1
|
Shaw P, Dey Bhowmik A, Gopinatha Pillai MS, Robbins N, Dwivedi SKD, Rao G. Anoikis resistance in Cancer: Mechanisms, therapeutic strategies, potential targets, and models for enhanced understanding. Cancer Lett 2025; 624:217750. [PMID: 40294841 DOI: 10.1016/j.canlet.2025.217750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/01/2025] [Accepted: 04/26/2025] [Indexed: 04/30/2025]
Abstract
Anoikis, defined as programmed cell death triggered by the loss of cell-extracellular matrix (ECM) and cell-cell interactions, is crucial for maintaining tissue homeostasis and preventing aberrant cell migration. Cancer cells, however, display anoikis resistance (AR) which in turn enables cancer metastasis. AR results from alterations in apoptotic signaling, metabolic reprogramming, autophagy modulation, and epigenetic changes, allowing cancer cells to survive in detached conditions. In this review we describe the mechanisms underlying both anoikis and AR, focusing on intrinsic and extrinsic pathways, disrupted cell-ECM interactions, and autophagy in cancer. Recent findings (i.e., between 2014 and 2024) on epigenetic regulation of AR and its role in metastasis are discussed. Therapeutic strategies targeting AR, including chemical inhibitors, are highlighted alongside a network analysis of 122 proteins reported to be associated with AR which identifies 53 hub proteins as potential targets. We also evaluate in vitro and in vivo models for studying AR, emphasizing their role in advancing metastasis research. Our overall goal is to guide future studies and therapeutic developments to counter cancer metastasis.
Collapse
Affiliation(s)
- Pallab Shaw
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA; Department of Pathology, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA
| | - Arpan Dey Bhowmik
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA; Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA
| | - Mohan Shankar Gopinatha Pillai
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA; Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA
| | - Nathan Robbins
- James E. Hurley School of Science and Mathematics, Oklahoma Baptist University, Shawnee, OK, USA
| | - Shailendra Kumar Dhar Dwivedi
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA; Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA
| | - Geeta Rao
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA; Department of Pathology, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA.
| |
Collapse
|
2
|
Mashozhera NT, Reddy CS, Ranasinghe YN, Natarajan P, Reddy UK, Hankins G. Curcumin-Induced Molecular Mechanisms in U-87 MG Glioblastoma Cells: Insights from Global Gene Expression Profiling. Molecules 2025; 30:2108. [PMID: 40430278 PMCID: PMC12113757 DOI: 10.3390/molecules30102108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/06/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Curcumin, a major phytochemical derived from Curcuma longa, has been shown to enhance the efficacy of chemotherapeutic agents such as doxorubicin, 5-fluorouracil, and cisplatin by overcoming drug resistance, making it a promising adjunct in the treatment of glioblastoma. However, the global gene-expression changes triggered by curcumin in glioblastoma remain underexplored. In this study, we investigated the effects of curcumin on human glioblastoma (U87 MG) cells, where it significantly reduced cell viability and proliferation in a dose- and time-dependent manner and induced apoptosis without affecting senescence. Transcriptomic analysis revealed 5036 differentially expressed genes, with pathway enrichment identifying 13 dysregulated cancer-associated pathways. Notably, curcumin modulated several key regulators involved in MAPK, Ras, TGF-β, Wnt, Cytokine, and TNF signaling pathways. Several apoptosis and cell cycle-associated genes, including PRKCG, GDF7, GDF9, GDF15, GDF5, FZD1, FZD2, FZD8, AIFM3, TP53AIP1, CRD14, NIBAN3, BOK, BCL2L10, BCL2L14, BNIPL, FASLG, GZMM, TNFSF10, TNFSF11, and TNFSF4, were significantly altered. Several pro-apoptotic and anti-BCL, cell-cycle-regulated genes were modulated following curcumin treatment, emphasizing its potential role in curcumin-mediated anti-tumor effects. This study provides insight into the molecular mechanisms underlying curcumin's action against glioblastoma.
Collapse
Affiliation(s)
- Nicole Tendayi Mashozhera
- Department of Biology, West Virginia State University, Institute, WV 25112, USA; (N.T.M.); (C.S.R.); (Y.N.R.); (P.N.)
| | - Chinreddy Subramanyam Reddy
- Department of Biology, West Virginia State University, Institute, WV 25112, USA; (N.T.M.); (C.S.R.); (Y.N.R.); (P.N.)
| | - Yevin Nenuka Ranasinghe
- Department of Biology, West Virginia State University, Institute, WV 25112, USA; (N.T.M.); (C.S.R.); (Y.N.R.); (P.N.)
| | - Purushothaman Natarajan
- Department of Biology, West Virginia State University, Institute, WV 25112, USA; (N.T.M.); (C.S.R.); (Y.N.R.); (P.N.)
