1
|
Kale R, Samant C, Nandakumar K, Ranganath Pai KS, Bhonde M. Drugging the Undruggable and beyond: Emerging precision oncology approaches to target acquired resistance to KRAS G12C and KRAS G12D inhibitors. Biochem Biophys Res Commun 2025; 760:151688. [PMID: 40174369 DOI: 10.1016/j.bbrc.2025.151688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/21/2025] [Accepted: 03/22/2025] [Indexed: 04/04/2025]
Abstract
Development of mutant specific KRAS inhibitors validated KRAS as a 'druggable' target. However, excellent initial efficacy was eventually overshadowed by failure to exhibit sustained clinical response, primarily due to acquired resistance. Some targeted therapies like SOS1, SHP2, and MEK inhibitors, in combination with mutant KRAS G12C inhibitors (G12Ci), are currently under clinical investigation with evidences of improving efficacy. However, a deep understanding of the underlying molecular pathways behind the acquired resistance is still at a nascent stage. Recent preclinical studies have uncovered a role of novel proteins and pathways responsible for resistance and their inhibition demonstrated a robust anticancer efficacy in combination. Plethora of combination therapy approaches are now being proposed with emergence of AXL, ULK1, Tissue factor, farnesyltransferase, etc. as targets to counter G12Ci resistance. This review summarizes in a comprehensive manner, some of the novel combination modalities to overcome G12Ci resistance, based on current understanding and with great potential to hit clinical success. Along with G12C, KRAS G12D (G12D) was also considered a formidable foe, until the discovery of selective inhibitors. However, eventual clinical resistance can eclipse the early success and requires an in-depth understanding of resistance mechanisms. Evidences of G12Ci resistance can be exploited as probable combination strategies to tackle ensuing resistance to G12D inhibitors (G12Di), and can translate in superior clinical efficacy. Early preclinical studies of G12Di in combination with ERBB, SOS1, AKT and immune-checkpoints inhibitors indicate encouraging response. This review further describes some of the early affirmations on combination strategies with G12Di. We postulate to go beyond 'Drugging the Undruggable' with advanced combination approaches mitigating G12C and G12D inhibitor resistance.
Collapse
Affiliation(s)
- Ramesh Kale
- Research Scholar, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India; Department of Pharmacology, Novel Drug Discovery and Development (NDDD), Lupin Limited, Survey No. 46A/47A, Village Nande, Taluka Mulshi, Pune, 412115, Maharashtra, India
| | - Charudatt Samant
- Research Scholar, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India; Department of Pharmacology, Novel Drug Discovery and Development (NDDD), Lupin Limited, Survey No. 46A/47A, Village Nande, Taluka Mulshi, Pune, 412115, Maharashtra, India.
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Mandar Bhonde
- Department of Pharmacology, Novel Drug Discovery and Development (NDDD), Lupin Limited, Survey No. 46A/47A, Village Nande, Taluka Mulshi, Pune, 412115, Maharashtra, India
| |
Collapse
|
2
|
Sunnetci-Akkoyunlu D, Ugurtas C, Kulcu-Sarikaya N, Ozer T, Cine N, Eren-Keskin S, Kanli A, Savli H. Identification of Common miRNAs Differentially Expressed in Periodontitis and Pancreatic Cancer. In Vivo 2025; 39:1422-1439. [PMID: 40294979 PMCID: PMC12042002 DOI: 10.21873/invivo.13944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/03/2025] [Accepted: 03/10/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND/AIM Periodontitis is a prevalent multifactorial, oral infectious disease and is considered a high-risk factor for pancreatic cancer. Nevertheless, there is limited understanding of the underlying epigenetic mechanisms governing this relationship. The aim of this study was to identify dysregulated miRNAs associated with periodontitis and pancreatic cancer, along with their related genes, signaling pathways, and compounds. MATERIALS AND METHODS miRNA expression datasets for tissues affected by periodontitis and pancreatic cancer were obtained from the Gene Expression Omnibus database. miRNAs differentially expressed relative to normal tissues were detected, and those common to both datasets were determined. Further bioinformatics approaches were used to explore the association of common differentially expressed miRNAs with periodontitis and pancreatic cancer. RESULTS Twenty shared, differentially expressed miRNAs were identified; 14 exhibited similar expression patterns in both diseases. Among these common differentially expressed miRNAs, 10 were found to be overexpressed. hsa-miR-155, hsa-miR-186, hsa-miR-765, hsa-miR-211 and hsa-miR-375 were the top miRNA nodes in the gene network, with hsa-mir-155 being the sole miRNA node in the transcription factor network. Top candidate miRNA-dysregulated genes included superoxide dismutase 2 (SOD2), nuclear FMR1 interacting protein 2 (NUFIP2), SFT2 domain-containing 2 (SFT2D2), thioredoxin-interacting protein (TXNIP), and cyclin D1 (CCND1), while top dysregulated transcription factors were Argonaute RISC catalytic component 2 (AGO2), AKT serine/threonine kinase 1 (AKT1), BCL6 transcription repressor (BCL6), breakpoint cluster region (BCR), and BRCA1 DNA repair associated (BRCA1). Relevant compounds for targeting these emerged, including 5-fluorouracil, gemcitabine, doxorubicin, ascorbate, diethylstilbestrol, and temozolomide. CONCLUSION Our study suggests candidate molecular mechanisms linking periodontitis to pancreatic cancer, highlighting potential compounds that may target both diseases. These findings provide a foundation for guiding future fundamental and clinical research.
Collapse
Affiliation(s)
| | - Cansu Ugurtas
- Department of Medical Genetics and Molecular Biology, Kocaeli University Institute of Health Sciences, Kocaeli, Turkiye
| | - Nurhan Kulcu-Sarikaya
- Department of Medical Services and Techniques, Kocaeli University Vocational School of Health Services, Kocaeli, Turkiye
| | - Tolgahan Ozer
- Department of Medical Genetics, Kocaeli University Faculty of Medicine, Kocaeli, Turkiye
| | - Naci Cine
- Department of Medical Genetics, Kocaeli University Faculty of Medicine, Kocaeli, Turkiye
| | - Seda Eren-Keskin
- Department of Medical Genetics, Kocaeli University Faculty of Medicine, Kocaeli, Turkiye
| | - Aylin Kanli
- Department of Medical Biology, Kocaeli University Faculty of Medicine, Kocaeli, Turkiye
| | - Hakan Savli
- Department of Medical Genetics, Kocaeli University Faculty of Medicine, Kocaeli, Turkiye
| |
Collapse
|
3
|
黄 燕, 覃 璐, 管 少, 管 宴, 韦 玉, 操 艾, 李 冬, 韦 桂, 苏 启. [Therapeutic mechanism of aqueous extract of Semiliquidambar cathayensis Chang root for pancreatic cancer: the active components, therapeutic targets and pathways]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1336-1344. [PMID: 39051079 PMCID: PMC11270660 DOI: 10.12122/j.issn.1673-4254.2024.07.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Indexed: 07/27/2024]
Abstract
OBJECTIVE To explore the key targets and signaling pathways in the therapeutic mechanism of Semiliquidambar cathayensis Chang (SC) root against pancreatic cancer network pharmacology and molecular docking studies and cell experiments. METHODS The targets of SC and pancreatic cancer were predicted using the network pharmacological database, the protein-protein interaction network was constructed, and pathways, functional enrichment and molecular docking analyses were performed. CCK-8 assay was used to test the inhibitory effect of the aqueous extract of SC root on 8 cancer cell lines, and its effects on invasion, migration, proliferation, and apoptosis of pancreatic cancer cells were evaluated. Western blotting was performed to verify the results of network pharmacology analysis. RESULTS We identified a total of 18 active components in SC, which regulated 21 potential key targets in pancreatic cancer. GO and KEGG pathway enrichment analyses showed that these targets were involved mainly in the biological processes including protein phosphorylation, signal transduction, and apoptosis and participated in cancer signaling and PI3K-Akt signaling pathways. Among the 8 cancer cell lines, The aqueous extract of SC root produced the most obvious inhibitory effect in pancreatic cancer cells, and significantly inhibited the invasion, migration, and proliferation and promoted apoptosis of pancreatic cancer Panc-1 cells (P < 0.05). Western blotting confirmed that SC significantly inhibited the phosphorylation levels of PI3K and AKT in Panc-1 cells (P < 0.001). CONCLUSION The therapeutic effect of SC root against pancreatic cancer effects is mediated by its multiple components that act on different targets and pathways including the PI3K-Akt pathway.
