1
|
Xu L, Bai X, Joong Oh E. Strategic approaches for designing yeast strains as protein secretion and display platforms. Crit Rev Biotechnol 2025; 45:491-508. [PMID: 39138023 DOI: 10.1080/07388551.2024.2385996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 08/15/2024]
Abstract
Yeast has been established as a versatile platform for expressing functional molecules, owing to its well-characterized biology and extensive genetic modification tools. Compared to prokaryotic systems, yeast possesses advanced cellular mechanisms that ensure accurate protein folding and post-translational modifications. These capabilities are particularly advantageous for the expression of human-derived functional proteins. However, designing yeast strains as an expression platform for proteins requires the integration of molecular and cellular functions. By delving into the complexities of yeast-based expression systems, this review aims to empower researchers with the knowledge to fully exploit yeast as a functional platform to produce a diverse range of proteins. This review includes an exploration of the host strains, gene cassette structures, as well as considerations for maximizing the efficiency of the expression system. Through this in-depth analysis, the review anticipates stimulating further innovation in the field of yeast biotechnology and protein engineering.
Collapse
Affiliation(s)
- Luping Xu
- Department of Food Science, Purdue University, West Lafayette, IN, USA
- Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN, USA
| | | | - Eun Joong Oh
- Department of Food Science, Purdue University, West Lafayette, IN, USA
- Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
2
|
Rodríguez S, González C, Reyes-Godoy JP, Gasser B, Andrews B, Asenjo JA. Expression and characterization of cold-adapted xylanase Xyl-L in Pichia pastoris for xylooligosaccharide (XOS) preparation. Microb Cell Fact 2025; 24:82. [PMID: 40188062 PMCID: PMC11971854 DOI: 10.1186/s12934-025-02690-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/10/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Xylan, the second most abundant polysaccharide in plant biomass, requires endoxylanases for its hydrolysis into xylooligosaccharides (XOS). Xylanases have been widely used in industries such as animal feed, bakery, juice production, and paper pulp. Recently, XOS have gained attention for their health benefits, including improved digestion, reduced cholesterol, and antioxidant effects. The cold-adapted GH10 xylanase of Antarctic origin Xyl-L was previously expressed in Escherichia coli, showing promising low-temperature activity. However, Pichia pastoris is currently a preferred host for industrial xylanase production due to its ability to express complex proteins and secrete them into the culture medium. This study explored the expression of Xyl-L in P. pastoris and evaluated its potential for XOS production using common flours as substrates, aiming for applications in the food and nutraceutical industry. RESULTS Comparison between AOX1 ( P A O X 1 ) and GAP ( P GAP ) promoters for recombinant Xyl-L production in P. pastoris showed that the P A O X 1 promoter resulted in higher activity per wet-cell weight. Co-transforming P A O X 1 -Xyl strains with plasmids encoding genes aiding in protein folding (HAC1 or PDI1) did not enhance Xyl-L catalytic activity compared to the parental P A O X 1 strain. Thus, P A O X 1 -Xyl was cultivated in 3 L bioreactors in fed-batch cultures; it is presumed that the enzyme is produced with glycosylations within its structure, given its migration within the SDS-PAGE gels. The produced Xyl-L was purified from the culture supernatant, resulting in peak xylanase activity after 90 h, with specific activity of 5.10 ± 0.21 U/mg, at pH 7.5 and 25 ∘ C, using beechwood xylan. It also showed a Km of 3.5 mg/mL and a kcat of 9.16 s - 1 . Xyl-L maintained over 80% of relative activity between pH 5.6 - 8.6 and 37 - 44 ∘ C, and was activated by CaCl 2 and MgCl 2 , but inhibited by MnCl 2 . Xyl-L was tested using several flours (whole wheat, rye, oatmeal and all-purpose) as substrates, where XOS with a polymerization degree (DP) of 2 were obtained from each substrate, whole wheat flour generated XOS with DP 3, and XOS with DP 2, 3 and 4 were produced when beechwood xylan was used as substrate. CONCLUSIONS The xylanase Xyl-L was successfully expressed in P. pastoris and proved to be able to degrade various flour substrates, producing XOS with DP ranging from 2 to 4, indicating its potential applications in the nutraceutical and food industries. Further studies must be performed to optimize its production in bioreactors.
