1
|
Ke Z, Hu X, Liu Y, Shen D, Khan MI, Xiao J. Updated review on analysis of long non-coding RNAs as emerging diagnostic and therapeutic targets in prostate cancers. Crit Rev Oncol Hematol 2024; 196:104275. [PMID: 38302050 DOI: 10.1016/j.critrevonc.2024.104275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024] Open
Abstract
Despite advancements, prostate cancers (PCa) pose a significant global health challenge due to delayed diagnosis and therapeutic resistance. This review delves into the complex landscape of prostate cancer, with a focus on long-noncoding RNAs (lncRNAs). Also explores the influence of aberrant lncRNAs expression in progressive PCa stages, impacting traits like proliferation, invasion, metastasis and therapeutic resistance. The study elucidates how lncRNAs modulate crucial molecular effectors, including transcription factors and microRNAs, affecting signaling pathways such as androgen receptor signaling. Besides, this manuscript sheds light on novel concepts and mechanisms driving PCa progression through lncRNAs, providing a critical analysis of their impact on the disease's diverse characteristics. Besides, it discusses the potential of lncRNAs as diagnostics and therapeutic targets in PCa. Collectively, this work highlights state of art mechanistic comprehension and rigorous scientific approaches to advance our understanding of PCa and depict innovations in this evolving field of research.
Collapse
Affiliation(s)
- Zongpan Ke
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Luyang District, Hefei 230001, China; Wannan Medical College, No. 22 Wenchangxi Road, Yijiang District, Wuhu 241000, China
| | - Xuechun Hu
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Luyang District, Hefei 230001, China
| | - Yixun Liu
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Luyang District, Hefei 230001, China
| | - Deyun Shen
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Luyang District, Hefei 230001, China.
| | - Muhammad Imran Khan
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230026 China.
| | - Jun Xiao
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Luyang District, Hefei 230001, China.
| |
Collapse
|
2
|
Adeeb M, Therachiyil L, Moton S, Buddenkotte J, Alam MA, Uddin S, Steinhoff M, Ahmad A. Non-coding RNAs in the epigenetic landscape of cutaneous T-cell lymphoma. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 380:149-171. [PMID: 37657857 DOI: 10.1016/bs.ircmb.2023.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Cutaneous T-cell lymphoma (CTCL) is a type of cancer that affects skin, and is characterized by abnormal T-cells in the skin. Epigenetic changes have been found to play a significant role in the development and progression of CTCL. Recently, non-coding RNAs (ncRNAs), such as microRNAs and long non-coding RNAs, have been identified as key players in the regulation of gene expression in CTCL. These ncRNAs can alter the expression of genes involved in cell growth, differentiation, and apoptosis, leading to the development and progression of CTCL. In this review, we summarize the current understanding of the role of ncRNAs in CTCL, including their involvement in DNA methylation, and other biological processes. We also discuss the types of ncRNAs, their role as oncogenic or tumor suppressive, and their putative use as diagnostic and prognostic biomarkers, based on the emerging evidence from laboratory-based as well as patients-based studies. Moreover, we also present the potential targets and pathways affected by ncRNAs. A better understanding of the complex epigenetic landscape of CTCL, including the role of ncRNAs, has the potential to lead to the development of novel targeted therapies for this disease.
Collapse
Affiliation(s)
- Monaza Adeeb
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Lubna Therachiyil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Safwan Moton
- College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Joerg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Majid Ali Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, Qatar; Weill Cornell Medicine-Qatar, Medical School, Doha, Qatar; Department of Dermatology, Weill Cornell Medicine, New York, NY, USA
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
3
|
Emerging RNA-Based Therapeutic and Diagnostic Options: Recent Advances and Future Challenges in Genitourinary Cancers. Int J Mol Sci 2023; 24:ijms24054601. [PMID: 36902032 PMCID: PMC10003365 DOI: 10.3390/ijms24054601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Renal cell carcinoma, bladder cancer, and prostate cancer are the most widespread genitourinary tumors. Their treatment and diagnosis have significantly evolved over recent years, due to an increasing understanding of oncogenic factors and the molecular mechanisms involved. Using sophisticated genome sequencing technologies, the non-coding RNAs, such as microRNAs, long non-coding RNAs, and circular RNAs, have all been implicated in the occurrence and progression of genitourinary cancers. Interestingly, DNA, protein, and RNA interactions with lncRNAs and other biological macromolecules drive some of these cancer phenotypes. Studies on the molecular mechanisms of lncRNAs have identified new functional markers that could be potentially useful as biomarkers for effective diagnosis and/or as targets for therapeutic intervention. This review focuses on the mechanisms underlying abnormal lncRNA expression in genitourinary tumors and discusses their role in diagnostics, prognosis, and treatment.
Collapse
|
4
|
Al-Shehri A, Bakhashab S. Oncogenic Long Noncoding RNAs in Prostate Cancer, Osteosarcoma, and Metastasis. Biomedicines 2023; 11:biomedicines11020633. [PMID: 36831169 PMCID: PMC9953056 DOI: 10.3390/biomedicines11020633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Prostate cancer (PC) is a common malignancy and is one of the leading causes of cancer-related death in men worldwide. Osteosarcoma (OS) is the most common bone cancer, representing 20-40% of all bone malignancy cases. Cancer metastasis is a process by which malignant tumor cells detach from the primary tumor site via a cascade of processes and migrate to secondary sites through the blood circulation or lymphatic system to colonize and form secondary tumors. PC has a specific affinity to the bone based on the "seed and soil" theory; once PC reach the bone, it becomes incurable. Several studies have identified long noncoding RNAs (lncRNAs) as potential targets for cancer therapy or as diagnostic and prognostic biomarkers. The dysregulation of various lncRNAs has been found in various cancer types, including PC, OS, and metastasis. However, the mechanisms underlying lncRNA oncogenic activity in tumor progression and metastasis are extremely complex and remain incompletely understood. Therefore, understanding oncogenic lncRNAs and their role in OS, PC, and metastasis and the underlying mechanism may help better manage and treat this malignancy. The aim of this review is to summarize current knowledge of oncogenic lncRNAs and their involvement in PC, OS, and bone metastasis.
Collapse
Affiliation(s)
- Aishah Al-Shehri
- Biochemistry Department, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sherin Bakhashab
- Biochemistry Department, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: ; Tel.: +966-12-6400000
| |
Collapse
|
5
|
Khan MI, Ahmad A. LncRNA SNHG6 sponges miR-101 and induces tamoxifen resistance in breast cancer cells through induction of EMT. Front Oncol 2022; 12:1015428. [PMID: 36212408 PMCID: PMC9539827 DOI: 10.3389/fonc.2022.1015428] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Acquired resistance is a major clinical challenge for tamoxifen-based therapy. In this study, we focused on lncRNA SNHG6 which plays a role in chemoresistance of cancer cells, but has never been investigated in the context of tamoxifen resistance. We found elevated levels of SNHG6 in tamoxifen-resistant estrogen receptor (ER)-positive MCF-7 cells (MCF7TR), relative to naïve MCF-7 cells, as well as in tamoxifen-resistant T47D cells (T47DTR), relative to naïve T47D cells, which correlated with induced vimentin, ZEB1/2 and decreased e-cadherin, thus implicating a role of EMT in SNHG6-mediated tamoxifen resistance. Downregulation of SNHG6, using specific siRNA, sensitized MCF7TR as well as T47DTR cells to tamoxifen along with markedly reduced proliferation, invasion and anchorage-independent clonogenicity. Further, SNHG6 was found to sponge and inhibit miR-101 as the endogenous expression levels of SNHG6 and miR-101 inversely correlated in paired parental and tamoxifen-resistant cells and, moreover, silencing of SNHG6 in tamoxifen-resistant cells resulted in de-repression of miR-101, along with reversal of EMT. SNHG6 expression also directly correlated with increased stem cells markers Sox2, Oct4 and EZH2. miR-101 levels, manipulated by transfections with pre/anti-miR-101 oligos, directly affected tamoxifen sensitivity of ER-positive cells with pre-miR-101 sensitizing MCF7TR and T47DTR cells to tamoxifen whereas anti-miR-101 inducing resistance of parental MCF-7 and T47D cells to tamoxifen. Further, miR-101 was found to attenuate SNHG6-mediated effects on tamoxifen resistance, EMT as well as stem cell markers, thereby making a case for SNHG6-miR-101 axis in tamoxifen resistance of ER-positive breast cancer cells. Thus, lncRNA SNHG6 is a novel modulator of tamoxifen resistance through its sponging of miR-101 and the resulting effects on EMT.
