1
|
Soupir AC, Hayes MT, Peak TC, Ospina O, Chakiryan NH, Berglund AE, Stewart PA, Nguyen J, Segura CM, Francis NL, Echevarria PMR, Chahoud J, Li R, Tsai KY, Balasi JA, Peres YC, Dhillon J, Martinez LA, Gloria WE, Schurman N, Kim S, Gregory M, Mulé J, Fridley BL, Manley BJ. Increased spatial coupling of integrin and collagen IV in the immunoresistant clear-cell renal-cell carcinoma tumor microenvironment. Genome Biol 2024; 25:308. [PMID: 39639369 PMCID: PMC11622564 DOI: 10.1186/s13059-024-03435-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Immunotherapy has improved survival for patients with advanced clear cell renal cell carcinoma (ccRCC), but resistance to therapy develops in most patients. We use cellular-resolution spatial transcriptomics in patients with immunotherapy naïve and exposed primary ccRCC tumors to better understand immunotherapy resistance. RESULTS Spatial molecular imaging of tumor and adjacent stroma samples from 21 tumors suggests that viable tumors following immunotherapy harbor more stromal CD8 + T cells and neutrophils than immunotherapy naïve tumors. YES1 is significantly upregulated in immunotherapy exposed tumor cells. Spatial GSEA shows that the epithelial-mesenchymal transition pathway is spatially enriched and the associated ligand-receptor transcript pair COL4A1-ITGAV has significantly higher autocorrelation in the stroma after exposure to immunotherapy. More integrin αV + cells are observed in immunotherapy exposed stroma on multiplex immunofluorescence validation. Compared to other cancers in TCGA, ccRCC tumors have the highest expression of both COL4A1 and ITGAV. Assessing bulk RNA expression and proteomic correlates in CPTAC databases reveals that collagen IV protein is more abundant in advanced stages of disease. CONCLUSIONS Spatial transcriptomics of samples of 3 patient cohorts with cRCC tumors indicates that COL4A1 and ITGAV are more autocorrelated in immunotherapy-exposed stroma compared to immunotherapy-naïve tumors, with high expression among fibroblasts, tumor cells, and endothelium. Further research is needed to understand changes in the ccRCC tumor immune microenvironment and explore potential therapeutic role of integrin after immunotherapy treatment.
Collapse
Affiliation(s)
- Alex C Soupir
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, 33612, USA
- Department of Genitourinary Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Mitchell T Hayes
- Department of Genitourinary Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Taylor C Peak
- Department of Genitourinary Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Oscar Ospina
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Nicholas H Chakiryan
- Department of Urology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Anders E Berglund
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Paul A Stewart
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Jonathan Nguyen
- Department of Pathology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | | | | | | | - Jad Chahoud
- Department of Genitourinary Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Roger Li
- Department of Genitourinary Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Kenneth Y Tsai
- Department of Pathology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Jodi A Balasi
- Department of Pathology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | | | - Jasreman Dhillon
- Department of Pathology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | | | - Warren E Gloria
- Department of Pathology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | | | - Sean Kim
- NanoString, Seattle, WA, 98109, USA
| | | | - James Mulé
- Department of Immunology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Brooke L Fridley
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, 33612, USA
- Division of Health Services and Outcomes Research, Children's Mercy Hospital, Kansas, MO, USA
| | - Brandon J Manley
- Department of Genitourinary Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA.
| |
Collapse
|
2
|
Yin Z, You B, Bai Y, Zhao Y, Liao S, Sun Y, Wu Y. Natural Compounds Derived from Plants on Prevention and Treatment of Renal Cell Carcinoma: A Literature Review. Adv Biol (Weinh) 2024; 8:e2300025. [PMID: 37607316 DOI: 10.1002/adbi.202300025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/04/2023] [Indexed: 08/24/2023]
Abstract
Renal cell carcinoma (RCC) accounts for roughly 85% of all malignant kidney cancer. Therapeutic options for RCC have expanded rapidly over the past decade. Targeted therapy and immunotherapy have ushered in a new era of the treatment of RCC, which has facilitated the outcomes of RCC. However, the related adverse effects and drug resistance remain an urgent issue. Natural compounds are optional strategies to reduce mobility. Natural compounds are favored by clinicians and researchers due to their good tolerance and low economic burden. Many studies have explored the anti-RCC activity of natural products and revealed relevant mechanisms. In this article, the chemoprevention and therapeutic potential of natural compounds is reviewed and the mechanisms regarding natural compounds are explored.
Collapse
Affiliation(s)
- Zhenjie Yin
- Department of Urology, Affiliated Sanming First Hospital, Fujian Medical University, Sanming, Fujian, 365001, P. R. China
| | - Bingyong You
- Department of Urology, Affiliated Sanming First Hospital, Fujian Medical University, Sanming, Fujian, 365001, P. R. China
| | - Yuanyuan Bai
- Department of Urology, Affiliated Sanming First Hospital, Fujian Medical University, Sanming, Fujian, 365001, P. R. China
| | - Yu Zhao
- Department of Medical and Radiation Oncology, Affiliated Sanming First Hospital, Fujian Medical University, Sanming, Fujian, 365001, P. R. China
| | - Shangfan Liao
- Department of Urology, Affiliated Sanming First Hospital, Fujian Medical University, Sanming, Fujian, 365001, P. R. China
| | - Yingming Sun
- Department of Medical and Radiation Oncology, Affiliated Sanming First Hospital, Fujian Medical University, Sanming, Fujian, 365001, P. R. China
| | - Yongyang Wu
- Department of Urology, Affiliated Sanming First Hospital, Fujian Medical University, Sanming, Fujian, 365001, P. R. China
| |
Collapse
|
3
|
Soupir AC, Hayes MT, Peak TC, Ospina O, Chakiryan NH, Berglund AE, Stewart PA, Nguyen J, Segura CM, Francis NL, Echevarria PMR, Chahoud J, Li R, Tsai KY, Balasi JA, Peres YC, Dhillon J, Martinez LA, Gloria WE, Schurman N, Kim S, Gregory M, Mulé J, Fridley BL, Manley BJ. Increased spatial coupling of integrin and collagen IV in the immunoresistant clear cell renal cell carcinoma tumor microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.16.567457. [PMID: 38014063 PMCID: PMC10680839 DOI: 10.1101/2023.11.16.567457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Background Immunotherapy (IO) has improved survival for patients with advanced clear cell renal cell carcinoma (ccRCC), but resistance to therapy develops in most patients. We use cellular-resolution spatial transcriptomics in patients with IO naïve and IO exposed primary ccRCC tumors to better understand IO resistance. Spatial molecular imaging (SMI) was obtained for tumor and adjacent stroma samples. Spatial gene set enrichment analysis (GSEA) and autocorrelation (coupling with high expression) of ligand-receptor transcript pairs were assessed. Multiplex immunofluorescence (mIF) validation was used for significant autocorrelative findings and the cancer genome atlas (TCGA) and the clinical proteomic tumor analysis consortium (CPTAC) databases were queried to assess bulk RNA expression and proteomic correlates. Results 21 patient samples underwent SMI. Viable tumors following IO harbored more stromal CD8+ T cells and neutrophils than IO naïve tumors. YES1 was significantly upregulated in IO exposed tumor cells. The epithelial-mesenchymal transition pathway was enriched on spatial GSEA and the associated transcript pair COL4A1-ITGAV had significantly higher autocorrelation in the stroma. Fibroblasts, tumor cells, and endothelium had the relative highest expression. More integrin αV+ cells were seen in IO exposed stroma on mIF validation. Compared to other cancers in TCGA, ccRCC tumors have the highest expression of both COL4A1 and ITGAV. In CPTAC, collagen IV protein was more abundant in advanced stages of disease. Conclusions On spatial transcriptomics, COL4A1 and ITGAV were more autocorrelated in IO-exposed stroma compared to IO-naïve tumors, with high expression amongst fibroblasts, tumor cells, and endothelium. Integrin represents a potential therapeutic target in IO treated ccRCC.