Collapse
Affiliation(s)
- Sebastián Rodríguez
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Beauchef 851, 8370448, Santiago, Región Metropolitana, Chile.
| | - Carolina González
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Beauchef 851, 8370448, Santiago, Región Metropolitana, Chile
| | - José Pablo Reyes-Godoy
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Beauchef 851, 8370448, Santiago, Región Metropolitana, Chile
| | - Brigitte Gasser
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology (IMMB), BOKU University, Muthgasse 18, 1190, Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190, Vienna, Austria
| | - Barbara Andrews
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Beauchef 851, 8370448, Santiago, Región Metropolitana, Chile
| | - Juan A Asenjo
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Beauchef 851, 8370448, Santiago, Región Metropolitana, Chile
| |
Collapse
|
3
|
Temelli N, van den Akker S, Weusthuis RA, Bisschops MMM. Exploring Yeast's Energy Dynamics: The General Stress Response Lowers Maintenance Energy Requirement. Microb Biotechnol 2025; 18:e70126. [PMID: 40181231 PMCID: PMC11968331 DOI: 10.1111/1751-7915.70126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/11/2025] [Accepted: 02/23/2025] [Indexed: 04/05/2025] Open
Abstract
In many microbial biotechnology processes, biomass itself is not the product of interest, but rather targeted chemicals or proteins. In these processes, growth should be limited to direct more substrate to product and increase process yields. Under growth-limiting conditions, such as nutrient limitation, microorganisms, including the yeast Saccharomyces cerevisiae, activate a general stress response (GSR). Different hypotheses have been formulated for this activation, including a preparatory role for future stresses or a role in cellular protein density. Here we tested a third hypothesis: the GSR reduces the energy needed to maintain cellular homeostasis, also known as the maintenance energy requirement (MER). The impact of GSR on MER was investigated by assessing the effect of the absence of its key regulators, Msn2 and Msn4, on energy-substrate distribution and stress resistance. Chemostat and fed-batch cultures revealed significant increases in MER of up to 85% in the deletion strain compared to the parental strain. In contrast, maximal biomass yields, growth rates and morphology were unaffected. Our insights highlight an additional role of the GSR, namely saving cellular energy. As the MER is a key determinant of product yields and in process design, especially in low growth processes, our findings can help to optimise microbial bioprocesses.
Collapse
Affiliation(s)
- Nuran Temelli
- Bioprocess EngineeringWageningen UniversityWageningenthe Netherlands
| | | | - Ruud A. Weusthuis
- Bioprocess EngineeringWageningen UniversityWageningenthe Netherlands
| | | |
Collapse
|
4
|
Ishiwata-Kimata Y, Monguchi M, Geronimo RAC, Sugimoto M, Kimata Y. Artificial induction of the UPR by Tet-off system-dependent expression of Hac1 and its application in Saccharomyces cerevisiae cells. Biosci Biotechnol Biochem 2025; 89:562-572. [PMID: 39953902 DOI: 10.1093/bbb/zbaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/12/2025] [Indexed: 02/17/2025]
Abstract
In response to endoplasmic reticulum (ER) stress, yeast Saccharomyces cerevisiae cells produce Hac1, which is a transcription factor responsible for the unfolded protein response (UPR). When Hac1 is unregulatedly expressed from a constitutive promoter, the ER is artificially enforced and enlarged, even without ER stress stimuli. However, such cells are unsuitable for applicative bioproduction because they grow quite slowly and quickly lose their high-UPR phenotype upon their long-term storage. To avoid this problem, we constructed S. cerevisiae plasmids for Hac1 expression under the control of the inducible Tet-off promoter. Yeast cells carrying these plasmids did not exhibit a considerable UPR and grew rapidly when the Tet-off promoter was repressed by doxycycline. In contrast, under the Tet-off inducing condition, these plasmids caused UPR induction, growth retardation, and ER expansion, depending on the copy number of the plasmid. Moreover, as expected, lipidic molecule production was increased under these conditions.