Collapse
|
4
|
Chen C, Jiang YP, You I, Gray NS, Lin RZ. Down-Regulation of AKT Proteins Slows the Growth of Mutant-KRAS Pancreatic Tumors. Cells 2024; 13:1061. [PMID: 38920688 PMCID: PMC11202146 DOI: 10.3390/cells13121061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Serine/threonine kinase AKT isoforms play a well-established role in cell metabolism and growth. Most pancreatic adenocarcinomas (PDACs) harbor activation mutations of KRAS, which activates the PI3K/AKT signaling pathway. However, AKT inhibitors are not effective in the treatment of pancreatic cancer. To better understand the role of AKT signaling in mutant-KRAS pancreatic tumors, this study utilized proteolysis-targeting chimeras (PROTACs) and CRISPR-Cas9-genome editing to investigate AKT proteins. The PROTAC down-regulation of AKT proteins markedly slowed the growth of three pancreatic tumor cell lines harboring mutant KRAS. In contrast, the inhibition of AKT kinase activity alone had very little effect on the growth of these cell lines. The concurrent genetic deletion of all AKT isoforms (AKT1, AKT2, and AKT3) in the KPC (KrasG12D; Trp53R172H; Pdx1-Cre) pancreatic cancer cell line also dramatically slowed its growth in vitro and when orthotopically implanted in syngeneic mice. Surprisingly, insulin-like growth factor-1 (IGF-1), but not epidermal growth factor (EGF), restored KPC cell growth in serum-deprived conditions, and the IGF-1 growth stimulation effect was AKT-dependent. The RNA-seq analysis of AKT1/2/3-deficient KPC cells suggested that reduced cholesterol synthesis may be responsible for the decreased response to IGF-1 stimulation. These results indicate that the presence of all three AKT isoforms supports pancreatic tumor cell growth, and the pharmacological degradation of AKT proteins may be more effective than AKT catalytic inhibitors for treating pancreatic cancer.
Collapse
Affiliation(s)
- Chuankai Chen
- Department of Physiology & Biophysics, Stony Brook University, Stony Brook, NY 11794, USA; (C.C.); (Y.-P.J.)
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11790, USA
| | - Ya-Ping Jiang
- Department of Physiology & Biophysics, Stony Brook University, Stony Brook, NY 11794, USA; (C.C.); (Y.-P.J.)
| | - Inchul You
- Department of Chemical and Systems Biology, ChEM-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA; (I.Y.); (N.S.G.)
| | - Nathanael S. Gray
- Department of Chemical and Systems Biology, ChEM-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA; (I.Y.); (N.S.G.)
| | - Richard Z. Lin
- Department of Physiology & Biophysics, Stony Brook University, Stony Brook, NY 11794, USA; (C.C.); (Y.-P.J.)
- Northport VA Medical Center, Northport, NY 11768, USA
| |
Collapse
|
5
|
Chen C, Jiang YP, You I, Gray NS, Lin RZ. Down-regulation of AKT proteins slows the growth of mutant-KRAS pancreatic tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592345. [PMID: 38746217 PMCID: PMC11092743 DOI: 10.1101/2024.05.03.592345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Serine/threonine kinase AKT isoforms play a well-established role in cell metabolism and growth. Most pancreatic adenocarcinoma (PDAC) harbors activation mutations of KRAS, which activates the PI3K/AKT signaling pathway. However, AKT inhibitors are not effective in the treatment of pancreatic cancer. To better understand the role of AKT signaling in mutant-KRAS pancreatic tumors, this study utilizes proteolysis-targeting chimeras (PROTACs) and CRISPR-Cas9-genome editing to investigate AKT proteins. PROTAC down-regulation of AKT proteins markedly slowed the growth of three pancreatic tumor cell lines harboring mutant KRAS. In contrast, inhibition of AKT kinase activity alone had very little effect on the growth of these cell lines. Concurrent genetic deletion of all AKT isoforms (AKT1, AKT2, and AKT3) in the KPC (KrasG12D; Trp53R172H; Pdx1-Cre) pancreatic cancer cell line also dramatically slowed its growth in vitro and when orthotopically implanted in syngeneic mice. Surprisingly, insulin-like growth factor-1 (IGF-1), but not epidermal growth factor (EGF), restored KPC cell growth in serum-deprived conditions and the IGF-1 growth stimulation effect was AKT dependent. RNA-seq analysis of AKT1/2/3-deficient KPC cells suggested that reduced cholesterol synthesis may be responsible for the decreased response to IGF-1 stimulation. These results indicate that the presence of all three AKT isoforms supports pancreatic tumor cell growth and pharmacological degradation of AKT proteins may be more effective than AKT catalytic inhibitors for treating pancreatic cancer.
Collapse
Affiliation(s)
- Chuankai Chen
- Department of Physiology & Biophysics, Stony Brook University, Stony Brook, New York, USA
- Graduate Program in Genetics, Stony Brook University, New York, USA
| | - Ya-Ping Jiang
- Department of Physiology & Biophysics, Stony Brook University, Stony Brook, New York, USA
| | - Inchul You
- Department of Chemical and Systems Biology, ChEM-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California 94305, USA
| | - Nathanael S. Gray
- Department of Chemical and Systems Biology, ChEM-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California 94305, USA
| | - Richard Z. Lin
- Department of Physiology & Biophysics, Stony Brook University, Stony Brook, New York, USA
- Northport VA Medical Center, Northport, New York, USA
| |
Collapse
|
6
|
Juin A, Spence HJ, Machesky LM. Dichotomous role of the serine/threonine kinase MAP4K4 in pancreatic ductal adenocarcinoma onset and metastasis through control of AKT and ERK pathways. J Pathol 2024; 262:454-466. [PMID: 38229581 DOI: 10.1002/path.6248] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/24/2023] [Accepted: 12/04/2023] [Indexed: 01/18/2024]
Abstract
MAP4K4 is a serine/threonine kinase of the STE20 family involved in the regulation of actin cytoskeleton dynamics and cell motility. It has been proposed as a target of angiogenesis and inhibitors show potential in cardioprotection. MAP4K4 also mediates cell invasion in vitro, is overexpressed in various types of cancer, and is associated with poor patient prognosis. Recently, MAP4K4 has been shown to be overexpressed in pancreatic cancer, but its role in tumour initiation, progression, and metastasis is unknown. Here, using the KrasG12D Trp53R172H Pdx1-Cre (KPC) mouse model of pancreatic ductal adenocarcinoma (PDAC), we show that deletion of Map4k4 drives tumour initiation and progression. Moreover, we report that the acceleration of tumour onset is also associated with an overactivation of ERK and AKT, two major downstream effectors of KRAS, in vitro and in vivo. In contrast to the accelerated tumour onset caused by loss of MAP4K4, we observed a reduction in metastatic burden with both the KPC model and in an intraperitoneal transplant assay indicating a major role of MAP4K4 in metastatic seeding. In summary, our study sheds light on the dichotomous role of MAP4K4 in the initiation of PDAC onset, progression, and metastatic dissemination. It also identifies MAP4K4 as a possible druggable target against pancreatic cancer spread, but with the caveat that targeting MAP4K4 might accelerate early tumorigenesis. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
| | | | - Laura M Machesky
- CRUK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
7
|
Zheng HC, Xue H, Sun HZ, Yun WJ, Cui ZG. The potential oncogenic effect of tissue-specific expression of JC polyoma T antigen in digestive epithelial cells. Transgenic Res 2023; 32:305-319. [PMID: 37247123 PMCID: PMC10409682 DOI: 10.1007/s11248-023-00352-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/10/2023] [Indexed: 05/30/2023]
Abstract
JC polyoma virus (JCPyV), a ubiquitous polyoma virus that commonly infects people, is identified as the etiologic factor for progressive multifocal leukoencephalopathy and has been closely linked to various human cancers. Transgenic mice of CAG-loxp-Laz-loxp T antigen were established. T-antigen expression was specifically activated in gastroenterological target cells with a LacZ deletion using a cre-loxp system. Gastric poorly-differentiated carcinoma was observed in T antigen-activated mice using K19-cre (stem-like cells) and PGC-cre (chief cells), but not Atp4b-cre (parietal cells) or Capn8-cre (pit cells) mice. Spontaneous hepatocellular and colorectal cancers developed in Alb-cre (hepatocytes)/T antigen and villin-cre (intestinal cells)/T antigen transgenic mice respectively. Gastric, colorectal, and breast cancers were observed in PGC-cre/T antigen mice. Pancreatic insulinoma and ductal adenocarcinoma, gastric adenoma, and duodenal cancer were detected in Pdx1-cre/T antigen mice. Alternative splicing of T antigen mRNA occurred in all target organs of these transgenic mice. Our findings suggest that JCPyV T antigen might contribute to gastroenterological carcinogenesis with respect to cell specificity. Such spontaneous tumor models provide good tools for investigating the oncogenic roles of T antigen in cancers of the digestive system.
