1
|
Černayová D, Súkeník M, Obruča S, Smilek J, Kalina M, Mrázová K, Hrubanová K, Krzyžánek V, Sedláček P. Self-entrapment of Azotobacter vinelandii cultures by gelation of their exopolysaccharides: A way towards next-generation bioinoculants. Carbohydr Polym 2025; 360:123607. [PMID: 40399005 DOI: 10.1016/j.carbpol.2025.123607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/17/2025] [Accepted: 04/12/2025] [Indexed: 05/23/2025]
Abstract
Encapsulation of Plant Growth-Promoting Rhizobacteria (PGPR) in hydrogel carriers is a cutting-edge approach in developing agricultural bioinoculants, aiming to improve soil fertility and crop yield. Hydrogels provide protection against environmental stress, though traditional methods using external gel-forming agents limit economic viability. This study presents a novel approach, demonstrating the entrapment of Azotobacter vinelandii, a promising PGPR, within a gel matrix formed by Ca2+-induced crosslinking of its own exopolysaccharide, alginate. Among the five strains evaluated, A. vinelandii DSM 87, DSM 720, and DSM 13529 showed the highest alginate production, peaking at 4.9 ± 0.6 g/L, 3.5 ± 0.5 g/L, 3.8 ± 0.8 g/L, and enabling stable gel formation by the fourth day of cultivation. These strains also exhibited molecular weights and chemical structures of alginate suitable for effective gelation upon Ca2+addition. Additionally, these strains demonstrated significant plant growth-promoting activities, including indole acetic acid production (up to 10.5 μg/mL), siderophore release, and phosphate solubilization, further validating their potential for sustainable bioinoculant production. Finally, the viability of the A.vinelandii cells released from the gels was experimentally verified. Our findings support a feasible, cost-effective method for bioinoculant production that leverages A. vinelandii's intrinsic capabilities, offering a sustainable alternative to conventional agricultural practices.
Collapse
Affiliation(s)
- Diana Černayová
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Martin Súkeník
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Stanislav Obruča
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Jiří Smilek
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Michal Kalina
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Kateřina Mrázová
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic; Institute of Scientific Instruments, The Czech Academy of Sciences, Královopolská 147, 61264 Brno, Czech Republic
| | - Kamila Hrubanová
- Institute of Scientific Instruments, The Czech Academy of Sciences, Královopolská 147, 61264 Brno, Czech Republic
| | - Vladislav Krzyžánek
- Institute of Scientific Instruments, The Czech Academy of Sciences, Královopolská 147, 61264 Brno, Czech Republic
| | - Petr Sedláček
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic.
| |
Collapse
|
2
|
Mugnai G, Bernabò L, Daly G, Corneli E, Adessi A. Photofermentative production of poly-β-hydroxybutyrate (PHB) by purple non-sulfur bacteria using olive oil by-products. BIORESOUR BIOPROCESS 2025; 12:25. [PMID: 40128444 PMCID: PMC11933499 DOI: 10.1186/s40643-025-00856-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 02/22/2025] [Indexed: 03/26/2025] Open
Abstract
This study evaluated the ability of six purple non-sulfur bacteria (PNSB) to convert olive oil by-products into poly-β-hydroxybutyrate (PHB). Strains were first independently cultivated in synthetic media with different carbon sources (acetic, lactic and malic acid) to assess their physiology and PHB production. Subsequently, their growth and PHB production using ingested pâté olive cake (IPOC) as a substrate were investigated. Transmission electron microscopy (TEM) observations were conducted on strains cultivated on IPOC to investigate their cell morphologies and inclusion bodies presence and size. Rhodopseudomonas palustris strains accumulated up to 6.8% w PHB/w cells with acetate and 0.86% w PHB/w cells with a daily productivity of 0.54 mg PHB L⁻1 culture d⁻1 on IPOC. In contrast, Cereibacter johrii and Cereibacter sphaeroides reached 58.64% w PHB/w cells and 65.45% w PHB/w cells with acetate, respectively, while C. sphaeroides achieved 21.48% w PHB/w cells and a daily productivity of 10.85 mg PHB L⁻1 culture d⁻1 when cultivated on IPOC. All strains exhibited growth and PHB accumulation in both synthetic media and IPOC substrate. Specifically, R. palustris strains 42OL, AV33 and CGA009 displayed growth capability in all substrates, while C. johrii strains 9Cis and PISA 7, and C. sphaeroides F17 showed promising PHB synthesis capabilities. TEM observations revealed that R. palustris strains, with smaller cell and inclusion body sizes, exhibited lower PHB accumulations, while C. johrii and C. sphaeroides strains, characterized by larger cells and inclusion bodies, demonstrated higher PHB production, recognizing them as promising candidates for PHB production using olive oil by-products. Further investigations under laboratory-scale conditions will be necessary to optimize operating parameters and develop integrated strategies for simultaneous PHB synthesis and the co-production of value-added products, thereby enhancing the economic feasibility of the process within a biorefinery framework.
Collapse
Affiliation(s)
- Gianmarco Mugnai
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale Delle Cascine, 18, 50144, Florence, Italy
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121, Perugia, Italy
| | - Luca Bernabò
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale Delle Cascine, 18, 50144, Florence, Italy
| | - Giulia Daly
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale Delle Cascine, 18, 50144, Florence, Italy
| | - Elisa Corneli
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale Delle Cascine, 18, 50144, Florence, Italy
- PhotoB. Srl, Via Montecalvi, 3, San Casciano in Val Di Pesa, 50026, Florence, Italy
| | - Alessandra Adessi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale Delle Cascine, 18, 50144, Florence, Italy.
| |
Collapse
|
3
|
Kalia VC, Singh RV, Gong C, Lee JK. Toward Sustainable Polyhydroxyalkanoates: A Next-Gen Biotechnology Approach. Polymers (Basel) 2025; 17:853. [PMID: 40219244 PMCID: PMC11991626 DOI: 10.3390/polym17070853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
Polyhydroxyalkanoates (PHAs) are biodegradable biopolymers synthesized by microorganisms and serve as sustainable alternatives to petroleum-based plastics. While traditional PHA production relies on refined carbon sources and pure cultures, high costs and scalability challenges limit commercial viability. Extremophiles, particularly halophiles, have emerged as promising candidates for cost-effective, large-scale production of PHAs. Their ability to thrive in extreme environments reduces contamination risks, minimizes the need for sterilization, and lowers operational costs. Advancements in metabolic engineering, synthetic biology, and CRISPR-based genome editing have enhanced PHA yields by optimizing metabolic flux and cell morphology. Additionally, utilizing alternative feedstocks such as biowaste, syngas, methane, and CO₂ improves economic feasibility. Next-generation industrial biotechnology integrates extremophilic microbes with AI-driven fermentation and eco-friendly downstream processing to enhance scalability. Industrial-scale production of PHAs using Halomonas spp. and other extremophiles demonstrates significant progress toward commercialization, paving the way for sustainable biopolymer applications in reducing plastic pollution.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (V.C.K.); (R.V.S.)
| | - Rahul Vikram Singh
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (V.C.K.); (R.V.S.)
| | - Chunjie Gong
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China;
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (V.C.K.); (R.V.S.)
| |
Collapse
|
4
|
Xie Q, Lao G, Fang Y, Gao X, Tan Z, Miao W, Jin P. Investigating Polyhydroxyalkanoate Synthesis for Insights into Drug Resistance in Xanthomonas oryzae pv. oryzae. Int J Mol Sci 2025; 26:1601. [PMID: 40004067 PMCID: PMC11855620 DOI: 10.3390/ijms26041601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/08/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Polyhydroxyalkanoates (PHAs), synthesized by Xanthomonas to endure adverse conditions, are primarily regulated by the critical genes phaC and phaZ. Poly-3-hydroxybutyrate (PHB), a common polyhydroxyalkanoate (PHA), has been implicated in metabolism, pathogenicity, and various physiological processes in Xanthomonas oryzae pv. oryzae (Xoo). In this study, we investigated the effects of HN-2 using n-butanol extract (HN-2 n-butanol extract) derived from Bacillus velezensis on Xoo. The results showed that HN-2 n-butanol extract could induce PHB accumulation in Xoo, potentially via surfactin. Moreover, examination of drug resistance, pathogenicity, and morphological characteristics of Xoo revealed PHB played a significant role in the drug resistance, pathogenicity, membrane integrity, and growth rate of Xoo strains following the deletion of phaZ and phaC. The ∆phaZ strain was the most significant, with a growth rate reduced to 58.19% of the PXO99A at 36 h and an inhibition zone 57.46% larger than that of PXO99A by HN-2 n-butanol extract. Transmission electron microscopy further revealed blank spots in Xoo after treatment, with the fewest spots observed in ∆phaZ, indicating its impaired ability to repair and maintain membrane integrity. These findings offer valuable insights that could serve as a foundation for elucidating the mechanisms of drug resistance and future research on preventing Xoo-induced diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Weiguo Miao
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Q.X.)
| | - Pengfei Jin
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Q.X.)
| |
Collapse
|
5
|
Bouskill NJ, Chacon SS, Cusack DF, Dietterich LH, Chen L, Khurram A, Voříšková J, Holman HYN. Climate history modulates stress responses of common soil bacteria under experimental drought. THE ISME JOURNAL 2025; 19:wraf075. [PMID: 40247716 DOI: 10.1093/ismejo/wraf075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/06/2025] [Accepted: 04/16/2025] [Indexed: 04/19/2025]
Abstract
Soil drying challenges microbial viability and survival, with bacteria employing various mechanisms to respond to shifts in osmolarity, including dormancy or metabolic upregulation of osmoprotectants. However, the extent to which these responses are shaped by an organism's phylogeny, or the climate history of a given environment is poorly understood. This study examines the responses of phylogenetically similar bacteria from semi-arid and humid tropical forest soils to osmotic and matric stress using synchrotron radiation-based Fourier Transform Infrared spectromicroscopy. This non-destructive approach depicts the biochemical phenotype for whole cells under control and stress conditions. We observed that, under osmotic stress, bacteria upregulated cell-signaling pathways, rapidly turned over lipid-storage compounds, and increased osmolyte production. In contrast, matric stress induced a more muted response, typically elevating the production of carbohydrate stress compounds, such as glycine betaine and trehalose. Whereas phylogenetically similar bacteria showed comparable biochemistry under control conditions, climate history played an important role in regulating responses to stress, whereby a stronger metabolic response was observed from semi-arid relative to tropical forest isolates. We conclude that bacterial stress response to drought can be more diverse than previously observed and regulated by both phylogeny and climate history.
Collapse
Affiliation(s)
- Nicholas J Bouskill
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
- Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR 97330, United States
| | - Stephany S Chacon
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
- Life and Environmental Science Department, University of California Merced, Merced, CA 95343, United States
| | - Daniela F Cusack
- Department of Ecosystem Science and Sustainability, Colorado State University, Campus Delivery 1476, Fort Collins, CO 80523, United States
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Ancon, Panamá, República de Panamá
| | - Lee H Dietterich
- Department of Ecosystem Science and Sustainability, Colorado State University, Campus Delivery 1476, Fort Collins, CO 80523, United States
- Department of Biology, Haverford College, Haverford, PA 19041, United States
| | - Liang Chen
- Berkeley Synchrotron Infrared Structural Biology Program, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Aizah Khurram
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Jana Voříšková
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
- Laboratory of Environmental Microbiology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083142 20 Prague 4, Czechia
| | - Hoi-Ying N Holman
- Berkeley Synchrotron Infrared Structural Biology Program, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| |
Collapse
|
6
|
Joris P, Lombard E, Paillet A, Navarro G, Guillouet SE, Gorret N. Recycling potential of Cupriavidus necator for life support in space: Production of SCPs from volatile fatty acid and urea mixture. J Biotechnol 2024; 396:18-27. [PMID: 39396642 DOI: 10.1016/j.jbiotec.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024]
Abstract
The International Space Station currently requires four annual replenishments for food supply, a practice that won't be feasible for deep space missions due to the greater distances. Based on the design of closed ecological life support systems, two waste streams were identified: urea from the crew urine, volatile fatty acids (VFAs) from a first stage of anaerobic digestion of waste. The objective of this study was to assess the ability of bacterium Cupriavidus necator to produce single cell protein on urea and VFAs. Thus, the effect of carbon sources (glucose vs VFAs) and the dilution rate on the biomass composition was determined in continuous cultures. Complete transformation of the carbon source into protein-rich biomass was achieved up to 78 % cell dry weight (CDW). For both carbon sources, the protein content increased from 55.0 %CDW to 78 %CDW with a decrease in the dilution rate. Conversely, the nucleic acid and polyhydroxyalkanoate contents decreased with the dilution rate from 8.8 %CDW to 4.8 %CDW and 9.8 %CDW to 0.6 %CDW respectively. Working at a low dilution rate seems to be a good way to maximize protein content while minimizing unwanted nucleic acids and polyhydroxyalkanoates.
