1
|
Menzies SK, Patel RN, Ainsworth S. Practical progress towards the development of recombinant antivenoms for snakebite envenoming. Expert Opin Drug Discov 2025:1-21. [PMID: 40302313 DOI: 10.1080/17460441.2025.2495943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 04/16/2025] [Indexed: 05/02/2025]
Abstract
INTRODUCTION Snakebite envenoming is a neglected tropical disease that affects millions globally each year. In recent years, research into the potential production of recombinant antivenoms, formulated using mixtures of highly defined anti-toxin monoclonal antibodies, has rapidly moved from a theoretical concept to demonstrations of practical feasibility. AREAS COVERED This article examines the significant practical advancements in transitioning recombinant antivenoms from concept to potential clinical translation. The authors have based their review on literature obtained from Google Scholar and PubMed between September and November 2024. Coverage includes the development and validation of recombinant antivenom antibody discovery strategies, the characterization of the first broadly neutralizing toxin class antibodies, and recent translational proof-of-concept experiments. EXPERT OPINION The transition of recombinant antivenoms from a 'concept' to the current situation where high-throughput anti-venom mAb discovery is becoming routine, accompanied by increasing evidence of their broad neutralizing capacity in vivo, has been extraordinary. It is now important to build on this momentum by expanding the discovery of broadly neutralizing mAbs to encompass as many toxin classes as possible. It is anticipated that key demonstrations of whether recombinant antivenoms can match or surpass existing conventional polyvalent antivenoms in terms of neutralizing scope and capacity will be achieved in the next few years.
Collapse
Affiliation(s)
- Stefanie K Menzies
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| | - Rohit N Patel
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Stuart Ainsworth
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
2
|
Petersson M, Zingl FG, Rodriguez-Rodriguez E, Rendsvig JKH, Heinsøe H, Wenzel Arendrup E, Mojica N, Segura Peña D, Sekulić N, Krengel U, Fernández-Quintero ML, Jenkins TP, Gram L, Waldor MK, Laustsen AH, Thrane SW. Orally delivered toxin-binding protein protects against diarrhoea in a murine cholera model. Nat Commun 2025; 16:2722. [PMID: 40108169 PMCID: PMC11923127 DOI: 10.1038/s41467-025-57945-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 03/05/2025] [Indexed: 03/22/2025] Open
Abstract
The ongoing seventh cholera pandemic, which began in 1961, poses an escalating threat to public health. There is a need for new cholera control measures, particularly ones that can be produced at low cost, for the one billion people living in cholera-endemic regions. Orally delivered VHHs, functioning as target-binding proteins, have been proposed as a potential approach to control gastrointestinal pathogens. Here, we describe the development of an orally deliverable bivalent VHH construct that binds to the B-pentamer of cholera toxin, showing that it inhibits toxin activity in a murine challenge model. Infant mice given the bivalent VHH prior to V. cholerae infection exhibit a significant reduction in cholera toxin-associated intestinal fluid secretion and diarrhoea. In addition, the bivalent VHH reduces V. cholerae colonization levels in the small intestine by a factor of 10. This cholera toxin-binding protein holds promise for protecting against severe diarrhoea associated with cholera.
Collapse
Affiliation(s)
- Marcus Petersson
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- Bactolife A/S, Copenhagen, Denmark
| | - Franz G Zingl
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, MA, Boston, USA
| | | | | | | | | | - Natalia Mojica
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - Dario Segura Peña
- Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway
| | - Nikolina Sekulić
- Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ute Krengel
- Department of Chemistry, University of Oslo, Oslo, Norway
| | | | - Timothy P Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Matthew K Waldor
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, MA, Boston, USA
- Howard Hughes Medical Institute, MD, Bethesda, USA
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.