Collapse
Affiliation(s)
- Hua-Chuan Zheng
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, China.
| | - Hang Xue
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, China
| | - Hong-Zhi Sun
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Wen-Jing Yun
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, China
| | - Zheng-Guo Cui
- Department of Environmental Health, University of Fukui School of Medical Sciences, Fukui, 910-1193, Japan
| |
Collapse
|
8
|
Exploration of the System-Level Mechanisms of the Herbal Drug FDY003 for Pancreatic Cancer Treatment: A Network Pharmacological Investigation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7160209. [PMID: 35591866 PMCID: PMC9113891 DOI: 10.1155/2022/7160209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022]
Abstract
Pancreatic cancer (PC) is the most lethal cancer with the lowest survival rate globally. Although the prescription of herbal drugs against PC is gaining increasing attention, their polypharmacological therapeutic mechanisms are yet to be fully understood. Based on network pharmacology, we explored the anti-PC properties and system-level mechanisms of the herbal drug FDY003. FDY003 decreased the viability of human PC cells and strengthened their chemosensitivity. Network pharmacological analysis of FDY003 indicated the presence of 16 active phytochemical components and 123 PC-related pharmacological targets. Functional enrichment analysis revealed that the PC-related targets of FDY003 participate in the regulation of cell growth and proliferation, cell cycle process, cell survival, and cell death. In addition, FDY003 was shown to target diverse key pathways associated with PC pathophysiology, namely, the PIK3-Akt, MAPK, FoxO, focal adhesion, TNF, p53, HIF-1, and Ras pathways. Our network pharmacological findings advance the mechanistic understanding of the anti-PC properties of FDY003 from a system perspective.
Collapse
|
9
|
Gitto SB, Nakkina SP, Beardsley JM, Parikh JG, Altomare DA. Induction of pancreatitis in mice with susceptibility to pancreatic cancer. Methods Cell Biol 2022; 168:139-159. [PMID: 35366980 DOI: 10.1016/bs.mcb.2021.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Chronic inflammation is known to be associated with pancreatic cancer, however a complete picture regarding how these pathologies intersect is still being characterized. In vivo model systems are critical for the study of mechanisms underlying how inflammation accelerates neoplasia. Repeat injection of cerulein, a cholecystokinin (CCK) analog, is widely used to experimentally induce acute and chronic pancreatitis in vivo. Chronic cerulein administration into genetically engineered mouse models (GEMMs) with predisposition to pancreatic cancer can induce a pro-inflammatory immune response, pancreatic acinar cell damage, pancreatic stellate cell activation, and accelerate the onset of neoplasia. Here we provide a detailed protocol and insights into using cerulein to induce pancreatitis in GEMMs, and methods to experimentally assess inflammation and pancreatic neoplasia.
Collapse
Affiliation(s)
- Sarah B Gitto
- Ovarian Cancer Research Center, Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, United States; Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sai Preethi Nakkina
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Jordan M Beardsley
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Jignesh G Parikh
- Department of Pathology, Orlando VA Medical Center, Orlando, FL, United States
| | - Deborah A Altomare
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States.
| |
Collapse
|
10
|
Digiacomo G, Volta F, Garajova I, Balsano R, Cavazzoni A. Biological Hallmarks and New Therapeutic Approaches for the Treatment of PDAC. Life (Basel) 2021; 11:life11080843. [PMID: 34440587 PMCID: PMC8400856 DOI: 10.3390/life11080843] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/04/2021] [Accepted: 08/13/2021] [Indexed: 12/27/2022] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is one of the deadliest solid tumors and is estimated to become a leading cause of cancer-related death in coming years. Despite advances in surgical approaches and the emergence of new chemotherapy options, its poor prognosis has not improved in the last decades. The current treatment for PDAC is the combination of cytotoxic chemotherapy agents. However, PDAC shows resistance to many antineoplastic therapies with rapid progression. Although PDAC represents a heterogeneous disease, there are common alterations including oncogenic mutations of KRAS, and the frequent inactivation of different cell cycle regulators including the CDKN2A tumor suppressor gene. An emerging field of investigation focuses on inhibiting the function of proteins that suppress the immune checkpoint PD-1/PD-L1, with activation of the endogenous immune response. To date, all conventional immunotherapies have been less successful in patients with PDAC compared to other tumors. The need for new targets, associated with an extended molecular analysis of tumor samples could give new pharmacological options for the treatment of PDAC. It is, therefore, important to push for a broader molecular approach in PDAC research. Here, we provide a selected summary of emerging strategy options for targeting PDAC using CDK4/6 inhibitors, RAS inhibitors, and new drug combinations with immune checkpoint agents.
Collapse
Affiliation(s)
- Graziana Digiacomo
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.V.); (A.C.)
- Correspondence: ; Tel.: +39-0521-903965
| | - Francesco Volta
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.V.); (A.C.)
| | - Ingrid Garajova
- Medical Oncology Unit, University Hospital of Parma, 43100 Parma, Italy; (I.G.); (R.B.)
| | - Rita Balsano
- Medical Oncology Unit, University Hospital of Parma, 43100 Parma, Italy; (I.G.); (R.B.)
| | - Andrea Cavazzoni
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.V.); (A.C.)
| |
Collapse
|
11
|
Wang S, Zheng Y, Yang F, Zhu L, Zhu XQ, Wang ZF, Wu XL, Zhou CH, Yan JY, Hu BY, Kong B, Fu DL, Bruns C, Zhao Y, Qin LX, Dong QZ. The molecular biology of pancreatic adenocarcinoma: translational challenges and clinical perspectives. Signal Transduct Target Ther 2021; 6:249. [PMID: 34219130 PMCID: PMC8255319 DOI: 10.1038/s41392-021-00659-4] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/27/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is an increasingly common cause of cancer mortality with a tight correspondence between disease mortality and incidence. Furthermore, it is usually diagnosed at an advanced stage with a very dismal prognosis. Due to the high heterogeneity, metabolic reprogramming, and dense stromal environment associated with pancreatic cancer, patients benefit little from current conventional therapy. Recent insight into the biology and genetics of pancreatic cancer has supported its molecular classification, thus expanding clinical therapeutic options. In this review, we summarize how the biological features of pancreatic cancer and its metabolic reprogramming as well as the tumor microenvironment regulate its development and progression. We further discuss potential biomarkers for pancreatic cancer diagnosis, prediction, and surveillance based on novel liquid biopsies. We also outline recent advances in defining pancreatic cancer subtypes and subtype-specific therapeutic responses and current preclinical therapeutic models. Finally, we discuss prospects and challenges in the clinical development of pancreatic cancer therapeutics.
Collapse
Affiliation(s)
- Shun Wang
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Yan Zheng
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Feng Yang
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Fudan University, Shanghai, China
| | - Le Zhu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Xiao-Qiang Zhu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhe-Fang Wang
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Xiao-Lin Wu
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Cheng-Hui Zhou
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Jia-Yan Yan
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bei-Yuan Hu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Bo Kong
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - De-Liang Fu
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Fudan University, Shanghai, China
| | - Christiane Bruns
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Yue Zhao
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany.
| | - Lun-Xiu Qin
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China.
| | - Qiong-Zhu Dong
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China.
- Key laboratory of whole-period monitoring and precise intervention of digestive cancer, Shanghai Municipal Health Commission (SMHC), Shanghai, China.
| |
Collapse
|
12
|
Yachida N, Yoshihara K, Suda K, Nakaoka H, Ueda H, Sugino K, Yamaguchi M, Mori Y, Yamawaki K, Tamura R, Ishiguro T, Kase H, Motoyama T, Enomoto T. Biological significance of KRAS mutant allele expression in ovarian endometriosis. Cancer Sci 2021; 112:2020-2032. [PMID: 33675098 PMCID: PMC8088964 DOI: 10.1111/cas.14871] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/17/2022] Open
Abstract
KRAS is the most frequently mutated in ovarian endometriosis. However, it is unclear whether the KRAS mutant allele's mRNA is expressed and plays a biological role in ovarian endometriosis. Here, we performed mutation-specific RNA in situ hybridization to evaluate mutant allele expression of KRAS p.G12V, the most frequently detected mutation in ovarian endometriosis in our previous study, in formalin-fixed paraffin-embedded tissue (FFPE) samples of ovarian endometriosis, cancer cell lines, and ovarian cancers. First, we verified that mutant or wild-type allele of KRAS were expressed in all 5 cancer cell lines and 9 ovarian cancer cases corresponding to the mutation status. Next, we applied this assay to 26 ovarian endometriosis cases, and observed mutant allele expression of KRAS p.G12V in 10 cases. Mutant or wild-type allele of KRAS were expressed in line with mutation status in 12 available endometriosis cases for which KRAS gene sequence was determined. Comparison of clinical features between ovarian endometriosis with KRAS p.G12V mutant allele expression and with KRAS wild-type showed that KRAS p.G12V mutant allele expression was significantly associated with inflammation in ovarian endometriosis. Finally, we assessed the spatial distribution of KRAS mutant allele expression in 5 endometriosis cases by performing multiregional sampling. Intratumor heterogeneity of KRAS mutant allele expression was observed in two endometriosis cases, whereas the spatial distribution of KRAS p.G12V mutation signals were diffuse and homogenous in ovarian cancer. In conclusion, evaluation of oncogene mutant expression will be useful for clarifying the biological significance of oncogene mutations in benign tumors.