Collapse
Affiliation(s)
- P Joris
- TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - E Lombard
- TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - A Paillet
- CNES-Exploration Vols Habités-Spaceship.Fr project, Toulouse, France
| | - G Navarro
- CNES-Exploration Vols Habités-Spaceship.Fr project, Toulouse, France
| | - S E Guillouet
- TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - N Gorret
- TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France.
| |
Collapse
|
7
|
Ismail S, Giacinti G, Raynaud CD, Cameleyre X, Alfenore S, Guillouet S, Gorret N. Impact of the environmental parameters on single cell protein production and composition by Cupriavidus necator. J Biotechnol 2024; 388:83-95. [PMID: 38621427 DOI: 10.1016/j.jbiotec.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/26/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
Due to the rapid increase in the world's population, many developing countries are facing malnutrition problems, including famine and food insecurity. Particularly, the deficiency of protein sources becomes a serious problem for human and animal nutrition. In this context, Single Cell Proteins, could be exploited as an alternative source of unconventional proteins. The aim of the study was to investigate SCP production and composition by Cupriavidus necator under various environmental conditions, temperature and pH values. A mono-factorial approach was implemented using batch bioreactor cultures under well-controlled conditions. Results were compared in terms of bacterial growth and SCP composition (proteins, nucleic acids, amino acids and elemental formula). Complementary analyses were performed by flow cytometry to study cell morphology, membrane permeability and the presence of Poly(3-hydroxybutyrate) (PHB) production. Our data confirmed the ability of C. necator to produce high amount of proteins (69 %DW at 30 °C and pH7). The results showed that temperature and pH independently impact SCP production and composition. This impact was particularly observed at the highest temperature (40 °C) and also the lowest pH value (pH5) providing lower growth rates, cell elongation, changes in granularity and lower amounts of proteins (down to 44 %DW at pH5) and nucleic acids. These low percentages were related to the production of PHB production (up to 44 %DW at 40 °C) which is the first report of a PHB accumulation in C. necator under nutrient unlimited conditions.
Collapse
Affiliation(s)
- Siwar Ismail
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Géraldine Giacinti
- Laboratoire de Chimie Agro-Industrielle, LCA, Université de Toulouse, INRAe, Toulouse, France; Centre d'Application et de Traitement des Agro-Ressources (CATAR), Toulouse-INP, Toulouse, France
| | - Christine Delagado Raynaud
- Laboratoire de Chimie Agro-Industrielle, LCA, Université de Toulouse, INRAe, Toulouse, France; Centre d'Application et de Traitement des Agro-Ressources (CATAR), Toulouse-INP, Toulouse, France
| | - Xavier Cameleyre
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | | | | | - Nathalie Gorret
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.
| |
Collapse
|
8
|
James N, Umesh M. Multifarious Potential of Biopolymer-Producing Bacillus subtilis NJ14 for Plant Growth Promotion and Stress Tolerance in Solanum lycopercicum L. and Cicer arietinum L: A Way Toward Sustainable Agriculture. Mol Biotechnol 2024; 66:1031-1050. [PMID: 38097901 DOI: 10.1007/s12033-023-01001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/20/2023] [Indexed: 05/12/2024]
Abstract
Diverse practices implementing biopolymer-producing bacteria have been examined in various domains lately. PHAs are among the major biopolymers whose relevance of PHA-producing bacteria in the field of crop improvement is one of the radical unexplored aspects in the field of agriculture. Prolonging shelf life is one serious issue hindering the establishment of biofertilizers. Studies support that PHA can help bacteria survive stressed conditions by providing energy. Therefore, PHA-producing bacteria with Plant Growth-Promoting ability can alter the existing problem of short shelf life in biofertilizers. In the present study, Bacillus subtilis NJ14 was isolated from the soil. It was explored to understand the ability of the strain to produce PHA and augment growth in Solanum lycopersicum and Cicer arietinum. NJ14 strain improved the root and shoot length of both plants significantly. The root and shoot length of S. lycopersicum was increased by 3.49 and 0.41 cm, respectively. Similarly, C. arietinum showed a 9.55 and 8.24 cm increase in root and shoot length, respectively. The strain also exhibited halotolerant activity (up to 10%), metal tolerance to lead (up to 1000 μg/mL) and mercury (up to 100 μg/mL), indicating that the NJ14 strain can be an ideal candidate for a potent biofertilizer.
Collapse
Affiliation(s)
- Nilina James
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bengaluru, Karnataka, 560029, India
| | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bengaluru, Karnataka, 560029, India.
| |
Collapse
|
9
|
Grzesiak J, Rogala MM, Gawor J, Kouřilová X, Obruča S. Polyhydroxyalkanoate involvement in stress-survival of two psychrophilic bacterial strains from the High Arctic. Appl Microbiol Biotechnol 2024; 108:273. [PMID: 38520566 PMCID: PMC10960890 DOI: 10.1007/s00253-024-13092-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/19/2024] [Accepted: 02/25/2024] [Indexed: 03/25/2024]
Abstract
An ever-growing body of literature evidences the protective role of polyhydroxyalkanoates (PHAs) against a plethora of mostly physical stressors in prokaryotic cells. To date, most of the research done involved bacterial strains isolated from habitats not considered to be life-challenging or extremely impacted by abiotic environmental factors. Polar region microorganisms experience a multitude of damaging factors in combinations rarely seen in other of Earth's environments. Therefore, the main objective of this investigation was to examine the role of PHAs in the adaptation of psychrophilic, Arctic-derived bacteria to stress conditions. Arctic PHA producers: Acidovorax sp. A1169 and Collimonas sp. A2191, were chosen and their genes involved in PHB metabolism were deactivated making them unable to accumulate PHAs (ΔphaC) or to utilize them (Δi-phaZ) as a carbon source. Varying stressors were applied to the wild-type and the prepared mutant strains and their survival rates were assessed based on CFU count. Wild-type strains with a functional PHA metabolism were best suited to survive the freeze-thaw cycle - a common feature of polar region habitats. However, the majority of stresses were best survived by the ΔphaC mutants, suggesting that the biochemical imbalance caused by the lack of PHAs induced a permanent cell-wide stress response thus causing them to better withstand the stressor application. Δi-phaZ mutants were superior in surviving UV irradiation, hinting that PHA granule presence in bacterial cells is beneficial despite it being biologically inaccessible. Obtained data suggests that the ability to metabolize PHA although important for survival, probably is not the most crucial mechanism in the stress-resistance strategies arsenal of cold-loving bacteria. KEY POINTS: • PHA metabolism helps psychrophiles survive freezing • PHA-lacking psychrophile mutants cope better with oxidative and heat stresses • PHA granule presence enhances the UV resistance of psychrophiles.
Collapse
Affiliation(s)
- Jakub Grzesiak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland.
| | - Małgorzata Marta Rogala
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Jan Gawor
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Xenie Kouřilová
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic
| | - Stanislav Obruča
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic
| |
Collapse
|
10
|
Yao F, Yuan K, Zhou W, Tang W, Tang T, Yang X, Liu H, Li F, Xu Q, Peng C. Unlocking growth potential in Halomonas bluephagenesis for enhanced PHA production with sulfate ions. J Ind Microbiol Biotechnol 2024; 51:kuae013. [PMID: 38632039 PMCID: PMC11074995 DOI: 10.1093/jimb/kuae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/16/2024] [Indexed: 04/19/2024]
Abstract
The mutant strain Halomonas bluephagenesis (TDH4A1B5P) was found to produce PHA under low-salt, non-sterile conditions, but the yield was low. To improve the yield, different nitrogen sources were tested. It was discovered that urea was the most effective nitrogen source for promoting growth during the stable stage, while ammonium sulfate was used during the logarithmic stage. The growth time of H. bluephagenesis (TDH4A1B5P) and its PHA content were significantly prolonged by the presence of sulfate ions. After 64 hr in a 5-L bioreactor supplemented with sulfate ions, the dry cell weight (DCW) of H. bluephagenesis weighed 132 g/L and had a PHA content of 82%. To promote the growth and PHA accumulation of H. bluephagenesis (TDH4A1B5P), a feeding regimen supplemented with nitrogen sources and sulfate ions with ammonium sodium sulfate was established in this study. The DCW was 124 g/L, and the PHA content accounted for 82.3% (w/w) of the DCW, resulting in a PHA yield of 101 g/L in a 30-L bioreactor using the optimized culture strategy. In conclusion, stimulating H. bluephagenesis (TDH4A1B5P) to produce PHA is a feasible and suitable strategy for all H. bluephagenesis.
Collapse
Affiliation(s)
- Fuwei Yao
- School of food science and pharmaceutical engineering, Nanjing Normal University (NNU), Nanjing, 210023, China
- Biotechnology Center, COFCO Nutrition and Health Research Institute Co., Ltd., Beijing, 102209, China
| | - Kai Yuan
- Biotechnology Center, COFCO Nutrition and Health Research Institute Co., Ltd., Beijing, 102209, China
- COFCO Bio-Chemical Energy (Yushu) Co., Ltd., COFCO Biotechnology Co., Ltd., Changchun, 130400, China
| | - Weiqiang Zhou
- Biotechnology Center, COFCO Nutrition and Health Research Institute Co., Ltd., Beijing, 102209, China
- COFCO Bio-Chemical Energy (Yushu) Co., Ltd., COFCO Biotechnology Co., Ltd., Changchun, 130400, China
| | - Weitao Tang
- Biotechnology Center, COFCO Nutrition and Health Research Institute Co., Ltd., Beijing, 102209, China
- COFCO Bio-Chemical Energy (Yushu) Co., Ltd., COFCO Biotechnology Co., Ltd., Changchun, 130400, China
| | - Tang Tang
- Biotechnology Center, COFCO Nutrition and Health Research Institute Co., Ltd., Beijing, 102209, China
- COFCO Bio-Chemical Energy (Yushu) Co., Ltd., COFCO Biotechnology Co., Ltd., Changchun, 130400, China
| | - Xiaofan Yang
- Biotechnology Center, COFCO Nutrition and Health Research Institute Co., Ltd., Beijing, 102209, China
- COFCO Bio-Chemical Energy (Yushu) Co., Ltd., COFCO Biotechnology Co., Ltd., Changchun, 130400, China
| | - Haijun Liu
- Biotechnology Center, COFCO Nutrition and Health Research Institute Co., Ltd., Beijing, 102209, China
- COFCO Bio-Chemical Energy (Yushu) Co., Ltd., COFCO Biotechnology Co., Ltd., Changchun, 130400, China
| | - Fangliang Li
- Biotechnology Center, COFCO Nutrition and Health Research Institute Co., Ltd., Beijing, 102209, China
- COFCO Bio-Chemical Energy (Yushu) Co., Ltd., COFCO Biotechnology Co., Ltd., Changchun, 130400, China
| | - Qing Xu
- School of food science and pharmaceutical engineering, Nanjing Normal University (NNU), Nanjing, 210023, China
| | - Chao Peng
- Biotechnology Center, COFCO Nutrition and Health Research Institute Co., Ltd., Beijing, 102209, China
| |
Collapse
|
11
|
Koh S, Sato M, Matsusaki H, Taguchi S. The Discovery of Membrane Vesicle Biogenesis in the Polyhydroxybutyrate-non-producing Mutant Strain of Cupriavidus necator H16. Microbes Environ 2024; 39:ME24007. [PMID: 39322553 PMCID: PMC11427308 DOI: 10.1264/jsme2.me24007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
Extracellular membrane vesicles (MVs) caused by the artificial production of polyhydroxybutyrate (PHB) were previously detected in Escherichia coli. We herein observed MV biogenesis in the mutant strain (-PHB) of the natural PHB producer, Cupriavidus necator H16. This inverse relationship was revealed through comparative electron microscopic ana-lyses of wild-type and mutant strains. Based on these results, we speculate that a physiological relationship exists between MV biogenesis and PHB biosynthesis. Therefore, we propose the potential of MV biogenesis as a fermentative "stress marker" for monitoring the performance of target polymer-producing microbial platforms.
