lattanzi
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Luigi Tedone
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe De Mastro
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Bari, Italy
| | - Marco Gobbetti
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
26
|
Tian Y, Gao L. Bacterial diversity in the rhizosphere of cucumbers grown in soils covering a wide range of cucumber cropping histories and environmental conditions. MICROBIAL ECOLOGY 2014; 68:794-806. [PMID: 25027276 DOI: 10.1007/s00248-014-0461-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/04/2014] [Indexed: 06/03/2023]
Abstract
Rhizosphere microorganisms in soils are important for plant growth. However, the importance of rhizosphere microorganisms is still underestimated since many microorganisms associated with plant roots cannot be cultured and since the microbial diversity in the rhizosphere can be influenced by several factors, such as the cropping history, biogeography, and agricultural practice. Here, we characterized the rhizosphere bacterial diversity of cucumber plants grown in soils covering a wide range of cucumber cropping histories and environmental conditions by using pyrosequencing of bacterial 16S rRNA genes. We also tested the effects of compost addition and/or bacterial inoculation on the bacterial diversity in the rhizosphere. We identified an average of approximately 8,883 reads per sample, corresponding to around 4,993 molecular operational taxonomic units per sample. The Proteobacteria was the most abundant phylum in almost all soils. The abundances of the phyla Bacteroidetes, Actinobacteria, Firmicutes, Acidobacteria, and Verrucomicrobia varied among the samples, and together with Proteobacteria, these phyla were the six most abundant phyla in almost all analyzed samples. Analyzing all the sample libraries together, the predominant genera found were Flavobacterium, Ohtaekwangia, Opitutus, Gp6, Steroidobacter, and Acidovorax. Overall, compost and microbial amendments increased shoot biomass when compared to untreated soils. However, compost addition decreased the bacterial α-diversity in most soils (but for three soils compost increased diversity), and no statistical effect of microbial amendment on the bacterial α-diversity was found. Moreover, soil amendments did not significantly influence the bacterial β-diversity. Soil organic content appeared more important than compost and microbial amendments in shaping the structure of bacterial communities in the rhizosphere of cucumber.
Collapse
Affiliation(s)
- Yongqiang Tian
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Agricultural and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xilu, Beijing, 100193, China,
| | | |
Collapse
|
27
|
Carbone S, Vittori Antisari L, Gaggia F, Baffoni L, Di Gioia D, Vianello G, Nannipieri P. Bioavailability and biological effect of engineered silver nanoparticles in a forest soil. JOURNAL OF HAZARDOUS MATERIALS 2014; 280:89-96. [PMID: 25133850 DOI: 10.1016/j.jhazmat.2014.07.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/23/2014] [Accepted: 07/25/2014] [Indexed: 06/03/2023]
Abstract
The extensive use of silver nanoparticles (SNPs) as antimicrobial in food, clothing and medicine, leads inevitably to a loss of such nanomaterial in soil and water. Little is known about the effects of soil contamination, in particular, on microbial cells, which play a fundamental ecological role. In this work, the impact of SNPs on forest soil has been studied, investigating eco-physiological indicators of microbial biomass and microbial diversity with culture-dependent and independent techniques. Moreover, SNPs bioavailability and uptake were assessed. Soil samples were spiked with SNPs at two different concentrations (10 and 100 μg g(-1)dw) and incubated with the relative controls for 30, 60 and 90 days. The overall parameters showed a significant influence of the SNPs on the soil microbial community, revealing a marked shift after 60 days of incubation.
Collapse
Affiliation(s)
- S Carbone
- Dipartimento di Scienze Agrarie, Alma Mater Studiorum - Università di Bologna, Via Fanin 40, 40127 Bologna, Italy.
| | - L Vittori Antisari
- Dipartimento di Scienze Agrarie, Alma Mater Studiorum - Università di Bologna, Via Fanin 40, 40127 Bologna, Italy
| | - F Gaggia
- Dipartimento di Scienze Agrarie, Alma Mater Studiorum - Università di Bologna, Via Fanin 40, 40127 Bologna, Italy
| | - L Baffoni
- Dipartimento di Scienze Agrarie, Alma Mater Studiorum - Università di Bologna, Via Fanin 40, 40127 Bologna, Italy
| | - D Di Gioia
- Dipartimento di Scienze Agrarie, Alma Mater Studiorum - Università di Bologna, Via Fanin 40, 40127 Bologna, Italy
| | - G Vianello
- Dipartimento di Scienze Agrarie, Alma Mater Studiorum - Università di Bologna, Via Fanin 40, 40127 Bologna, Italy
| | - P Nannipieri
- Dipartimento di Scienza del Suolo e Nutrizione della Pianta, Università degli Studi di Firenze, Piazzale delle Cascine 18, 50144 Firenze, Italy
| |
Collapse
|