Collapse
Affiliation(s)
- Yuki Ishiwata-Kimata
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Masaki Monguchi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Ralph Allen Capistrano Geronimo
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Maya Sugimoto
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Yukio Kimata
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| |
Collapse
|
5
|
Kostopoulou A, Rebnegger C, Ferrero-Bordera B, Mattanovich M, Maaß S, Becher D, Gasser B, Mattanovich D. Impact of Oxygen Availability on the Organelle-Specific Redox Potentials and Stress in Recombinant Protein Producing Komagataella phaffii. Microb Biotechnol 2025; 18:e70106. [PMID: 39937160 DOI: 10.1111/1751-7915.70106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/17/2025] [Accepted: 01/24/2025] [Indexed: 02/13/2025] Open
Abstract
The yeast Komagataella phaffii (syn. Pichia pastoris) is a highly effective and well-established host for the production of recombinant proteins. The redox balance of its secretory pathway, which is multi-organelle dependent, is of high importance for producing secretory proteins. Redox imbalance and oxidative stress can significantly influence protein folding and secretion. Glutathione serves as the main redox buffer of the cell and cellular redox conditions can be assessed through the status of the glutathione redox couple (GSH-GSSG). Previous research often focused on the redox potential of the endoplasmic reticulum (ER), where oxidative protein folding and disulphide bond formation occur. In this study, in vivo measurements of the glutathione redox potential were extended to different subcellular compartments by targeting genetically encoded redox sensitive fluorescent proteins (roGFPs) to the cytosol, ER, mitochondria and peroxisomes. Using these biosensors, the impact of oxygen availability on the redox potentials of the different organelles was investigated in non-producing and producing K. phaffii strains in glucose-limited chemostat cultures. It was found that the transition from normoxic to hypoxic conditions affected the redox potential of all investigated organelles, while the exposure to hyperoxic conditions did not impact them. Also, as reported previously, hypoxic conditions led to increased recombinant protein secretion. Finally, transcriptome and proteome analyses provided novel insights into the short-term response of the cells from normoxic to hypoxic conditions.
Collapse
Grants
- Österreichische Forschungsförderungsgesellschaft
- 813979 Horizon 2020 Framework Programme
- Austrian Federal Ministry of Labour and Economy (BMAW), the Austrian Federal Ministry of Climate Action, Environment, Energy, Mobility, Innovation and Technology (BMK), the Styrian Business Promotion Agency SFG, the Standortagentur Tirol, the Government of Lower Austria, the Business Agency Vienna and BOKU through the COMET Funding Program managed by the Austrian Research Promotion Agency FFG, the Nationalstiftung FTE and the Christian Doppler Research Association
Collapse
Affiliation(s)
- Aliki Kostopoulou
- Austrian Centre of Industrial Biotechnology (ACIB), Vienna, Austria
- Department of Biotechnology and Food Science, Institute of Microbiology and Microbial Biotechnology, BOKU University, Vienna, Austria
| | - Corinna Rebnegger
- Austrian Centre of Industrial Biotechnology (ACIB), Vienna, Austria
- Department of Biotechnology and Food Science, Institute of Microbiology and Microbial Biotechnology, BOKU University, Vienna, Austria
- Department of Biotechnology and Food Science, Christian Doppler Laboratory for Growth Decoupled Protein Production in Yeast, BOKU University, Vienna, Austria
| | - Borja Ferrero-Bordera
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Matthias Mattanovich
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Sandra Maaß
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Brigitte Gasser
- Austrian Centre of Industrial Biotechnology (ACIB), Vienna, Austria
- Department of Biotechnology and Food Science, Institute of Microbiology and Microbial Biotechnology, BOKU University, Vienna, Austria
- Department of Biotechnology and Food Science, Christian Doppler Laboratory for Growth Decoupled Protein Production in Yeast, BOKU University, Vienna, Austria
| | - Diethard Mattanovich
- Austrian Centre of Industrial Biotechnology (ACIB), Vienna, Austria
- Department of Biotechnology and Food Science, Institute of Microbiology and Microbial Biotechnology, BOKU University, Vienna, Austria
| |
Collapse
|
6
|
Liu C, Zhang Y, Ye C, Zhao F, Chen Y, Han S. Combined strategies for improving the heterologous expression of a novel xylanase from Fusarium oxysporum Fo47 in Pichia pastoris. Synth Syst Biotechnol 2024; 9:426-435. [PMID: 38601209 PMCID: PMC11004072 DOI: 10.1016/j.synbio.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/03/2024] [Accepted: 03/17/2024] [Indexed: 04/12/2024] Open
Abstract
Xylanase, an enzyme capable of hydrolyzing non-starch polysaccharides found in grain structures like wheat, has been found to improve the organizational structure of dough and thus increase its volume. In our past work, one promising xylanase FXYL derived from Fusarium oxysporum Fo47 and first expressed 779.64 U/mL activity in P. pastoris. It has shown significant potential in improving the quality of whole wheat bread, making it become a candidate for development as a new flour improver. After optimization of expression elements and gene dose, the xylanase activity of FXYL strain carrying three-copies reached 4240.92 U/mL in P. pastoris. In addition, 12 factors associated with the three stages of protein expression pathway were co-expressed individually in order in three-copies strain, and the translation factor Pab1 co-expression increased FXYL activity to 8893.53 U/mL. Nevertheless, combining the most effective or synergistic factors from three stages did not exhibit better results than co-expressing them alone. To further evaluate the industrial potential, the xylanase activity and protein concentration reached 81184.51 U/mL and 11.8 g/L in a 5 L fed-batch fermenter. These engineering strategies improved the expression of xylanase FXYL by more than 104-fold, providing valuable insights for the cost-effective industrial application of FXYL in the baking field.