Collapse
Affiliation(s)
- Sangho Koh
- Graduate School of Science, Technology and Innovation, Kobe University, 1–1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657–8501, Japan
| | - Michio Sato
- School of Agriculture, Meiji University, 1–1–1 Higashimita, Tama, Kawasaki, 214–8571, Japan
| | - Hiromi Matsusaki
- Faculty of Environmental and Symbiotic Science, Prefectural University of Kumamoto, 3–1–100 Tsukide, Higashi-ku, Kumamoto 862–8502, Japan
| | - Seiichi Taguchi
- Graduate School of Science, Technology and Innovation, Kobe University, 1–1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657–8501, Japan
- Engineering Biology Research Center, Kobe University, Nada, Kobe, Hyogo 657–8501, Japan
| |
Collapse
|
12
|
Wang L, Cui YW. Simultaneous treatment of epichlorohydrin wastewater and polyhydroxyalkanoate recovery by halophilic aerobic granular sludge highly enriched by Halomonas sp. BIORESOURCE TECHNOLOGY 2024; 391:129951. [PMID: 37914058 DOI: 10.1016/j.biortech.2023.129951] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/29/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
The treatment of epichlorohydrin (ECH) wastewater exists chances for achieving cleaner production. This study initially employed moderately halophilic aerobic granular sludge (HAGS) to treat ECH wastewater, and the resulting HAGS was utilized to recover polyhydroxyalkanoate (PHA). During the acclimation process of HAGS, the chemical oxygen demand removal efficiency stabilized at 70 %. Moreover, due to the high enrichment of Halomonas sp. (relative abundance of 86 ± 0.50 %), the maximum PHA content of wasted HAGS was 52.67 wt% in the fermentation process. Simultaneously, the utilization of nuclear magnetic resonance spectroscopy (1H and 13C spectra) and fourier transform infrared spectroscopy for the structural analysis of polymers revealed that polyhydroxybutyrate was the predominant substance extracted from HAGS. In this study, the innovative use of highly enriched HAGS for treating ECH wastewater and simultaneously recovering PHA not only enables the efficient biological treatment of ECH wastewater but also realizes resource recovery of ECH wastewater.
Collapse
Affiliation(s)
- Ling Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - You-Wei Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
13
|
Xue ZF, Cheng WC, Wang L, Qin P, Xie YX, Hu W. Applying the first microcapsule-based self-healing microbial-induced calcium carbonate materials to prevent the migration of Pb ions. ENVIRONMENTAL RESEARCH 2023; 239:117423. [PMID: 37858687 DOI: 10.1016/j.envres.2023.117423] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/12/2023] [Accepted: 10/15/2023] [Indexed: 10/21/2023]
Abstract
Lead (Pb) accumulation can lead to serious threats to surrounding environments and damage to the liver and kidneys. In the past few years, microbial-induced carbonate precipitation (MICP) technology has been widely applied to achieve Pb immobilization due to its environmentally friendly nature. However, harsh pH conditions can cause the instability of the carbonate precipitation to degrade or dissolve, increasing the potential of Pb2+ migration into nearby environments. In this study, microcapsule-based self-healing microbial-induced calcium carbonate (MICC) materials were applied to prevent Pb migration. The highest sporulation rate of 95.8% was attained at 7 g/L yeast extract, 10 g/L NH4Cl, and 3.6 g/L Mn2+. In the germination phase, the microcapsule not only prevented the bacterial spores from being threatened by the acid treatment but secured their growth and reproduction. Micro analysis also revealed that cerussite, calcite, and aragonite minerals were present, while extracellular polymeric substances (EPSs) were identified via Fourier transform infrared spectroscopy (FTIR). These results confirm their involvement in combining Pb2+ and Ca2+. The immobilization efficiency of above 90% applied to MICC materials was attained, while it of below 5% applied to no MICC use was attained. The findings explore the potential of applying microcapsule-based self-healing MICC materials to prevent Pb ion migration when the calcium carbonate degrades under harsh pH conditions.
Collapse
Affiliation(s)
- Zhong-Fei Xue
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Wen-Chieh Cheng
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Lin Wang
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Peng Qin
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Yi-Xin Xie
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Wenle Hu
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| |
Collapse
|
14
|
Concepción A, Ricardo A, Enrique SL. Biodegradation of Choline NTF 2 by Pantoea agglomerans in Different Osmolarity. Characterization and Environmental Implications of the Produced Exopolysaccharide. Polymers (Basel) 2023; 15:3974. [PMID: 37836024 PMCID: PMC10575057 DOI: 10.3390/polym15193974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/24/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
A specific microorganism, Pantoea agglomerans uam8, was isolated from the ionic liquid (IL) Choline NTF2 and identified by molecular biology. A biodegradation study was performed at osmolarity conditions (0.2, 0.6, 1.0 M). These had an important influence on the growth of the strain, exopolysaccharide (EPS) production, and biodegradation (1303 mg/L max production and 80% biodegradation at 0.6 M). These conditions also had an important influence on the morphology of the strain and its EPSs, but not in the chemical composition. The EPS (glucose, mannose and galactose (6:0.5:2)) produced at 0.6 M was further characterized using different techniques. The obtained EPSs presented important differences in the behavior of the emulsifying activity for vegetable oils (olive (86%), sunflower (56%) and coconut (90%)) and hydrocarbons (diesel (62%), hexane (60%)), and were compared with commercial emulsifiers. The EPS produced at 0.6 M had the highest emulsifying activity overall. This EPS did not show cytotoxicity against the tested cell line (<20%) and presented great advantages as an antioxidant (1,1-diphenyl-2-picryl-hydrazyl radical (DPPH) (85%), hydroxyl radical (OH) (99%), superoxide anion (O2-) (94%), chelator (54%), and antimicrobial product (15 mm). The osmolarity conditions directly affected the capacity of the strain to biodegrade IL and the subsequently produced EPS. Furthermore, the EPS produced at 0.6 M has potential for environmental applications, such as the removal of hazardous materials by emulsification, whilst resulting in positive health effects such as antioxidant activity and non-toxicity.
Collapse
Affiliation(s)
- Abrusci Concepción
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, UAM, Cantoblanco, 28049 Madrid, Spain (S.-L.E.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
| | - Amils Ricardo
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, UAM, Cantoblanco, 28049 Madrid, Spain (S.-L.E.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
| | - Sánchez-León Enrique
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, UAM, Cantoblanco, 28049 Madrid, Spain (S.-L.E.)
| |
Collapse
|
15
|
Hrubanova K, Sikorova P, Mrázová K, Nebesarova J, Obruca S, Krzyzanek V. Morphological Study of PHA Producing Bacteria. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:883-884. [PMID: 37613662 DOI: 10.1093/micmic/ozad067.436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- K Hrubanova
- The Czech Academy of Sciences, Institute of Scientific Instruments, Brno, Czech Republic
| | - P Sikorova
- The Czech Academy of Sciences, Institute of Scientific Instruments, Brno, Czech Republic
| | - K Mrázová
- The Czech Academy of Sciences, Institute of Scientific Instruments, Brno, Czech Republic
| | - J Nebesarova
- The Czech Academy of Sciences, Biology Centre, Ceske Budejovice, Czech Republic
| | - S Obruca
- Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
| | - V Krzyzanek
- The Czech Academy of Sciences, Institute of Scientific Instruments, Brno, Czech Republic
| |
Collapse
|
16
|
de Melo RN, de Souza Hassemer G, Steffens J, Junges A, Valduga E. Recent updates to microbial production and recovery of polyhydroxyalkanoates. 3 Biotech 2023; 13:204. [PMID: 37223002 PMCID: PMC10200728 DOI: 10.1007/s13205-023-03633-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/12/2023] [Indexed: 05/25/2023] Open
Abstract
The increasing use of synthetic polymers and their disposal has raised concern due to their adverse effects on the environment. Thus, other sustainable alternatives to synthetic plastics have been sought, such as polyhydroxyalkanoates (PHAs), which are promising microbial polyesters, mainly due to their compostable nature, biocompatibility, thermostability, and resilience, making this biopolymer acceptable in several applications in the global market. The large-scale production of PHAs by microorganisms is still limited by the high cost of production compared to conventional plastics. This review reports some strategies mentioned in the literature aimed at production and recovery, paving the way for the bio-based economy. For this, some aspects of PHAs are addressed, such as synthesis, production systems, process control using by-products from industries, and advances and challenges in the downstream. The bioplastics properties made them a prime candidate for food, pharmaceutical, and chemical industrial applications. With this paper, it is possible to see that biodegradable polymers are promising materials, mainly for reducing the pollution produced by polymers derived from petroleum.
Collapse
Affiliation(s)
- Rafaela Nery de Melo
- Department of Food and Chemical Engineering, URI-Erechim, Sete de Setembro Av, Erechim, RS 162199709-910 Brazil
| | - Guilherme de Souza Hassemer
- Department of Food and Chemical Engineering, URI-Erechim, Sete de Setembro Av, Erechim, RS 162199709-910 Brazil
| | - Juliana Steffens
- Department of Food and Chemical Engineering, URI-Erechim, Sete de Setembro Av, Erechim, RS 162199709-910 Brazil
| | - Alexander Junges
- Department of Food and Chemical Engineering, URI-Erechim, Sete de Setembro Av, Erechim, RS 162199709-910 Brazil
| | - Eunice Valduga
- Department of Food and Chemical Engineering, URI-Erechim, Sete de Setembro Av, Erechim, RS 162199709-910 Brazil
| |
Collapse
|
17
|
Esmael ME, Ibrahim MIA, Aldhumri SA, Bayoumi RA, Matsuo K, Khattab AM. Lipid-membranes interaction, structural assessment, and sustainable production of polyhydroxyalkanoate by Priestia filamentosa AZU-A6 from sugarcane molasses. Int J Biol Macromol 2023; 242:124721. [PMID: 37150380 DOI: 10.1016/j.ijbiomac.2023.124721] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/19/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023]
Abstract
This study presented for the first time the PHA-lipid interactions by circular dichroism (CD) spectroscopy, besides a sustainable PHA production strategy using a cost-effective microbial isolate. About 48 bacterial isolates were selected from multifarious Egyptian sites and screened for PHAs production. The Fe(AZU-A6) was the most potent isolate, and identified genetically as Priestia filamentosa AZU-A6, while the intracellular PHA granules were visualized by TEM. Sugarcane molasses (SCM) was used an inexpensive carbon source and the production conditions were optimized through a Factor-By-Factor strategy and a Plackett-Burman statistical model. The highest production (6.84 g L-1) was achieved at 8.0 % SCM, pH 8.0, 35 °C, 250 rpm, and 0.5 g L-1 ammonium chloride after 72 h. The complementary physicochemical techniques (e.g., FTIR, NMR, GC-MS, DSC, and TGA) have ascertained the structural identity as poly-3-hydroxybutyrate (P3HB) with a characteristic melting temperature of 174.5 °C. The circular dichroism analysis investigated the existence of interactions between the PHB and the different lipids, particularly 1,2-dimyristoyl-sn-glycero-3-phosphocholine. The ATR technique for the lipid-PHB films suggested that both the hydrophobic and electrostatic forces control the lipid-PHB interactions that might induce changes in the structuration of PHB.