Collapse
Affiliation(s)
- Mohammad Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- *Correspondence: Aamir Ahmad,
| |
Collapse
|
6
|
Thomaidou AC, Batsaki P, Adamaki M, Goulielmaki M, Baxevanis CN, Zoumpourlis V, Fortis SP. Promising Biomarkers in Head and Neck Cancer: The Most Clinically Important miRNAs. Int J Mol Sci 2022; 23:ijms23158257. [PMID: 35897831 PMCID: PMC9367895 DOI: 10.3390/ijms23158257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Head and neck cancers (HNCs) comprise a heterogeneous group of tumors that extend from the oral cavity to the upper gastrointestinal tract. The principal etiologic factors for oral tumors include tobacco smoking and alcohol consumption, while human papillomavirus (HPV) infections have been accused of a high incidence of pharyngeal tumors. Accordingly, HPV detection has been extensively used to categorize carcinomas of the head and neck. The diverse nature of HNC highlights the necessity for novel, sensitive, and precise biomarkers for the prompt diagnosis of the disease, its successful monitoring, and the timely prognosis of patient clinical outcomes. In this context, the identification of certain microRNAs (miRNAs) and/or the detection of alterations in their expression patterns, in a variety of somatic fluids and tissues, could serve as valuable biomarkers for precision oncology. In the present review, we summarize some of the most frequently studied miRNAs (including miR-21, -375, -99, -34a, -200, -31, -125a/b, -196a/b, -9, -181a, -155, -146a, -23a, -16, -29, and let-7), their role as biomarkers, and their implication in HNC pathogenesis. Moreover, we designate the potential of given miRNAs and miRNA signatures as novel diagnostic and prognostic tools for successful patient stratification. Finally, we discuss the currently ongoing clinical trials that aim to identify the diagnostic, prognostic, or therapeutic utility of miRNAs in HNC.
Collapse
Affiliation(s)
- Arsinoe C. Thomaidou
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
| | - Panagiota Batsaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Maria Adamaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
| | - Maria Goulielmaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Constantin N. Baxevanis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
- Correspondence: (V.Z.); (S.P.F.); Tel.: +30-210-727-3730 (V.Z.); +30-210-640-9462 (S.P.F.)
| | - Sotirios P. Fortis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
- Correspondence: (V.Z.); (S.P.F.); Tel.: +30-210-727-3730 (V.Z.); +30-210-640-9462 (S.P.F.)
| |
Collapse
|
7
|
LINC01234 Accelerates the Progression of Breast Cancer via the miR-525-5p/Cold Shock Domain-Containing E1 Axis. DISEASE MARKERS 2022; 2022:6899777. [PMID: 35923244 PMCID: PMC9343190 DOI: 10.1155/2022/6899777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022]
Abstract
Backgrounds. Long noncoding RNAs (lncRNAs) are strongly associated with the development of breast cancer (BC). As yet, the function of LINC01234 in BC remains unknown. Methods. Using biological information, the potential lncRNA, miRNA, and target gene were predicted. LINC01234 and miR-525-5p expression in BC tissues was detected using quantitative real-time reverse transcription polymerase chain reaction. Fluorescence in situ hybridization was used to determine the distribution of LINC01234. Cell proliferation was analyzed using CCK-8 assay, colony formation, terminal deoxynucleotidyl transferase dUTP nick end labeling staining, and apoptosis evaluated using flow cytometry. Western blotting was used to evaluate protein expression. Dual-luciferase® reporter, RNA pull-down, and RNA immunoprecipitation assays were performed to analyze the binding relationships among LINC01234, miR-525-5p, and cold shock domain-containing E1 (CSDE1). Results. We screened out LINC01234, found to be significantly increased in BC tissues, associated with a poor prognosis, and positively correlated with tumor size of BC. Knockdown of LINC01234 suppressed BC cell growth and facilitated apoptosis. Dual-luciferase reporter®, RNA pull-down, and RNA immunoprecipitation assays confirmed that LINC01234 and CSDE1 directly interacted with miR-525-5p. Upregulation of miR-525-5p and suppression of CSDE1 inhibited BC cell growth and induced cell apoptosis. Conclusion. Upregulation of LINC01234 contributes to the development of BC through the miR-525-5p/CSDE1 axis. LINC01234 may be one of the potential diagnostic and treatment targets for BC.
Collapse
|
8
|
Tonmoy MIQ, Fariha A, Hami I, Kar K, Reza HA, Bahadur NM, Hossain MS. Computational epigenetic landscape analysis reveals association of CACNA1G-AS1, F11-AS1, NNT-AS1, and MSC-AS1 lncRNAs in prostate cancer progression through aberrant methylation. Sci Rep 2022; 12:10260. [PMID: 35715447 PMCID: PMC9205881 DOI: 10.1038/s41598-022-13381-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 05/24/2022] [Indexed: 12/24/2022] Open
Abstract
Aberrant expression of long non-coding RNAs (lncRNAs), caused by alterations in DNA methylation, is a driving factor in several cancers. Interplay between lncRNAs’ aberrant methylation and expression in prostate cancer (PC) progression still remains largely elusive. Therefore, this study characterized the genome-wide epigenetic landscape and expression profiles of lncRNAs and their clinical impact by integrating multi-omics data implementing bioinformatics approaches. We identified 62 differentially methylated CpG-sites (DMCs) and 199 differentially expressed lncRNAs (DElncRNAs), where 32 DElncRNAs contain 32 corresponding DMCs within promoter regions. Significant negative correlation was observed between 8 DElncRNAs-DMCs pairs. 3 (cg23614229, cg23957912, and cg11052780) DMCs and 4 (CACNA1G-AS1, F11-AS1, NNT-AS1, and MSC-AS1) DElncRNAs were identified as high-risk factors for poor prognosis of PC patients. Overexpression of hypo-methylated CACNA1G-AS1, F11-AS1, and NNT-AS1 and down-regulation of hyper-methylated MSC-AS1 significantly lower the survival of PC patients and could be a potential prognostic and therapeutic biomarker. These DElncRNAs were found to be associated with several molecular functions whose deregulation can lead to cancer. Involvement of these epigenetically deregulated DElncRNAs in cancer-related biological processes was also noticed. These findings provide new insights into the understanding of lncRNA regulation by aberrant DNA methylation which will help to clarify the epigenetic mechanisms underlying PC.