Collapse
Affiliation(s)
- Chun Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yaping Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Chunting Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Fengguang Zhao
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yian Chen
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Shuangyan Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
7
|
Gorczyca M, Korpys-Woźniak P, Celińska E. An Interplay between Transcription Factors and Recombinant Protein Synthesis in Yarrowia lipolytica at Transcriptional and Functional Levels-The Global View. Int J Mol Sci 2024; 25:9450. [PMID: 39273402 PMCID: PMC11395014 DOI: 10.3390/ijms25179450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Transcriptional regulatory networks (TRNs) associated with recombinant protein (rProt) synthesis in Yarrowia lipolytica are still under-described. Yet, it is foreseen that skillful manipulation with TRNs would enable global fine-tuning of the host strain's metabolism towards a high-level-producing phenotype. Our previous studies investigated the transcriptomes of Y. lipolytica strains overproducing biochemically different rProts and the functional impact of transcription factors (TFs) overexpression (OE) on rProt synthesis capacity in this species. Hence, much knowledge has been accumulated and deposited in public repositories. In this study, we combined both biological datasets and enriched them with further experimental data to investigate an interplay between TFs and rProts synthesis in Y. lipolytica at transcriptional and functional levels. Technically, the RNAseq datasets were extracted and re-analyzed for the TFs' expression profiles. Of the 140 TFs in Y. lipolytica, 87 TF-encoding genes were significantly deregulated in at least one of the strains. The expression profiles were juxtaposed against the rProt amounts from 125 strains co-overexpressing TF and rProt. In addition, several strains bearing knock-outs (KOs) in the TF loci were analyzed to get more insight into their actual involvement in rProt synthesis. Different profiles of the TFs' transcriptional deregulation and the impact of their OE or KO on rProts synthesis were observed, and new engineering targets were pointed.
Collapse
Affiliation(s)
- Maria Gorczyca
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-637 Poznan, Poland
| | - Paulina Korpys-Woźniak
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-637 Poznan, Poland
| | - Ewelina Celińska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-637 Poznan, Poland
| |
Collapse
|
8
|
Rebnegger C, Coltman BL, Kowarz V, Peña DA, Mentler A, Troyer C, Hann S, Schöny H, Koellensperger G, Mattanovich D, Gasser B. Protein production dynamics and physiological adaptation of recombinant Komagataella phaffii at near-zero growth rates. Microb Cell Fact 2024; 23:43. [PMID: 38331812 PMCID: PMC10851509 DOI: 10.1186/s12934-024-02314-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Specific productivity (qP) in yeast correlates with growth, typically peaking at intermediate or maximum specific growth rates (μ). Understanding the factors limiting productivity at extremely low μ might reveal decoupling strategies, but knowledge of production dynamics and physiology in such conditions is scarce. Retentostats, a type of continuous cultivation, enable the well-controlled transition to near-zero µ through the combined retention of biomass and limited substrate supply. Recombinant Komagataella phaffii (syn Pichia pastoris) secreting a bivalent single domain antibody (VHH) was cultivated in aerobic, glucose-limited retentostats to investigate recombinant protein production dynamics and broaden our understanding of relevant physiological adaptations at near-zero growth conditions. RESULTS By the end of the retentostat cultivation, doubling times of approx. two months were reached, corresponding to µ = 0.00047 h-1. Despite these extremely slow growth rates, the proportion of viable cells remained high, and de novo synthesis and secretion of the VHH were observed. The average qP at the end of the retentostat was estimated at 0.019 mg g-1 h-1. Transcriptomics indicated that genes involved in protein biosynthesis were only moderately downregulated towards zero growth, while secretory pathway genes were mostly regulated in a manner seemingly detrimental to protein secretion. Adaptation to near-zero growth conditions of recombinant K. phaffii resulted in significant changes in the total protein, RNA, DNA and lipid content, and lipidomics revealed a complex adaptation pattern regarding the lipid class composition. The higher abundance of storage lipids as well as storage carbohydrates indicates that the cells are preparing for long-term survival. CONCLUSIONS In conclusion, retentostat cultivation proved to be a valuable tool to identify potential engineering targets to decouple growth and protein production and gain important insights into the physiological adaptation of K. phaffii to near-zero growth conditions.