Collapse
Affiliation(s)
- Mahmoud E Esmael
- Al-Azhar Center for Fermentation Biotechnology and Applied Microbiology, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Mohamed I A Ibrahim
- Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan; National Institute of Oceanography and Fisheries, NIOF, Egypt.
| | - Sami A Aldhumri
- Department of Biology, Alkhormah University College, Taif University, Taif 21974, Saudi Arabia
| | - Reda A Bayoumi
- Department of Biology, Alkhormah University College, Taif University, Taif 21974, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Koichi Matsuo
- Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Abdelrahman M Khattab
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt.
| |
Collapse
|
18
|
Pei R, Tarek-Bahgat N, Van Loosdrecht MCM, Kleerebezem R, Werker AG. Influence of environmental conditions on accumulated polyhydroxybutyrate in municipal activated sludge. WATER RESEARCH 2023; 232:119653. [PMID: 36758350 DOI: 10.1016/j.watres.2023.119653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Poly(3-hydroxybutyrate) (PHB) was accumulated in full-scale municipal waste activated sludge at pilot scale. After accumulation, the fate of the PHB-rich biomass was evaluated over two weeks as a function of initial pH (5.5, 7.0 and 10), and incubation temperature (25, 37 and 55°C), with or without aeration. PHB became consumed under aerobic conditions as expected with first order rate constants in the range of 0.19 to 0.55 d-1. Under anaerobic conditions, up to 63 percent of the PHB became consumed within the first day (initial pH 7, 55°C). Subsequently, with continued anaerobic conditions, the polymer content remained stable in the biomass. Degradation rates were lower for acidic anaerobic incubation conditions at a lower temperature (25°C). Polymer thermal properties were measured in the dried PHB-rich biomass and for the polymer recovered by solvent extraction using dimethyl carbonate. PHB quality changes in dried biomass, indicated by differences in polymer melt enthalpy, correlated to differences in the extent of PHB extractability. Differences in the expressed PHB-in-biomass melt enthalpy that correlated to the polymer extractability suggested that yields of polymer recovery by extraction can be influenced by the state or quality of the polymer generated during downstream processing. Different post-accumulation process biomass management environments were found to influence the polymer quality and can also influence the extraction of non-polymer biomass. An acidic post-accumulation environment resulted in higher melt enthalpies in the biomass and, consequently, higher extraction efficiencies. Overall, acidic environmental conditions were found to be favourable for preserving both quantity and quality after PHB accumulation in activated sludge.
Collapse
Affiliation(s)
- R Pei
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands.
| | - N Tarek-Bahgat
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands
| | - M C M Van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - R Kleerebezem
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - A G Werker
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands
| |
Collapse
|
19
|
Slaninova E, Obruca S, Kocherbitov V, Sedlacek P. On the bioprotective effects of 3-hydroxybutyrate: Thermodynamic study of binary 3HB-water systems. Biophys J 2023; 122:460-469. [PMID: 36617191 PMCID: PMC9941717 DOI: 10.1016/j.bpj.2023.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/22/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
Microorganisms must face various inconvenient conditions; therefore, they developed several approaches for protection. Such a strategy also involves the accumulation of compatible solutes, also called osmolytes. It has been proved that the monomer unit 3-hydroxybutyrate (3HB), which is present in sufficient concentration in poly(3-hydroxybutyrate) (PHB)-accumulating cells, serves as a chemical chaperone protecting enzymes against heat and oxidative stress and as a cryoprotectant for enzymes, bacterial cells, and yeast. The stress robustness of the cells is also strongly dependent on the behavior and state of intracellular water, especially during stress exposure. For a better understanding of the protective mechanism and effect of strongly hydrophilic 3HB in solutions at a wide range of temperatures, a binary phase diagram of system sodium 3HB (Na3HB)-water in equilibrium and the state diagrams showing the glass transitions in the system were constructed. To investigate the activity of water in various compositions of the Na3HB/water system, three experimental techniques have been used (dynamic water sorption analysis, water activity measurements, and sorption calorimetry). First, Na3HB proved its hydrophilic nature, which is very comparable with known compatible solutes (trehalose). Results of differential scanning calorimetry demonstrated that Na3HB is also highly effective in depressing the freezing point and generating a large amount of nonfrozen water (1.35 g of water per gram of Na3HB). Therefore, Na3HB represents a very effective cryoprotectant that can be widely used for numerous applications.
Collapse
Affiliation(s)
- Eva Slaninova
- Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
| | - Stanislav Obruca
- Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
| | - Vitaly Kocherbitov
- Biomedical Science, Faculty of Health & Society, Malmö University, Malmö, Sweden.
| | - Petr Sedlacek
- Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic.
| |
Collapse
|
20
|
Grey A, Costeira R, Lorenzo E, O’Kane S, McCaul MV, McCarthy T, Jordan SF, Allen CCR, Kelleher BP. Biogeochemical properties of blue carbon sediments influence the distribution and monomer composition of bacterial polyhydroxyalkanoates (PHA). BIOGEOCHEMISTRY 2023; 162:359-380. [PMID: 36873379 PMCID: PMC9971093 DOI: 10.1007/s10533-022-01008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 11/25/2022] [Indexed: 06/18/2023]
Abstract
Coastal wetlands are highly efficient 'blue carbon' sinks which contribute to mitigating climate change through the long-term removal of atmospheric CO2 and capture of carbon (C). Microorganisms are integral to C sequestration in blue carbon sediments and face a myriad of natural and anthropogenic pressures yet their adaptive responses are poorly understood. One such response in bacteria is the alteration of biomass lipids, specifically through the accumulation of polyhydroxyalkanoates (PHAs) and alteration of membrane phospholipid fatty acids (PLFA). PHAs are highly reduced bacterial storage polymers that increase bacterial fitness in changing environments. In this study, we investigated the distribution of microbial PHA, PLFA profiles, community structure and response to changes in sediment geochemistry along an elevation gradient from intertidal to vegetated supratidal sediments. We found highest PHA accumulation, monomer diversity and expression of lipid stress indices in elevated and vegetated sediments where C, nitrogen (N), PAH and heavy metals increased, and pH was significantly lower. This was accompanied by a reduction in bacterial diversity and a shift to higher abundances of microbial community members favouring complex C degradation. Results presented here describe a connection between bacterial PHA accumulation, membrane lipid adaptation, microbial community composition and polluted C rich sediments. Graphical Abstract Geochemical, microbiological and polyhydroxyalkanoate (PHA) gradient in a blue carbon zone. Supplementary Information The online version contains supplementary material available at 10.1007/s10533-022-01008-5.
Collapse
Affiliation(s)
- Anthony Grey
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Ricardo Costeira
- The School of Biological Sciences, Queen’s University Belfast, Belfast, Northern Ireland
| | - Emmaline Lorenzo
- Department of Chemistry, University of Kansas, Lawrence, 66045 USA
| | - Sean O’Kane
- National Centre for Geocomputation, Maynooth University, Maynooth, Ireland
| | - Margaret V. McCaul
- Insight SFI Research Centre for Data Analytics, Dublin City University, Dublin 4, Ireland
| | - Tim McCarthy
- National Centre for Geocomputation, Maynooth University, Maynooth, Ireland
| | - Sean F. Jordan
- Insight SFI Research Centre for Data Analytics, Dublin City University, Dublin 4, Ireland
| | | | - Brian P. Kelleher
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
21
|
Ray S, Jin JO, Choi I, Kim M. Recent trends of biotechnological production of polyhydroxyalkanoates from C1 carbon sources. Front Bioeng Biotechnol 2023; 10:907500. [PMID: 36686222 PMCID: PMC9852868 DOI: 10.3389/fbioe.2022.907500] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 12/06/2022] [Indexed: 01/09/2023] Open
Abstract
Growing concerns over the use of limited fossil fuels and their negative impacts on the ecological niches have facilitated the exploration of alternative routes. The use of conventional plastic material also negatively impacts the environment. One such green alternative is polyhydroxyalkanoates, which are biodegradable, biocompatible, and environmentally friendly. Recently, researchers have focused on the utilization of waste gases particularly those belonging to C1 sources derived directly from industries and anthropogenic activities, such as carbon dioxide, methane, and methanol as the substrate for polyhydroxyalkanoates production. Consequently, several microorganisms have been exploited to utilize waste gases for their growth and biopolymer accumulation. Methylotrophs such as Methylobacterium organophilum produced highest amount of PHA up to 88% using CH4 as the sole carbon source and 52-56% with CH3OH. On the other hand Cupriavidus necator, produced 71-81% of PHA by utilizing CO and CO2 as a substrate. The present review shows the potential of waste gas valorization as a promising solution for the sustainable production of polyhydroxyalkanoates. Key bottlenecks towards the usage of gaseous substrates obstructing their realization on a large scale and the possible technological solutions were also highlighted. Several strategies for PHA production using C1 gases through fermentation and metabolic engineering approaches are discussed. Microbes such as autotrophs, acetogens, and methanotrophs can produce PHA from CO2, CO, and CH4. Therefore, this article presents a vision of C1 gas into bioplastics are prospective strategies with promising potential application, and aspects related to the sustainability of the system.
Collapse
Affiliation(s)
- Subhasree Ray
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea,Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, India,*Correspondence: Myunghee Kim, ; Subhasree Ray,
| | - Jun-O Jin
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea,Department of Food Science and Technology, Yeungnam University, Gyeongsan, South Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea,Department of Food Science and Technology, Yeungnam University, Gyeongsan, South Korea
| | - Myunghee Kim
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea,Department of Food Science and Technology, Yeungnam University, Gyeongsan, South Korea,*Correspondence: Myunghee Kim, ; Subhasree Ray,
| |
Collapse
|
22
|
Esposito FP, Vecchiato V, Buonocore C, Tedesco P, Noble B, Basnett P, de Pascale D. Enhanced production of biobased, biodegradable, Poly(3-hydroxybutyrate) using an unexplored marine bacterium Pseudohalocynthiibacter aestuariivivens, isolated from highly polluted coastal environment. BIORESOURCE TECHNOLOGY 2023; 368:128287. [PMID: 36368485 DOI: 10.1016/j.biortech.2022.128287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
The production and disposal of plastics from limited fossil reserves, has prompted research for greener and sustainable alternatives. Polyhydroxyalkanoates (PHAs) are biocompatible, biodegradable, and thermoprocessable polyester produced by microbes. PHAs found several applications but their use is limited due to high production cost and low yields. Herein, for the first time, the isolation and characterization of Pseudohalocynthiibacter aestuariivivens P96, a marine bacterium able to produce surprising amount of PHAs is reported. In the best growth condition P96 was able to reach a maximum production of 4.73 g/L, corresponding to the 87 % of total cell dry-weight. Using scanning and transmission microscopy, lab-scale fermentation, spectroscopic techniques, and genome analysis, the production of thermoprocessable polymer Polyhydroxybutyrate P(3HB), a PHAs class, endowed with mechanical and thermal properties comparable to that of petroleum-based plastics was confirmed. This study represents a milestone toward the use of this unexplored marine bacterium for P(3HB) production.
Collapse
Affiliation(s)
- Fortunato Palma Esposito
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton 55, 80133 Naples, Italy
| | - Vittoria Vecchiato
- Sustainable Biotechnology Research Group, School of Life Sciences, University of Westminster, London W1W6UW, United Kingdom
| | - Carmine Buonocore
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton 55, 80133 Naples, Italy
| | - Pietro Tedesco
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton 55, 80133 Naples, Italy
| | - Brendon Noble
- Sustainable Biotechnology Research Group, School of Life Sciences, University of Westminster, London W1W6UW, United Kingdom
| | - Pooja Basnett
- Sustainable Biotechnology Research Group, School of Life Sciences, University of Westminster, London W1W6UW, United Kingdom
| | - Donatella de Pascale
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton 55, 80133 Naples, Italy.