- Department of Agriculture, Food, and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Umesh K. Reddy
- Department of Biology, West Virginia State University, Institute, WV 25112, USA; (N.T.M.); (C.S.R.); (Y.N.R.); (P.N.)
| | - Gerald Hankins
- Department of Biology, West Virginia State University, Institute, WV 25112, USA; (N.T.M.); (C.S.R.); (Y.N.R.); (P.N.)
| |
Collapse
|
3
|
Ergün S, Aslan S, Demir D, Kayaoğlu S, Saydam M, Keleş Y, Kolcuoğlu D, Taşkurt Hekim N, Güneş S. Beyond Death: Unmasking the Intricacies of Apoptosis Escape. Mol Diagn Ther 2024; 28:403-423. [PMID: 38890247 PMCID: PMC11211167 DOI: 10.1007/s40291-024-00718-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/20/2024]
Abstract
Apoptosis, or programmed cell death, maintains tissue homeostasis by eliminating damaged or unnecessary cells. However, cells can evade this process, contributing to conditions such as cancer. Escape mechanisms include anoikis, mitochondrial DNA depletion, cellular FLICE inhibitory protein (c-FLIP), endosomal sorting complexes required for transport (ESCRT), mitotic slippage, anastasis, and blebbishield formation. Anoikis, triggered by cell detachment from the extracellular matrix, is pivotal in cancer research due to its role in cellular survival and metastasis. Mitochondrial DNA depletion, associated with cellular dysfunction and diseases such as breast and prostate cancer, links to apoptosis resistance. The c-FLIP protein family, notably CFLAR, regulates cell death processes as a truncated caspase-8 form. The ESCRT complex aids apoptosis evasion by repairing intracellular damage through increased Ca2+ levels. Antimitotic agents induce mitotic arrest in cancer treatment but can lead to mitotic slippage and tetraploid cell formation. Anastasis allows cells to resist apoptosis induced by various triggers. Blebbishield formation suppresses apoptosis indirectly in cancer stem cells by transforming apoptotic cells into blebbishields. In conclusion, the future of apoptosis research offers exciting possibilities for innovative therapeutic approaches, enhanced diagnostic tools, and a deeper understanding of the complex biological processes that govern cell fate. Collaborative efforts across disciplines, including molecular biology, genetics, immunology, and bioinformatics, will be essential to realize these prospects and improve patient outcomes in diverse disease contexts.
Collapse
Affiliation(s)
- Sercan Ergün
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey.
- Department of Multidisciplinary Molecular Medicine, Institute of Graduate Studies, Ondokuz Mayis University, Samsun, Turkey.
| | - Senanur Aslan
- Department of Multidisciplinary Molecular Medicine, Institute of Graduate Studies, Ondokuz Mayis University, Samsun, Turkey
| | - Dilbeste Demir
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Sümeyye Kayaoğlu
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Mevsim Saydam
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Yeda Keleş
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Damla Kolcuoğlu
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Neslihan Taşkurt Hekim
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
- Department of Multidisciplinary Molecular Medicine, Institute of Graduate Studies, Ondokuz Mayis University, Samsun, Turkey
| | - Sezgin Güneş
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
- Department of Multidisciplinary Molecular Medicine, Institute of Graduate Studies, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
4
|
Liu Z, Zhang M, Cao X, Ma M, Han B. Anoikis-related gene signatures predict prognosis of lung adenocarcinoma patients and reveal immune infiltration. Transl Cancer Res 2024; 13:1861-1875. [PMID: 38737691 PMCID: PMC11082686 DOI: 10.21037/tcr-23-2185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/19/2024] [Indexed: 05/14/2024]
Abstract
Background Lung adenocarcinoma (LUAD), a type of lung cancer, is one of the most aggressive and deadly malignancies worldwide. Malignant tumor cells exhibit strong anti-anoikis properties to achieve distant metastasis through the circulatory system. However, more research is needed to understand how anoikis is involved in the progression, metastasis and especially the prognosis of LUAD. Methods We obtained anoikis-related genes (ARGs) from two websites, Harmonizome and Genecards, and integrated them to select and model the genes associated with LUAD prognosis. In addition, we investigated differences in the immune cell microenvironment and pathways of enrichment analysis between subtypes. We finally constructed a nomogram based on ARGs and used decision curve analysis (DCA) to demonstrate that this model could help clinicians make clinical decisions. Results Sixty-four differentially expressed genes (DEGs) were found to be associated with survival, and of these, six were chosen to build a prognostic model. The time-dependent receiver operating characteristic (ROC) curves showed that the model had a satisfactory predictive ability. Enrichment analysis and immune microenvironment analysis revealed that the immune status and drug sensitivity of populations at high and low risk were different. We integrated the clinicopathological features of LUAD with the risk score to build the nomogram. The nomogram was shown to be a good predictor of short- and long-term survival in LUAD patients through DCA analysis. Conclusions This new model based on six ARGs and nomograms in our study could help patients with LUAD develop personalized treatment plans.