Collapse
Affiliation(s)
- Nozomi Yachida
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kosuke Yoshihara
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kazuaki Suda
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hirofumi Nakaoka
- Human Genetics Laboratory, National Institute of Genetics, Mishima, Japan.,Department of Cancer Genome Research, Sasaki Institute, Sasaki Foundation, Chiyoda-ku, Japan
| | - Haruka Ueda
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kentaro Sugino
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Manako Yamaguchi
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yutaro Mori
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kaoru Yamawaki
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ryo Tamura
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tatsuya Ishiguro
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroaki Kase
- Department of Obstetrics and Gynecology, Nagaoka Chuo General Hospital, Nagaoka, Japan
| | - Teiichi Motoyama
- Department of Molecular and Diagnostic Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takayuki Enomoto
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
13
|
Saki K, Mansouri V, Asri N, Fathi M, Razzaghi Z. Common and differential features of liver and pancreatic cancers: molecular mechanism approach. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2021; 14:S87-S93. [PMID: 35154607 PMCID: PMC8817745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/21/2021] [Indexed: 11/13/2022]
Abstract
AIM The aim of this study was to introduce biomarkers commonly involved in pancreatic cancer metastasis to the liver. BACKGROUND The liver is affected by metastatic disease in pancreatic cancer. METHODS Two cancer biomarkers were distinguished through a STRING database protein query. The dysregulated proteins of the two cancers were included in 2 networks drawn by Cytoscape software v 3.2.7. 20 top nodes and achieved by the Network analyzer application of Cytoscape based on degree value. The common hub nodes were determined, and action maps were analyzed. RESULTS Among 20 hubs of each studied cancer, 18 common hub nodes (90% of hubs) were identified and screened by action maps. Four proteins, AKT1, CDKN2A, ERBB2, and IL6, were identified as common central proteins related to the two studied diseases. CONCLUSION AKT1, CDKN2A, ERBB2, and IL6 are common protein core of liver and pancreatic cancers, while STAT3, CASP3, NOTCH1, and CTNNB1 are possible differential proteins to discriminate these cancers.
Collapse
Affiliation(s)
- Kourosh Saki
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Mansouri
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nastaran Asri
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Fathi
- Critical Care Quality Improvement Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Razzaghi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Beel S, Kolloch L, Apken LH, Jürgens L, Bolle A, Sudhof N, Ghosh S, Wardelmann E, Meisterernst M, Steinestel K, Oeckinghaus A. κB-Ras and Ral GTPases regulate acinar to ductal metaplasia during pancreatic adenocarcinoma development and pancreatitis. Nat Commun 2020; 11:3409. [PMID: 32641778 PMCID: PMC7343838 DOI: 10.1038/s41467-020-17226-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with high mortality and therapy resistance. Here, we show that low expression of κB-Ras GTPases is frequently detected in PDAC and correlates with higher histologic grade. In a model of KRasG12D-driven PDAC, loss of κB-Ras accelerates tumour development and shortens median survival. κB-Ras deficiency promotes acinar-to-ductal metaplasia (ADM) during tumour initiation as well as tumour progression through intrinsic effects on proliferation and invasion. κB-Ras proteins are also required for acinar regeneration after pancreatitis, demonstrating a general role in control of plasticity. Molecularly, upregulation of Ral GTPase activity and Sox9 expression underlies the observed phenotypes, identifying a previously unrecognized function of Ral signalling in ADM. Our results provide evidence for a tumour suppressive role of κB-Ras proteins and highlight low κB-Ras levels and consequent loss of Ral control as risk factors, thus emphasizing the necessity for therapeutic options that allow interference with Ral-driven signalling. The molecular mechanisms of acinar-to-ductal metaplasia (ADM) in the course of pancreatitis and cancer development are unclear. Here, the authors show that loss of κB-Ras and consequent Ral activation promotes tumour initiation and progression through persistent ADM and enhanced cell proliferation
Collapse
Affiliation(s)
- Stephanie Beel
- Institute of Molecular Tumorbiology, Faculty of Medicine, University Münster, Münster, Germany
| | - Lina Kolloch
- Institute of Molecular Tumorbiology, Faculty of Medicine, University Münster, Münster, Germany
| | - Lisa H Apken
- Institute of Molecular Tumorbiology, Faculty of Medicine, University Münster, Münster, Germany
| | - Lara Jürgens
- Institute of Molecular Tumorbiology, Faculty of Medicine, University Münster, Münster, Germany
| | - Andrea Bolle
- Institute of Molecular Tumorbiology, Faculty of Medicine, University Münster, Münster, Germany
| | - Nadine Sudhof
- Institute of Molecular Tumorbiology, Faculty of Medicine, University Münster, Münster, Germany
| | - Sankar Ghosh
- Department of Microbiology & Immunology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Eva Wardelmann
- Gerhard-Domagk-Institute of Pathology, Faculty of Medicine, University Münster, Münster, Germany
| | - Michael Meisterernst
- Institute of Molecular Tumorbiology, Faculty of Medicine, University Münster, Münster, Germany
| | - Konrad Steinestel
- Gerhard-Domagk-Institute of Pathology, Faculty of Medicine, University Münster, Münster, Germany.,Institute of Pathology and Molecular Pathology, Bundeswehrkrankenhaus Ulm, Ulm, Germany
| | - Andrea Oeckinghaus
- Institute of Molecular Tumorbiology, Faculty of Medicine, University Münster, Münster, Germany.
| |
Collapse
|
15
|
Gitto SB, Beardsley JM, Nakkina SP, Oyer JL, Cline KA, Litherland SA, Copik AJ, Khaled AS, Fanaian N, Arnoletti JP, Altomare DA. Identification of a novel IL-5 signaling pathway in chronic pancreatitis and crosstalk with pancreatic tumor cells. Cell Commun Signal 2020; 18:95. [PMID: 32552827 PMCID: PMC7302008 DOI: 10.1186/s12964-020-00594-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 05/11/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND While inflammation is associated with pancreatic cancer, the underlying mechanisms leading to cancer initiation are still being delineated. Eosinophils may promote or inhibit tumor growth, although the specific role in pancreatic cancer has yet to be determined. Eosinophil-supporting cytokine interleukin-5 and receptor are likely to have a role, but the significance in the pancreatic cancer microenvironment is unknown. METHODS Genetically engineered Akt1Myr/KRasG12D and KRasG12D mice were used to model changes induced by chronic inflammation. Tissue samples were collected to analyze the tumor microenvironment and infiltration of immune cells, whereas serum was collected to analyze cytokine and amylase activity in the inflammatory model. The expression of IL-5R and the effects of IL-5 were analyzed in human and murine tumor cells. RESULTS Compound Akt1Myr/KRasG12D mice, compared to single KRasG12D or Akt1Myr mice, exhibited increased tissue damage after repeat inductions of inflammation, and had accelerated tumor development and metastasis. M2 macrophages and newly identified eosinophils co-localized with fibrotic regions rather than infiltrating into tumors, consistent with immune cell privilege. The majority of eosinophils found in the pancreas of Akt1Myr/KRasG12D mice with chronic inflammation lacked the cytotoxic NKG2D marker. IL-5 expression was upregulated in pancreatic cells in response to inflammation, and then diminished in advanced lesions. Although not previously described in pancreatic tumors, IL-5Rα was increased during mouse pancreatic tumor progression and expressed in human pancreatic ductal adenocarcinomas (7 of 7 by immunohistochemistry). IL-5 stimulated tumor cell migration and activation through STAT5 signaling, thereby suggesting an unreported tumor-promoting role for IL-5Rα in pancreatic cancer. CONCLUSIONS Chronic inflammation induces increased pancreatic cancer progression and immune cells such as eosinophils are attracted to areas of fibrosis. Results suggest that IL-5 in the pancreatic compartment stimulates increased IL-5Rα on ductal tumor cells to increase pancreatic tumor motility. Collectively, IL-5/IL-5Rα signaling in the mouse and human pancreatic tumors microenvironment is a novel mechanism to facilitate tumor progression. Additional file 1: Video Abstract.