| |
Collapse
|
23
|
Ene N, Savoiu VG, Spiridon M, Paraschiv CI, Vamanu E. The General Composition of Polyhydroxyalkanoates and Factors that Influence their Production and Biosynthesis. Curr Pharm Des 2023; 29:3089-3102. [PMID: 38099526 DOI: 10.2174/0113816128263175231102061920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/26/2023] [Indexed: 01/05/2024]
Abstract
Polyhydroxyalkanoates (PHAs) have been a current research topic for many years. PHAs are biopolymers produced by bacteria under unfavorable growth conditions. They are biomaterials that exhibit a variety of properties, including biocompatibility, biodegradability, and high mechanical strength, making them suitable for future applications. This review aimed to provide general information on PHAs, such as their structure, classification, and parameters that affect the production process. In addition, the most commonly used bacterial strains that produce PHAs are highlighted, and details are provided on the type of carbon source used and how to optimize the parameters for bioprocesses. PHAs present a challenge to researchers because a variety of parameters affect biosynthesis, including the variety of carbon sources, bacterial strains, and culture media. Nevertheless, PHAs represent an opportunity to replace plastics, because they can be produced quickly and at a relatively low cost. With growing environmental concerns and declining oil reserves, polyhydroxyalkanoates are a potential replacement for nonbiodegradable polymers. Therefore, the study of PHA production remains a hot topic, as many substrates can be used as carbon sources. Both researchers and industry are interested in facilitating the production, commercialization, and application of PHAs as potential replacements for nonbiodegradable polymers. The fact that they are biocompatible, environmentally biodegradable, and adaptable makes PHAs one of the most important materials available in the market. They are preferred in various industries, such as agriculture (for bioremediation of oil-polluted sites, minimizing the toxicity of pollutants, and environmental impact) or medicine (as medical devices). The various bioprocess technologies mentioned earlier will be further investigated, such as the carbon source (to obtain a biopolymer with the lowest possible cost, such as glucose, various fatty acids, and especially renewable sources), pretreatment of the substrate (to increase the availability of the carbon source), and supplementation of the growth environment with different substances and minerals). Consequently, the study of PHA production remains a current topic because many substrates can be used as carbon sources. Obtaining PHA from renewable substrates (waste oil, coffee grounds, plant husks, etc.) contributes significantly to reducing PHA costs. Therefore, in this review, pure bacterial cultures (Bacillus megaterium, Ralstonia eutropha, Cupriavidus necator, and Pseudomonas putida) have been investigated for their potential to utilize by-products as cheap feedstocks. The advantage of these bioprocesses is that a significant amount of PHA can be obtained using renewable carbon sources. The main disadvantage is that the chemical structure of the obtained biopolymer cannot be determined in advance, as is the case with bioprocesses using a conventional carbon source. Polyhydroxyalkanoates are materials that can be used in many fields, such as the medical field (skin grafts, implantable medical devices, scaffolds, drug-controlled release devices), agriculture (for polluted water cleaning), cosmetics and food (biodegradable packaging, gentle biosurfactants with suitable skin for cosmetics), and industry (production of biodegradable biopolymers that replace conventional plastic). Nonetheless, PHA biopolymers continue to be researched and improved and play an important role in various industrial sectors. The properties of this material allow its use as a biodegradable material in the cosmetics industry (for packaging), in the production of biodegradable plastics, or in biomedical engineering, as various prostheses or implantable scaffolds.
Collapse
Affiliation(s)
- Nicoleta Ene
- Department of Industrial Biotechnology, Faculty of Biotechnology, University of Agronomical Sciences and Veterinary Medicine, Bucharest, Romania
- Department of Pharmacology, National Institute for Chemical Pharmaceutical Research and Development- ICCF, Vitan Avenue 112, Bucharest 031299, Romania
| | - Valeria Gabriela Savoiu
- Department of Biotechnology, National Institute For Chemical Pharmaceutical Research and Development, Bucharest 031299, Romania
| | - Maria Spiridon
- Department of Biotechnology, National Institute For Chemical Pharmaceutical Research and Development, Bucharest 031299, Romania
| | - Catalina Ileana Paraschiv
- Department of Chemistry, National Institute for Chemical Pharmaceutical Research and Development, Bucharest 031299, Romania
| | - Emanuel Vamanu
- Department of Industrial Biotechnology, Faculty of Biotechnology, University of Agronomical Sciences and Veterinary Medicine, Bucharest, Romania
| |
Collapse
|
24
|
Emerging Trends of Nanotechnology and Genetic Engineering in Cyanobacteria to Optimize Production for Future Applications. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122013. [PMID: 36556378 PMCID: PMC9781209 DOI: 10.3390/life12122013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/20/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Nanotechnology has the potential to revolutionize various fields of research and development. Multiple nanoparticles employed in a nanotechnology process are the magic elixir that provides unique features that are not present in the component's natural form. In the framework of contemporary research, it is inappropriate to synthesize microparticles employing procedures that include noxious elements. For this reason, scientists are investigating safer ways to produce genetically improved Cyanobacteria, which has many novel features and acts as a potential candidate for nanoparticle synthesis. In recent decades, cyanobacteria have garnered significant interest due to their prospective nanotechnological uses. This review will outline the applications of genetically engineered cyanobacteria in the field of nanotechnology and discuss its challenges and future potential. The evolution of cyanobacterial strains by genetic engineering is subsequently outlined. Furthermore, the recombination approaches that may be used to increase the industrial potential of cyanobacteria are discussed. This review provides an overview of the research undertaken to increase the commercial avenues of cyanobacteria and attempts to explain prospective topics for future research.
Collapse
|
25
|
Co-Culture of Halotolerant Bacteria to Produce Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Using Sewage Wastewater Substrate. Polymers (Basel) 2022; 14:polym14224963. [PMID: 36433088 PMCID: PMC9699070 DOI: 10.3390/polym14224963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022] Open
Abstract
The focus of the current study was the use of sewage wastewater to obtain PHA from a co-culture to produce a sustainable polymer. Two halotolerant bacteria, Bacillus halotolerans 14SM (MZ801771) and Bacillus aryabhattai WK31 (MT453992), were grown in a consortium to produce PHA. Sewage wastewater (SWW) was used to produce PHA, and glucose was used as a reference substrate to compare the growth and PHA production parameters. Both bacterial strains produced PHA in monoculture, but a copolymer was obtained when the co-cultures were used. The co-culture accumulated a maximum of 54% after 24 h of incubation in 10% SWW. The intracellular granules indicated the presence of nucleation sites for granule initiation. The average granule size was recorded to be 231 nm; micrographs also indicated the presence of extracellular polymers and granule-associated proteins. Fourier transform infrared spectroscopy (FTIR) analysis of the polymer produced by the consortium showed a significant peak at 1731 cm-1, representing the C=O group. FTIR also presented peaks in the region of 2800 cm-1 to 2900 cm-1, indicating C-C stretching. Proton nuclear magnetic resonance (1HNMR) of the pure polymer indicated chemical shifts resulting from the proton of hydroxy valerate and hydroxybutyrate, confirming the production of poly(3-hydroxybutyrate-co-3-hydroxy valerate) (P3HBV). A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay showed that the copolymer was biocompatible, even at a high concentration of 5000 µg mL-1. The results of this study show that bacterial strains WK31 and 14SM can be used to synthesize a copolymer of butyrate and valerate using the volatile fatty acids present in the SWW, such as propionic acid or pentanoic acid. P3HBV can also be used to provide an extracellular matrix for cell-line growth without causing any cytotoxic effects.
Collapse
|
26
|
Kumar V, Kashyap P, Kumar S, Thakur V, Kumar S, Singh D. Multiple Adaptive Strategies of Himalayan Iodobacter sp. PCH194 to High-Altitude Stresses. Front Microbiol 2022; 13:881873. [PMID: 35875582 PMCID: PMC9298515 DOI: 10.3389/fmicb.2022.881873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/01/2022] [Indexed: 11/24/2022] Open
Abstract
Bacterial adaption to the multiple stressed environments of high-altitude niches in the Himalayas is intriguing and is of considerable interest to biotechnologists. Previously, we studied the culturable and unculturable metagenome microbial diversity from glacial and kettle lakes in the Western Himalayas. In this study, we explored the adaptive strategies of a unique Himalayan eurypsychrophile Iodobacter sp. PCH194, which can synthesize polyhydroxybutyrate (PHB) and violacein pigment. Whole-genome sequencing and analysis of Iodobacter sp. PCH194 (4.58 Mb chromosome and three plasmids) revealed genetic traits associated with adaptive strategies for cold/freeze, nutritional fluctuation, defense against UV, acidic pH, and the kettle lake's competitive environment. Differential proteome analysis suggested the adaptive role of chaperones, ribonucleases, secretion systems, and antifreeze proteins under cold stress. Antifreeze activity inhibiting the ice recrystallization at −9°C demonstrated the bacterium's survival at subzero temperature. The bacterium stores carbon in the form of PHB under stress conditions responding to nutritional fluctuations. However, violacein pigment protects the cells from UV radiation. Concisely, genomic, proteomic, and physiological studies revealed the multiple adaptive strategies of Himalayan Iodobacter to survive the high-altitude stresses.
Collapse
Affiliation(s)
- Vijay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Prakriti Kashyap
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Subhash Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC), Ghaziabad, India
| | - Vikas Thakur
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC), Ghaziabad, India
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Dharam Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC), Ghaziabad, India
| |
Collapse
|
27
|
Research status and development of microbial induced calcium carbonate mineralization technology. PLoS One 2022; 17:e0271761. [PMID: 35867666 PMCID: PMC9334024 DOI: 10.1371/journal.pone.0271761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/06/2022] [Indexed: 11/19/2022] Open
Abstract
In nature, biomineralization is a common phenomenon, which can be further divided into authigenic and artificially induced mineralization. In recent years, artificially induced mineralization technology has been gradually extended to major engineering fields. Therefore, by elaborating the reaction mechanism and bacteria of mineralization process, and summarized various molecular dynamics equations involved in the mineralization process, including microbial and nutrient transport equations, microbial adsorption equations, growth equations, urea hydrolysis equations, and precipitation equations. Because of the environmental adaptation stage of microorganisms in sandy soil, their reaction rate in sandy soil environment is slower than that in solution environment, the influencing factors are more different, in general, including substrate concentration, temperature, pH, particle size and grouting method. Based on the characteristics of microbial mineralization such as strong cementation ability, fast, efficient, and easy to control, there are good prospects for application in sandy soil curing, building improvement, heavy metal fixation, oil reservoir dissection, and CO2 capture. Finally, it is discussed and summarized the problems and future development directions on the road of commercialization of microbial induced calcium carbonate precipitation technology from laboratory to field application.
Collapse
|
28
|
Bhat MA, Rather RA, Yaseen Z, Shalla AH. Viscoelastic and smart swelling disposition of Carboxymethylcellulose based hydrogels substantiated by Gemini surfactant and in-vitro encapsulation and controlled release of Quercetin. Int J Biol Macromol 2022; 207:374-386. [PMID: 35257735 DOI: 10.1016/j.ijbiomac.2022.02.162] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/28/2021] [Accepted: 02/25/2022] [Indexed: 02/07/2023]
Abstract
CMC-SA-12-E2-12 hydrogels were prepared from Carboxymethylcellulose (CMC), succinic acid (SA) (biocompatible cross-linker) and Ethane-1,2-diyl-bis(N, N-dimethyl-N-dodecylammoniumacetoxy) (referred as 12-E2-12) (0.0006, 0.0015, 0.003, 0.0045 mMoles) by thermal treatment with economical and easy solution polymerization strategy. The CMC-SA-12E2-12 hydrogels were characterized for mechanical and viscoelastic properties like self-healing, viscosity and modulus using rheological analysis. Further the structural, morphological and thermal properties were investigated by FTIR, SEM and TGA analysis. The investigation revealed significant modulation in mechanical, viscoelastic, self-healing and drug release behavior with the addition of 12-E2-12. The CMC-SA-12-E2-12 hydrogels were investigated for drug release studies in PBS 7.4 for 48 h using Quercetin dihydrate. The results showed sustained release behavior at optimised concentration values of surfactant. Release data fitted nicely to the Higuchi model and hence the release could be seen to be diffusion controlled phenomenon or Fickian diffusion. The biocompatibility of cross-linker and surfactant may potentially make the hydrogels suitable for drug delivery applications.
Collapse
Affiliation(s)
- Mushtaq A Bhat
- Soft Material Laboratory, Department of Chemistry, Islamic University of Science and Technology Awantipora, Pulwama, Jammu and Kashmir 192122,India
| | - Reyaz A Rather
- Soft Material Laboratory, Department of Chemistry, Islamic University of Science and Technology Awantipora, Pulwama, Jammu and Kashmir 192122,India
| | - Zahid Yaseen
- Govt. College for Women MA Road Srinagar, Jammu and Kashmir 190001, India
| | - Aabid H Shalla
- Soft Material Laboratory, Department of Chemistry, Islamic University of Science and Technology Awantipora, Pulwama, Jammu and Kashmir 192122,India.
| |
Collapse
|
29
|
Zhang P, Qiu Y, Wang Y, Xiao L, Yu S, Shi M, Ni Y, Miron RJ, Pu Y, Zhang Y. Nanoparticles Promote Bacterial Antibiotic Tolerance via Inducing Hyperosmotic Stress Response. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105525. [PMID: 35398987 DOI: 10.1002/smll.202105525] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/18/2022] [Indexed: 06/14/2023]
Abstract
With the rapid development of nanotechnology, nanoparticles (NPs) are widely used in all fields of life. Nowadays, NPs have shown extraordinary antimicrobial activities and become one of the most popular strategies to combat antibiotic resistance. Whether they are equally effective in combating bacterial persistence, another important reason leading to antibiotic treatment failure, remains unknown. Persister cells are a small subgroup of phenotypic drug-tolerant cells in an isogenic bacterial population. Here, various types of NPs are used in combination with different antibiotics to destroy persisters. Strikingly, rather than eradicating persister cells, a wide range of NPs promote the formation of bacterial persistence. It is uncovered by PCR, thermogravimetric analysis, intracellular potassium ion staining, and molecular dynamics simulation that the persister promotion effect is achieved through exerting a hyperosmotic pressure around the cells. Moreover, protein mass spectrometry, fluorescence microscope images, and SDS-PAGE indicate NPs can further hijack cell osmotic regulatory circuits by inducing aggregation of outer membrane protein OmpA and OmpC. These findings question the efficacy of using NPs as antimicrobial agents and raise the possibility that widely used NPs may facilitate the global emergence of bacterial antibiotic tolerance.