Collapse
Affiliation(s)
- Zhikang Liu
- First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Min Zhang
- First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiong Cao
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province International Cooperation Base for Research and Application of Key Technology of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Minjie Ma
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province International Cooperation Base for Research and Application of Key Technology of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Biao Han
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province International Cooperation Base for Research and Application of Key Technology of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
5
|
Monavarian M, Page EF, Rajkarnikar R, Kumari A, Macias LQ, Massicano F, Lee NY, Sahoo S, Hempel N, Jolly MK, Ianov L, Worthey E, Singh A, Broude EV, Mythreye K. Development of adaptive anoikis resistance promotes metastasis that can be overcome by CDK8/19 Mediator kinase inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.04.569970. [PMID: 38106208 PMCID: PMC10723298 DOI: 10.1101/2023.12.04.569970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Anoikis resistance or evasion of cell death triggered by cell detachment into suspension is a hallmark of cancer that is concurrent with cell survival and metastasis. The effects of frequent matrix detachment encounters on the development of anoikis resistance in cancer remains poorly defined. Here we show using a panel of ovarian cancer models, that repeated exposure to suspension stress in vitro followed by attached recovery growth leads to the development of anoikis resistance paralleling in vivo development of anoikis resistance in ovarian cancer ascites. This resistance is concurrent with enhanced invasion, chemoresistance and the ability of anoikis adapted cells to metastasize to distant sites. Adapted anoikis resistant cells show a heightened dependency on oxidative phosphorylation and can also evade immune surveillance. We find that such acquired anoikis resistance is not genetic, as acquired resistance persists for a finite duration in the absence of suspension stress. Transcriptional reprogramming is however essential to this process, as acquisition of adaptive anoikis resistance in vitro and in vivo is exquisitely sensitive to inhibition of CDK8/19 Mediator kinase, a pleiotropic regulator of transcriptional reprogramming. Our data demonstrate that growth after recovery from repeated exposure to suspension stress is a direct contributor to metastasis and that inhibition of CDK8/19 Mediator kinase during such adaptation provides a therapeutic opportunity to prevent both local and distant metastasis in cancer.