Collapse
Affiliation(s)
- Alex C Soupir
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL 33612
| | - Mitchell T Hayes
- Department of Genitourinary Oncology, Moffitt Cancer Center, Tampa, FL 33612
| | - Taylor C Peak
- Department of Genitourinary Oncology, Moffitt Cancer Center, Tampa, FL 33612
| | - Oscar Ospina
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL 33612
| | - Nicholas H Chakiryan
- Knight Cancer Center, Translation Oncology Program, Oregon Health & Science University, Portland, OR 97239
| | - Anders E Berglund
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL 33612
| | - Paul A Stewart
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL 33612
| | - Jonathan Nguyen
- Department of Pathology, Moffitt Cancer Center, Tampa, FL 33612
| | | | | | | | - Jad Chahoud
- Department of Genitourinary Oncology, Moffitt Cancer Center, Tampa, FL 33612
| | - Roger Li
- Department of Genitourinary Oncology, Moffitt Cancer Center, Tampa, FL 33612
| | - Kenneth Y. Tsai
- Department of Pathology, Moffitt Cancer Center, Tampa, FL 33612
| | - Jodi A. Balasi
- Department of Pathology, Moffitt Cancer Center, Tampa, FL 33612
| | | | | | | | | | | | | | | | - James Mulé
- Department of Immunology, Moffitt Cancer Center, Tampa, FL 33612
| | - Brooke L Fridley
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL 33612
| | - Brandon J Manley
- Department of Genitourinary Oncology, Moffitt Cancer Center, Tampa, FL 33612
| |
Collapse
|
4
|
Zhou X, Zhu H, Luo C, Xiao H, Zou X, Zou J, Zhang G. Targeting integrin α5β1 in urological tumors: opportunities and challenges. Front Oncol 2023; 13:1165073. [PMID: 37483505 PMCID: PMC10358839 DOI: 10.3389/fonc.2023.1165073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
Urological tumors, such as prostate cancer, renal cell carcinoma, and bladder cancer, have shown a significant rise in prevalence in recent years and account for a significant proportion of malignant tumors. It has been established that metastasis to distant organs caused by urological tumors is the main cause of death, although the mechanisms underlying metastasis have not been fully elucidated. The fibronectin receptor integrin α5β1 reportedly plays an important role in distant metastasis and is closely related to tumor development. It is widely thought to be an important cancer mediator by interacting with different ligands, mediating tumor adhesion, invasion, and migration, and leading to immune escape. In this paper, we expound on the relationship and regulatory mechanisms of integrin α5β1 in these three cancers. In addition, the clinical applications of integrin α5β1 in these cancers, especially against treatment resistance, are discussed. Last but not least, the possibility of integrin α5β1 as a potential target for treatment is examined, with new ideas for future research being proposed.
Collapse
Affiliation(s)
- Xuming Zhou
- The First Clinical College, Gannan Medical University, Ganzhou, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Hezhen Zhu
- The First Clinical College, Gannan Medical University, Ganzhou, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Cong Luo
- The First Clinical College, Gannan Medical University, Ganzhou, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Huan Xiao
- The First Clinical College, Gannan Medical University, Ganzhou, China
| | - Xiaofeng Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, China
| | - Junrong Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, China
| | - Guoxi Zhang
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, China
| |
Collapse
|
5
|
Takeshita N, Takano-Yamamoto T. Analysis of Chemotactic Property of CCN2/CTGF in Intramembranous Osteogenesis. Methods Mol Biol 2023; 2582:237-253. [PMID: 36370354 DOI: 10.1007/978-1-0716-2744-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chemotaxis is a directed migration of cells in response to a gradient of extracellular molecules called chemoattractants. Development, growth, remodeling, and fracture healing of bones are advanced through intramembranous osteogenesis. Chemotaxis of preosteoblasts toward future bone formation sites observed in the early stage of intramembranous osteogenesis is a critical cellular process for normal bone formation. However, molecular biological mechanisms of the chemotaxis of preosteoblasts are not fully understood. We have recently clarified, for the first time, the critical role of the cellular communication network factor 2 (CCN2)/connective tissue growth factor (CTGF)-integrin α5-Ras axis for chemotaxis of preosteoblasts during new bone formation through intramembranous osteogenesis. In this chapter, we describe in detail the procedures of the in vivo and in vitro assays to investigate the chemotactic property of CCN2/CTGF and its underlying molecular biological mechanisms during intramembranous osteogenesis.
Collapse
Affiliation(s)
- Nobuo Takeshita
- Section of Orthodontics and Dentofacial Orthopedics, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, Japan
| | - Teruko Takano-Yamamoto
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, Japan.
- Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.
| |
Collapse
|
6
|
Xiang Y, Zheng G, Zhong J, Sheng J, Qin H. Advances in Renal Cell Carcinoma Drug Resistance Models. Front Oncol 2022; 12:870396. [PMID: 35619895 PMCID: PMC9128023 DOI: 10.3389/fonc.2022.870396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most common form of kidney cancer. Systemic therapy is the preferred method to eliminate residual cancer cells after surgery and prolong the survival of patients with inoperable RCC. A variety of molecular targeted and immunological therapies have been developed to improve the survival rate and prognosis of RCC patients based on their chemotherapy-resistant properties. However, owing to tumor heterogeneity and drug resistance, targeted and immunological therapies lack complete and durable anti-tumor responses; therefore, understanding the mechanisms of systemic therapy resistance and improving clinical curative effects in the treatment of RCC remain challenging. In vitro models with traditional RCC cell lines or primary cell culture, as well as in vivo models with cell or patient-derived xenografts, are used to explore the drug resistance mechanisms of RCC and screen new targeted therapeutic drugs. Here, we review the established methods and applications of in vivo and in vitro RCC drug resistance models, with the aim of improving our understanding of its resistance mechanisms, increasing the efficacy of combination medications, and providing a theoretical foundation for the development and application of new drugs, drug screening, and treatment guidelines for RCC patients.
Collapse
Affiliation(s)
- Yien Xiang
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, China
| | - Ge Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, China
| | - Jianfeng Zhong
- Department of Clinical Laboratory, Second Hospital of Jilin University, Changchun, China
| | - Jiyao Sheng
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, China
| | - Hanjiao Qin
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Markowitsch SD, Vakhrusheva O, Schupp P, Akele Y, Kitanovic J, Slade KS, Efferth T, Thomas A, Tsaur I, Mager R, Haferkamp A, Juengel E. Shikonin Inhibits Cell Growth of Sunitinib-Resistant Renal Cell Carcinoma by Activating the Necrosome Complex and Inhibiting the AKT/mTOR Signaling Pathway. Cancers (Basel) 2022; 14:cancers14051114. [PMID: 35267423 PMCID: PMC8909272 DOI: 10.3390/cancers14051114] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Therapy resistance remains a major challenge in treating advanced renal cell carcinoma (RCC), making more effective treatment strategies crucial. Shikonin (SHI) from traditional Chinese medicine has exhibited antitumor properties in several tumor entities. We, therefore, currently investigated SHI's impact on progressive growth and metastatic behavior in therapy-sensitive (parental) and therapy-resistant Caki-1, 786-O, KTCTL-26, and A498 RCC cells. Tumor cell growth, proliferation, clonogenic capacity, cell cycle phase distribution, induction of cell death (apoptosis and necroptosis), and the expression and activity of regulating and signaling proteins were evaluated. Moreover, the adhesion and chemotactic activity of the RCC cells after exposure to SHI were investigated. SHI significantly inhibited the growth, proliferation, and clone formation in parental and sunitinib-resistant RCC cells by G2/M phase arrest through down-regulation of cell cycle activating proteins. Furthermore, SHI induced apoptosis and necroptosis by activating necrosome complex proteins. Concomitantly, SHI impaired the AKT/mTOR pathway. Adhesion and motility were cell line specifically affected by SHI. Thus, SHI may hold promise as an additive option in treating patients with advanced and therapy-resistant RCC.
Collapse
Affiliation(s)
- Sascha D. Markowitsch
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (S.D.M.); (O.V.); (P.S.); (Y.A.); (J.K.); (K.S.S.); (A.T.); (I.T.); (R.M.); (A.H.)
| | - Olesya Vakhrusheva
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (S.D.M.); (O.V.); (P.S.); (Y.A.); (J.K.); (K.S.S.); (A.T.); (I.T.); (R.M.); (A.H.)
| | - Patricia Schupp
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (S.D.M.); (O.V.); (P.S.); (Y.A.); (J.K.); (K.S.S.); (A.T.); (I.T.); (R.M.); (A.H.)
| | - Yasminn Akele
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (S.D.M.); (O.V.); (P.S.); (Y.A.); (J.K.); (K.S.S.); (A.T.); (I.T.); (R.M.); (A.H.)
| | - Jovana Kitanovic
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (S.D.M.); (O.V.); (P.S.); (Y.A.); (J.K.); (K.S.S.); (A.T.); (I.T.); (R.M.); (A.H.)
| | - Kimberly S. Slade
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (S.D.M.); (O.V.); (P.S.); (Y.A.); (J.K.); (K.S.S.); (A.T.); (I.T.); (R.M.); (A.H.)
| | - Thomas Efferth
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, 55128 Mainz, Germany;
| | - Anita Thomas
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (S.D.M.); (O.V.); (P.S.); (Y.A.); (J.K.); (K.S.S.); (A.T.); (I.T.); (R.M.); (A.H.)
| | - Igor Tsaur
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (S.D.M.); (O.V.); (P.S.); (Y.A.); (J.K.); (K.S.S.); (A.T.); (I.T.); (R.M.); (A.H.)
| | - René Mager
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (S.D.M.); (O.V.); (P.S.); (Y.A.); (J.K.); (K.S.S.); (A.T.); (I.T.); (R.M.); (A.H.)
| | - Axel Haferkamp
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (S.D.M.); (O.V.); (P.S.); (Y.A.); (J.K.); (K.S.S.); (A.T.); (I.T.); (R.M.); (A.H.)
| | - Eva Juengel
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (S.D.M.); (O.V.); (P.S.); (Y.A.); (J.K.); (K.S.S.); (A.T.); (I.T.); (R.M.); (A.H.)
- Correspondence: ; Tel.: +49-6131-17-5433; Fax: +49-6131-17-4410
| |
Collapse
|
8
|
Jiang W, Takeshita N, Maeda T, Sogi C, Oyanagi T, Kimura S, Yoshida M, Sasaki K, Ito A, Takano-Yamamoto T. Connective tissue growth factor promotes chemotaxis of preosteoblasts through integrin α5 and Ras during tensile force-induced intramembranous osteogenesis. Sci Rep 2021; 11:2368. [PMID: 33504916 PMCID: PMC7841149 DOI: 10.1038/s41598-021-82246-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
In vertebrates, new bone formation via intramembranous osteogenesis is a critical biological event for development, remodeling, and fracture healing of bones. Chemotaxis of osteoblast lineage cells is an essential cellular process in new bone formation. Connective tissue growth factor (CTGF) is known to exert chemotactic properties on various cells; however, details of CTGF function in the chemotaxis of osteoblast lineage cells and underlying molecular biological mechanisms have not been clarified. The aim of the present study was to evaluate the chemotactic properties of CTGF and its underlying mechanisms during active bone formation through intramembranous osteogenesis. In our mouse tensile force-induced bone formation model, preosteoblasts were aggregated at the osteogenic front of calvarial bones. CTGF was expressed at the osteogenic front, and functional inhibition of CTGF using a neutralizing antibody suppressed the aggregation of preosteoblasts. In vitro experiments using μ-slide chemotaxis chambers showed that a gradient of CTGF induced chemotaxis of preosteoblastic MC3T3-E1 cells, while a neutralizing integrin α5 antibody and a Ras inhibitor inhibited the CTGF-induced chemotaxis of MC3T3-E1 cells. These findings suggest that the CTGF-integrin α5-Ras axis is an essential molecular mechanism to promote chemotaxis of preosteoblasts during new bone formation through intramembranous osteogenesis.