Collapse
Affiliation(s)
- Corinna Rebnegger
- CD-Laboratory for Growth-Decoupled Protein Production in Yeast at Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology (IMMB), University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 11, 1190, Vienna, Austria
| | - Benjamin L Coltman
- CD-Laboratory for Growth-Decoupled Protein Production in Yeast at Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology (IMMB), University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Viktoria Kowarz
- CD-Laboratory for Growth-Decoupled Protein Production in Yeast at Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology (IMMB), University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - David A Peña
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology (IMMB), University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Axel Mentler
- Department of Forest- and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences, Vienna, Peter-Jordan-Straße 82, 1190, Vienna, Austria
| | - Christina Troyer
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Stephan Hann
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Harald Schöny
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 38, 1090, Vienna, Austria
| | - Gunda Koellensperger
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 38, 1090, Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Diethard Mattanovich
- CD-Laboratory for Growth-Decoupled Protein Production in Yeast at Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology (IMMB), University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 11, 1190, Vienna, Austria
| | - Brigitte Gasser
- CD-Laboratory for Growth-Decoupled Protein Production in Yeast at Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria.
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology (IMMB), University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria.
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 11, 1190, Vienna, Austria.
| |
Collapse
|
9
|
Gorczyca M, Białas W, Nicaud JM, Celińska E. 'Mother(Nature) knows best' - hijacking nature-designed transcriptional programs for enhancing stress resistance and protein production in Yarrowia lipolytica; presentation of YaliFunTome database. Microb Cell Fact 2024; 23:26. [PMID: 38238843 PMCID: PMC10797999 DOI: 10.1186/s12934-023-02285-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/21/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND In the era of rationally designed synthetic biology, heterologous metabolites production, and other counter-nature engineering of cellular metabolism, we took a step back and recalled that 'Mother(-Nature) knows best'. While still aiming at synthetic, non-natural outcomes of generating an 'over-production phenotype' we dug into the pre-designed transcriptional programs evolved in our host organism-Yarrowia lipolytica, hoping that some of these fine-tuned orchestrated programs could be hijacked and used. Having an interest in the practical outcomes of the research, we targeted industrially-relevant functionalities-stress resistance and enhanced synthesis of proteins, and gauged them over extensive experimental design's completion. RESULTS Technically, the problem was addressed by screening a broad library of over 120 Y. lipolytica strains under 72 combinations of variables through a carefully pre-optimized high-throughput cultivation protocol, which enabled actual phenotype development. The abundance of the transcription program elicitors-transcription factors (TFs), was secured by their overexpression, while challenging the strains with the multitude of conditions was inflicted to impact their activation stratus. The data were subjected to mathematical modeling to increase their informativeness. The amount of the gathered data prompted us to present them in the form of a searchable catalog - the YaliFunTome database ( https://sparrow.up.poznan.pl/tsdatabase/ )-to facilitate the withdrawal of biological sense from numerical data. We succeeded in the identification of TFs that act as omni-boosters of protein synthesis, enhance resistance to limited oxygen availability, and improve protein synthesis capacity under inorganic nitrogen provision. CONCLUSIONS All potential users are invited to browse YaliFunTome in the search for homologous TFs and the TF-driven phenotypes of interest.