- Bactolife A/S, Copenhagen, Denmark.
| | | |
Collapse
|
3
|
Gutiérrez JM, R Casewell N, Laustsen AH. Progress and Challenges in the Field of Snakebite Envenoming Therapeutics. Annu Rev Pharmacol Toxicol 2025; 65:465-485. [PMID: 39088847 DOI: 10.1146/annurev-pharmtox-022024-033544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Snakebite envenoming kills and maims hundreds of thousands of people every year, especially in the rural settings of tropical regions. Envenomings are still treated with animal-derived antivenoms, which have prevented many lives from being lost but which are also medicines in need of innovation. Strides are being made to improve envenoming therapies, with promising efforts made toward optimizing manufacturing and quality aspects of existing antivenoms, accelerating research and development of recombinant antivenoms based on monoclonal antibodies, and repurposing of small-molecule inhibitors that block key toxins. Here, we review the most recent advances in these fields and discuss therapeutic opportunities and limitations for different snakebite treatment modalities. Finally, we discuss challenges related to preclinical and clinical evaluation, regulatory pathways, large-scale manufacture, and distribution and access that need to be addressed to fulfill the goals of the World Health Organization's global strategy to prevent and control snakebite envenoming.
Collapse
Affiliation(s)
- José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica;
| | - Nicholas R Casewell
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom;
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark;
| |
Collapse
|
4
|
Edge RJ, Marriott AE, Stars EL, Patel RN, Wilkinson MC, King LDW, Slagboom J, Tan CH, Ratanabanangkoon K, Draper SJ, Ainsworth S. Plug and play virus-like particles for the generation of anti-toxin antibodies. Toxicon X 2024; 23:100204. [PMID: 39280983 PMCID: PMC11401359 DOI: 10.1016/j.toxcx.2024.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/08/2024] [Accepted: 08/18/2024] [Indexed: 09/18/2024] Open
Abstract
Snakebite is a major global health concern, for which antivenom remains the only approved treatment to neutralise the harmful effects of the toxins. However, some medically important toxins are poorly immunogenic, resulting in reduced efficacy of the final product. Boosting the immunogenicity of these toxins in the commercial antivenom immunising mixtures could be an effective strategy to improve the final dose efficacy, and displaying snake antigens on Virus-like particles (VLPs) is one method for this. However, despite some applications in the field of snakebite, VLPs have yet to be explored in methods that could be practical at an antivenom manufacturing scale. Here we describe the utilisation of a "plug and play" VLP system to display immunogenic linear peptide epitopes from three finger toxins (3FTxs) and generate anti-toxin antibodies. Rabbits were immunised with VLPs displaying individual consensus linear epitopes and their antibody responses were characterised by immunoassay. Of the three experimental consensus sequences, two produced antibodies capable of recognising the consensus peptides, whilst only one of these could also recognise native whole toxins. Further characterisation of antibodies raised against this peptide demonstrated a sub-class specific response, and that these were able to elicit partially neutralising antibody responses, resulting in increased survival times in a murine snakebite envenoming model.
Collapse
Affiliation(s)
- Rebecca J Edge
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Amy E Marriott
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Emma L Stars
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Rohit N Patel
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Mark C Wilkinson
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Lloyd D W King
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, United Kingdom
| | - Julien Slagboom
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081HV, the Netherlands
| | - Choo Hock Tan
- School of Medicine, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, 300, Taiwan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300, Taiwan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Kavi Ratanabanangkoon
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Simon J Draper
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, United Kingdom
| | - Stuart Ainsworth
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| |
Collapse
|
5
|
Campbell SID, Chow CY, Neri-Castro E, Alagón A, Gómez A, Soria R, King GF, Fry BG. Taking the sting out of scorpions: Electrophysiological investigation of the relative efficacy of three antivenoms against medically significant Centruroides species. Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109977. [PMID: 39025425 DOI: 10.1016/j.cbpc.2024.109977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/22/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
In this study, we report the innovative application of whole-cell patch-clamp electrophysiology in assessing broad-spectrum neutralisation by three different antivenoms, of venoms from the medically significant scorpion genus Centruroides. Envenomations by as many as 21 species from the Centruroides genus result in up to 300,000 envenomations per year in Mexico, which poses significant and potentially life-threatening pathophysiology. We first evaluated the in vitro manifestation of envenomation against two human voltage-gated sodium (hNaV) channel subtypes: hNaV1.4 and hNaV1.5, which are primarily expressed in skeletal muscles and cardiomyocytes, respectively. The neutralisation of venom activity was then characterised for three different antivenoms using a direct competition model against the more potent target, hNaV1.4. While broad-spectrum neutralisation was identified, variation in neutralisation arose for Centruroides elegans, C. limpidus, C. noxius and C. suffusus venoms, despite the presence of a number of these venoms within the immunising mixture. This raises questions regarding the truly "broad" neutralisation capacity of the antivenoms. This study not only extends previous validation of the in vitro investigation of antivenom efficacy utilising the whole-cell patch-clamp technique but also underscores the potential of this animal-free model in exploring cross-reactivity, experimental scalability, and most importantly, informing clinical management practices regarding the administration of antivenom in Mexico.