Collapse
Affiliation(s)
- Peng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yun Qiu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yulan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Leyi Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Shimin Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Miusi Shi
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yueqi Ni
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Richard J Miron
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yingying Pu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
| | - Yufeng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
30
|
The role of polyhydroxyalkanoates in adaptation of Cupriavidus necator to osmotic pressure and high concentration of copper ions. Int J Biol Macromol 2022; 206:977-989. [PMID: 35314264 DOI: 10.1016/j.ijbiomac.2022.03.102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/24/2022] [Accepted: 03/16/2022] [Indexed: 01/14/2023]
Abstract
Polyhydroxyalkanoates (PHA) are abundant microbial polyesters accumulated in the form of intracellular granules by numerous prokaryotes primarily as storage of carbon and energy. Apart from their storage function, the presence of PHA also enhances the robustness of the microbial cells against various stressors. In this work, we investigated the role of PHA in Cupriavidus necator, a model organism concerning PHA metabolism, for adaptation to osmotic pressure and copper ions. In long-term laboratory evolution experiments, the bacterial culture was cultivated in presence of elevated doses of sodium chloride or copper ions (incubations lasted 78 passages for Cu2+ and 68 passages for NaCl) and the evolved strains were compared with the wild-type strain in terms of growth and PHA production capacity, cell morphology (investigated by various electron microscopy techniques), activities of selected enzymes involved in PHA metabolism and other crucial metabolic pathways, the chemical composition of bacterial biomass (determined by infrared and Raman spectroscopy) and also considering robustness against various stressors. The results confirmed the important role of PHA metabolism for adaptation to both tested stressors.
Collapse
|
31
|
Carbon nanogels exert multipronged attack on resistant bacteria and strongly constrain resistance evolution. J Colloid Interface Sci 2022; 608:1813-1826. [PMID: 34742090 DOI: 10.1016/j.jcis.2021.10.107] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/19/2022]
Abstract
Developing antimicrobial agents that can eradicate drug-resistant (DR) bacteria and provide sustained protection from DR bacteria is a major challenge. Herein, we report a mild pyrolysis approach to prepare carbon nanogels (CNGs) through polymerization and the partial carbonization of l-lysine hydrochloride at 270 °C as a potential broad-spectrum antimicrobial agent that can inhibit biopolymer-producing bacteria and clinical drug-resistant isolates and tackle drug resistance issues. We thoroughly studied the structures of the CNGs, their antibacterial mechanism, and biocompatibility. CNGs possess superior bacteriostatic effects against drug-resistant bacteria compared to some commonly explored antibacterial nanomaterials (silver, copper oxide, and zinc oxide nanoparticles, and graphene oxide) through multiple antimicrobial mechanisms, including reactive oxygen species generation, membrane potential dissipation, and membrane function disruption, due to the positive charge and flexible colloidal structures resulting strong interaction with bacterial membrane. The minimum inhibitory concentration (MIC) values of the CNGs (0.6 µg mL-1 against E. coli and S. aureus) remained almost the same against the bacteria after 20 passages; however, the MIC values increased significantly after treatment with silver nanoparticles, antibiotics, the bacteriostatic chlorhexidine, and especially gentamicin (approximately 140-fold). Additionally, the CNGs showed a negligible MIC value difference against the obtained resistant bacteria after acclimation to the abovementioned antimicrobial agents. The findings of this study unveil the development of antimicrobial CNGs as a sustainable solution to combat multidrug-resistant bacteria.
Collapse
|
32
|
Wang Z, Zheng Y, Ji M, Zhang X, Wang H, Chen Y, Wu Q, Chen GQ. Hyperproduction of PHA copolymers containing high fractions of 4-hydroxybutyrate (4HB) by outer membrane-defected Halomonas bluephagenesis grown in bioreactors. Microb Biotechnol 2022; 15:1586-1597. [PMID: 34978757 PMCID: PMC9049619 DOI: 10.1111/1751-7915.13999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 01/07/2023] Open
Abstract
Bacterial outer membrane (OM) is a self‐protective and permeable barrier, while having many non‐negligible negative effects in industrial biotechnology. Our previous studies revealed enhanced properties of Halomonas bluephagenesis based on positive cellular properties by OM defects. This study further expands the OM defect on membrane compactness by completely deleting two secondary acyltransferases for lipid A modification in H. bluephagenesis, LpxL and LpxM, and found more significant advantages than that of the previous lpxL mutant. Deletions on LpxL and LpxM accelerated poly(3‐hydroxybutyrate) (PHB) production by H. bluephagenesis WZY229, leading to a 37% increase in PHB accumulation and 84‐folds reduced endotoxin production. Enhanced membrane permeability accelerates the diffusion of γ‐butyrolactone, allowing H. bluephagenesis WZY254 derived from H. bluephagenesis WZY229 to produce 82wt% poly(3‐hydroxybutyrate‐co‐23mol%4‐hydroxybutyrate) (P(3HB‐co‐23mol%4HB)) in shake flasks, showing increases of 102% and 307% in P(3HB‐co‐4HB) production and 4HB accumulation, respectively. The 4HB molar fraction in copolymer can be elevated to 32 mol% in the presence of more γ‐butyrolactone. In a 7‐l bioreactor fed‐batch fermentation, H. bluephagenesis WZY254 supported a 84 g l−1 dry cell mass with 81wt% P(3HB‐co‐26mol%4HB), increasing 136% in 4HB molar fraction. This study further demonstrated that OM defects generate a hyperproduction strain for high 4HB containing copolymers.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yifei Zheng
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Mengke Ji
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xu Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Huan Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuemeng Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qiong Wu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.,Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China.,MOE Key Lab of Industrial Biocatalysis, Dept Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
33
|
Haloarchaea as emerging big players in future polyhydroxyalkanoate bioproduction: Review of trends and perspectives. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
34
|
Aswathi Mohan A, Robert Antony A, Greeshma K, Yun JH, Ramanan R, Kim HS. Algal biopolymers as sustainable resources for a net-zero carbon bioeconomy. BIORESOURCE TECHNOLOGY 2022; 344:126397. [PMID: 34822992 DOI: 10.1016/j.biortech.2021.126397] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
The era for eco-friendly polymers was ushered by the marine plastic menace and with the discovery of emerging pollutants such as micro-, nano-plastics, and plastic leachates from fossil fuel-based polymers. This review investigates algae-derived natural, carbon neutral polysaccharides and polyesters, their structure, biosynthetic mechanisms, biopolymers and biocomposites production process, followed by biodegradability of the polymers. The review proposes acceleration of research in this promising area to address the need for eco-friendly polymers and to increase the cost-effectiveness of algal biorefineries by coupling biofuel, high-value products, and biopolymer production using waste and wastewater-grown algal biomass. Such a strategy improves overall sustainability by lowering costs and carbon emissions in algal biorefineries, eventually contributing towards the much touted circular, net-zero carbon future economies. Finally, this review analyses the evolution of citation networks, which in turn highlight the emergence of a new frontier of sustainable polymers from algae.
Collapse
Affiliation(s)
- A Aswathi Mohan
- Sustainable Resources Laboratory, Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, Kerala 671316, India
| | - Aiswarya Robert Antony
- Sustainable Resources Laboratory, Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, Kerala 671316, India
| | - Kozhumal Greeshma
- Sustainable Resources Laboratory, Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, Kerala 671316, India
| | - Jin-Ho Yun
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Rishiram Ramanan
- Sustainable Resources Laboratory, Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, Kerala 671316, India; Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hee-Sik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.
| |
Collapse
|
35
|
Obruča S, Dvořák P, Sedláček P, Koller M, Sedlář K, Pernicová I, Šafránek D. Polyhydroxyalkanoates synthesis by halophiles and thermophiles: towards sustainable production of microbial bioplastics. Biotechnol Adv 2022; 58:107906. [DOI: 10.1016/j.biotechadv.2022.107906] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/15/2021] [Accepted: 01/07/2022] [Indexed: 01/10/2023]
|
36
|
Chang YC, Reddy MV, Imura K, Onodera R, Kamada N, Sano Y. Two-Stage Polyhydroxyalkanoates (PHA) Production from Cheese Whey Using Acetobacter pasteurianus C1 and Bacillus sp. CYR1. Bioengineering (Basel) 2021; 8:bioengineering8110157. [PMID: 34821723 PMCID: PMC8614810 DOI: 10.3390/bioengineering8110157] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 12/04/2022] Open
Abstract
Cheese whey (CW) can be an excellent carbon source for polyhydroxyalkanoates (PHA)-producing bacteria. Most studies have used CW, which contains high amounts of lactose, however, there are no reports using raw CW, which has a relatively low amount of lactose. Therefore, in the present study, PHA production was evaluated in a two-stage process using the CW that contains low amounts of lactose. In first stage, the carbon source existing in CW was converted into acetic acid using the bacteria, Acetobacter pasteurianus C1, which was isolated from food waste. In the second stage, acetic acid produced in the first stage was converted into PHA using the bacteria, Bacillus sp. CYR-1. Under the condition of without the pretreatment of CW, acetic acid produced from CW was diluted at different folds and used for the production of PHA. Strain CYR-1 incubated with 10-fold diluted CW containing 5.7 g/L of acetic acid showed the higher PHA production (240.6 mg/L), whereas strain CYR-1 incubated with four-fold diluted CW containing 12.3 g/L of acetic acid showed 126 mg/L of PHA. After removing the excess protein present in CW, PHA production was further enhanced by 3.26 times (411 mg/L) at a four-fold dilution containing 11.3 g/L of acetic acid. Based on Fourier transform infrared spectroscopy (FT-IR), and 1H and 13C nuclear magnetic resonance (NMR) analyses, it was confirmed that the PHA produced from the two-stage process is poly-β-hydroxybutyrate (PHB). All bands appearing in the FT-IR spectrum and the chemical shifts of NMR nearly matched with those of standard PHB. Based on these studies, we concluded that a two-stage process using Acetobacter pasteurianus C1 and Bacillus sp. CYR-1 would be applicable for the production of PHB using CW containing a low amount of lactose.
Collapse
Affiliation(s)
- Young-Cheol Chang
- Course of Chemical and Biological Engineering, Division of Sustainable and Environmental Engineering, Muroran Institute of Technology, Hokkaido 050-8585, Japan; (K.I.); (R.O.); (Y.S.)