Collapse
Affiliation(s)
- Maria Gorczyca
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 60-637, Poznań, Poland
| | - Wojciech Białas
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 60-637, Poznań, Poland
| | - Jean-Marc Nicaud
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Ewelina Celińska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 60-637, Poznań, Poland.
| |
Collapse
|
10
|
Postaru M, Tucaliuc A, Cascaval D, Galaction AI. Cellular Stress Impact on Yeast Activity in Biotechnological Processes-A Short Overview. Microorganisms 2023; 11:2522. [PMID: 37894181 PMCID: PMC10609598 DOI: 10.3390/microorganisms11102522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
The importance of Saccharomyces cerevisiae yeast cells is known worldwide, as they are the most used microorganisms in biotechnology for bioethanol and biofuel production. Also, they are analyzed and studied for their similar internal biochemical processes to human cells, for a better understanding of cell aging and response to cell stressors. The special ability of S. cerevisiae cells to develop in both aerobic and anaerobic conditions makes this microorganism a viable model to study the transformations and the way in which cellular metabolism is directed to face the stress conditions due to environmental changes. Thus, this review will emphasize the effects of oxidative, ethanol, and osmotic stress and also the physiological and genetic response of stress mitigation in yeast cells.
Collapse
Affiliation(s)
- Madalina Postaru
- Department of Biomedical Science, Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy of Iasi, M. Kogălniceanu 9-13, 700454 Iasi, Romania;
| | - Alexandra Tucaliuc
- Department of Organic, Biochemical and Food, “Cristofor Simionescu” Faculty of Chemical, Engineering and Environmental Protection, Engineering, “Gheorghe Asachi” Technical University of Iasi, D. Mangeron 73, 700050 Iasi, Romania; (A.T.); (D.C.)
| | - Dan Cascaval
- Department of Organic, Biochemical and Food, “Cristofor Simionescu” Faculty of Chemical, Engineering and Environmental Protection, Engineering, “Gheorghe Asachi” Technical University of Iasi, D. Mangeron 73, 700050 Iasi, Romania; (A.T.); (D.C.)
| | - Anca-Irina Galaction
- Department of Biomedical Science, Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy of Iasi, M. Kogălniceanu 9-13, 700454 Iasi, Romania;
| |
Collapse
|
11
|
Palma A, Rettenbacher LA, Moilanen A, Saaranen M, Pacheco-Martinez C, Gasser B, Ruddock L. Biochemical analysis of Komagataella phaffii oxidative folding proposes novel regulatory mechanisms of disulfide bond formation in yeast. Sci Rep 2023; 13:14298. [PMID: 37652992 PMCID: PMC10471769 DOI: 10.1038/s41598-023-41375-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023] Open
Abstract
Oxidative protein folding in the endoplasmic reticulum (ER) is driven mainly by protein disulfide isomerase PDI and oxidoreductin Ero1. Their activity is tightly regulated and interconnected with the unfolded protein response (UPR). The mechanisms of disulfide bond formation have mainly been studied in human or in the yeast Saccharomyces cerevisiae. Here we analyze the kinetics of disulfide bond formation in the non-conventional yeast Komagataella phaffii, a common host for the production of recombinant secretory proteins. Surprisingly, we found significant differences with both the human and S. cerevisiae systems. Specifically, we report an inactive disulfide linked complex formed by K. phaffii Ero1 and Pdi1, similarly to the human orthologs, but not described in yeast before. Furthermore, we show how the interaction between K. phaffii Pdi1 and Ero1 is unaffected by the introduction of unfolded substrate into the system. This is drastically opposed to the previously observed behavior of the human pathway, suggesting a different regulation of the UPR and/or possibly different interaction mechanics between K. phaffii Pdi1 and Ero1.
Collapse
Affiliation(s)
- Arianna Palma
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
- Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Lukas A Rettenbacher
- School of Biosciences, University of Kent, Canterbury, UK
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Antti Moilanen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Mirva Saaranen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | | | - Brigitte Gasser
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.