Collapse
Affiliation(s)
- Sam I D Campbell
- Adaptive Biotoxicology lab, School of the Environment, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Chun Yuen Chow
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Edgar Neri-Castro
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, C.P. 35010 Gómez Palacio, Durango, Mexico; Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Alejandro Alagón
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Aarón Gómez
- Instituto Clodomiro Picado, Universidad de Costa Rica, San José 11501, Costa Rica
| | - Raúl Soria
- Inosan Biopharma S.A. Arbea Campus Empresarial, Edificio 2. Planta 2, Carretera Fuencarral a Alcobendas, Km. 3.8, 28108 Alcobendas, Madrid, Spain
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Bryan G Fry
- Adaptive Biotoxicology lab, School of the Environment, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
6
|
Castillo-Corujo A, Uchida Y, Saaranen MJ, Ruddock LW. Escherichia coli Cytoplasmic Expression of Disulfide-Bonded Proteins: Side-by-Side Comparison between Two Competing Strategies. J Microbiol Biotechnol 2024; 34:1126-1134. [PMID: 38563095 PMCID: PMC11180911 DOI: 10.4014/jmb.2311.11025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
The production of disulfide bond-containing recombinant proteins in Escherichia coli has traditionally been done by either refolding from inclusion bodies or by targeting the protein to the periplasm. However, both approaches have limitations. Two broad strategies were developed to allow the production of proteins with disulfide bonds in the cytoplasm of E. coli: i) engineered strains with deletions in the disulfide reduction pathways, e.g. SHuffle, and ii) the co-expression of oxidative folding catalysts, e.g. CyDisCo. However, to our knowledge, the relative effectiveness of these strategies has not been properly evaluated. Here, we systematically compare the purified yields of 14 different proteins of interest (POI) that contain disulfide bonds in their native state when expressed in both systems. We also compared the effects of different background strains, commonly used promoters, and two media types: defined and rich autoinduction. In rich autoinduction media, POI which can be produced in a soluble (non-native) state without a system for disulfide bond formation were produced in higher purified yields from SHuffle, whereas all other proteins were produced in higher purified yields using CyDisCo. In chemically defined media, purified yields were at least 10x higher in all cases using CyDisCo. In addition, the quality of the three POI tested was superior when produced using CyDisCo.
Collapse
Affiliation(s)
- Angel Castillo-Corujo
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu FI-90014, Finland
| | - Yuko Uchida
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu FI-90014, Finland
| | - Mirva J. Saaranen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu FI-90014, Finland
| | - Lloyd W. Ruddock
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu FI-90014, Finland
| |
Collapse
|
7
|
Damsbo A, Rimbault C, Burlet NJ, Vlamynck A, Bisbo I, Belfakir SB, Laustsen AH, Rivera-de-Torre E. A comparative study of the performance of E. coli and K. phaffii for expressing α-cobratoxin. Toxicon 2024; 239:107613. [PMID: 38218383 DOI: 10.1016/j.toxicon.2024.107613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
Three-finger toxins (3FTxs) have traditionally been obtained via venom fractionation of whole venoms from snakes. This method often yields functional toxins, but it can be difficult to obtain pure isoforms, as it is challenging to separate the many different toxins with similar physicochemical properties that generally exist in many venoms. This issue can be circumvented via the use of recombinant expression. However, achieving the correct disulfide bond formation in recombinant toxins is challenging and requires extensive optimization of expression and purification methods to enhance stability and functionality. In this study, we investigated the expression of α-cobratoxin, a well-characterized 3FTx from the monocled cobra (Naja kaouthia), in three different expression systems, namely Escherichia coli BL21 (DE3) cells with the csCyDisCo plasmid, Escherichia coli SHuffle cells, and Komagataella phaffii (formerly known as Pichia pastoris). While none of the tested systems yielded α-cobratoxin identical to the variant isolated from whole venom, the His6-tagged α-cobratoxin expressed in K. phaffii exhibited a comparable secondary structure according to circular dichroism spectra and similar binding properties to the α7 subunit of the nicotinic acetylcholine receptor. The findings presented here illustrate the advantages and limitations of the different expression systems and can help guide researchers who wish to express 3FTxs.