Collapse
Affiliation(s)
- Mahafujul Islam Quadery Tonmoy
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh.,Computational Biology and Chemistry Lab (CBC), Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Atqiya Fariha
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh.,Computational Biology and Chemistry Lab (CBC), Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Ithmam Hami
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Kumkum Kar
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Hasan Al Reza
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Newaz Mohammed Bahadur
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh.,Computational Biology and Chemistry Lab (CBC), Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md Shahadat Hossain
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh. .,Computational Biology and Chemistry Lab (CBC), Noakhali Science and Technology University, Noakhali, Bangladesh.
| |
Collapse
|
9
|
Hu CY, Wu KY, Lin TY, Chen CC. The Crosstalk of Long Non-Coding RNA and MicroRNA in Castration-Resistant and Neuroendocrine Prostate Cancer: Their Interaction and Clinical Importance. Int J Mol Sci 2021; 23:ijms23010392. [PMID: 35008817 PMCID: PMC8745162 DOI: 10.3390/ijms23010392] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/02/2021] [Accepted: 12/28/2021] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer is featured by its heterogeneous nature, which indicates a different prognosis. Castration-resistant prostate cancer (CRPC) is a hallmark of the treatment-refractory stage, and the median survival of patients is only within two years. Neuroendocrine prostate cancer (NEPC) is an aggressive variant that arises from de novo presentation of small cell carcinoma or treatment-related transformation with a median survival of 1–2 years from the time of diagnosis. The epigenetic regulators, such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), have been proven involved in multiple pathologic mechanisms of CRPC and NEPC. LncRNAs can act as competing endogenous RNAs to sponge miRNAs that would inhibit the expression of their targets. After that, miRNAs interact with the 3’ untranslated region (UTR) of target mRNAs to repress the step of translation. These interactions may modulate gene expression and influence cancer development and progression. Otherwise, epigenetic regulators and genetic mutation also promote neuroendocrine differentiation and cancer stem-like cell formation. This step may induce neuroendocrine prostate cancer development. This review aims to provide an integrated, synthesized overview under current evidence to elucidate the crosstalk of lncRNAs with miRNAs and their influence on castration resistance or neuroendocrine differentiation of prostate cancer. Notably, we also discuss the mechanisms of lncRNA–miRNA interaction in androgen receptor-independent prostate cancer, such as growth factors, oncogenic signaling pathways, cell cycle dysregulation, and cytokines or other transmembrane proteins. Conclusively, we underscore the potential of these communications as potential therapeutic targets in the future.
Collapse
Affiliation(s)
- Che-Yuan Hu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
| | - Kuan-Yu Wu
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
| | - Tsung-Yen Lin
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
- Division of Urology, Department of Surgery, Dou-Liou Branch, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Yunlin 640, Taiwan
- Correspondence: (T.-Y.L.); (C.-C.C.); Tel.: +886-6235-3535 (ext. 5251) (T.-Y.L.); +886-5276-5041 (ext. 7521) (C.-C.C.)
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
- Correspondence: (T.-Y.L.); (C.-C.C.); Tel.: +886-6235-3535 (ext. 5251) (T.-Y.L.); +886-5276-5041 (ext. 7521) (C.-C.C.)
| |
Collapse
|
10
|
Morgan R, da Silveira WA, Kelly RC, Overton I, Allott EH, Hardiman G. Long non-coding RNAs and their potential impact on diagnosis, prognosis, and therapy in prostate cancer: racial, ethnic, and geographical considerations. Expert Rev Mol Diagn 2021; 21:1257-1271. [PMID: 34666586 DOI: 10.1080/14737159.2021.1996227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Advances in high-throughput sequencing have greatly advanced our understanding of long non-coding RNAs (lncRNAs) in a relatively short period of time. This has expanded our knowledge of cancer, particularly how lncRNAs drive many important cancer phenotypes via their regulation of gene expression. AREAS COVERED Men of African descent are disproportionately affected by PC in terms of incidence, morbidity, and mortality. LncRNAs could serve as biomarkers to differentiate low-risk from high-risk diseases. Additionally, they may represent therapeutic targets for advanced and castrate-resistant cancer. We review current research surrounding lncRNAs and their association with PC. We discuss how lncRNAs can provide new insights and diagnostic biomarkers for African American men. Finally, we review advances in computational approaches that predict the regulatory effects of lncRNAs in cancer. EXPERT OPINION PC diagnostic biomarkers that offer high specificity and sensitivity are urgently needed. PC specific lncRNAs are compelling as diagnostic biomarkers owing to their high tissue and tumor specificity and presence in bodily fluids. Recent studies indicate that PCA3 clinical utility might be restricted to men of European descent. Further work is required to develop lncRNA biomarkers tailored for men of African descent.
Collapse
Affiliation(s)
- Rebecca Morgan
- Faculty of Medicine, Health and Life Sciences, School of Biological Sciences, Queen's University Belfast, Belfast, UK.,Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, UK
| | - Willian Abraham da Silveira
- Faculty of Medicine, Health and Life Sciences, School of Biological Sciences, Queen's University Belfast, Belfast, UK.,Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, UK
| | - Ryan Christopher Kelly
- Faculty of Medicine, Health and Life Sciences, Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Ian Overton
- Faculty of Medicine, Health and Life Sciences, Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Emma H Allott
- Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, UK.,Faculty of Medicine, Health and Life Sciences, Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK.,Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Gary Hardiman
- Faculty of Medicine, Health and Life Sciences, School of Biological Sciences, Queen's University Belfast, Belfast, UK.,Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, UK.,Department of Medicine, Medical University of South Carolina (MUSC), Charleston, South Carolina
| |
Collapse
|
11
|
Lv S, Pu X, Luo M, Wen H, Xu Z, Wei Q, Dang Q. Long noncoding RNA GAS5 interacts and suppresses androgen receptor activity in prostate cancer cells. Prostate 2021; 81:893-901. [PMID: 34184786 DOI: 10.1002/pros.24186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 01/13/2023]
Abstract
The androgen receptor (AR) plays an important role in the progression of prostate cancer and is the most important therapeutic target. However, androgen deprivation therapy will finally lead patients to progress to castration-resistant prostate cancer (CRPC). Here, we confirmed that GAS5, a long noncoding RNA, could interact and suppress AR transactivation in CRPC C4-2 cells. Knockdown GAS5 by short hairpin RNA would enhance the transcription of AR via promote AR recruitment to the promoter of its downstream target genes. Functionally, GAS5 overexpression inhibits cell proliferation partially through inhibiting AR transactivation in C4-2 cells. Moreover, knocking down GAS5 protects C4-2 cells from the docetaxel-induced cell apoptosis. In return, the suppressed AR was found to downregulate the GAS5 expression, which forms a feedback loop resulted in AR high transcription activity in CRPC. Collectively, our findings revealed the important role of GAS5 in AR axis activity regulation and CRPC progression. Targeting GAS5 to intervene the feedback loop might be a new potential therapeutic approach for the patients at CRPC stage.