- Austrian Centre of Industrial Biotechnology, Vienna, Austria.
| | - Lloyd Ruddock
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
12
|
Gorczyca M, Nicaud JM, Celińska E. Transcription factors enhancing synthesis of recombinant proteins and resistance to stress in Yarrowia lipolytica. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12607-z. [PMID: 37318637 DOI: 10.1007/s00253-023-12607-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023]
Abstract
Resistance to environmental stress and synthesis of recombinant proteins (r-Prots) are both complex, strongly interconnected biological traits relying on orchestrated contribution of multiple genes. This, in turn, makes their engineering a challenging task. One of the possible strategies is to modify the operation of transcription factors (TFs) associated with these complex traits. The aim of this study was to examine the potential implications of selected five TFs (HSF1-YALI0E13948g, GZF1-YALI0D20482g, CRF1-YALI0B08206g, SKN7-YALI0D14520g, and YAP-like-YALI0D07744g) in stress resistance and/or r-Prot synthesis in Yarrowia lipolytica. The selected TFs were over-expressed or deleted (OE/KO) in a host strain synthesizing a reporter r-Prot. The strains were subjected to phenotype screening under different environmental conditions (pH, oxygen availability, temperature, and osmolality), and the obtained data processing was assisted by mathematical modeling. The results demonstrated that growth and the r-Prot yields under specific conditions can be significantly increased or decreased due to the TFs' engineering. Environmental factors "awakening" individual TFs were indicated, and their contribution was mathematically described. For example, OE of Yap-like TF was proven to alleviate growth retardation under high pH, while Gzf1 and Hsf1 were shown to serve as universal enhancers of r-Prot production in Y. lipolytica. On the other hand, KO of SKN7 and HSF1 disabled growth under hyperosmotic stress. This research demonstrates the usefulness of the TFs engineering approach in the manipulation of complex traits and evidences newly identified functions of the studied TFs. KEY POINTS: • Function and implication in complex traits of 5 TFs in Y. lipolytica were studied. • Gzf1 and Hsf1 are the universal r-Prots synthesis enhancers in Y. lipolytica. • Yap-like TF's activity is pH-dependent; Skn7 and Hsf1 act in osmostress response.
Collapse
Affiliation(s)
- Maria Gorczyca
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 60-637, Poznań, Poland
| | - Jean-Marc Nicaud
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Ewelina Celińska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 60-637, Poznań, Poland.
| |
Collapse
|
13
|
Cui D, Liu L, Sun L, Lin X, Lin L, Zhang C. Genome-wide analysis reveals Hsf1 maintains high transcript abundance of target genes controlled by strong constitutive promoter in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:72. [PMID: 37118827 PMCID: PMC10141939 DOI: 10.1186/s13068-023-02322-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/16/2023] [Indexed: 04/30/2023]
Abstract
BACKGROUND In synthetic biology, the strength of promoter elements is the basis for precise regulation of target gene transcription levels, which in turn increases the yield of the target product. However, the results of many researches proved that excessive transcription levels of target genes actually reduced the yield of the target product. This phenomenon has been found in studies using different microorganisms as chassis cells, thus, it becomes a bottleneck problem to improve the yield of the target product. RESULTS In this study, promoters PGK1p and TDH3p with different strengths were used to regulate the transcription level of alcohol acetyl transferase encoding gene ATF1. The results demonstrated that the strong promoter TDH3p decreased the production of ethyl acetate. The results of Real-time PCR proved that the transcription level of ATF1 decreased rapidly under the control of TDH3p, and the unfolded protein reaction was activated, which may be the reason for the abnormal production caused by the strong promoter. RNA-sequencing analysis showed that the overexpression of differential gene HSP30 increased the transcriptional abundance of ATF1 gene and production of ethyl acetate. Interestingly, deletion of the heat shock protein family (e.g., Hsp26, Hsp78, Hsp82) decreased the production of ethyl acetate, suggesting that the Hsp family was also involved in the regulation of ATF1 gene transcription. Furthermore, the results proved that the Hsf1, an upstream transcription factor of Hsps, had a positive effect on alleviating the unfolded protein response and that overexpression of Hsf1 reprogramed the pattern of ATF1 gene transcript levels. The combined overexpression of Hsf1 and Hsps further increased the production of ethyl acetate. In addition, kinase Rim15 may be involved in this regulatory pathway. Finally, the regulation effect of Hsf1 on recombinant strains constructed by other promoters was verified, which confirmed the universality of the strategy. CONCLUSIONS Our results elucidated the mechanism by which Rim15-Hsf1-Hsps pathway reconstructed the repression of high transcription level stress and increased the production of target products, thereby providing new insights and application strategies for the construction of recombinant strains in synthetic biology.