- Course of Biosystem, Department of Applied Sciences, Muroran Institute of Technology, Hokkaido 050-8585, Japan;
- Correspondence: ; Tel.: +81-143-46-5757
| | - Motakatla Venkateswar Reddy
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; or
| | - Kazuma Imura
- Course of Chemical and Biological Engineering, Division of Sustainable and Environmental Engineering, Muroran Institute of Technology, Hokkaido 050-8585, Japan; (K.I.); (R.O.); (Y.S.)
| | - Rui Onodera
- Course of Chemical and Biological Engineering, Division of Sustainable and Environmental Engineering, Muroran Institute of Technology, Hokkaido 050-8585, Japan; (K.I.); (R.O.); (Y.S.)
| | - Natsumi Kamada
- Course of Biosystem, Department of Applied Sciences, Muroran Institute of Technology, Hokkaido 050-8585, Japan;
| | - Yuki Sano
- Course of Chemical and Biological Engineering, Division of Sustainable and Environmental Engineering, Muroran Institute of Technology, Hokkaido 050-8585, Japan; (K.I.); (R.O.); (Y.S.)
| |
Collapse
|
37
|
Biotechnological Conversion of Grape Pomace to Poly(3-hydroxybutyrate) by Moderately Thermophilic Bacterium Tepidimonas taiwanensis. Bioengineering (Basel) 2021; 8:bioengineering8100141. [PMID: 34677214 PMCID: PMC8533406 DOI: 10.3390/bioengineering8100141] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
Polyhydroxyalkanoates (PHA) are microbial polyesters that have recently come to the forefront of interest due to their biodegradability and production from renewable sources. A potential increase in competitiveness of PHA production process comes with a combination of the use of thermophilic bacteria with the mutual use of waste substrates. In this work, the thermophilic bacterium Tepidimonas taiwanensis LMG 22826 was identified as a promising PHA producer. The ability to produce PHA in T. taiwanensis was studied both on genotype and phenotype levels. The gene encoding the Class I PHA synthase, a crucial enzyme in PHA synthesis, was detected both by genome database search and by PCR. The microbial culture of T. taiwanensis was capable of efficient utilization of glucose and fructose. When cultivated on glucose as the only carbon source at 50 °C, the PHA titers reached up to 3.55 g/L, and PHA content in cell dry mass was 65%. The preference of fructose and glucose opens the possibility to employ T. taiwanensis for PHA production on various food wastes rich in these abundant sugars. In this work, PHA production on grape pomace extracts was successfully tested.
Collapse
|
38
|
Tran TT, Charles TC. Sequence polarity between the promoter and the adjacent gene modulates promoter activity. Plasmid 2021; 117:102598. [PMID: 34499918 DOI: 10.1016/j.plasmid.2021.102598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 11/26/2022]
Abstract
Promoter engineering has been employed as a strategy to enhance and optimize the production of bio-products. Availability of promoters with predictable activities is needed for downstream application. However, whether promoter activity remains the same in different gene contexts remains unknown. Six consecutive promoters that have previously been determined to have different activity levels were used to construct six different versions of plasmid backbone pTH1227, followed by inserted genes encoding two polymer-producing enzymes. In some cases, promoter activity in the presence of inserted genes did not correspond to the reported activity levels in a previous study. After removing the inserted genes, the activity of these promoters returned to their previously reported level. These changes were further confirmed to occur at the transcriptional level. Polymer production using our newly constructed plasmids showed polymer accumulation levels corresponding to the promoter activity reported in our study. Our study demonstrated the importance of re-assessing promoter activity levels with regard to gene context, which could influence promoter activity, leading to different outcomes in downstream applications.
Collapse
Affiliation(s)
- Tam T Tran
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.
| | - Trevor C Charles
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
39
|
Argiz L, Gonzalez-Cabaleiro R, Correa-Galeote D, Val del Rio A, Mosquera-Corral A. Open-culture biotechnological process for triacylglycerides and polyhydroxyalkanoates recovery from industrial waste fish oil under saline conditions. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
40
|
Wang Z, Qin Q, Zheng Y, Li F, Zhao Y, Chen GQ. Engineering the permeability of Halomonas bluephagenesis enhanced its chassis properties. Metab Eng 2021; 67:53-66. [PMID: 34098101 DOI: 10.1016/j.ymben.2021.05.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 12/24/2022]
Abstract
Bacterial outer membrane (OM), an asymmetric lipid bilayer functioning as a self-protective barrier with reduced permeability for Gram-negative bacteria, yet wasting nutrients and energy to synthesize, has not been studied for its effect on bioproduction. Here we construct several OM-defected halophile Halomonas bluephagenesis strains to investigate the effects of OM on bioproduction. We achieve enhanced chassis properties of H. bluephagenesis based on positive cellular properties among several OM-defected strains. The OM-defected H. bluephagenesis WZY09 demonstrates better adaptation to lower salinity, increasing 28%, 30% and 12% on dry cell mass (DCM), poly(3-hydroxybutyrate) (PHB) accumulation and glucose to PHB conversion rate, respectively, including enlarged cell sizes and 21-folds reduced endotoxin. Interestingly, a poly(3-hydroxybutyrate-co-21mol%4-hydroxybutyrate) (P(3HB-co-21mol%4HB)) is produced by H. bluephagenesis WZY09 derivate WZY249, increasing 60% and 260% on polyhydroxyalkanoate (PHA) production and 4HB content, respectively. Furthermore, increased electroporation efficiency, more sensitive isopropyl β-D-1-thio-galactopyranoside (IPTG) induction, better oxygen uptake, enhanced antibiotics sensitivity and ectoine secretion due to better membrane permeability are observed if OM defected, demonstrating significant OM defection impacts for further metabolic engineering, synthetic biology studies and industrial applications.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qin Qin
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yifei Zheng
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Fajin Li
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yiqing Zhao
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China; MOE Key Lab of Industrial Biocatalysis, Dept Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
41
|
Müller-Santos M, Koskimäki JJ, Alves LPS, de Souza EM, Jendrossek D, Pirttilä AM. The protective role of PHB and its degradation products against stress situations in bacteria. FEMS Microbiol Rev 2021; 45:fuaa058. [PMID: 33118006 DOI: 10.1093/femsre/fuaa058] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022] Open
Abstract
Many bacteria produce storage biopolymers that are mobilized under conditions of metabolic adaptation, for example, low nutrient availability and cellular stress. Polyhydroxyalkanoates are often found as carbon storage in Bacteria or Archaea, and of these polyhydroxybutyrate (PHB) is the most frequently occurring PHA type. Bacteria usually produce PHB upon availability of a carbon source and limitation of another essential nutrient. Therefore, it is widely believed that the function of PHB is to serve as a mobilizable carbon repository when bacteria face carbon limitation, supporting their survival. However, recent findings indicate that bacteria switch from PHB synthesis to mobilization under stress conditions such as thermal and oxidative shock. The mobilization products, 3-hydroxybutyrate and its oligomers, show a protective effect against protein aggregation and cellular damage caused by reactive oxygen species and heat shock. Thus, bacteria should have an environmental monitoring mechanism directly connected to the regulation of the PHB metabolism. Here, we review the current knowledge on PHB physiology together with a summary of recent findings on novel functions of PHB in stress resistance. Potential applications of these new functions are also presented.
Collapse
Affiliation(s)
- Marcelo Müller-Santos
- Department of Biochemistry and Molecular Biology, Federal University of Paraná - UFPR, Setor de Ciências Biológicas, Centro Politécnico, Jardim da Américas, CEP: 81531-990, Caixa Postal: 190-46, Curitiba, Paraná, Brazil
| | - Janne J Koskimäki
- Ecology and Genetics Research Unit, University of Oulu, Pentti Kaiteran katu 1, P.O. Box 3000, FI-90014 Oulu, Finland
| | - Luis Paulo Silveira Alves
- Department of Biochemistry and Molecular Biology, Federal University of Paraná - UFPR, Setor de Ciências Biológicas, Centro Politécnico, Jardim da Américas, CEP: 81531-990, Caixa Postal: 190-46, Curitiba, Paraná, Brazil
| | - Emanuel Maltempi de Souza
- Department of Biochemistry and Molecular Biology, Federal University of Paraná - UFPR, Setor de Ciências Biológicas, Centro Politécnico, Jardim da Américas, CEP: 81531-990, Caixa Postal: 190-46, Curitiba, Paraná, Brazil
| | - Dieter Jendrossek
- Institute of Microbiology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Anna Maria Pirttilä
- Ecology and Genetics Research Unit, University of Oulu, Pentti Kaiteran katu 1, P.O. Box 3000, FI-90014 Oulu, Finland
| |
Collapse
|
42
|
Tugarova AV, Dyatlova YA, Kenzhegulov OA, Kamnev AA. Poly-3-hydroxybutyrate synthesis by different Azospirillum brasilense strains under varying nitrogen deficiency: A comparative in-situ FTIR spectroscopic analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119458. [PMID: 33601223 DOI: 10.1016/j.saa.2021.119458] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/23/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Monitoring of poly-3-hydroxybutyrate accumulation and changes in its relative contents in biomass of the plant-growth-promoting bacteria Azospirillum brasilense (strains Sp7, Cd and Sp245) was performed during aerobic cultivation for 1 to 8 days at various initial concentrations of bound nitrogen (0.1 to 0.5 g∙L-1 NH4Cl) in the culture medium using in-situ transmission FTIR spectroscopy. A methodology has been proposed based on calculating band areas in FTIR spectra (instead of band intensities commonly used earlier) for determining relative contents of PHB in dry bacterial biomass, using the ester ν(C=O) band as a PHB marker (in the region 1750-1720 cm-1) and amide II band of cellular proteins (at ca. 1540 cm-1). Differences in PHB accumulation levels and their changes in the course of cultivation under various trophic stress for the three strains are discussed in relation to their different ecological niches which they occupy in the rhizosphere.
Collapse
Affiliation(s)
- Anna V Tugarova
- Laboratory of Biochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prosp. Entuziastov, 410049 Saratov, Russia
| | - Yulia A Dyatlova
- Laboratory of Biochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prosp. Entuziastov, 410049 Saratov, Russia
| | - Odissey A Kenzhegulov
- Laboratory of Biochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prosp. Entuziastov, 410049 Saratov, Russia
| | - Alexander A Kamnev
- Laboratory of Biochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prosp. Entuziastov, 410049 Saratov, Russia.
| |
Collapse
|
43
|
Kouřilová X, Schwarzerová J, Pernicová I, Sedlář K, Mrázová K, Krzyžánek V, Nebesářová J, Obruča S. The First Insight into Polyhydroxyalkanoates Accumulation in Multi-Extremophilic Rubrobacter xylanophilus and Rubrobacter spartanus. Microorganisms 2021; 9:909. [PMID: 33923216 PMCID: PMC8146576 DOI: 10.3390/microorganisms9050909] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/27/2022] Open
Abstract
Actinobacteria belonging to the genus Rubrobacter are known for their multi-extremophilic growth conditions-they are highly radiation-resistant, halotolerant, thermotolerant or even thermophilic. This work demonstrates that the members of the genus are capable of accumulating polyhydroxyalkanoates (PHA) since PHA-related genes are widely distributed among Rubrobacter spp. whose complete genome sequences are available in public databases. Interestingly, all Rubrobacter strains possess both class I and class III synthases (PhaC). We have experimentally investigated the PHA accumulation in two thermophilic species, R. xylanophilus and R. spartanus. The PHA content in both strains reached up to 50% of the cell dry mass, both bacteria were able to accumulate PHA consisting of 3-hydroxybutyrate and 3-hydroxyvalerate monomeric units, none other monomers were incorporated into the polymer chain. The capability of PHA accumulation likely contributes to the multi-extremophilic characteristics since it is known that PHA substantially enhances the stress robustness of bacteria. Hence, PHA can be considered as extremolytes enabling adaptation to extreme conditions. Furthermore, due to the high PHA content in biomass, a wide range of utilizable substrates, Gram-stain positivity, and thermophilic features, the Rubrobacter species, in particular Rubrobacter xylanophilus, could be also interesting candidates for industrial production of PHA within the concept of Next-Generation Industrial Biotechnology.
Collapse
Affiliation(s)
- Xenie Kouřilová
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (X.K.); (I.P.)
| | - Jana Schwarzerová
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 12, 616 00 Brno, Czech Republic; (J.S.); (K.S.)
| | - Iva Pernicová
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (X.K.); (I.P.)
| | - Karel Sedlář
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 12, 616 00 Brno, Czech Republic; (J.S.); (K.S.)
| | - Kateřina Mrázová
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Kralovopolska 147, 612 64 Brno, Czech Republic; (K.M.); (V.K.)
| | - Vladislav Krzyžánek
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Kralovopolska 147, 612 64 Brno, Czech Republic; (K.M.); (V.K.)
| | - Jana Nebesářová
- Biology Centre, The Czech Academy of Sciences, v.v.i., Branisovska 31, 370 05 Ceske Budejovice, Czech Republic;
- Faculty of Science, Charles University, Vinicna 7, 128 44 Prague 2, Czech Republic
| | - Stanislav Obruča
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (X.K.); (I.P.)
| |
Collapse
|
44
|
Obruca S, Sedlacek P, Koller M. The underexplored role of diverse stress factors in microbial biopolymer synthesis. BIORESOURCE TECHNOLOGY 2021; 326:124767. [PMID: 33540213 DOI: 10.1016/j.biortech.2021.124767] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Polyhydroxyalkanoates (PHA) are microbial polyesters which, apart from their primary storage role, enhance the stress robustness of PHA accumulating cells against various stressors. PHA also represent interesting alternatives to petrochemical polymers, which can be produced from renewable resources employing approaches of microbial biotechnology. During biotechnological processes, bacterial cells are exposed to various stressor factors such as fluctuations in temperature, osmolarity, pH-value, elevated pressure or the presence of microbial inhibitors. This review summarizes how PHA helps microbial cells to cope with biotechnological process-relevant stressors and, vice versa, how various stress conditions can affect PHA production processes. The review suggests a fundamentally new strategy for PHA production: the fine-tuned exposure to selected stressors, which might be used to boost PHA production and even to tailor their structure.