Collapse
Affiliation(s)
- Shidong Lv
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaochun Pu
- Sleep Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mayao Luo
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Haoran Wen
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhuofan Xu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiang Wei
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiang Dang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Zhao H, Dong H, Wang P, Zhu H. Long non-coding RNA SNHG17 enhances the aggressiveness of C4-2 human prostate cancer cells in association with β-catenin signaling. Oncol Lett 2021; 21:472. [PMID: 33907582 PMCID: PMC8063240 DOI: 10.3892/ol.2021.12733] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/04/2021] [Indexed: 01/04/2023] Open
Abstract
Long non-coding (lnc) RNAs have emerged as important regulators of cancer development and progression. Several lncRNAs have been reported to be associated with prostate cancer (PCa); however, the involvement of lncRNA SNHG17 in PCa remains unclear. In the present study, the mRNA expression level of SNHG17 in 58 pairs of PCa tumor samples and adjacent non-tumor tissues, as well as in PCa tumor cell lines was analyzed. The regulatory effect of SNHG17 on the oncogenic phenotypes of the C4-2 tumor cell line was also investigated. The clinicopathological analysis revealed that SNHG17 mRNA expression level was increased in the PCa tumor samples, and its high expression levels were associated with poor patient outcomes, indicating that SNHG17 may act as a biomarker for the prognosis of PCa. SNHG17 mRNA expression level was also increased in different PCa tumor cell lines. Functionally, SNHG17 increased C4-2 tumor cell growth and aggressiveness by stimulating tumor cell proliferation, survival, invasion and resistance to chemotherapy. Furthermore, SNHG17 promoted in vivo tumor growth in a xenograft mouse model. Notably, the SNHG17-induced in vitro and in vivo oncogenic effects were associated with activation of the β-catenin pathway. The results from the present study revealed that lncRNA SNHG17 could be an important regulator in the oncogenic properties of human PCa and may; therefore, represent a potential PCa therapeutic target.
Collapse
Affiliation(s)
- Haijun Zhao
- Department of Urology, Qingdao Municipal Hospital Affiliated to Qingdao Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Haijing Dong
- Department of Urology, Qingdao Municipal Hospital Affiliated to Qingdao Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Peng Wang
- Department of Urology, Qingdao Municipal Hospital Affiliated to Qingdao Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Hai Zhu
- Department of Urology, Qingdao Municipal Hospital Affiliated to Qingdao Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
13
|
Zhu C, He X, Chen K, Huang Z, Yao A, Tian X, You Y, Zeng M. LncRNA NBR2 aggravates hepatoblastoma cell malignancy and promotes cell proliferation under glucose starvation through the miR-22/TCF7 axis. Cell Cycle 2021; 20:575-590. [PMID: 33651649 DOI: 10.1080/15384101.2021.1885236] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hepatoblastoma (HB) is the most commonly seen pediatric liver malignancy. With frequent mutations in CTNNB1 gene that encodes β-catenin, hepatoblastoma has been considered as a Wnt/β-catenin-activated malignant tumor. Altered glucose metabolism upon nutrient deprivation (glucose starvation) might also be a critical event in hepatoblastoma carcinogenesis. The present study provides a lncRNA NBR2/miR-22/TCF7 axis modulating proliferation, invasion, migration, and apoptosis of hepatoblastoma cells upon glucose starvation through Wnt and downstream TCF7 signaling pathways. The expression of NBR2 is significantly increased within hepatoblastoma tissue samples; moreover, under incubation with 0 mM glucose (glucose starvation), NBR2 expression is significantly upregulated. NBR2 silencing not only inhibited hepatoblastoma cell viability, invasion, and migration under normal culture condition but also promoted the cell apoptosis under glucose starvation. NBR2 silencing in hepatoblastoma cells also decreased TCF7 mRNA expression and TCF7 protein levels, as well as the protein levels of the cell cycle, glucose entrapment, and EMT markers. miR-22 is directly bound to both NBR2 and TCF7; lncRNA NBR2 counteracted miR-22-mediated repression on TCF7 via acting as a ceRNA. The effects of NBR2 silencing on TCF7 expression, hepatoblastoma cell phenotype, and cell cycle, glucose entrapment, and EMT markers were all significantly reversed by miR-22 inhibition. In conclusion, lncRNA NBR2 aggravates hepatoblastoma cell malignancy through competing with TCF7 for miR-22 binding, therefore counteracting miR-22-mediated repression on TCF7. LncRNA NBR2 might be a promising target to inhibit hepatoblastoma cell proliferation under glucose starvation.
Collapse
Affiliation(s)
- Chengguang Zhu
- Department of Pediatric Hematology and Oncology, Children's Medical Center of Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Xiangling He
- Department of Pediatric Hematology and Oncology, Children's Medical Center of Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Keke Chen
- Department of Pediatric Hematology and Oncology, Children's Medical Center of Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Zhijun Huang
- Department of Pediatric Hematology and Oncology, Children's Medical Center of Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Anqi Yao
- Department of Pediatric Hematology and Oncology, Children's Medical Center of Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Xin Tian
- Department of Pediatric Hematology and Oncology, Children's Medical Center of Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Yalan You
- Department of Pediatric Hematology and Oncology, Children's Medical Center of Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Minhui Zeng
- Department of Pediatric Hematology and Oncology, Children's Medical Center of Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, China
| |
Collapse
|
14
|
Bai M, He C, Shi S, Wang M, Ma J, Yang P, Dong Y, Mou X, Han S. Linc00963 Promote Cell Proliferation and Tumor Growth in Castration-Resistant Prostate Cancer by Modulating miR-655/TRIM24 Axis. Front Oncol 2021; 11:636965. [PMID: 33643926 PMCID: PMC7905206 DOI: 10.3389/fonc.2021.636965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/06/2021] [Indexed: 02/01/2023] Open
Abstract
Previous studies have shown that both long intergenic non-coding RNA 00963 (Linc00963) and tripartite motif containing 24 (TRIM24) are activators of the PI3K/AKT pathway, and both are involved in the carcinogenesis and progression of prostate cancer. However, the regulatory mechanisms between Linc00963 and TRIM24 are still unclear. In this study, we aimed to elucidate the underlying relationship between Linc00963 and TRIM24 in castration-resistant prostate cancer (CRPC). We found that TRIM24, an established oncogene in CRPC, was positively correlated with Linc00963 in prostate cancer tissues. In addition, TRIM24 was positively regulated by Lin00963 in CRPC cells. Mechanistically, TRIM24 was the direct target of microRNA-655 (miR-655) in CRPC cells, and Linc00963 could competitively bind miR-655 and upregulate TRIM24 expression. Using gain- and loss-of- function assays and rescue assays, we identified that miR-655 inhibits TRIM24 expression and cell proliferation and colony forming ability in CRPC, and that Linc00963 promotes TRIM24 expression, cell proliferation, and colony forming ability of CRPC cells by directly suppressing miR-655 expression. We further identified that Linc00963 could promote tumor growth of CRPC cells by inhibiting miR-655 and upregulating TRIM24 axis in vivo. Taken together, our study reveals a new mechanism for the Linc00963/miR-655/TRIM24 competing endogenous RNA (ceRNA) network in accelerating cell proliferation in CRPC in vitro and in vivo, and suggests that Linc00963 could be considered a novel therapeutic target for CRPC.