Collapse
Affiliation(s)
- Danyao Cui
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Ling Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Lijing Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Xue Lin
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Liangcai Lin
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| | - Cuiying Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
14
|
Albacar M, Zekhnini A, Pérez-Valle J, Martínez JL, Casamayor A, Ariño J. Transcriptomic profiling of the yeast Komagataella phaffii in response to environmental alkalinization. Microb Cell Fact 2023; 22:63. [PMID: 37013612 PMCID: PMC10071690 DOI: 10.1186/s12934-023-02074-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Adaptation to alkalinization of the medium in fungi involves an extensive remodeling of gene expression. Komagataella phaffii is an ascomycetous yeast that has become an organism widely used for heterologous protein expression. We explore here the transcriptional impact of moderate alkalinization in this yeast, in search of suitable novel promoters able to drive transcription in response to the pH signal. RESULTS In spite of a minor effect on growth, shifting the cultures from pH 5.5 to 8.0 or 8.2 provokes significant changes in the mRNA levels of over 700 genes. Functional categories such as arginine and methionine biosynthesis, non-reductive iron uptake and phosphate metabolism are enriched in induced genes, whereas many genes encoding iron-sulfur proteins or members of the respirasome were repressed. We also show that alkalinization is accompanied by oxidative stress and we propose this circumstance as a common trigger of a subset of the observed changes. PHO89, encoding a Na+/Pi cotransporter, appears among the most potently induced genes by high pH. We demonstrate that this response is mainly based on two calcineurin-dependent response elements located in its promoter, thus indicating that alkalinization triggers a calcium-mediated signal in K. phaffii. CONCLUSIONS This work defines in K. phaffii a subset of genes and diverse cellular pathways that are altered in response to moderate alkalinization of the medium, thus setting the basis for developing novel pH-controlled systems for heterologous protein expression in this fungus.
Collapse
Affiliation(s)
- Marcel Albacar
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
| | - Abdelghani Zekhnini
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
| | - Jorge Pérez-Valle
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
| | - José L Martínez
- Department of Biotechnology and Biomedicine, Section for Synthetic Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Antonio Casamayor
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
| | - Joaquín Ariño
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain.
| |
Collapse
|
15
|
Xu Y, Geng Z, Yang C, Zhou H, Wang Y, Kuerban B, Luo G. Effect of N-acetyl-l-cysteine on Cell Phenotype and Autophagy in Pichia pastoris Expressing Human Serum Albumin and Porcine Follicle-Stimulating Hormone Fusion Protein. Molecules 2023; 28:molecules28073041. [PMID: 37049804 PMCID: PMC10095845 DOI: 10.3390/molecules28073041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Pichia pastoris is widely used for the production of recombinant proteins, but the low secretion efficiency hinders its wide application in biopharmaceuticals. Our previous study had shown that N-acetyl-l-cysteine (NAC) promotes human serum albumin and porcine follicle-stimulating hormone fusion protein (HSA-pFSHβ) secretion by increasing intracellular GSH levels, but the downstream impact mechanism is not clear. In this study, we investigated the roles of autophagy as well as cell phenotype in NAC promoting HSA-pFSHβ secretion. Our results showed that NAC slowed down the cell growth rate, and its effects were unaffected by Congo Red and Calcofluor White. Moreover, NAC affected cell wall composition by increasing chitin content and decreasing β-1,3-glucan content. In addition, the expressions of vesicular pathway and autophagy-related genes were significantly decreased after NAC treatment. Further studies revealed that autophagy, especially the cytoplasm-to-vacuole targeting (Cvt) pathway, mitophagy and pexophagy, was significantly increased with time, and NAC has a promoting effect on autophagy, especially at 48 h and 72 h of NAC treatment. However, the disruption of mitophagy receptor Atg32, but not pexophagy receptor Atg30, inhibited HSA-pFSHβ production, and neither of them inhibited the NAC-promoted effect of HSA-pFSHβ. In conclusion, vesicular transport, autophagy and cell wall are all involved in the NAC-promoted HSA-pFSHβ secretion and that disruption of the autophagy receptor alone does not inhibit the effect of NAC.
Collapse
Affiliation(s)
- Yingqing Xu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Zijian Geng
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Chengxi Yang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Hongwei Zhou
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Yixing Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Buayisham Kuerban
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Gang Luo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| |
Collapse
|