Collapse
Affiliation(s)
- Mehri Monavarian
- Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama, Heersink School of Medicine, Birmingham, AL, USA
| | - Emily Faith Page
- Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama, Heersink School of Medicine, Birmingham, AL, USA
| | - Resha Rajkarnikar
- Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama, Heersink School of Medicine, Birmingham, AL, USA
| | - Asha Kumari
- Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama, Heersink School of Medicine, Birmingham, AL, USA
| | - Liz Quintero Macias
- Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama, Heersink School of Medicine, Birmingham, AL, USA
| | - Felipe Massicano
- UAB Biological Data Science Core, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nam Y Lee
- Division of Pharmacology, Chemistry and Biochemistry, College of Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - Sarthak Sahoo
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
| | - Nadine Hempel
- Department of Medicine, Division of Hematology Oncology, University of Pittsburgh School of Medicine Pittsburgh PA 15213
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
| | - Lara Ianov
- UAB Biological Data Science Core, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Elizabeth Worthey
- UAB Biological Data Science Core, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, USA
| | - Eugenia V Broude
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Karthikeyan Mythreye
- Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama, Heersink School of Medicine, Birmingham, AL, USA
| |
Collapse
|
6
|
de Langen P, Hammal F, Guéret E, Mouren JC, Spinelli L, Ballester B. Characterizing intergenic transcription at RNA polymerase II binding sites in normal and cancer tissues. CELL GENOMICS 2023; 3:100411. [PMID: 37868033 PMCID: PMC10589727 DOI: 10.1016/j.xgen.2023.100411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/29/2023] [Accepted: 09/04/2023] [Indexed: 10/24/2023]
Abstract
Intergenic transcription in normal and cancerous tissues is pervasive but incompletely understood. To investigate this, we constructed an atlas of over 180,000 consensus RNA polymerase II (RNAPII)-bound intergenic regions from 900 RNAPII chromatin immunoprecipitation sequencing (ChIP-seq) experiments in normal and cancer samples. Through unsupervised analysis, we identified 51 RNAPII consensus clusters, many of which mapped to specific biotypes and revealed tissue-specific regulatory signatures. We developed a meta-clustering methodology to integrate our RNAPII atlas with active transcription across 28,797 RNA sequencing (RNA-seq) samples from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Encyclopedia of DNA Elements (ENCODE). This analysis revealed strong tissue- and disease-specific interconnections between RNAPII occupancy and transcriptional activity. We demonstrate that intergenic transcription at RNAPII-bound regions is a novel per-cancer and pan-cancer biomarker. This biomarker displays genomic and clinically relevant characteristics, distinguishing cancer subtypes and linking to overall survival. Our results demonstrate the effectiveness of coherent data integration to uncover intergenic transcriptional activity in normal and cancer tissues.
Collapse
Affiliation(s)
| | | | - Elise Guéret
- Aix Marseille Univ, INSERM, TAGC, Marseille, France
| | | | | | | |
Collapse
|
7
|
Alkhathami AG, Abdullah MR, Ahmed M, Hassan Ahmed H, Alwash SW, Muhammed Mahdi Z, Alsaikhan F, Dera AA. Bone morphogenetic protein (BMP)9 in cancer development: mechanistic, diagnostic, and therapeutic approaches? J Drug Target 2023:1-11. [PMID: 37461888 DOI: 10.1080/1061186x.2023.2236330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/09/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
Bone morphogenetic protein (BMP)-9 is considered a member of the transforming growth factor (TGF)β superfamily. It was first found as an inducer of bone and cartilage formation and then discovered that this factor mediates several physiologic functions and hemostasis. Besides physiological conditions, BMP9 has also been elucidated that it is involved in several pathological situations, especially cancer. In various cancers, dysregulation of BMP9 has raised the issue that BMP9 might play a conflicting role in tumour development. BMP9 binding to its receptors (BMPRs), including ALKs and BMPRII, induces canonical SMAD-dependent and non-canonical PI3K/AKT and MAPK signalling pathways in tumour cells. BMP9, via inducing apoptosis, inhibiting tumour-promoting cell signalling pathways, suppressing epithelial-mesenchymal transition (EMT) process, blocking angiogenesis, and preventing cross-talk in the tumour microenvironment, mainly exerts tumour-suppressive functions. In contrast, BMP9 triggers tumour-supportive signalling pathways, promotes EMT, and enhances angiogenesis, suggesting that BMP9 is also involved in tumour development. It has been demonstrated that modulating BMP9 expression and functions might be a promising approach to cancer treatment. It has also been indicated that evaluating BMP9 expression in cancers might be a biomarker for predicting cancer prognosis. Overall, BMP9 would provide a promising target in cancer management.
Collapse
Affiliation(s)
- Ali G Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Muhjaha Ahmed
- Medical Technical college, Al-Farahidi University, Iraq
| | | | - Sarab W Alwash
- Medical Laboratory Techniques Department, Al-Mustaqbal University College, Babylon, Iraq Hillah
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Ayed A Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
8
|
Sattari Fard F, Jalilzadeh N, Mehdizadeh A, Sajjadian F, Velaei K. Understanding and targeting anoikis in metastasis for cancer therapies. Cell Biol Int 2023; 47:683-698. [PMID: 36453448 DOI: 10.1002/cbin.11970] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 12/04/2022]
Abstract
The development of effective treatments for cancers requires investigations for a more detailed and comprehensive understanding of the basic cellular mechanisms involved in carcinogenesis, cancer progression, and metastasis. One of those driving mechanisms is anoikis, a special type of apoptosis, which is induced by losing anchorage from the extracellular matrix (ECM). In other words, resisting death in detached cells (cells without ECM) forms an anoikis-resistant phenotype. Since the anoikis-resistance state compensates for the initial steps of cancer metastasis, this review aimed to discuss mechanisms of gaining anoikis/anoikis resistance phenotype in tumor cells. Finally, we highlighted the significance of anoikis in malignancies so as to provide clear insight into cancer diagnosis and therapy development.