Collapse
Affiliation(s)
- Minghua Bai
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Radiation Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chenchen He
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shengjia Shi
- Department of Andrology, Assisted Reproductive Technology Center, Northwest Women's and Children's Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| | - Mincong Wang
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jinlu Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pengtao Yang
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yiping Dong
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xingyi Mou
- Department of Clinical Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Suxia Han
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
15
|
Ansari I, Chaturvedi A, Chitkara D, Singh S. CRISPR/Cas mediated epigenome editing for cancer therapy. Semin Cancer Biol 2021; 83:570-583. [PMID: 33421620 DOI: 10.1016/j.semcancer.2020.12.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
The understanding of the relationship between epigenetic alterations, their effects on gene expression and the knowledge that these epigenetic alterations are reversible, have opened up new therapeutic pathways for treating various diseases, including cancer. This has led the research for a better understanding of the mechanism and pathways of carcinogenesis and provided the opportunity to develop the therapeutic approaches by targeting such pathways. Epi-drugs, DNA methyl transferase (DNMT) inhibitors and histone deacetylase (HDAC) inhibitors are the best examples of epigenetic therapies with clinical applicability. Moreover, precise genome editing technologies such as CRISPR/Cas has proven their efficacy in epigenome editing, including the alteration of epigenetic markers, such as DNA methylation or histone modification. The main disadvantage with DNA gene editing technologies is off-target DNA sequence alteration, which is not an issue with epigenetic editing. It is known that cancer is linked with epigenetic alteration, and thus CRISPR/Cas system shows potential for cancer therapy via epigenome editing. This review outlines the epigenetic therapeutic approach for cancer therapy using CRISPR/Cas, from the basic understanding of cancer epigenetics to potential applications of CRISPR/Cas in treating cancer.
Collapse
Affiliation(s)
- Imran Ansari
- Department of Pharmacy, Birla Institute of Technology and Science (BITS)-Pilani, Pilani Campus, Vidya Vihar, Pilani, 333 031, Rajasthan, India
| | | | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science (BITS)-Pilani, Pilani Campus, Vidya Vihar, Pilani, 333 031, Rajasthan, India.
| | - Saurabh Singh
- Novartis Healthcare Pvt Ltd., Hyderabad 500032, Telangana, India.
| |
Collapse
|
16
|
Rehman S, Aatif M, Rafi Z, Khan MY, Shahab U, Ahmad S, Farhan M. Effect of non-enzymatic glycosylation in the epigenetics of cancer. Semin Cancer Biol 2020; 83:543-555. [DOI: 10.1016/j.semcancer.2020.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 02/09/2023]
|
17
|
Ge S, Mi Y, Zhao X, Hu Q, Guo Y, Zhong F, Zhang Y, Xia G, Sun C. Characterization and validation of long noncoding RNAs as new candidates in prostate cancer. Cancer Cell Int 2020; 20:531. [PMID: 33292248 PMCID: PMC7603695 DOI: 10.1186/s12935-020-01615-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) have been proved to be an important regulator in gene expression. In almost all kinds of cancers, lncRNAs participated in the process of pathogenesis, invasion, and metastasis. Meanwhile, compared with the large amounts of patients, there is rare knowledge about the role of lncRNAs in prostate cancer (PCa). Material/Method In this study, lncRNA expression profiles of prostate cancer were detected by Agilent microarray chip, 5 pairs of case and control specimens were involved in. Differentially expressed lncRNAs were screened out by volcano plot for constructing lncRNA-miRNA-mRNA central network. Then, the top ten up-regulated and down-regulated lncRNAs were validated by qRT-PCR in another 5 tumor specimens and 7 para-cancerous/benign contrasts. Furthermore, we searched for the survival curve of the top 10 upregulated and downregulated lncRNAs. Results A total of 817 differentially expressed lncRNAs were filtered out by the criteria of fold change (FC) and t-test p < 0.05. Among them, 422 were upregulated, whereas 395 were downregulated in PCa tissues. Gene ontology and KEGG pathway analyses showed that many lncRNAs were implicated in carcinogenesis. lnc-MYL2-4:1 (FC = 0.00141, p = 0.01909) and NR_125857 (FC = 59.27658, p = 0.00128) had the highest magnitude of change. The subsequent qPCR confirmed the expression of NR_125857 was in accordance with the clinical samples. High expression of PCA3, PCAT14 and AP001610.9 led to high hazard ratio while low expression of RP11-279F6.2 led to high hazard ratio. Conclusions Our study detected a relatively novel complicated map of lncRNAs in PCa, which may have the potential to investigate for diagnosis, treatment and follow-up in PCa. Our study revealed the expression of NR_125857 in human PCa tissues was most up-regulated. Further studies are needed to investigate to figure out the mechanisms in PCa.
Collapse
Affiliation(s)
- Shengyang Ge
- Department of Urology, Huashan Hospital, Fudan University, 12 Central Urumqi Rd, Shanghai, 200040, P. R. China
| | - Yuanyuan Mi
- Department of Urology, Affiliated Hospital of Jiangnan University, Hefeng Rd, Wuxi, 214000, PR China
| | - Xiaojun Zhao
- Department of Clinical Immunology, Shanghai Center for Clinical Laboratory, 528 Hongshan Rd, Shanghai, 200126, P. R. China
| | - Qingfeng Hu
- Department of Urology, Huashan Hospital, Fudan University, 12 Central Urumqi Rd, Shanghai, 200040, P. R. China
| | - Yijun Guo
- Department of Urology, Jing'an District Central Hospital, Fudan University, 259 Xikang Rd, Shanghai, 200040, P. R. China
| | - Fan Zhong
- Department of Systems Biology for Medicine, and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, 130 Dongan Rd, Shanghai, P. R. China
| | - Yang Zhang
- Department of Systems Biology for Medicine, and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, 130 Dongan Rd, Shanghai, P. R. China
| | - Guowei Xia
- Department of Urology, Huashan Hospital, Fudan University, 12 Central Urumqi Rd, Shanghai, 200040, P. R. China.
| | - Chuanyu Sun
- Department of Urology, Huashan Hospital, Fudan University, 12 Central Urumqi Rd, Shanghai, 200040, P. R. China.
| |
Collapse
|
18
|
Ponferrada AR, Orriach JLG, Manso AM, Haro ES, Molina SR, Heredia AF, Lopez MB, Mañas JC. Anaesthesia and cancer: can anaesthetic drugs modify gene expression? Ecancermedicalscience 2020; 14:1080. [PMID: 32863874 PMCID: PMC7434501 DOI: 10.3332/ecancer.2020.1080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Indexed: 01/21/2023] Open
Abstract
Cancer remains a primary cause of morbidity and mortality worldwide, and its incidence continues to increase. The most common cause of death in cancer patients is tumour recurrence. Surgery is the gold standard in the treatment of most tumours. However, cancer surgery can lead to the release of tumour cells into the systemic circulation. Surgical stress and several perioperative factors have been suggested to boost tumour growth, thereby increasing the risk of metastatic recurrence. Preclinical and clinical studies suggest that anaesthetics and adjuvants administered during the perioperative period may impact cancer recurrence and survival. This document summarises the current evidence regarding the effects of anaesthetic drugs and analgesic techniques on the immune system, systemic inflammatory response and tumour cells, as well as their impact on cancer recurrence.