Collapse
Affiliation(s)
- Wei Jiang
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Nobuo Takeshita
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Toshihiro Maeda
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Chisumi Sogi
- Department of Pediatrics, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8574, Japan
| | - Toshihito Oyanagi
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Seiji Kimura
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Michiko Yoshida
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Kiyo Sasaki
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Arata Ito
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Teruko Takano-Yamamoto
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan. .,Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, 060-8586, Japan.
| |
Collapse
|
9
|
Juengel E, Natsheh I, Najafi R, Rutz J, Tsaur I, Haferkamp A, Chun FKH, Blaheta RA. Mechanisms behind Temsirolimus Resistance Causing Reactivated Growth and Invasive Behavior of Bladder Cancer Cells In Vitro. Cancers (Basel) 2019; 11:cancers11060777. [PMID: 31167517 PMCID: PMC6627393 DOI: 10.3390/cancers11060777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Although mechanistic target of rapamycin (mTOR) inhibitors, such as temsirolimus, show promise in treating bladder cancer, acquired resistance often hampers efficacy. This study evaluates mechanisms leading to resistance. Methods: Cell growth, proliferation, cell cycle phases, and cell cycle regulating proteins were compared in temsirolimus resistant (res) and sensitive (parental—par) RT112 and UMUC3 bladder cancer cells. To evaluate invasive behavior, adhesion to vascular endothelium or to immobilized extracellular matrix proteins and chemotactic activity were examined. Integrin α and β subtypes were analyzed and blocking was done to evaluate physiologic integrin relevance. Results: Growth of RT112res could no longer be restrained by temsirolimus and was even enhanced in UMUC3res, accompanied by accumulation in the S- and G2/M-phase. Proteins of the cdk-cyclin and Akt-mTOR axis increased, whereas p19, p27, p53, and p73 decreased in resistant cells treated with low-dosed temsirolimus. Chemotactic activity of RT112res/UMUC3res was elevated following temsirolimus re-exposure, along with significant integrin α2, α3, and β1 alterations. Blocking revealed a functional switch of the integrins, driving the resistant cells from being adhesive to being highly motile. Conclusion: Temsirolimus resistance is associated with reactivation of bladder cancer growth and invasive behavior. The α2, α3, and β1 integrins could be attractive treatment targets to hinder temsirolimus resistance.
Collapse
Affiliation(s)
- Eva Juengel
- Department of Urology, Goethe University Hospital, 60590 Frankfurt am Main, Germany.
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany.
| | - Iyad Natsheh
- Department of Allied Medical Sciences, Zarqa University College, Al-Balqa Applied University, Salt 13110, Jordan.
| | - Ramin Najafi
- Department of Urology, Goethe University Hospital, 60590 Frankfurt am Main, Germany.
| | - Jochen Rutz
- Department of Urology, Goethe University Hospital, 60590 Frankfurt am Main, Germany.
| | - Igor Tsaur
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany.
| | - Axel Haferkamp
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany.
| | - Felix K-H Chun
- Department of Urology, Goethe University Hospital, 60590 Frankfurt am Main, Germany.
| | - Roman A Blaheta
- Department of Urology, Goethe University Hospital, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
10
|
Aristizabal Prada ET, Spöttl G, Maurer J, Lauseker M, Koziolek EJ, Schrader J, Grossman A, Pacak K, Beuschlein F, Auernhammer CJ, Nölting S. The role of GSK3 and its reversal with GSK3 antagonism in everolimus resistance. Endocr Relat Cancer 2018; 25:893-908. [PMID: 29895527 PMCID: PMC7439002 DOI: 10.1530/erc-18-0159] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/11/2018] [Indexed: 12/11/2022]
Abstract
Pancreatic neuroendocrine tumors (panNETs) are often inoperable at diagnosis. The mTORC1 inhibitor everolimus has been approved for the treatment of advanced NETs. However, the regular development of resistance to everolimus limits its clinical efficacy. We established two independent everolimus-resistant panNET (BON1) cell lines (BON1 RR1, BON1 RR2) to find potential mechanisms of resistance. After 24 weeks of permanent exposure to 10 nM everolimus, BON1 RR1 and BON1 RR2 showed stable resistance with cellular survival rates of 96.70% (IC50 = 5200 nM) and 92.30% (IC50 = 2500 nM), respectively. The control cell line showed sensitivity to 10 nM everolimus with cellular survival declining to 54.70% (IC50 = 34 nM). Both resistant cell lines did not regain sensitivity over time and showed persistent stable resistance after a drug holiday of 13 weeks. The mechanisms of resistance in our cell line model included morphological adaptations, G1 cell cycle arrest associated with reduced CDK1(cdc2) expression and decreased autophagy. Cellular migration potential was increased and indirectly linked to c-Met activation. GSK3 was over-activated in association with reduced baseline IRS-1 protein levels. Specific GSK3 inhibition strongly decreased BON1 RR1/RR2 cell survival. The combination of everolimus with the PI3Kα inhibitor BYL719 re-established everolimus sensitivity through GSK3 inhibition and restoration of autophagy. We suggest that GSK3 over-activation combined with decreased baseline IRS-1 protein levels and decreased autophagy may be a crucial feature of everolimus resistance, and hence, a possible therapeutic target.