Collapse
Affiliation(s)
- Farzad Sattari Fard
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, School of Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Jalilzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fakhrosadat Sajjadian
- Department of Radiology, Faculty of Para-Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kobra Velaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, School of Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Chan D, Oros Klein K, Riera-Escamilla A, Krausz C, O’Flaherty C, Chan P, Robaire B, Trasler JM. Sperm DNA methylome abnormalities occur both pre- and post-treatment in men with Hodgkin disease and testicular cancer. Clin Epigenetics 2023; 15:5. [PMID: 36611168 PMCID: PMC9826600 DOI: 10.1186/s13148-022-01417-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/21/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Combination chemotherapy has contributed to increased survival from Hodgkin disease (HD) and testicular cancer (TC). However, questions concerning the quality of spermatozoa after treatment have arisen. While studies have shown evidence of DNA damage and aneuploidy in spermatozoa years following anticancer treatment, the sperm epigenome has received little attention. Our objectives here were to determine the impact of HD and TC, as well as their treatments, on sperm DNA methylation. Semen samples were collected from community controls (CC) and from men undergoing treatment for HD or TC, both before initiation of chemotherapy and at multiple times post-treatment. Sperm DNA methylation was assessed using genome-wide and locus-specific approaches. RESULTS Imprinted gene methylation was not affected in the sperm of HD or TC men, before or after treatment. Prior to treatment, using Illumina HumanMethylation450 BeadChip (450 K) arrays, a subset of 500 probes was able to distinguish sperm samples from TC, HD and CC subjects; differences between groups persisted post-treatment. Comparing altered sperm methylation between HD or TC patients versus CC men, twice as many sites were affected in TC versus HD men; for both groups, the most affected CpGs were hypomethylated. For TC patients, the promoter region of GDF2 contained the largest region of differential methylation. To assess alterations in DNA methylation over time/post-chemotherapy, serial samples from individual patients were compared. With restriction landmark genome scanning and 450 K array analyses, some patients who underwent chemotherapy showed increased alterations in DNA methylation, up to 2 to 3 years post-treatment, when compared to the CC cohort. Similarly, a higher-resolution human sperm-specific assay that includes assessment of environmentally sensitive regions, or "dynamic sites," also demonstrated persistently altered sperm DNA methylation in cancer patients post-treatment and suggested preferential susceptibility of "dynamic" CpG sites. CONCLUSIONS Distinct sperm DNA methylation signatures were present pre-treatment in men with HD and TC and may help explain increases in birth defects reported in recent clinical studies. Epigenetic defects in spermatozoa of some cancer survivors were evident even up to 2 years post-treatment. Abnormalities in the sperm epigenome both pre- and post-chemotherapy may contribute to detrimental effects on future reproductive health.