Collapse
Affiliation(s)
- Sarah B Gitto
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA.,Present Address: Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jordan M Beardsley
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA
| | - Sai Preethi Nakkina
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA
| | - Jeremiah L Oyer
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA
| | - Kathryn A Cline
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA
| | | | - Alicja J Copik
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA
| | - Amr S Khaled
- Orlando Veteran's Affairs Medical Center, Orlando, FL, 32827, USA
| | | | - J Pablo Arnoletti
- AdventHealth Cancer Institute and Institute for Surgical Advancement, Orlando, FL, 32804, USA
| | - Deborah A Altomare
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA.
| |
Collapse
|
16
|
Alwhaibi A, Verma A, Adil MS, Somanath PR. The unconventional role of Akt1 in the advanced cancers and in diabetes-promoted carcinogenesis. Pharmacol Res 2019; 145:104270. [PMID: 31078742 PMCID: PMC6659399 DOI: 10.1016/j.phrs.2019.104270] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/03/2019] [Accepted: 05/08/2019] [Indexed: 12/15/2022]
Abstract
Decades of research have elucidated the critical role of Akt isoforms in cancer as pro-tumorigenic and metastatic regulators through their specific effects on the cancer cells, tumor endothelial cells and the stromal cells. The pro-cancerous role of Akt isoforms through enhanced cell proliferation and suppression of apoptosis in cancer cells and the cells in the tumor microenvironment is considered a dogma. Intriguingly, studies also indicate that the Akt pathway is essential to protect the endothelial-barrier and prevent aberrant vascular permeability, which is also integral to tumor perfusion and metastasis. To complicate this further, a flurry of recent reports strongly indicates the metastasis suppressive role of Akt, Akt1 in particular in various cancer types. These reports emanated from different laboratories have elegantly demonstrated the paradoxical effect of Akt1 on cancer cell epithelial-to-mesenchymal transition, invasion, tumor endothelial-barrier disruption, and cancer metastasis. Here, we emphasize on the specific role of Akt1 in mediating tumor cell-vasculature reciprocity during the advanced stages of cancers and discuss how Akt1 differentially regulates cancer metastasis through mechanisms distinct from its pro-tumorigenic effects. Since Akt is integral for insulin signaling, endothelial function, and metabolic regulation, we also attempt to shed some light on the specific effects of diabetes in modulating Akt pathway in the promotion of tumor growth and metastasis.
Collapse
Affiliation(s)
- Abdulrahman Alwhaibi
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and the Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Arti Verma
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and the Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Mir S Adil
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and the Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Payaningal R Somanath
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and the Charlie Norwood VA Medical Center, Augusta, GA, USA; Department of Medicine, Vascular Biology Center and Cancer Center, Augusta University, USA.
| |
Collapse
|
17
|
Li A, Sun Y, Drummer C, Lu Y, Yu D, Zhou Y, Li X, Pearson SJ, Johnson C, Yu C, Yang WY, Mastascusa K, Jiang X, Sun J, Rogers T, Hu W, Wang H, Yang X. Increasing Upstream Chromatin Long-Range Interactions May Favor Induction of Circular RNAs in LysoPC-Activated Human Aortic Endothelial Cells. Front Physiol 2019; 10:433. [PMID: 31057422 PMCID: PMC6482593 DOI: 10.3389/fphys.2019.00433] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/28/2019] [Indexed: 01/10/2023] Open
Abstract
Circular RNAs (circRNAs) are non-coding RNAs that form covalently closed continuous loops, and act as gene regulators in physiological and disease conditions. To test our hypothesis that proatherogenic lipid lysophosphatidylcholine (LPC) induce a set of circRNAs in human aortic endothelial cell (HAEC) activation, we performed circRNA analysis by searching our RNA-Seq data from LPC-activated HAECs, and found: (1) LPC induces significant modulation of 77 newly characterized cirRNAs, among which 47 circRNAs (61%) are upregulated; (2) 34 (72%) out of 47 upregulated circRNAs are upregulated when the corresponding mRNAs are downregulated, suggesting that the majority of circRNAs are upregulated presumably via LPC-induced “abnormal splicing” when the canonical splicing for generation of corresponding mRNAs is suppressed; (3) Upregulation of 47 circRNAs is temporally associated with mRNAs-mediated LPC-upregulated cholesterol synthesis-SREBP2 pathway and LPC-downregulated TGF-β pathway; (4) Increase in upstream chromatin long-range interaction sites to circRNA related genes is associated with preferred circRNA generation over canonical splicing for mRNAs, suggesting that shifting chromatin long-range interaction sites from downstream to upstream may promote induction of a list of circRNAs in lysoPC-activated HAECs; (5) Six significantly changed circRNAs may have sponge functions for miRNAs; and (6) 74% significantly changed circRNAs contain open reading frames, suggesting that putative short proteins may interfere with the protein interaction-based signaling. Our findings have demonstrated for the first time that a new set of LPC-induced circRNAs may contribute to homeostasis in LPC-induced HAEC activation. These novel insights may lead to identifications of new therapeutic targets for treating metabolic cardiovascular diseases, inflammations, and cancers.
Collapse
Affiliation(s)
- Angus Li
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.,Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Yu Sun
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Charles Drummer
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Yifan Lu
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Daohai Yu
- Department of Clinical Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Temple Health, Philadelphia, PA, United States
| | - Xinyuan Li
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Simone J Pearson
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Candice Johnson
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Catherine Yu
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
| | - William Y Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Kevin Mastascusa
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Xiaohua Jiang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Jianxin Sun
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Philadelphia University - Thomas Jefferson University, Philadelphia, PA, United States
| | - Thomas Rogers
- Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Wenhui Hu
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Hong Wang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.,Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
18
|
Gitto SB, Pandey V, Oyer JL, Copik AJ, Hogan FC, Phanstiel O, Altomare DA. Difluoromethylornithine Combined with a Polyamine Transport Inhibitor Is Effective against Gemcitabine Resistant Pancreatic Cancer. Mol Pharm 2018; 15:369-376. [PMID: 29299930 DOI: 10.1021/acs.molpharmaceut.7b00718] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is highly chemo-resistant and has an extremely poor patient prognosis, with a survival rate at five years of <8%. There remains an urgent need for innovative treatments. Targeting polyamine biosynthesis through inhibition of ornithine decarboxylase with difluoromethylornithine (DFMO) has had mixed clinical success due to tumor escape via an undefined transport system, which imports exogenous polyamines and sustains intracellular polyamine pools. Here, we tested DFMO in combination with a polyamine transport inhibitor (PTI), Trimer44NMe, against Gemcitabine-resistant PDAC cells. DFMO alone and with Trimer44NMe significantly reduced PDAC cell viability by inducing apoptosis or diminishing proliferation. DFMO alone and with Trimer44NMe also inhibited in vivo orthotopic PDAC growth and resulted in decreased c-Myc expression, a readout of polyamine pathway dysfunction. Moreover, dual inhibition significantly prolonged survival of tumor-bearing mice. Collectively, these studies demonstrate that targeting polyamine biosynthesis and import pathways in PDAC can lead to increased survival in pancreatic cancer.
Collapse
Affiliation(s)
- Sarah B Gitto
- Burnett School of Biomedical Sciences, University of Central Florida , 6900 Lake Nona Blvd., Orlando, Florida 32827, United States
| | - Veethika Pandey
- Burnett School of Biomedical Sciences, University of Central Florida , 6900 Lake Nona Blvd., Orlando, Florida 32827, United States
| | - Jeremiah L Oyer
- Burnett School of Biomedical Sciences, University of Central Florida , 6900 Lake Nona Blvd., Orlando, Florida 32827, United States
| | - Alicja J Copik
- Burnett School of Biomedical Sciences, University of Central Florida , 6900 Lake Nona Blvd., Orlando, Florida 32827, United States
| | - Frederick C Hogan
- Burnett School of Biomedical Sciences, University of Central Florida , 6900 Lake Nona Blvd., Orlando, Florida 32827, United States
| | - Otto Phanstiel
- Department of Medical Education, University of Central Florida , 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Deborah A Altomare
- Burnett School of Biomedical Sciences, University of Central Florida , 6900 Lake Nona Blvd., Orlando, Florida 32827, United States
| |
Collapse
|
19
|
Kanhaiya K, Czeizler E, Gratie C, Petre I. Controlling Directed Protein Interaction Networks in Cancer. Sci Rep 2017; 7:10327. [PMID: 28871116 PMCID: PMC5583175 DOI: 10.1038/s41598-017-10491-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/09/2017] [Indexed: 02/06/2023] Open
Abstract
Control theory is a well-established approach in network science, with applications in bio-medicine and cancer research. We build on recent results for structural controllability of directed networks, which identifies a set of driver nodes able to control an a-priori defined part of the network. We develop a novel and efficient approach for the (targeted) structural controllability of cancer networks and demonstrate it for the analysis of breast, pancreatic, and ovarian cancer. We build in each case a protein-protein interaction network and focus on the survivability-essential proteins specific to each cancer type. We show that these essential proteins are efficiently controllable from a relatively small computable set of driver nodes. Moreover, we adjust the method to find the driver nodes among FDA-approved drug-target nodes. We find that, while many of the drugs acting on the driver nodes are part of known cancer therapies, some of them are not used for the cancer types analyzed here; some drug-target driver nodes identified by our algorithms are not known to be used in any cancer therapy. Overall we show that a better understanding of the control dynamics of cancer through computational modelling can pave the way for new efficient therapeutic approaches and personalized medicine.