Collapse
Affiliation(s)
- Stanislav Obruca
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic.
| | - Petr Sedlacek
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Martin Koller
- Institute of Chemistry, NAWI Graz, University of Graz, Heinrichstrasse 28/VI, 8010 Graz, Austria; ARENA Arbeitsgemeinschaft für Ressourcenschonende & Nachhaltige Technologien, Inffeldgasse 21b, 11 8010 Graz, Austria
| |
Collapse
|
45
|
Lascu I, Mereuță I, Chiciudean I, Hansen H, Avramescu SM, Tănase A, Stoica I. Complete genome sequence of Photobacterium ganghwense C2.2: A new polyhydroxyalkanoate production candidate. Microbiologyopen 2021; 10:e1182. [PMID: 33970538 PMCID: PMC8087987 DOI: 10.1002/mbo3.1182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/30/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) are biodegradable bioplastics that can be manufactured sustainably and represent a promising green alternative to petrochemical-based plastics. Here, we describe the complete genome of a new marine PHA-producing bacterium-Photobacterium ganghwense (strain C2.2), which we have isolated from the Black Sea seashore. This new isolate is psychrotolerant and accumulates PHA when glycerol is provided as the main carbon source. Transmission electron microscopy, specific staining with Nile Red visualized via epifluorescence microscopy and gas chromatography analysis confirmed the accumulation of PHA. This is the only PHA-producing Photobacterium for which we now have a complete genome sequence, allowing us to investigate the pathways for PHA production and other secondary metabolite synthesis pathways. The de novo assembly genome, obtained using open-source tools, comprises two chromosomes (3.5, 2 Mbp) and a megaplasmid (202 kbp). We identify the entire PHA synthesis gene cluster that encodes a class I PHA synthase, a phasin, a 3-ketothiolase, and an acetoacetyl-CoA reductase. No conventional PHA depolymerase was identified in strain C2.2, but a putative lipase with extracellular amorphous PHA depolymerase activity was annotated, suggesting that C2.2 is unable to degrade intracellular PHA. A complete pathway for the conversion of glycerol to acetyl-CoA was annotated, in accordance with its ability to convert glycerol to PHA. Several secondary metabolite biosynthetic gene clusters and a low number of genes involved in antibiotic resistance and virulence were also identified, indicating the strain's suitability for biotechnological applications.
Collapse
Affiliation(s)
- Irina Lascu
- Department of GeneticsFaculty of BiologyUniversity of BucharestBucharestRomania
| | - Ioana Mereuță
- Department of GeneticsFaculty of BiologyUniversity of BucharestBucharestRomania
| | - Iulia Chiciudean
- Department of GeneticsFaculty of BiologyUniversity of BucharestBucharestRomania
| | - Hilde Hansen
- Department of ChemistryFaculty of Science and TechnologyUiT The Arctic University of NorwayTromsøNorway
| | - Sorin Marius Avramescu
- Department of Organic Chemistry, Biochemistry and CatalysisFaculty of ChemistryUniversity of BucharestBucharestRomania
| | - Ana‐Maria Tănase
- Department of GeneticsFaculty of BiologyUniversity of BucharestBucharestRomania
| | - Ileana Stoica
- Department of GeneticsFaculty of BiologyUniversity of BucharestBucharestRomania
| |
Collapse
|
46
|
Silva JB, Pereira JR, Marreiros BC, Reis MA, Freitas F. Microbial production of medium-chain length polyhydroxyalkanoates. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.01.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
Kamnev AA, Dyatlova YA, Kenzhegulov OA, Vladimirova AA, Mamchenkova PV, Tugarova AV. Fourier Transform Infrared (FTIR) Spectroscopic Analyses of Microbiological Samples and Biogenic Selenium Nanoparticles of Microbial Origin: Sample Preparation Effects. Molecules 2021; 26:1146. [PMID: 33669948 PMCID: PMC7924863 DOI: 10.3390/molecules26041146] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/14/2021] [Accepted: 02/18/2021] [Indexed: 12/17/2022] Open
Abstract
To demonstrate the importance of sample preparation used in Fourier transform infrared (FTIR) spectroscopy of microbiological materials, bacterial biomass samples with and without grinding and after different drying periods (1.5-23 h at 45 °C), as well as biogenic selenium nanoparticles (SeNPs; without washing and after one to three washing steps) were comparatively studied by transmission FTIR spectroscopy. For preparing bacterial biomass samples, Azospirillum brasilense Sp7 and A. baldaniorum Sp245 (earlier known as A. brasilense Sp245) were used. The SeNPs were obtained using A. brasilense Sp7 incubated with selenite. Grinding of the biomass samples was shown to result in slight downshifting of the bands related to cellular poly-3-hydroxybutyrate (PHB) present in the samples in small amounts (under ~10%), reflecting its partial crystallisation. Drying for 23 h was shown to give more reproducible FTIR spectra of bacterial samples. SeNPs were shown to contain capping layers of proteins, polysaccharides and lipids. The as-prepared SeNPs contained significant amounts of carboxylated components in their bioorganic capping, which appeared to be weakly bound and were largely removed after washing. Spectroscopic characteristics and changes induced by various sample preparation steps are discussed with regard to optimising sample treatment procedures for FTIR spectroscopic analyses of microbiological specimens.
Collapse
Affiliation(s)
- Alexander A. Kamnev
- Laboratory of Biochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 410049 Saratov, Russia; (Y.A.D.); (O.A.K.); (A.A.V.); (P.V.M.); (A.V.T.)
| | | | | | | | | | | |
Collapse
|
48
|
Amadu AA, Qiu S, Ge S, Addico GND, Ameka GK, Yu Z, Xia W, Abbew AW, Shao D, Champagne P, Wang S. A review of biopolymer (Poly-β-hydroxybutyrate) synthesis in microbes cultivated on wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143729. [PMID: 33310224 DOI: 10.1016/j.scitotenv.2020.143729] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
The large quantities of non-degradable single use plastics, production and disposal, in addition to increasing amounts of municipal and industrial wastewaters are among the major global issues known today. Biodegradable plastics from biopolymers such as Poly-β-hydroxybutyrates (PHB) produced by microorganisms are potential substitutes for non-degradable petroleum-based plastics. This paper reviews the current status of wastewater-cultivated microbes utilized in PHB production, including the various types of wastewaters suitable for either pure or mixed culture PHB production. PHB-producing strains that have the potential for commercialization are also highlighted with proposed selection criteria for choosing the appropriate PHB microbe for optimization of processes. The biosynthetic pathways involved in producing microbial PHB are also discussed to highlight the advancements in genetic engineering techniques. Additionally, the paper outlines the factors influencing PHB production while exploring other metabolic pathways and metabolites simultaneously produced along with PHB in a bio-refinery context. Furthermore, the paper explores the effects of extraction methods on PHB yield and quality to ultimately facilitate the commercial production of biodegradable plastics. This review uniquely discusses the developments in research on microbial biopolymers, specifically PHB and also gives an overview of current commercial PHB companies making strides in cutting down plastic pollution and greenhouse gases.
Collapse
Affiliation(s)
- Ayesha Algade Amadu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China.
| | - Gloria Naa Dzama Addico
- Council for Scientific and Industrial Research (CSIR) - Water Research Institute (WRI), P.O. Box AH 38, Achimota Greater Accra, Ghana
| | - Gabriel Komla Ameka
- Department of Botany, University of Ghana, P.O. Box LG55, Legon, Accra, Ghana
| | - Ziwei Yu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Wenhao Xia
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Abdul-Wahab Abbew
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Dadong Shao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Pascale Champagne
- Department of Civil Engineering, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Sufeng Wang
- School of Economics and Management, Anhui Jianzhu University, Hefei, Anhui 230601, PR China
| |
Collapse
|
49
|
Tan D, Wang Y, Tong Y, Chen GQ. Grand Challenges for Industrializing Polyhydroxyalkanoates (PHAs). Trends Biotechnol 2021; 39:953-963. [PMID: 33431229 DOI: 10.1016/j.tibtech.2020.11.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are a diverse family of sustainable bioplastics synthesized by various bacteria, but their high production cost and unstable material properties make them challenging to use in commercial applications. Current industrial biotechnology (CIB) employs conventional microbial chassis, leading to high production costs. However, next-generation industrial biotechnology (NGIB) approaches, based on fast-growing and contamination-resistant extremophilic Halomonas spp., allow stable continuous processing and thus economical production of PHAs with stable properties. Halomonas spp. designed and constructed using synthetic biology not only produce low-cost intracellular PHAs but also secrete extracellular soluble products for improved process economics. Next-generation industrial biotechnology is expected to reduce the bioproduction cost and process complexity, leading to successful commercial production of PHAs.
Collapse
Affiliation(s)
- Dan Tan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ying Wang
- Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yi Tong
- National Engineering Research Center for Corn Deep Processing, COFCO, Changchun 130033, Jilin, China
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; MOE Key Lab on Industrial Biocatalyst, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
50
|
Schmid M, Raschbauer M, Song H, Bauer C, Neureiter M. Effects of nutrient and oxygen limitation, salinity and type of salt on the accumulation of poly(3-hydroxybutyrate) in Bacillus megaterium uyuni S29 with sucrose as a carbon source. N Biotechnol 2020; 61:137-144. [PMID: 33278638 DOI: 10.1016/j.nbt.2020.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022]
Abstract
Due to high manufacturing costs, industrial production and application of bio-based polyhydroxyalkanoates (PHA) as bioplastics remain below the expected potential. Improving yields and productivities during biotechnological production will contribute to eliminating existing shortcomings and should therefore be a priority in process development with new strains and substrates. The present study investigates key parameters such as different nutrient and oxygen limitation strategies and the salinity and type of salt to determine their impact on growth and poly(3-hydroxybutyrate) (P(3HB)) formation behaviour of Bacillus megaterium. The oxygen-limiting conditions applied resulted in a longer process duration and were found to be least effective with regard to P(3HB) content in the biomass. A higher P(3HB) content of 0.42 g g-1 was achieved when nitrogen was limited compared to 0.34 g g-1 under phosphate-limiting conditions; however, sucrose utilization was better when phosphate was limited. Replacing NaCl by KCl and evaluating different concentrations ranging from 0.08 to 1.7 mol L-1 in the process medium showed that B. megaterium has a higher tolerance to KCl as the biomass and P(3HB) formation was increased to 0.48 g g-1 compared to 0.36 g g-1. The combination of applying KCl instead of NaCl together with phosphorous limitation significantly increased P(3HB) productivity to 0.25 g L-1 h-1 compared to 0.09 g L-1 h-1. It can be concluded that the effective utilization of sucrose as a carbon source requires a combination of high nitrogen and low phosphorous concentration and a salt content of 0.6 g L-1 KCl for P(3HB) production with B. megaterium uyuni S29.
Collapse
Affiliation(s)
- Maximilian Schmid
- University of Natural Resources and Life Sciences, Vienna, Institute of Environmental Biotechnology, Tulln an der Donau, Austria
| | - Michaela Raschbauer
- University of Natural Resources and Life Sciences, Vienna, Institute of Environmental Biotechnology, Tulln an der Donau, Austria
| | - Hyunjeong Song
- University of Natural Resources and Life Sciences, Vienna, Institute of Environmental Biotechnology, Tulln an der Donau, Austria
| | - Cornelia Bauer
- University of Natural Resources and Life Sciences, Vienna, Institute of Environmental Biotechnology, Tulln an der Donau, Austria
| | - Markus Neureiter
- University of Natural Resources and Life Sciences, Vienna, Institute of Environmental Biotechnology, Tulln an der Donau, Austria.
| |
Collapse
|