Collapse
Affiliation(s)
- Elke Tatjana Aristizabal Prada
- Medizinische Klinik und Poliklinik IVInterdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM), Klinikum der Universität München (KUM), Ludwig-Maximilians-University, Munich, Germany
| | - Gerald Spöttl
- Medizinische Klinik und Poliklinik IVInterdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM), Klinikum der Universität München (KUM), Ludwig-Maximilians-University, Munich, Germany
| | - Julian Maurer
- Medizinische Klinik und Poliklinik IVInterdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM), Klinikum der Universität München (KUM), Ludwig-Maximilians-University, Munich, Germany
| | - Michael Lauseker
- Institute for Medical Information SciencesBiometry, and Epidemiology, Campus Grosshadern, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Eva Jolanthe Koziolek
- Department of Nuclear MedicineUniversity Medical Center Charité, Berlin, Germany
- German Cancer Consortium (DKTK)Heidelberg, Germany
- German Cancer Research Center (DKFZ)Heidelberg, Germany
| | - Jörg Schrader
- I. Medizinische Klinik und PoliklinikUniversitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Ashley Grossman
- Oxford Centre for DiabetesEndocrinology and Metabolism, University of Oxford, Oxford, UK
- Royal Free Hospital ENETS Centre of ExcellenceLondon, UK
| | - Karel Pacak
- Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of Health, Bethesda, Maryland, USA
| | - Felix Beuschlein
- Medizinische Klinik und Poliklinik IVInterdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM), Klinikum der Universität München (KUM), Ludwig-Maximilians-University, Munich, Germany
- Klinik für EndokrinologieDiabetologie und Klinische Ernährung, Universitätsspital Zürich, Zurich, Switzerland
| | - Christoph Joseph Auernhammer
- Medizinische Klinik und Poliklinik IVInterdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM), Klinikum der Universität München (KUM), Ludwig-Maximilians-University, Munich, Germany
| | - Svenja Nölting
- Medizinische Klinik und Poliklinik IVInterdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM), Klinikum der Universität München (KUM), Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
11
|
HDAC Inhibition Counteracts Metastatic Re-Activation of Prostate Cancer Cells Induced by Chronic mTOR Suppression. Cells 2018; 7:cells7090129. [PMID: 30200497 PMCID: PMC6162415 DOI: 10.3390/cells7090129] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022] Open
Abstract
This study was designed to investigate whether epigenetic modulation by histone deacetylase (HDAC) inhibition might circumvent resistance towards the mechanistic target of rapamycin (mTOR) inhibitor temsirolimus in a prostate cancer cell model. Parental (par) and temsirolimus-resistant (res) PC3 prostate cancer cells were exposed to the HDAC inhibitor valproic acid (VPA), and tumor cell adhesion, chemotaxis, migration, and invasion were evaluated. Temsirolimus resistance was characterized by reduced binding of PC3res cells to endothelium, immobilized collagen, and fibronectin, but increased adhesion to laminin, as compared to the parental cells. Chemotaxis, migration, and invasion of PC3res cells were enhanced following temsirolimus re-treatment. Integrin α and β receptors were significantly altered in PC3res compared to PC3par cells. VPA significantly counteracted temsirolimus resistance by down-regulating tumor cell–matrix interaction, chemotaxis, and migration. Evaluation of integrin expression in the presence of VPA revealed a significant down-regulation of integrin α5 in PC3res cells. Blocking studies demonstrated a close association between α5 expression on PC3res and chemotaxis. In this in vitro model, temsirolimus resistance drove prostate cancer cells to become highly motile, while HDAC inhibition reversed the metastatic activity. The VPA-induced inhibition of metastatic activity was accompanied by a lowered integrin α5 surface level on the tumor cells.
Collapse
|
12
|
Engl T, Rutz J, Maxeiner S, Fanguen S, Juengel E, Koschade S, Roos F, Khoder W, Tsaur I, Blaheta RA. Acquired resistance to temsirolimus is associated with integrin α7 driven chemotactic activity of renal cell carcinoma in vitro. Oncotarget 2018; 9:18747-18759. [PMID: 29721158 PMCID: PMC5922352 DOI: 10.18632/oncotarget.24650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 02/27/2018] [Indexed: 11/25/2022] Open
Abstract
The mechanistic target of the rapamycin (mTOR) inhibitor, temsirolimus, has significantly improved the outcome of patients with renal cell carcinoma (RCC). However, development of temsirolimus-resistance limits its effect and metastatic progression subsequently recurs. Since integrin α7 (ITGA7) is speculated to promote metastasis, this investigation was designed to investigate whether temsirolimus-resistance is associated with altered ITGA7 expression in RCC cell lines and modified tumor cell adhesion and invasion. Caki-1, KTCTL-26, and A498 RCC cell lines were driven to temsirolimus-resistance by exposing them to temsirolimus over a period of 12 months. Subsequently, adhesion to human umbilical vein endothelial cells, to immobilized fibronectin, or collagen was investigated. Chemotaxis was evaluated with a modified Boyden chamber assay and ITGA7 expression by flow cytometry and western blotting. Chemotaxis significantly decreased in temsirolimus-sensitive cell lines upon exposure to low-dosed temsirolimus, but increased in temsirolimus-resistant tumor cells upon reexposure to the same temsirolimus dose. The increase in chemotaxis was accompanied by elevated ITGA7 at the cell surface membrane with simultaneous reduction of intracellular ITGA7. ITGA7 knock-down significantly diminished motility of temsirolimous-sensitive cells but elevated chemotactic activity of temsirolimus-resistant Caki-1 and KTCTL-26 cells. Therefore, ITGA7 appears closely linked to adhesion and migration regulation in RCC cells. It is postulated that temsirolimus-resistance is associated with translocation of ITGA7 from inside the cell to the outer surface. This switch forces RCC migration forward. Whether ITGA7 can serve as an important target in combatting RCC requires further investigation.