Collapse
Affiliation(s)
- Krishna Kanhaiya
- Computational Biomodeling Laboratory, Turku Centre for Computer Science, and Department of Computer Science, Åbo Akademi University, Turku, 20500, Finland
| | - Eugen Czeizler
- Computational Biomodeling Laboratory, Turku Centre for Computer Science, and Department of Computer Science, Åbo Akademi University, Turku, 20500, Finland
- National Institute for Research and Development for Biological Sciences, Bucharest, Romania
| | - Cristian Gratie
- Computational Biomodeling Laboratory, Turku Centre for Computer Science, and Department of Computer Science, Åbo Akademi University, Turku, 20500, Finland
| | - Ion Petre
- Computational Biomodeling Laboratory, Turku Centre for Computer Science, and Department of Computer Science, Åbo Akademi University, Turku, 20500, Finland.
| |
Collapse
|
20
|
Zaytouni T, Tsai PY, Hitchcock DS, DuBois CD, Freinkman E, Lin L, Morales-Oyarvide V, Lenehan PJ, Wolpin BM, Mino-Kenudson M, Torres EM, Stylopoulos N, Clish CB, Kalaany NY. Critical role for arginase 2 in obesity-associated pancreatic cancer. Nat Commun 2017; 8:242. [PMID: 28808255 PMCID: PMC5556090 DOI: 10.1038/s41467-017-00331-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/21/2017] [Indexed: 12/13/2022] Open
Abstract
Obesity is an established risk factor for pancreatic ductal adenocarcinoma (PDA). Despite recent identification of metabolic alterations in this lethal malignancy, the metabolic dependencies of obesity-associated PDA remain unknown. Here we show that obesity-driven PDA exhibits accelerated growth and a striking transcriptional enrichment for pathways regulating nitrogen metabolism. We find that the mitochondrial form of arginase (ARG2), which hydrolyzes arginine into ornithine and urea, is induced upon obesity, and silencing or loss of ARG2 markedly suppresses PDA. In vivo infusion of 15N-glutamine in obese mouse models of PDA demonstrates enhanced nitrogen flux into the urea cycle and infusion of 15N-arginine shows that Arg2 loss causes significant ammonia accumulation that results from the shunting of arginine catabolism into alternative nitrogen repositories. Furthermore, analysis of PDA patient tumors indicates that ARG2 levels correlate with body mass index (BMI). The specific dependency of PDA on ARG2 rather than the principal hepatic enzyme ARG1 opens a therapeutic window for obesity-associated pancreatic cancer.Obesity is an established risk factor for pancreatic ductal adenocarcinoma (PDA). Here the authors show that obesity induces the expression of the mitochondrial form of arginase ARG2 in PDA and that ARG2 silencing or loss results in ammonia accumulation and suppression of obesity-driven PDA tumor growth.
Collapse
Affiliation(s)
- Tamara Zaytouni
- Division of Endocrinology, Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Pei-Yun Tsai
- Division of Endocrinology, Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Cory D DuBois
- Division of Endocrinology, Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Elizaveta Freinkman
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
- Metabolon Inc, Research Triangle Park, Durham, NC, 27709, USA
| | - Lin Lin
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Vicente Morales-Oyarvide
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA, 02215, USA
| | - Patrick J Lenehan
- Division of Endocrinology, Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA, 02215, USA
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Eduardo M Torres
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Nicholas Stylopoulos
- Division of Endocrinology, Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Clary B Clish
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Nada Y Kalaany
- Division of Endocrinology, Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
| |
Collapse
|
21
|
Abstract
Acinar cells in the adult pancreas show high plasticity and can undergo transdifferentiation to a progenitor-like cell type with ductal characteristics. This process, termed acinar-to-ductal metaplasia (ADM), is an important feature facilitating pancreas regeneration after injury. Data from animal models show that cells that undergo ADM in response to oncogenic signalling are precursors for pancreatic intraepithelial neoplasia lesions, which can further progress to pancreatic ductal adenocarcinoma (PDAC). As human pancreatic adenocarcinoma is often diagnosed at a stage of metastatic disease, understanding the processes that lead to its initiation is important for the discovery of markers for early detection, as well as options that enable an early intervention. Here, the critical determinants of acinar cell plasticity are discussed, in addition to the intracellular and extracellular signalling events that drive acinar cell metaplasia and their contribution to development of PDAC.
Collapse
Affiliation(s)
- Peter Storz
- Department of Cancer Biology, Room 306 Griffin Building, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, Florida 32224, USA
| |
Collapse
|
22
|
Si L, Xu L, Yin L, Qi Y, Han X, Xu Y, Zhao Y, Liu K, Peng J. Potent effects of dioscin against pancreatic cancer via miR-149-3P-mediated inhibition of the Akt1 signalling pathway. Br J Pharmacol 2017; 174:553-568. [PMID: 28095588 PMCID: PMC5345629 DOI: 10.1111/bph.13718] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 12/29/2016] [Accepted: 01/09/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE The aim of the present study was to investigate the effects and possible underlying mechanisms of dioscin against pancreatic cancer in vitro and in vivo. EXPERIMENTAL APPROACH In vitro actions of dioscin on viability of ASPC-1 and PANC-1 cells, and in vivo effects to suppress the tumour growth of cell xenografts in nude mice were assessed. In addition, microRNA microarray analysis determined which microRNAs were affected by dioscin. The mechanisms underlying the actions of dioscin against pancreatic cancer were elucidated in terms of Akt1 and other proteins related to aopoptosis. KEY RESULTS Dioscin markedly induced apoptosis and significantly suppressed the tumour growth of ASPC-1 and PANC-1 cell xenografts, in nude mice. Total of 107 microRNAs with differential changes were found, in which miR-149-3P targeted with Akt1 was markedly up-regulated by dioscin. Further studies showed that dioscin significantly down-regulated Akt1 levels, and thus induced cell apoptosis by increasing the levels of Bax, Apaf-1, cleaved caspase-3/9, cleaved PARP, suppressing Bcl-2 levels, and causing cytochrome c release. The effects of an inhibitor of miR-149-3P and of siRNA of testicular Akt1 suggested that dioscin showed excellent activity against pancreatic cancer via miR- 149-3P-mediated inhibition of Akt1 signalling pathway. CONCLUSIONS AND IMPLICATIONS Collectively, these findings confirmed the potent effects of dioscin against pancreatic cancer and also provided novel insights into the mechanisms of the compound as a potential candidate for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Lingling Si
- College of PharmacyDalian Medical UniversityDalianChina
| | - Lina Xu
- College of PharmacyDalian Medical UniversityDalianChina
| | - Lianhong Yin
- College of PharmacyDalian Medical UniversityDalianChina
| | - Yan Qi
- College of PharmacyDalian Medical UniversityDalianChina
| | - Xu Han
- College of PharmacyDalian Medical UniversityDalianChina
| | - Youwei Xu
- College of PharmacyDalian Medical UniversityDalianChina
| | - Yanyan Zhao
- College of PharmacyDalian Medical UniversityDalianChina
| | - Kexin Liu
- College of PharmacyDalian Medical UniversityDalianChina
| | - Jinyong Peng
- College of PharmacyDalian Medical UniversityDalianChina
| |
Collapse
|
23
|
Noninvasive Bioluminescence Imaging of AKT Kinase Activity in Subcutaneous and Orthotopic NSCLC Xenografts: Correlation of AKT Activity with Tumor Growth Kinetics. Neoplasia 2017; 19:310-320. [PMID: 28285180 PMCID: PMC5379573 DOI: 10.1016/j.neo.2017.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/31/2017] [Accepted: 02/06/2017] [Indexed: 02/06/2023] Open
Abstract
Aberrant signaling through the AKT kinase mediates oncogenic phenotypes including cell proliferation, survival, and therapeutic resistance. Here, we utilize a bioluminescence reporter for AKT kinase activity (BAR) to noninvasively assess the therapeutic efficacy of the EGFR inhibitor erlotinib in KRAS-mutated lung cancer therapy. A549 non–small cell lung cancer cell line, engineered to express BAR, enabled the evaluation of compounds targeting the EGFR/PI3K/AKT pathway in vitro as well as in mouse models. We found that erlotinib treatment of resistant A549 subcutaneous and orthotopic xenografts resulted in significant AKT inhibition as determined by an 8- to 13-fold (P < .0001) increase in reporter activity 3 hours after erlotinib (100 mg/kg) administration compared to the control. This was confirmed by a 25% (P < .0001) decrease in pAKT ex vivo and a decrease in tumor growth. Treatment of the orthotopic xenograft with varying doses of erlotinib (25, 50, and 100 mg/kg) revealed a dose- and time-dependent increase in reporter activity (10-, 12-, and 23-fold). Correspondingly, a decrease in phospho-AKT levels (0%, 16%, and 28%, respectively) and a decrease in the AKT dependent proliferation marker PCNA (0%, 50%, and 50%) were observed. We applied μ-CT imaging for noninvasive longitudinal quantification of lung tumor load which revealed a corresponding decrease in tumor growth in a dose-dependent manner. These findings demonstrate the utility of BAR to noninvasively monitor AKT activity in preclinical studies in response to AKT modulating agents. These results also demonstrate that BAR can be applied to study drug dosing, drug combinations, and treatment efficacy in orthotopic mouse lung tumor models.