Collapse
Affiliation(s)
- Aida Raigon Ponferrada
- Institute of Biomedical Research in Malaga [IBIMA], Malaga 29010, Spain
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, Malaga 29010, Spain
| | - Jose Luis Guerrero Orriach
- Institute of Biomedical Research in Malaga [IBIMA], Malaga 29010, Spain
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, Malaga 29010, Spain
- Department of Pharmacology and Pediatrics, School of Medicine, University of Malaga, Malaga 29010, Spain
- Member of COST Action 15204
| | - Alfredo Malo Manso
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, Malaga 29010, Spain
| | - Enrique Sepúlveda Haro
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, Malaga 29010, Spain
| | - Salvador Romero Molina
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, Malaga 29010, Spain
| | - Ana Fontaneda Heredia
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, Malaga 29010, Spain
| | - Manolo Baena Lopez
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, Malaga 29010, Spain
| | - Jose Cruz Mañas
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, Malaga 29010, Spain
| |
Collapse
|
19
|
Shukla KK, Misra S, Sankanagoudar S, Sharma H, Choudhary GR, Pareek P, Vishnoi JR, Sharma P. Recent scenario of long non-coding RNAs as a diagnostic and prognostic biomarkers of prostate cancer. Urol Oncol 2020; 38:918-928. [PMID: 32622720 DOI: 10.1016/j.urolonc.2020.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 01/17/2023]
Abstract
Prostate cancer (CaP) is a leading cause of cancer deaths in the worldwide with broad range of clinical manifestations ranging from relatively indolent to aggressive metastasis. Altered expression of many circulating long non-coding RNAs (lncRNAs), known to have role in tumorigenesis and metastasis, have already been reported in CaP patients. These lncRNAs modulate CaP pathogenesis by modulating multiple genes and thus altering metabolic pathways. Sustained androgen receptor (AR) signaling is one such key feature of castration-resistant prostate cancer, a CaP stage that has unmet need of accurate diagnostic and prognostic tools, that is affected by lncRNAs. In this review, we have discussed the emerging functions and associations of AR lncRNAs in CaP and highlighted their potential implications in cancer diagnostics and therapeutics. Further, extensive literature analysis in this article indicates that there is an immediate unmet need in the translational approach toward the hitherto identified AR lncRNAs. The characterization of AR lncRNAs involved in CaP is not exhaustive and adequate validation studies are still required to corroborate the present results that would be the impending future of basic research setting into clinical practice.
Collapse
Affiliation(s)
- Kamla Kant Shukla
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.
| | - Sanjeev Misra
- Department of Surgical Oncology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | | | - Himanshu Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Bathinda, Punjab, India
| | - Gautam Ram Choudhary
- Department of Urology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Puneet Pareek
- Department of Radiation Oncology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Jeevan Ram Vishnoi
- Department of Surgical Oncology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| |
Collapse
|
20
|
Han Z, He J, Zou M, Chen W, Lv Y, Li Y. Small interfering RNA target for long noncoding RNA PCGEM1 increases the sensitivity of LNCaP cells to baicalein. Anat Rec (Hoboken) 2020; 303:2077-2085. [PMID: 32445497 DOI: 10.1002/ar.24454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/13/2020] [Accepted: 03/26/2020] [Indexed: 12/16/2022]
Abstract
The objective of this study is to investigate the inhibitory effect and mechanism of long noncoding RNA PCGEM1 siRNA combined with baicalein on prostate cancer LNCaP cells. LNCaP cells transfected with small hairpin RNA lentiviral vector targeting PCGEM1 were constructed and their expression in LNCaP cells was absent. The stable cell line of LNCaP cells infected with LV3-shRNA-PCGEM1 was successfully constructed. In addition, LV3-shRNA-PCGEM1 was able to increase the baicalein-induced inhibitory effects on LNCaP cells, and the susceptibility was 2.3 fold higher than that of baicalein alone. LV3-shRNA-PCGEM1 combined with baicalein also inhibited the colony formation, increased G2 and S phase cells, inhibited the expression of PCGEM1, and induced autophagy of LNCaP cells. In summary, LV3-shRNA-PCGEM1 may improve the sensitivity of LNCaP cells to baicalein, and the molecular mechanism may be associated with the decrease of PCGEM1 expression and the induction of autophagy. Our findings provided an experimental basis for the combined treatment of Chinese traditional and Western medicine on prostate cancer in a clinical setting.
Collapse
Affiliation(s)
- Zeping Han
- Department of Laboratory Medicine, Central Hospital of Panyu District, Guangzhou, Guangdong, People's Republic of China
| | - Jinhua He
- Department of Laboratory Medicine, Central Hospital of Panyu District, Guangzhou, Guangdong, People's Republic of China
| | - Maoxian Zou
- Department of Laboratory Medicine, Central Hospital of Panyu District, Guangzhou, Guangdong, People's Republic of China
| | - Weiming Chen
- Department of Laboratory Medicine, Central Hospital of Panyu District, Guangzhou, Guangdong, People's Republic of China
| | - Yubing Lv
- Department of Laboratory Medicine, Central Hospital of Panyu District, Guangzhou, Guangdong, People's Republic of China
| | - Yuguang Li
- Department of Laboratory Medicine, Central Hospital of Panyu District, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
21
|
Hu J, Deng J, Cao R, Xiong S, Guo J. LncRNA GAS5 participates in the regulation of dexamethasone on androgen receptor -negative and -positive prostate cancer cell proliferation. Mol Cell Probes 2020; 53:101607. [PMID: 32470500 DOI: 10.1016/j.mcp.2020.101607] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/15/2020] [Accepted: 05/25/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND Androgen receptor (AR) and long non-coding RNAs (lncRNA) play important roles in the initiation and progression of prostate cancer (PCa). The present study was designed to investigate whether lncRNA growth arrest-specific 5 (GAS5) is involved in the regulation of dexamethasone on the proliferation of AR+ PCa and AR- PCa cell lines. METHODS Cell proliferation and cell cycle distribution were assessed using MTT assay and flow cytometry, respectively. GAS5 expression was examined by quantitative real-time PCR. AR protein level was examined by Western blot. RNA immunoprecipitation and RNA pull-down were performed to analyze the binding of GAS5 to AR. RESULTS In AR- PCa cell line PC3, dexamethasone upregulated GAS5 expression, induced cell cycle arrest in the G0/G1 phase and inhibited cell proliferation, which were enhanced by GAS5 overexpression and attenuated by GAS5 silencing. However, in AR+ PCa cell line 22Rv1, dexamethasone had no obvious effects on GAS5 expression, cell cycle distribution and cell proliferation. AR was localized in the cytoplasm and bound to GAS5, counteracting the proliferation-inhibitory effect of GAS5. CONCLUSION Taken together, GAS5 participates in the regulation of dexamethasone on the proliferation of AR+ PCa and AR- PCa cell lines.
Collapse
Affiliation(s)
- Jieping Hu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Jun Deng
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Runfu Cao
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Shida Xiong
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Ju Guo
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Although extensively studied for over a decade, gene expression programs established at the epigenetic and/or transcriptional levels do not fully characterize cancer stem cells (CSC). This review will highlight the latest advances regarding the functional relevance of different key post-transcriptional regulations and how they are coordinated to control CSC homeostasis. RECENT FINDINGS In the past 2 years, several groups have identified master post-transcriptional regulators of CSC genetic programs, including RNA modifications, RNA-binding proteins, microRNAs and long noncoding RNAs. Of particular interest, these studies reveal that different post-transcriptional mechanisms are coordinated to control key signalling pathways and transcription factors to either support or suppress CSC homeostasis. SUMMARY Deciphering molecular mechanisms coordinating plasticity, survival and tumourigenic capacities of CSCs in adult and paediatric cancers is essential to design new antitumour therapies. An entire field of research focusing on post-transcriptional gene expression regulation is currently emerging and will significantly improve our understanding of the complexity of the molecular circuitries driving CSC behaviours and of druggable CSC weaknesses.