Collapse
Affiliation(s)
- Anna Damsbo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Charlotte Rimbault
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Nick J Burlet
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Anneline Vlamynck
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Ida Bisbo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Selma B Belfakir
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; VenomAid Diagnostics ApS, DK-2800 Kongens Lyngby, Denmark
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| | - Esperanza Rivera-de-Torre
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
8
|
Thumtecho S, Burlet NJ, Ljungars A, Laustsen AH. Towards better antivenoms: navigating the road to new types of snakebite envenoming therapies. J Venom Anim Toxins Incl Trop Dis 2023; 29:e20230057. [PMID: 38116472 PMCID: PMC10729942 DOI: 10.1590/1678-9199-jvatitd-2023-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
Snakebite envenoming is a significant global health challenge, and for over a century, traditional plasma-derived antivenoms from hyperimmunized animals have been the primary treatment against this infliction. However, these antivenoms have several inherent limitations, including the risk of causing adverse reactions when administered to patients, batch-to-batch variation, and high production costs. To address these issues and improve treatment outcomes, the development of new types of antivenoms is crucial. During this development, key aspects such as improved clinical efficacy, enhanced safety profiles, and greater affordability should be in focus. To achieve these goals, modern biotechnological methods can be applied to the discovery and development of therapeutic agents that can neutralize medically important toxins from multiple snake species. This review highlights some of these agents, including monoclonal antibodies, nanobodies, and selected small molecules, that can achieve broad toxin neutralization, have favorable safety profiles, and can be produced on a large scale with standardized manufacturing processes. Considering the inherent strengths and limitations related to the pharmacokinetics of these different agents, a combination of them might be beneficial in the development of new types of antivenom products with improved therapeutic properties. While the implementation of new therapies requires time, it is foreseeable that the application of biotechnological advancements represents a promising trajectory toward the development of improved therapies for snakebite envenoming. As research and development continue to advance, these new products could emerge as the mainstay treatment in the future.
Collapse
Affiliation(s)
- Suthimon Thumtecho
- Division of Toxicology, Department of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Nick J. Burlet
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anne Ljungars
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
9
|
Tulika T, Pedersen RW, Rimbault C, Ahmadi S, Rivera‐de‐Torre E, Fernández‐Quintero ML, Loeffler JR, Bohn M, Ljungars A, Ledsgaard L, Voldborg BG, Ruso‐Julve F, Andersen JT, Laustsen AH. Phage display assisted discovery of a pH-dependent anti-α-cobratoxin antibody from a natural variable domain library. Protein Sci 2023; 32:e4821. [PMID: 37897425 PMCID: PMC10659949 DOI: 10.1002/pro.4821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/28/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023]
Abstract
Recycling IgG antibodies bind to their target antigen at physiological pH in the blood stream and release them upon endocytosis when pH levels drop, allowing the IgG antibodies to be recycled into circulation via FcRn-mediated cellular pathways, while the antigens undergo lysosomal degradation. This enables recycling antibodies to achieve comparable therapeutic effect at lower doses than their non-recycling counterparts. The development of such antibodies is typically achieved by histidine doping of their variable regions or by performing in vitro antibody selection campaigns utilizing histidine doped libraries. Both are strategies that may introduce sequence liabilities. Here, we present a methodology that employs a naïve antibody phage display library, consisting of natural variable domains, to discover antibodies that bind α-cobratoxin from the venom of Naja kaouthia in a pH-dependent manner. As a result, an antibody was discovered that exhibits a 7-fold higher off-rate at pH 5.5 than pH 7.4 in bio-layer interferometry experiments. Interestingly, no histidine residues were found in its variable domains, and in addition, the antibody showed pH-dependent binding to a histidine-devoid antigen mutant. As such, the results demonstrate that pH-dependent antigen-antibody binding may not always be driven by histidine residues. By employing molecular dynamics simulations, different protonation states of titratable residues were found, which potentially could be responsible for the observed pH-dependent antigen binding properties of the antibody. Finally, given the typically high diversity of naïve antibody libraries, the methodology presented here can likely be applied to discover recycling antibodies against different targets ab initio without the need for histidine doping.