Collapse
|
24
|
Saha S, Xiong X, Chakraborty PK, Shameer K, Arvizo RR, Kudgus RA, Dwivedi SKD, Hossen MN, Gillies EM, Robertson JD, Dudley JT, Urrutia RA, Postier RG, Bhattacharya R, Mukherjee P. Gold Nanoparticle Reprograms Pancreatic Tumor Microenvironment and Inhibits Tumor Growth. ACS NANO 2016; 10:10636-10651. [PMID: 27758098 PMCID: PMC6939886 DOI: 10.1021/acsnano.6b02231] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Altered tumor microenvironment (TME) arising from a bidirectional crosstalk between the pancreatic cancer cells (PCCs) and the pancreatic stellate cells (PSCs) is implicated in the dismal prognosis in pancreatic ductal adenocarcinoma (PDAC), yet effective strategies to disrupt the crosstalk is lacking. Here, we demonstrate that gold nanoparticles (AuNPs) inhibit proliferation and migration of both PCCs and PSCs by disrupting the bidirectional communication via alteration of the cell secretome. Analyzing the key proteins identified from a functional network of AuNP-altered secretome in PCCs and PSCs, we demonstrate that AuNPs impair secretions of major hub node proteins in both cell types and transform activated PSCs toward a lipid-rich quiescent phenotype. By reducing activation of PSCs, AuNPs inhibit matrix deposition, enhance angiogenesis, and inhibit tumor growth in an orthotopic co-implantation model in vivo. Auto- and heteroregulations of secretory growth factors/cytokines are disrupted by AuNPs resulting in reprogramming of the TME. By utilizing a kinase dead mutant of IRE1-α, we demonstrate that AuNPs alter the cellular secretome through the ER-stress-regulated IRE1-dependent decay pathway (RIDD) and identify endostatin and matrix metalloproteinase 9 as putative RIDD targets. Thus, AuNPs could potentially be utilized as a tool to effectively interrogate bidirectional communications in the tumor microenvironment, reprogram it, and inhibit tumor growth by its therapeutic function.
Collapse
Affiliation(s)
- Sounik Saha
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, United States
| | - Xunhao Xiong
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, United States
| | - Prabir K. Chakraborty
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, United States
| | - Khader Shameer
- Institute of Next Generation Healthcare, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, New York 10029, United States
| | - Rochelle R. Arvizo
- Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Rachel A. Kudgus
- Molecular Pharmacology and Experimental Therapeutics, College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Shailendra Kumar Dhar Dwivedi
- Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, United States
| | - Md. Nazir Hossen
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, United States
| | - Elizabeth M. Gillies
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, United States
| | - J. David Robertson
- Department of Chemistry and University of Missouri Research Reactor, University of Missouri, Columbia, Missouri 65211, United States
| | - Joel T. Dudley
- Institute of Next Generation Healthcare, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, New York 10029, United States
| | - Raul A. Urrutia
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Russell G. Postier
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, United States
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, United States
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, United States
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, United States
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, United States
| |
Collapse
|
25
|
Drosos Y, Neale G, Ye J, Paul L, Kuliyev E, Maitra A, Means AL, Washington MK, Rehg J, Finkelstein DB, Sosa-Pineda B. Prox1-Heterozygosis Sensitizes the Pancreas to Oncogenic Kras-Induced Neoplastic Transformation. Neoplasia 2016; 18:172-84. [PMID: 26992918 PMCID: PMC4796801 DOI: 10.1016/j.neo.2016.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/29/2016] [Accepted: 02/09/2016] [Indexed: 12/15/2022] Open
Abstract
The current paradigm of pancreatic neoplastic transformation proposes an initial step whereby acinar cells convert into acinar-to-ductal metaplasias, followed by progression of these lesions into neoplasias under sustained oncogenic activity and inflammation. Understanding the molecular mechanisms driving these processes is crucial to the early diagnostic and prevention of pancreatic cancer. Emerging evidence indicates that transcription factors that control exocrine pancreatic development could have either, protective or facilitating roles in the formation of preneoplasias and neoplasias in the pancreas. We previously identified that the homeodomain transcription factor Prox1 is a novel regulator of mouse exocrine pancreas development. Here we investigated whether Prox1 function participates in early neoplastic transformation using in vivo, in vitro and in silico approaches. We found that Prox1 expression is transiently re-activated in acinar cells undergoing dedifferentiation and acinar-to-ductal metaplastic conversion. In contrast, Prox1 expression is largely absent in neoplasias and tumors in the pancreas of mice and humans. We also uncovered that Prox1-heterozygosis markedly increases the formation of acinar-to-ductal-metaplasias and early neoplasias, and enhances features associated with inflammation, in mouse pancreatic tissues expressing oncogenic Kras. Furthermore, we discovered that Prox1-heterozygosis increases tissue damage and delays recovery from inflammation in pancreata of mice injected with caerulein. These results are the first demonstration that Prox1 activity protects pancreatic cells from acute tissue damage and early neoplastic transformation. Additional data in our study indicate that this novel role of Prox1 involves suppression of pathways associated with inflammatory responses and cell invasiveness.
Collapse
Affiliation(s)
- Yiannis Drosos
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN
| | - Geoffrey Neale
- Department of Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, TN
| | - Jianming Ye
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN
| | - Leena Paul
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN
| | - Emin Kuliyev
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN
| | - Anirban Maitra
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Anna L Means
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN
| | - M Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Jerold Rehg
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - David B Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Beatriz Sosa-Pineda
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN; Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL.
| |
Collapse
|
26
|
Henderson SE, Ding LY, Mo X, Bekaii-Saab T, Kulp SK, Chen CS, Huang PH. Suppression of Tumor Growth and Muscle Wasting in a Transgenic Mouse Model of Pancreatic Cancer by the Novel Histone Deacetylase Inhibitor AR-42. Neoplasia 2016; 18:765-774. [PMID: 27889645 PMCID: PMC5126135 DOI: 10.1016/j.neo.2016.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/20/2016] [Accepted: 10/20/2016] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer death in the United States. This study was aimed at evaluating the efficacy of AR-42 (formerly OSU-HDAC42), a novel histone deacetylase (HDAC) inhibitor currently in clinical trials, in suppressing tumor growth and/or cancer-induced muscle wasting in murine models of PDAC. EXPERIMENTAL DESIGN The in vitro antiproliferative activity of AR-42 was evaluated in six human pancreatic cancer cell lines (AsPC-1, COLO-357, PANC-1, MiaPaCa-2, BxPC-3, SW1990). AsPC-1 subcutaneous xenograft and transgenic KPfl/flC (LSL-KrasG12D;Trp53flox/flox;Pdx-1-Cre) mouse models of pancreatic cancer were used to evaluate the in vivo efficacy of AR-42 in suppressing tumor growth and/or muscle wasting. RESULTS Growth suppression in AR-42-treated cells was observed in all six human pancreatic cancer cell lines with dose-dependent modulation of proliferation and apoptotic markers, which was associated with the hallmark features of HDAC inhibition, including p21 upregulation and histone H3 hyperacetylation. Oral administration of AR-42 at 50 mg/kg every other day resulted in suppression of tumor burden in the AsPC-1 xenograft and KPfl/flC models by 78% and 55%, respectively, at the end of treatment. Tumor suppression was associated with HDAC inhibition, increased apoptosis, and inhibition of proliferation. Additionally, AR-42 as a single agent preserved muscle size and increased grip strength in KPfl/flC mice. Finally, the combination of AR-42 and gemcitabine in transgenic mice demonstrated a significant increase in survival than either agent alone. CONCLUSIONS These results suggest that AR-42 represents a therapeutically promising strategy for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Sally E Henderson
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, 1925 Coffey Rd., Columbus, OH, 43210, USA.
| | - Li-Yun Ding
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan 701, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan 701, Taiwan.