Collapse
Affiliation(s)
- Donovan Chan
- grid.63984.300000 0000 9064 4811Research Institute of the McGill University Health Centre, 1001 Décarie Boul. Block E, Montréal, QC Canada
| | - Kathleen Oros Klein
- grid.414980.00000 0000 9401 2774Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC Canada
| | - Antoni Riera-Escamilla
- grid.7080.f0000 0001 2296 0625Andrology Department, Fundació Puigvert, Universitat Autònoma de Barcelona, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Barcelona, Catalonia Spain
| | - Csilla Krausz
- grid.7080.f0000 0001 2296 0625Andrology Department, Fundació Puigvert, Universitat Autònoma de Barcelona, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Barcelona, Catalonia Spain ,grid.8404.80000 0004 1757 2304Department of Biomedical, Experimental and Clinical Sciences Mario Serio, University of Florence, Florence, Italy
| | - Cristian O’Flaherty
- grid.63984.300000 0000 9064 4811Research Institute of the McGill University Health Centre, 1001 Décarie Boul. Block E, Montréal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Surgery, McGill University, Montréal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Pharmacology and Therapeutics, McGill University, Montréal, QC Canada
| | - Peter Chan
- grid.63984.300000 0000 9064 4811Research Institute of the McGill University Health Centre, 1001 Décarie Boul. Block E, Montréal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Urology, McGill University, Montréal, QC Canada
| | - Bernard Robaire
- grid.14709.3b0000 0004 1936 8649Department of Pharmacology and Therapeutics, McGill University, Montréal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Obstetrics and Gynecology, McGill University, Montréal, QC Canada
| | - Jacquetta M. Trasler
- grid.63984.300000 0000 9064 4811Research Institute of the McGill University Health Centre, 1001 Décarie Boul. Block E, Montréal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Pharmacology and Therapeutics, McGill University, Montréal, QC Canada ,grid.14709.3b0000 0004 1936 8649Departments of Pediatrics and Human Genetics, McGill University, Montréal, QC Canada
| |
Collapse
|
10
|
Shonibare Z, Monavarian M, O’Connell K, Altomare D, Shelton A, Mehta S, Jaskula-Sztul R, Phaeton R, Starr MD, Whitaker R, Berchuck A, Nixon AB, Arend RC, Lee NY, Miller CR, Hempel N, Mythreye K. Reciprocal SOX2 regulation by SMAD1-SMAD3 is critical for anoikis resistance and metastasis in cancer. Cell Rep 2022; 40:111066. [PMID: 35905726 PMCID: PMC9899501 DOI: 10.1016/j.celrep.2022.111066] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/05/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023] Open
Abstract
Growth factors in tumor environments are regulators of cell survival and metastasis. Here, we reveal the dichotomy between TGF-β superfamily growth factors BMP and TGF-β/activin and their downstream SMAD effectors. Gene expression profiling uncovers SOX2 as a key contextual signaling node regulated in an opposing manner by BMP2, -4, and -9 and TGF-β and activin A to impact anchorage-independent cell survival. We find that SOX2 is repressed by BMPs, leading to a reduction in intraperitoneal tumor burden and improved survival of tumor-bearing mice. Repression of SOX2 is driven by SMAD1-dependent histone H3K27me3 recruitment and DNA methylation at SOX2's promoter. Conversely, TGF-β, which is elevated in patient ascites, and activin A can promote SOX2 expression and anchorage-independent survival by SMAD3-dependent histone H3K4me3 recruitment. Our findings identify SOX2 as a contextual and contrastingly regulated node downstream of TGF-β members controlling anchorage-independent survival and metastasis in ovarian cancers.
Collapse
Affiliation(s)
- Zainab Shonibare
- Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama School of Medicine, Birmingham, AL, USA,Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Mehri Monavarian
- Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Kathleen O’Connell
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Diego Altomare
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Abigail Shelton
- Department of Pathology, O’Neal Comprehensive Cancer Center, Comprehensive Neuroscience Center, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Shubham Mehta
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Renata Jaskula-Sztul
- Department of Surgery, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Rebecca Phaeton
- Department of Obstetrics and Gynecology, and Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Mark D. Starr
- Department of Medicine and Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - Regina Whitaker
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Andrew Berchuck
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Andrew B. Nixon
- Department of Medicine and Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - Rebecca C. Arend
- Department of Gynecology Oncology, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Nam Y. Lee
- Department of Chemistry and Biochemistry, Department of Pharmacology, University of Arizona, Tucson, AZ 85721, USA
| | - C. Ryan Miller
- Department of Pathology, O’Neal Comprehensive Cancer Center, Comprehensive Neuroscience Center, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Nadine Hempel
- Department of Pharmacology, and Obstetrics and Gynecology, College of Medicine, Pennsylvania State University, Hershey, PA, USA; Department of Medicine, Division of Hematology Oncology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA.