Collapse
Affiliation(s)
- Tulika Tulika
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | - Rasmus W. Pedersen
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | - Charlotte Rimbault
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | - Shirin Ahmadi
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | | | - Monica L. Fernández‐Quintero
- Center for Molecular Biosciences Innsbruck, Department of GeneralInorganic and Theoretical Chemistry, University of InnsbruckInnsbruckAustria
| | - Johannes R. Loeffler
- Center for Molecular Biosciences Innsbruck, Department of GeneralInorganic and Theoretical Chemistry, University of InnsbruckInnsbruckAustria
| | - Markus‐Frederik Bohn
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | - Anne Ljungars
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | - Line Ledsgaard
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | - Bjørn G. Voldborg
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | - Fulgencio Ruso‐Julve
- Department of PharmacologyUniversity of OsloOsloNorway
- Department of ImmunologyOslo University Hospital RikshospitaletOsloNorway
- Precision Immunotherapy AllianceUniversity of OsloOsloNorway
| | - Jan Terje Andersen
- Department of PharmacologyUniversity of OsloOsloNorway
- Department of ImmunologyOslo University Hospital RikshospitaletOsloNorway
- Precision Immunotherapy AllianceUniversity of OsloOsloNorway
| | - Andreas H. Laustsen
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| |
Collapse
|
10
|
Ahmadi S, Benard-Valle M, Boddum K, Cardoso FC, King GF, Laustsen AH, Ljungars A. From squid giant axon to automated patch-clamp: electrophysiology in venom and antivenom research. Front Pharmacol 2023; 14:1249336. [PMID: 37693897 PMCID: PMC10484000 DOI: 10.3389/fphar.2023.1249336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023] Open
Abstract
Ion channels play a crucial role in diverse physiological processes, including neurotransmission and muscle contraction. Venomous creatures exploit the vital function of ion channels by producing toxins in their venoms that specifically target these ion channels to facilitate prey capture upon a bite or a sting. Envenoming can therefore lead to ion channel dysregulation, which for humans can result in severe medical complications that often necessitate interventions such as antivenom administration. Conversely, the discovery of highly potent and selective venom toxins with the capability of distinguishing between different isoforms and subtypes of ion channels has led to the development of beneficial therapeutics that are now in the clinic. This review encompasses the historical evolution of electrophysiology methodologies, highlighting their contributions to venom and antivenom research, including venom-based drug discovery and evaluation of antivenom efficacy. By discussing the applications and advancements in patch-clamp techniques, this review underscores the profound impact of electrophysiology in unravelling the intricate interplay between ion channels and venom toxins, ultimately leading to the development of drugs for envenoming and ion channel-related pathologies.
Collapse
Affiliation(s)
- Shirin Ahmadi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Melisa Benard-Valle
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Fernanda C. Cardoso
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia
- Australian Research Council Centre of Excellence for Innovations in Protein and Peptide Science, University of Queensland, St Lucia, QLD, Australia
| | - Glenn F. King
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia
- Australian Research Council Centre of Excellence for Innovations in Protein and Peptide Science, University of Queensland, St Lucia, QLD, Australia
| | - Andreas Hougaard Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anne Ljungars
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|