Collapse
Affiliation(s)
- Tobias Engl
- Department of Urology, Goethe-University, Frankfurt am Main, Germany
| | - Jochen Rutz
- Department of Urology, Goethe-University, Frankfurt am Main, Germany
| | | | - Sorel Fanguen
- Department of Urology, Goethe-University, Frankfurt am Main, Germany
| | - Eva Juengel
- Department of Urology, Goethe-University, Frankfurt am Main, Germany.,Current address: Department of Urology and Pediatric Urology, University Medical Center Mainz, Mainz, Germany
| | - Sebastian Koschade
- Department of Medicine II, Hematology and Oncology, Goethe-University, Frankfurt am Main, Germany
| | - Frederik Roos
- Department of Urology, Goethe-University, Frankfurt am Main, Germany
| | - Wael Khoder
- Department of Urology, Goethe-University, Frankfurt am Main, Germany
| | - Igor Tsaur
- Department of Urology, Goethe-University, Frankfurt am Main, Germany.,Current address: Department of Urology and Pediatric Urology, University Medical Center Mainz, Mainz, Germany
| | - Roman A Blaheta
- Department of Urology, Goethe-University, Frankfurt am Main, Germany
| |
Collapse
|
13
|
Juengel E, Maxeiner S, Rutz J, Justin S, Roos F, Khoder W, Tsaur I, Nelson K, Bechstein WO, Haferkamp A, Blaheta RA. Sulforaphane inhibits proliferation and invasive activity of everolimus-resistant kidney cancer cells in vitro. Oncotarget 2018; 7:85208-85219. [PMID: 27863441 PMCID: PMC5356730 DOI: 10.18632/oncotarget.13421] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 10/24/2016] [Indexed: 01/09/2023] Open
Abstract
Although the mechanistic target of rapamycin (mTOR) inhibitor, everolimus, has improved the outcome of patients with renal cell carcinoma (RCC), improvement is temporary due to the development of drug resistance. Since many patients encountering resistance turn to alternative/complementary treatment options, an investigation was initiated to evaluate whether the natural compound, sulforaphane (SFN), influences growth and invasive activity of everolimus-resistant (RCCres) compared to everolimus-sensitive (RCCpar) RCC cell lines in vitro. RCC cells were exposed to different concentrations of SFN and cell growth, cell proliferation, apoptosis, cell cycle, cell cycle regulating proteins, the mTOR-akt signaling axis, adhesion to human vascular endothelium and immobilized collagen, chemotactic activity, and influence on surface integrin receptor expression were investigated. SFN caused a significant reduction in both RCCres and RCCpar cell growth and proliferation, which correlated with an elevation in G2/M- and S-phase cells. SFN induced a marked decrease in the cell cycle activating proteins cdk1 and cyclin B and siRNA knock-down of cdk1 and cyclin B resulted in significantly diminished RCC cell growth. SFN also modulated adhesion and chemotaxis, which was associated with reduced expression of the integrin subtypes α5, α6, and β4. Distinct differences were seen in RCCres adhesion and chemotaxis (diminished by SFN) and RCCpar adhesion (enhanced by SFN) and chemotaxis (not influenced by SFN). Functional blocking of integrin subtypes demonstrated divergent action on RCC binding and invasion, depending on RCC cell sensitivity to everolimus. Therefore, SFN administration could hold potential for treating RCC patients with established resistance towards everolimus.
Collapse
Affiliation(s)
- Eva Juengel
- Department of Urology, Goethe-University, Frankfurt am Main, Germany.,Current address: Department of Urology and Pediatric Urology, University Medical Center Mainz, Mainz, Germany
| | | | - Jochen Rutz
- Department of Urology, Goethe-University, Frankfurt am Main, Germany
| | - Saira Justin
- Department of Urology, Goethe-University, Frankfurt am Main, Germany
| | - Frederik Roos
- Department of Urology, Goethe-University, Frankfurt am Main, Germany
| | - Wael Khoder
- Department of Urology, Goethe-University, Frankfurt am Main, Germany
| | - Igor Tsaur
- Department of Urology, Goethe-University, Frankfurt am Main, Germany
| | - Karen Nelson
- Department of Vascular and Endovascular Surgery, Goethe-University, Frankfurt am Main, Germany
| | - Wolf O Bechstein
- Department of Urology, Goethe-University, Frankfurt am Main, Germany.,Department of General and Visceral Surgery, Goethe-University, Frankfurt am Main, Germany
| | - Axel Haferkamp
- Department of Urology, Goethe-University, Frankfurt am Main, Germany
| | - Roman A Blaheta
- Department of Urology, Goethe-University, Frankfurt am Main, Germany
| |
Collapse
|
14
|
Poplawski P, Rybicka B, Boguslawska J, Rodzik K, Visser TJ, Nauman A, Piekielko-Witkowska A. Induction of type 1 iodothyronine deiodinase expression inhibits proliferation and migration of renal cancer cells. Mol Cell Endocrinol 2017; 442:58-67. [PMID: 27940296 DOI: 10.1016/j.mce.2016.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 11/29/2016] [Accepted: 12/07/2016] [Indexed: 01/12/2023]
Abstract
Type 1 iodothyronine deiodinase (DIO1) regulates peripheral metabolism of thyroid hormones that control cellular proliferation, differentiation and metabolism. The significance of DIO1 in cancer is unknown. In this study we hypothesized that diminished expression of DIO1, observed in renal cancer, contributes to the carcinogenic process in the kidney. Here, we demonstrate that ectopic expression of DIO1 in renal cancer cells changes the expression of genes controlling cell cycle, including cyclin E1 and E2F5, and results in inhibition of proliferation. The expression of genes encoding collagens (COL1A1, COL4A2, COL5A1), integrins (ITGA4, ITGA5, ITGB3) and transforming growth factor-β-induced (TGFBI) is significantly altered in renal cancer cells with induced expression of DIO1. Finally, we show that overexpression of DIO1 inhibits migration of renal cancer cells. In conclusion, we demonstrate for the first time that loss of DIO1 contributes to renal carcinogenesis and that its induced expression protects cells against cancerous proliferation and migration.
Collapse
Affiliation(s)
- Piotr Poplawski
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813, Warsaw, Poland
| | - Beata Rybicka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813, Warsaw, Poland
| | - Joanna Boguslawska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813, Warsaw, Poland
| | - Katarzyna Rodzik
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813, Warsaw, Poland
| | - Theo J Visser
- Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Alicja Nauman
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813, Warsaw, Poland; Laboratory of Human Cancer Genetics, Centre of New Technologies, CENT, University of Warsaw, 02-089, Warsaw, Poland
| | - Agnieszka Piekielko-Witkowska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813, Warsaw, Poland.