Collapse
|
23
|
Zhang Y, Zhang P, Chen L, Zhao L, Zhu J, Zhu T. The Long Non-Coding RNA-14327.1 Promotes Migration and Invasion Potential of Endometrial Carcinoma Cells by Stabilizing the Potassium Channel Kca3.1. Onco Targets Ther 2019; 12:10287-10297. [PMID: 31819513 PMCID: PMC6885566 DOI: 10.2147/ott.s226737] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 11/05/2019] [Indexed: 12/28/2022] Open
Abstract
Background The intermediate-conductance Ca2+-activated potassium channel (Kca3.1) plays a key role in maintaining intracellular Ca2+ homeostasis and is involved with the carcinogenesis of many human tumors including endometrial carcinoma. However, the underlying mechanism is still remained to be further elucidated. Methods The relationship between Kca3.1 and the clinicopathological characteristics of endometrial carcinoma was analyzed using UALCAN cancer database, and its expression was determined by immunohistochemistry. The Kca3.1 binding candidate lncRNAs were screened using RNA immunoprecipitation sequencing assay in the endometrial carcinoma cell line. MTT assay and transwell assay were used to confirm the cell proliferation migration and invasion, respectively. FACS was used to determine the cell cycle distribution. The overexpression efficiency of the lncRNAs was detected by qRT-PCR. The expression of EMT related proteins and the stability of Kca3.1 were analyzed by Western blot assay. Results Kca3.1 is related to clinicopathological characteristics of endometrial carcinoma, such as tumor stages. Several Kca3.1 binding lncRNAs were obtained from RNA immunoprecipitation sequencing assay. Stable expression of lncRNA-14327.1, one of the candidate lncRNAs, led to significant upregulation of Kca3.1 protein level, cell migration and invasion abilities, but suppressed cell proliferation and induced cell cycle arrest. Additionally, our data also demonstrated that Lenti-lncRNA-14327.1 could stabilize the protein of Kca3.1 and subsequently increase intracellular Ca2+ concentration. Transfection of siRNA-Kca3.1 significantly inhibited cell migration and invasion, and attenuated the EMT in Lenti-lncRNA-14327.1 stably expressed endometrial carcinoma cells. Conclusion Taken together, our results demonstrated that the lncRNA-14327.1 promoted cell migration and invasion potential of endometrial carcinoma cells by stabilizing Kca3.1 protein, implying that the lncRNA-14327.1/Kca3.1 might be a promising therapeutic target in endometrial carcinoma, particularly the metastatic one.
Collapse
Affiliation(s)
- Yingli Zhang
- Department of Gynecologic Oncology, Zhejiang Cancer Hospital, Hangzhou 310022, People's Republic of China
| | - Ping Zhang
- Department of Gynecologic Oncology, Zhejiang Cancer Hospital, Hangzhou 310022, People's Republic of China
| | - Lu Chen
- Department of Gynecologic Oncology, Zhejiang Cancer Hospital, Hangzhou 310022, People's Republic of China
| | - Lingqin Zhao
- Department of Gynecologic Oncology, Zhejiang Cancer Hospital, Hangzhou 310022, People's Republic of China
| | - Jianqing Zhu
- Department of Gynecologic Oncology, Zhejiang Cancer Hospital, Hangzhou 310022, People's Republic of China
| | - Tao Zhu
- Department of Gynecologic Oncology, Zhejiang Cancer Hospital, Hangzhou 310022, People's Republic of China
| |
Collapse
|
24
|
Ramteke P, Deb A, Shepal V, Bhat MK. Hyperglycemia Associated Metabolic and Molecular Alterations in Cancer Risk, Progression, Treatment, and Mortality. Cancers (Basel) 2019; 11:E1402. [PMID: 31546918 PMCID: PMC6770430 DOI: 10.3390/cancers11091402] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer and diabetes are amongst the leading causes of deaths worldwide. There is an alarming rise in cancer incidences and mortality, with approximately 18.1 million new cases and 9.6 million deaths in 2018. A major contributory but neglected factor for risk of neoplastic transformation is hyperglycemia. Epidemiologically too, lifestyle patterns resulting in high blood glucose level, with or without the role of insulin, are more often correlated with cancer risk, progression, and mortality. The two conditions recurrently exist in comorbidity, and their interplay has rendered treatment regimens more challenging by restricting the choice of drugs, affecting surgical consequences, and having associated fatal complications. Limited comprehensive literature is available on their correlation, and a lack of clarity in understanding in such comorbid conditions contributes to higher mortality rates. Hence, a critical analysis of the elements responsible for enhanced mortality due to hyperglycemia-cancer concomitance is warranted. Given the lifestyle changes in the human population, increasing metabolic disorders, and glucose addiction of cancer cells, hyperglycemia related complications in cancer underline the necessity for further in-depth investigations. This review, therefore, attempts to shed light upon hyperglycemia associated factors in the risk, progression, mortality, and treatment of cancer to highlight important mechanisms and potential therapeutic targets.
Collapse
Affiliation(s)
- Pranay Ramteke
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune-411 007, India.
| | - Ankita Deb
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune-411 007, India.
| | - Varsha Shepal
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune-411 007, India.
| | - Manoj Kumar Bhat
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune-411 007, India.
| |
Collapse
|
25
|
Naizhaer G, Kuerban A, Meilipa, Kuerban R, Zhou P. Up-regulation of lncRNA FALEC indicates prognosis and diagnosis values in cervical cancer. Pathol Res Pract 2019; 215:152495. [PMID: 31248657 DOI: 10.1016/j.prp.2019.152495] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/25/2019] [Accepted: 06/08/2019] [Indexed: 12/25/2022]
Abstract
We examined the expression level of focally amplified lncRNA on chromosome 1 (FALEC) in cervical cancer patients and explore its clinical value in diagnosis and prognosis of cervical cancer. FALEC was significantly up-regulated in the blood plasma from cervical cancer patients and had significant correlation with tumor size, the FIGO stage, and lymph node metastasis. Furthermore, FALEC overexpression could stimulate proliferation and invasion of Hela cells. FALEC was a potential molecular marker used to diagnose cervical cancer and evaluate prognosis.
Collapse
Affiliation(s)
- Gulimire Naizhaer
- Department of Three gynecology Affiliated Tumor Hospital, Xinjiang Medical University, Urumqi City, Xinjiang, 830011, PR China
| | - Ayixibuwei Kuerban
- Department of Physical examination and health management Affiliated Tumor Hospital, Xinjiang Medical University, Urumqi City, Xinjiang, 830011, PR China
| | - Meilipa
- Department of Three gynecology Affiliated Tumor Hospital, Xinjiang Medical University, Urumqi City, Xinjiang, 830011, PR China
| | - Reziya Kuerban
- Department of outpatient Affiliated Tumor Hospital, Xinjiang Medical University, Urumqi, 830011, PR China
| | - Ping Zhou
- Department of Three gynecology Affiliated Tumor Hospital, Xinjiang Medical University, Urumqi City, Xinjiang, 830011, PR China.