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University, 1800 Cannon Drive, Columbus, OH, 43210, USA.
| | - Tanios Bekaii-Saab
- Division of Medical Oncology, Department of Internal Medicine, Mayo Clinic, 5777 East Mayo Boulevard, Phoenix, AZ, 85054, USA.
| | - Samuel K Kulp
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, 500 West 12th Ave, Columbus, OH, 43210, USA.
| | - Ching-Shih Chen
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, 500 West 12th Ave, Columbus, OH, 43210, USA; Institute of Biological Chemistry, Academia Sinica, 128, Academia Road Sec. 2, Taipei City, 115, Taiwan.
| | - Po-Hsien Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan 701, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan 701, Taiwan.
| |
Collapse
|
27
|
Bassiouni R, Nemec KN, Iketani A, Flores O, Showalter A, Khaled AS, Vishnubhotla P, Sprung RW, Kaittanis C, Perez JM, Khaled AR. Chaperonin Containing TCP-1 Protein Level in Breast Cancer Cells Predicts Therapeutic Application of a Cytotoxic Peptide. Clin Cancer Res 2016; 22:4366-79. [PMID: 27012814 DOI: 10.1158/1078-0432.ccr-15-2502] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/21/2016] [Indexed: 01/01/2023]
Abstract
PURPOSE Metastatic disease is a leading cause of death for patients with breast cancer, driving the need for new therapies. CT20p is a peptide previously discovered by our group that displays cancer-specific cytotoxicity. To design the optimal therapeutic use of the peptide, we identified the intracellular target of CT20p in breast cancer cells, correlating expression patterns of the target with susceptibility to CT20p. EXPERIMENTAL DESIGN Using polymeric nanoparticles to deliver CT20p, we assessed cytoskeletal changes, cell migration, adhesion, and viability in cells treated with the peptide. Protein pull-down experiments, coupled to mass spectrometry, enabled identification of the peptide's intracellular target. Biochemical and histologic techniques validated target identity in human cell lines and breast cancer tissue microarrays and revealed susceptibility patterns to CT20p. RESULTS Chaperonin containing TCP-1 (CCT) was identified as the intracellular target of CT20p. Cancer cells susceptible to CT20p had increased CCT, and overexpression of CCTβ, a subunit of the CCT complex, enhanced susceptibility to CT20p. Susceptible cells displayed reduced tubulin, a substrate of CCT, and inhibition of migration upon CT20p treatment. CCTβ levels were higher in invasive ductal carcinomas than in cancer adjacent tissues and increased with breast cancer stage. Decreased breast cancer patient survival correlated with genomic alternations in CCTβ and higher levels of the chaperone. CONCLUSIONS Increased CCT protein in breast cancer cells underlies the cytotoxicity of CT20p. CCT is thus a potential target for therapeutic intervention and serves as a companion diagnostic to personalize the therapeutic use of CT20p for breast cancer treatment. Clin Cancer Res; 22(17); 4366-79. ©2016 AACR.
Collapse
Affiliation(s)
- Rania Bassiouni
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, Florida
| | - Kathleen N Nemec
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, Florida
| | - Ashley Iketani
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, Florida
| | - Orielyz Flores
- Nanoscience Technology Center, University of Central Florida, Orlando, Florida
| | - Anne Showalter
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, Florida
| | | | | | | | - Charalambos Kaittanis
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Jesus M Perez
- Cedars-Sinai Medical Center, Los Angeles, California
| | - Annette R Khaled
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, Florida.
| |
Collapse
|
28
|
Albury-Warren TM, Pandey V, Spinel LP, Masternak MM, Altomare DA. Prediabetes linked to excess glucagon in transgenic mice with pancreatic active AKT1. J Endocrinol 2016; 228:49-59. [PMID: 26487674 PMCID: PMC4803065 DOI: 10.1530/joe-15-0288] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/20/2015] [Indexed: 12/31/2022]
Abstract
Protein kinase B/AKT has three isoforms (AKT1-3) and is renowned for its central role in the regulation of cell growth and proliferation, due to its constitutive activation in various cancers. AKT2, which is highly expressed in insulin-responsive tissues, has been identified as a primary regulator of glucose metabolism as Akt2 knockout mice (Akt2(-/-)) are glucose-intolerant and insulin-resistant. However, the role of AKT1 in glucose metabolism is not as clearly defined. We previously showed that mice with myristoylated Akt1 (AKT1(Myr)) expressed through a bicistronic Pdx1-TetA and TetO-MyrAkt1 system were susceptible to islet cell carcinomas, and in this study we characterized an early onset, prediabetic phenotype. Beginning at weaning (3 weeks of age), the glucose-intolerant AKT1(Myr) mice exhibited non-fasted hyperglycemia, which progressed to fasted hyperglycemia by 5 months of age. The glucose intolerance was attributed to a fasted hyperglucagonemia, and hepatic insulin resistance detectable by reduced phosphorylation of the insulin receptor following insulin injection into the inferior vena cava. In contrast, treatment with doxycycline diet to turn off the transgene caused attenuation of the non-fasted and fasted hyperglycemia, thus affirming AKT1 hyperactivation as the trigger. Collectively, this model highlights a novel glucagon-mediated mechanism by which AKT1 hyperactivation affects glucose homeostasis and provides an avenue to better delineate the molecular mechanisms responsible for diabetes mellitus and the potential association with pancreatic cancer.
Collapse
Affiliation(s)
- Toya M Albury-Warren
- Burnett School of Biomedical SciencesCollege of Medicine, University of Central Florida, 6900 Lake Nona Boulevard, Orlando, Florida 32827, USADepartment of Head and Neck SurgeryThe Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Veethika Pandey
- Burnett School of Biomedical SciencesCollege of Medicine, University of Central Florida, 6900 Lake Nona Boulevard, Orlando, Florida 32827, USADepartment of Head and Neck SurgeryThe Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Lina P Spinel
- Burnett School of Biomedical SciencesCollege of Medicine, University of Central Florida, 6900 Lake Nona Boulevard, Orlando, Florida 32827, USADepartment of Head and Neck SurgeryThe Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Michal M Masternak
- Burnett School of Biomedical SciencesCollege of Medicine, University of Central Florida, 6900 Lake Nona Boulevard, Orlando, Florida 32827, USADepartment of Head and Neck SurgeryThe Greater Poland Cancer Centre, 61-866 Poznan, Poland Burnett School of Biomedical SciencesCollege of Medicine, University of Central Florida, 6900 Lake Nona Boulevard, Orlando, Florida 32827, USADepartment of Head and Neck SurgeryThe Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Deborah A Altomare
- Burnett School of Biomedical SciencesCollege of Medicine, University of Central Florida, 6900 Lake Nona Boulevard, Orlando, Florida 32827, USADepartment of Head and Neck SurgeryThe Greater Poland Cancer Centre, 61-866 Poznan, Poland
| |
Collapse
|
29
|
Baer R, Cintas C, Therville N, Guillermet-Guibert J. Implication of PI3K/Akt pathway in pancreatic cancer: When PI3K isoforms matter? Adv Biol Regul 2015; 59:19-35. [PMID: 26166735 DOI: 10.1016/j.jbior.2015.05.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 12/18/2022]
Abstract
Pancreatic cancer belongs to the incurable family of solid cancers. Despite of a recent better understanding its molecular biology, and an increased number of clinical trials, there is still a lack for innovative targeted therapies to fight this deadly malignancy. PI3K/Akt signalling is one of the most commonly deregulated signalling pathways in cancer, which explains the massive attention from many pharmaceutical companies over the ten past years on these signalling molecules. The already developed small molecule inhibitors are currently under clinical trial in various cancer types. Class I PI3Ks have 4 isoforms for which the role in physiology starts to be well described in the literature. Data are more unclear for their differential involvement in oncogenesis. In this review, we will discuss about the cognitive and therapeutic potential of targeting this signalling pathway and in particular Class I PI3K isoforms for pancreatic cancer treatment. Isoform-specificity of PI3K inhibitors are currently designed to achieve the same goal as pan-PI3K inhibitors but without potential adverse effects. We will discuss if such strategy is relevant in pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Romain Baer
- Inserm, U1037, Université Toulouse III, Centre de Recherches en Cancérologie de Toulouse, Oncopole de Toulouse, F31037, Toulouse, France
| | - Célia Cintas
- Inserm, U1037, Université Toulouse III, Centre de Recherches en Cancérologie de Toulouse, Oncopole de Toulouse, F31037, Toulouse, France
| | - Nicole Therville
- Inserm, U1037, Université Toulouse III, Centre de Recherches en Cancérologie de Toulouse, Oncopole de Toulouse, F31037, Toulouse, France
| | - Julie Guillermet-Guibert
- Inserm, U1037, Université Toulouse III, Centre de Recherches en Cancérologie de Toulouse, Oncopole de Toulouse, F31037, Toulouse, France.
| |
Collapse
|