| |
Collapse
|
15
|
Stepanenko AA, Andreieva SV, Korets KV, Mykytenko DO, Baklaushev VP, Chekhonin VP, Dmitrenko VV. mTOR inhibitor temsirolimus and MEK1/2 inhibitor U0126 promote chromosomal instability and cell type-dependent phenotype changes of glioblastoma cells. Gene 2016; 579:58-68. [PMID: 26748241 DOI: 10.1016/j.gene.2015.12.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/14/2015] [Accepted: 12/26/2015] [Indexed: 01/22/2023]
Abstract
The phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) and the RAF/mitogen-activated and extracellular signal-regulated kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling pathways are frequently deregulated in cancer. Temsirolimus (TEM) and its primary active metabolite rapamycin allosterically block mTOR complex 1 substrate recruitment. The context-/experimental setup-dependent opposite effects of rapamycin on the multiple centrosome formation, aneuploidy, DNA damage/repair, proliferation, and invasion were reported. Similarly, the context-dependent either tumor-promoting or suppressing effects of RAF-MEK-ERK pathway and its inhibitors were demonstrated. Drug treatment-mediated stress may promote chromosomal instability (CIN), accelerating changes in the genomic landscape and phenotype diversity. Here, we characterized the genomic and phenotypic changes of U251 and T98G glioblastoma cell lines long-term treated with TEM or U0126, an inhibitor of MEK1/2. TEM significantly increased clonal and non-clonal chromosome aberrations. Both TEM and U0126 affected copy number alterations (CNAs) pattern. A proliferation rate of U251TEM and U251U0126 cells was lower and higher, respectively, than control cells. Colony formation efficiency of U251TEM significantly decreased, whereas U251U0126 did not change. U251TEM and U251U0126 cells decreased migration. In contrast, T98GTEM and T98GU0126 cells did not change proliferation, colony formation efficiency, and migration. Changes in the sensitivity of inhibitor-treated cells to the reduction of the glucose concentration were observed. Our results suggest that CIN and adaptive reprogramming of signal transduction pathways may be responsible for the cell type-dependent phenotype changes of long-term TEM- or U0126-treated tumor cells.
Collapse
Affiliation(s)
- A A Stepanenko
- Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, Zabolotnogo Str. 150, Kyiv 03680, Ukraine.
| | - S V Andreieva
- Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, Zabolotnogo Str. 150, Kyiv 03680, Ukraine
| | - K V Korets
- Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, Zabolotnogo Str. 150, Kyiv 03680, Ukraine
| | - D O Mykytenko
- Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, Zabolotnogo Str. 150, Kyiv 03680, Ukraine
| | - V P Baklaushev
- Department of Medicinal Nanobiotechnology, Pirogov Russian State Medical University, Ostrovitianov str. 1, Moscow 117997, Russia; Federal Research and Clinical Centre, FMBA of Russia, Orekhoviy bulvar str. 28, Moscow 115682, Russia
| | - V P Chekhonin
- Department of Medicinal Nanobiotechnology, Pirogov Russian State Medical University, Ostrovitianov str. 1, Moscow 117997, Russia
| | - V V Dmitrenko
- Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, Zabolotnogo Str. 150, Kyiv 03680, Ukraine
| |
Collapse
|
16
|
JUENGEL EVA, AFSCHAR MASUD, MAKAREVIĆ JASMINA, RUTZ JOCHEN, TSAUR IGOR, MANI JENS, NELSON KAREN, HAFERKAMP AXEL, BLAHETA ROMANA. Amygdalin blocks the in vitro adhesion and invasion of renal cell carcinoma cells by an integrin-dependent mechanism. Int J Mol Med 2016; 37:843-50. [DOI: 10.3892/ijmm.2016.2454] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/03/2015] [Indexed: 11/06/2022] Open
|
17
|
Fu H, Liu Y, Xu L, Liu W, Fu Q, Liu H, Zhang W, Xu J. Galectin-9 predicts postoperative recurrence and survival of patients with clear-cell renal cell carcinoma. Tumour Biol 2015; 36:5791-9. [PMID: 25716202 DOI: 10.1007/s13277-015-3248-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/10/2015] [Indexed: 12/30/2022] Open
Abstract
Galectin-9 (Gal-9), a member of animal lectin family with evolutionary conserved carbohydrate recognition domains, has been reported to exert a large variety of functional roles in tumorigenesis due to its β-galactoside-binding affinity. The aim of this study is to evaluate the expression and prognostic significance of Gal-9 in patients with clear-cell renal cell carcinoma (ccRCC). The expression of Gal-9 was assessed by immunohistochemistry in 196 patients with ccRCC who underwent nephrectomy. In the cohort, 48 patients died and 61 patients suffered recurrence. Kaplan-Meier method with log-rank test was applied to compare survival curves. The authors employed univariate and multivariate Cox regression models to evaluate the prognostic value of Gal-9 expression in overall survival (OS) and recurrence-free survival (RFS). In patients with ccRCC, Gal-9 expression, which was positively associated with tumor size (P = 0.014), Fuhrman grade (P = 0.010), and necrosis (P = 0.025), was determined to be an independent prognostic indicator for OS (hazard ratio [HR] 2.394; P = 0.005) and RFS (HR 2.096; P = 0.006). High expression of Gal-9 was associated with poor survival (P = 0.001) and early recurrence (P = 0.006). Furthermore, Gal-9 expression could significantly stratify the patients in early (grades I + II) tumor, node, and metastasis (TNM) stage (OS: P = 0.005; RFS: P = 0.041) and low (grades 1 + 2) Fuhrman grade (OS: P = 0.004; RFS: P = 0.006). The prognostic accuracy of TNM, SSIGN, and UISS prognostic models was improved when Gal-9 expression was added. Gal-9 expression is a potential independent prognostic factor for OS and RFS in patients with ccRCC.
Collapse
Affiliation(s)
- Hangcheng Fu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Fiorini C, Massari F, Pedron S, Sanavio S, Ciccarese C, Porcaro AB, Artibani W, Bertoldo F, Zampini C, Sava T, Ficial M, Caliò A, Chilosi M, D’Amuri A, Sanguedolce F, Tortora G, Scarpa A, Delahunt B, Porta C, Martignoni G, Brunelli M. Methods to identify molecular expression of mTOR pathway: a rationale approach to stratify patients affected by clear cell renal cell carcinoma for more likely response to mTOR inhibitors. Am J Cancer Res 2014; 4:907-915. [PMID: 25520878 PMCID: PMC4266722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 10/12/2014] [Indexed: 06/04/2023] Open
Abstract
Since target therapy with mTOR inhibitors plays an important role in the current management of clear cell renal cell carcinoma (RCC), there is an increasing demand for predictive biomarkers, which may help to select patients that are most likely to benefit from personalized treatment. When dealing with formalin-fixed paraffin-embedded (FFPE) cancer tissue specimens, several techniques may be used to identify potential molecular markers, yielding different outcome in terms of accuracy. We sought to investigate and compare the capability of three main techniques to detect molecules performing an active function in mTOR pathway in RCC. Immunohistochemistry (IHC), Western blot (WB) and immunofluorescence (IF) analyses were performed on FFPE RCC tissue specimens from 16 patients by using the following mTOR pathway-related: mTOR (Ser235/236), phospho-mTOR (p-mTOR/Ser2448), phospho-p70S6k (p-p70S6k/Thr389), both monoclonal and polyclonal, phospho-S6Rb (p-S6Rb) and phospho-4EBP1 (p-4EBP1/Thr37/46). No single molecule was simultaneously revealed by all three techniques. Only p-p70S6k was detected by two methods (IHC and IF) using a monoclonal antibody. The other molecules were detected exclusively by one technique, as follows: p-mTOR and polyclonal p-p70S6K by IHC, p70S6K, p-S6Rb and p-4EBP1 by WB, and, finally, mTOR by IF. We found significant differences in detecting mTOR pathway-related active biomarkers by using three common techniques such as IHC, WB and IF on RCC samples. Such results have important implications in terms of predictive biomarker testing, and need to be related to clinical end-points such as responsiveness to targeted drugs by prospective studies.