| |
Collapse
|
26
|
LncRNA DANCR contributes to tumor progression via targetting miR-216a-5p in breast cancer: lncRNA DANCR contributes to tumor progression. Biosci Rep 2019; 39:BSR20181618. [PMID: 30910842 PMCID: PMC6481242 DOI: 10.1042/bsr20181618] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/29/2019] [Accepted: 03/15/2019] [Indexed: 12/31/2022] Open
Abstract
Breast cancer, the most frequently occurring malignant tumor, has high mortality rate, especially triple-negative breast cancer (TNBC). LncRNA-differentiation antagonizing non-protein coding RNA (lncRNA DANCR) has been found that its aberrant expression was associated with tumor progression and it was promising to be a potential target for cancer therapy. The goal of the present study was to explore the biological effects and underlying mechanism of DANCR in breast cancer. Our results showed that DANCR was up-regulated in TNBC tissues and breast cancer cells compared with normal breast tissues and cells, and higher DANCR level suggested poorer prognosis, implying that it was promising to be a novel biomarker used for TNBC diagnosis and prognosis. To better research the functions and mechanism of DANCR on breast cancer cells, we selected two cell lines used for next study: one TNBC cell line–MDA-MB-231 and one ER-positive breast cancer cell line–MCF-7. Further study indicated that DANCR overexpression significantly promoted cell proliferation and invasion in vitro and contributed to tumor growth in vivo. To deeply understand its molecular mechanism, miRNA-216a-5p was identified as a target of DANCR by bioinformatic analysis. Experiments demonstrated that miRNA-216a-5p interacted with DANCR and its inhibitor could weaken the influences induced by DANCR knockdown for cancer cells, including cell proliferation and invasion, and the expression of Nanog, SOX2, and OCT4. Therefore, DANCR might act as a tumor promoter by targetting miRNA-216a-5p, which might provide a potential therapy target for breast cancer treatment.
Collapse
|
27
|
Lin HY, Callan CY, Fang Z, Tung HY, Park JY. Interactions of PVT1 and CASC11 on Prostate Cancer Risk in African Americans. Cancer Epidemiol Biomarkers Prev 2019; 28:1067-1075. [PMID: 30914434 DOI: 10.1158/1055-9965.epi-18-1092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/09/2019] [Accepted: 03/21/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND African American (AA) men have a higher risk of developing prostate cancer than white men. SNPs are known to play an important role in developing prostate cancer. The impact of PVT1 and its neighborhood genes (CASC11 and MYC) on prostate cancer risk are getting more attention recently. The interactions among these three genes associated with prostate cancer risk are understudied, especially for AA men. The objective of this study is to investigate SNP-SNP interactions in the CASC11-MYC-PVT1 region associated with prostate cancer risk in AA men. METHODS We evaluated 205 SNPs using the 2,253 prostate cancer patients and 2,423 controls and applied multiphase (discovery-validation) design. In addition to SNP individual effects, SNP-SNP interactions were evaluated using the SNP Interaction Pattern Identifier, which assesses 45 patterns. RESULTS Three SNPs (rs9642880, rs16902359, and rs12680047) and 79 SNP-SNP pairs were significantly associated with prostate cancer risk. These two SNPs (rs16902359 and rs9642880) in CASC11 interacted frequently with other SNPs with 56 and 9 pairs, respectively. We identified the novel interaction of CASC11-PVT1, which is the most common gene interaction (70%) in the top 79 pairs. Several top SNP interactions have a moderate to large effect size (OR, 0.27-0.68) and have a higher prediction power to prostate cancer risk than SNP individual effects. CONCLUSIONS Novel SNP-SNP interactions in the CASC11-MYC-PVT1 region have a larger impact than SNP individual effects on prostate cancer risk in AA men. IMPACT This gene-gene interaction between CASC11 and PVT1 can provide valuable information to reveal potential biological mechanisms of prostate cancer development.
Collapse
Affiliation(s)
- Hui-Yi Lin
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, Louisiana.
| | - Catherine Y Callan
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Zhide Fang
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Heng-Yuan Tung
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Jong Y Park
- Department of Cancer Epidemiology, Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
28
|
Chatterjee M, Sengupta S. Emerging roles of long non-coding RNAs in cancer. J Biosci 2019; 44:22. [PMID: 30837373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cancer is a physiological condition that has both the endogenous and exogenous influences on its progression. It originates from unusual cell growth, where the cells undergo massive genetic alterations, bypass the signaling machinery and compromise its genetic cohesion. Literature has well narrated the DNA damage studies including driver mutations that interfere with the treatment strategies. However, with evolving medical excellence, recent day studies are trying to unveil the contribution of RNAs in the progression of tumor malignancies. A number of non-coding RNAs have been identified as an active component in cancer genomics. This article aims to review the role of long non-coding RNAs in the spectra of cancers and its prognostic value as the biomarkers in molecular targeting with clinical utility and therapeutic beneficence.
Collapse
Affiliation(s)
- Manjima Chatterjee
- School of BioSciences and Technology, VIT University, Vellore 632 014, India
| | | |
Collapse
|
29
|
Affiliation(s)
- Mi-Young Kim
- Department of Biological Sciences, Cancer Metastasis Control Center, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea.,KAIST Institute for the BioCentury, Cancer Metastasis Control Center, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea
| |
Collapse
|
30
|
|
31
|
Farhan M, Aatif M, Dandawate P, Ahmad A. Non-coding RNAs as Mediators of Tamoxifen Resistance in Breast Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1152:229-241. [DOI: 10.1007/978-3-030-20301-6_11] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Chen F, Li Y, Li M, Wang L. Long noncoding RNA GAS5 inhibits metastasis by targeting miR-182/ANGPTL1 in hepatocellular carcinoma. Am J Cancer Res 2019; 9:108-121. [PMID: 30755815 PMCID: PMC6356919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023] Open
Abstract
Intrahepatic and extrahepatic metastases are responsible for the majority of hepatocellular carcinoma (HCC)-related mortalities. Long noncoding RNAs (lncRNAs) exert important functions in modulating various tumor behaviors. However, the functions and mechanisms of lncRNAs in HCC metastasis remain largely unknown. In this study, downregulation of lncRNA growth arrest-specific 5 (GAS5) was observed in HCC tissues and cells, and predicted poor prognosis of patients with HCC. Through performing gain- and loss-of-function experiments, we found that GAS5 could obviously inhibit migration and invasion of HCC cells in vitro, and suppress tumor metastasis in vivo. Mechanistically, GAS5 functioned as a tumor suppressor in HCC metastasis through directly interacting with miR-182 and abrogating its oncogenic function in this setting. Moreover, GAS5 acted as a competing endogenous RNA (ceRNA) for miR-182 to upregulate the expression of anti-metastasis protein ANGPTL1. Finally, we demonstrated that using ultrasound targeted microbubble destruction (UTMD)-mediated GAS5 transfection could significantly decrease migratory and invasive abilities of HCC cells. Collectively, our study first reveals the mechanism of GAS5/miR-182/ANGPTL1 axis in suppressing HCC metastasis, which provides promising new avenues for therapeutic intervention against HCC progression.
Collapse
Affiliation(s)
- Fei Chen
- Department of Ultrasound, The First Affiliated Hospital of Jinzhou Medical UniversityJinzhou 121001, Liaoning Province, China
| | - Yuhong Li
- Department of Ultrasound, The First Affiliated Hospital of Jinzhou Medical UniversityJinzhou 121001, Liaoning Province, China
| | - Meijun Li
- Medicine Department, The Third Affiliated Hospital of Jinzhou Medical UniversityJinzhou 121001, Liaoning Province, China
| | - Liang Wang
- Hepatobiliary Surgery, The First Affiliated Hospital of Jinzhou Medical UniversityJinzhou 121001, Liaoning Province, China
| |
Collapse
|