Collapse
Affiliation(s)
- Claudia Fiorini
- Departments of Pathology and Diagnostic, University of VeronaItaly
| | - Francesco Massari
- Medical Oncology, Azienda Ospedaliera Universitaria Integrata di Verona AOUI, University of VeronaItaly
| | - Serena Pedron
- Departments of Pathology and Diagnostic, University of VeronaItaly
| | - Sara Sanavio
- Departments of Pathology and Diagnostic, University of VeronaItaly
| | - Chiara Ciccarese
- Medical Oncology, Azienda Ospedaliera Universitaria Integrata di Verona AOUI, University of VeronaItaly
| | - Antonio Benito Porcaro
- Urologic Clinic, Department of Oncological and Surgical Sciences, University of VeronaItaly
| | - Walter Artibani
- Urologic Clinic, Department of Oncological and Surgical Sciences, University of VeronaItaly
| | | | - Claudia Zampini
- Departments of Pathology and Diagnostic, University of VeronaItaly
| | - Teodoro Sava
- Medical Oncology, Azienda Ospedaliera Universitaria Integrata di Verona AOUI, University of VeronaItaly
| | - Miriam Ficial
- Departments of Pathology and Diagnostic, University of VeronaItaly
| | - Anna Caliò
- Departments of Pathology and Diagnostic, University of VeronaItaly
| | - Marco Chilosi
- Departments of Pathology and Diagnostic, University of VeronaItaly
| | | | - Francesca Sanguedolce
- Pathology Unit, Department of Clinical and Experimental Medicine, University of FoggiaItaly
| | - Giampaolo Tortora
- Medical Oncology, Azienda Ospedaliera Universitaria Integrata di Verona AOUI, University of VeronaItaly
| | - Aldo Scarpa
- Departments of Pathology and Diagnostic, University of VeronaItaly
- ARC-Net Research Center, Università di Verona and Azienda Ospedaliera Universitaria Integrata di Verona AOUIVerona, Italy
| | - Brett Delahunt
- Department of Pathology and Molecular Medicine, Wellington School of Medicine, University of OtagoWellington, New Zealand
| | - Camillo Porta
- Medical Oncology, IRCSS Ospedale San MatteoPavia, Italy
| | - Guido Martignoni
- Departments of Pathology and Diagnostic, University of VeronaItaly
| | - Matteo Brunelli
- Departments of Pathology and Diagnostic, University of VeronaItaly
| |
Collapse
|
19
|
Makarević J, Rutz J, Juengel E, Kaulfuss S, Tsaur I, Nelson K, Pfitzenmaier J, Haferkamp A, Blaheta RA. Amygdalin influences bladder cancer cell adhesion and invasion in vitro. PLoS One 2014; 9:e110244. [PMID: 25333694 PMCID: PMC4198254 DOI: 10.1371/journal.pone.0110244] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 09/14/2014] [Indexed: 11/27/2022] Open
Abstract
The cyanogenic diglucoside amygdalin, derived from Rosaceae kernels, is employed by many patients as an alternative anti-cancer treatment. However, whether amygdalin indeed acts as an anti-tumor agent is not clear. Metastasis blocking properties of amygdalin on bladder cancer cell lines was, therefore, investigated. Amygdalin (10 mg/ml) was applied to UMUC-3, TCCSUP or RT112 bladder cancer cells for 24 h or for 2 weeks. Tumor cell adhesion to vascular endothelium or to immobilized collagen as well as tumor cell migration was examined. Effects of drug treatment on integrin α and β subtypes, on integrin-linked kinase (ILK) and total and activated focal adhesion kinase (FAK) were also determined. Integrin knock-down was carried out to evaluate integrin influence on migration and adhesion. A 24 h or 2 week amygdalin application distinctly reduced tumor cell adhesion and migration of UMUC-3 and RT112 cells. TCCSUP adhesion was also reduced, but migration was elevated under amygdalin. Integrin subtype expression was significantly and specifically altered by amygdalin depending on the cell line. ILK was moderately, and activated FAK strongly, lost in all tumor cell lines in the presence of amygdalin. Knock down of β1 integrin caused a significant decrease in both adhesion and migration of UMUC-3 cells, but a significant increase in TCCSUP adhesion. Knock down of β4 integrin caused a significant decrease in migration of RT112 cells. Since the different actions of amygdalin on the different cell lines was mirrored by β1 or β4 knock down, it is postulated that amygdalin influences adhesion and migratory properties of bladder cancer cells by modulating β1 or β4 integrin expression. The amygdalin induced increase in TCCSUP migratory behavior indicates that any anti-tumor benefits from amygdalin (seen with the other two cell lines) may depend upon the cancer cell type.
Collapse
Affiliation(s)
- Jasmina Makarević
- Department of Urology, Goethe University Hospital, Frankfurt am Main, Germany
| | - Jochen Rutz
- Department of Urology, Goethe University Hospital, Frankfurt am Main, Germany
| | - Eva Juengel
- Department of Urology, Goethe University Hospital, Frankfurt am Main, Germany
| | - Silke Kaulfuss
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Igor Tsaur
- Department of Urology, Goethe University Hospital, Frankfurt am Main, Germany
| | - Karen Nelson
- Department of Vascular and Endovascular Surgery, Goethe University Hospital, Frankfurt am Main, Germany
| | - Jesco Pfitzenmaier
- Department of Urology, Evangelical Hospital Bielefeld, Bielefeld, Germany
| | - Axel Haferkamp
- Department of Urology, Goethe University Hospital, Frankfurt am Main, Germany
| | - Roman A. Blaheta
- Department of Urology, Goethe University Hospital, Frankfurt am Main, Germany
- * E-mail:
| |
Collapse
|