| | - Karthikeyan Mythreye
- Department of Pathology, O'Neal Comprehensive Cancer Center, University of Alabama School of Medicine, Birmingham, AL, USA; Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
11
|
Tabury K, Monavarian M, Listik E, Shelton AK, Choi AS, Quintens R, Arend RC, Hempel N, Miller CR, Györrfy B, Mythreye K. PVT1 is a stress-responsive lncRNA that drives ovarian cancer metastasis and chemoresistance. Life Sci Alliance 2022; 5:5/11/e202201370. [PMID: 35820706 PMCID: PMC9275596 DOI: 10.26508/lsa.202201370] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 01/18/2023] Open
Abstract
Metastatic growth of ovarian cancer cells into the peritoneal cavity requires adaptation to various cellular stress factors to facilitate cell survival and growth. Here, we demonstrate the role of PVT1, one such stress induced long non-coding RNA, in ovarian cancer growth and metastasis. PVT1 is an amplified and overexpressed lncRNA in ovarian cancer with strong predictive value for survival and response to targeted therapeutics. We find that expression of PVT1 is regulated by tumor cells in response to cellular stress, particularly loss of cell-cell contacts and changes in matrix rigidity occurring in a YAP1-dependent manner. Induction of PVT1 promotes tumor cell survival, growth, and migration. Conversely, reducing PVT1 levels robustly abrogates metastatic behavior and tumor cell dissemination in cell lines and syngeneic transplantation models in vivo. We find that reducing PVT1 causes widespread changes in the transcriptome leading to alterations in cellular stress response and metabolic pathways including doxorubicin metabolism, which impacts chemosensitivity. Together, these findings implicate PVT1 as a promising therapeutic target to suppress metastasis and chemoresistance in ovarian cancer.
Collapse
Affiliation(s)
- Kevin Tabury
- Department of Biomedical Engineering, University of South Carolina, Columbia, SC, USA,Radiobiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium,Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Mehri Monavarian
- Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama Heersink School of Medicine, Birmingham, AL, USA
| | - Eduardo Listik
- Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama Heersink School of Medicine, Birmingham, AL, USA
| | - Abigail K Shelton
- Division of Neuropathology, Department of Pathology, O’Neal Comprehensive Cancer Center, Comprehensive Neuroscience Center, University of Alabama Heersink School of Medicine, Birmingham, AL, USA
| | - Alex Seok Choi
- Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama Heersink School of Medicine, Birmingham, AL, USA
| | - Roel Quintens
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Rebecca C Arend
- Department of Gynecology Oncology, University of Alabama Heersink School of Medicine, Birmingham, AL, USA
| | - Nadine Hempel
- Department of Medicine, Division of Hematology Oncology, University of Pittsburgh School of Medicine Pittsburgh, PA, USA,Department of Pharmacology, and Obstetrics and Gynecology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - C Ryan Miller
- Division of Neuropathology, Department of Pathology, O’Neal Comprehensive Cancer Center, Comprehensive Neuroscience Center, University of Alabama Heersink School of Medicine, Birmingham, AL, USA
| | - Balázs Györrfy
- TTK Cancer Biomarker Research Group, Institute of Enzymology, and Semmelweis University Department of Bioinformatics and 2nd Department of Pediatrics, Budapest, Hungary
| | - Karthikeyan Mythreye
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA,Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama Heersink School of Medicine, Birmingham, AL, USA,Correspondence:
| |
Collapse
|
12
|
Jiang QQ, Liu BB, Xu KS. New insights into BMP9 signaling in liver diseases. Mol Cell Biochem 2021; 476:3591-3600. [PMID: 34019202 DOI: 10.1007/s11010-021-04182-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/12/2021] [Indexed: 02/08/2023]
Abstract
Bone morphogenetic protein 9 (BMP9) is a recently discovered cytokine mainly secreted by the liver and is a member of the transforming growth factor β (TGF-β) superfamily. In recent years, an increasing number of studies have shown that BMP9 is associated with liver diseases, including nonalcoholic fatty liver disease (NAFLD), liver fibrosis and hepatocellular carcinoma (HCC), and BMP9 signaling may play dual roles in liver diseases. In this review, we mainly summarized and discussed the roles and potential mechanisms of BMP9 signaling in NAFLD, liver fibrosis and HCC. Specifically, this article will provide a better understanding of BMP9 signaling and new clues for the treatment of liver diseases.
Collapse
Affiliation(s)
- Qian-Qian Jiang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bei-Bei Liu
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ke-Shu Xu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
13
|
Hou Y, He YX, Zhang JH, Wang SR, Zhang Y. Effects of bone morphogenetic proteins on epithelial repair. Exp Biol Med (Maywood) 2021; 246:2269-2277. [PMID: 34233522 DOI: 10.1177/15353702211028193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Epithelial tissue has important functions such as protection, secretion, and sensation. Epithelial damage is involved in various pathological processes. Bone morphogenetic proteins (BMPs) are a class of growth factors with multiple functions. They play important roles in epithelial cells, including in differentiation, proliferation, and migration during the repair of the epithelium. This article reviews the functions and mechanisms of the most profoundly studied BMPs in the process of epithelial damage repair and their clinical significance.
Collapse
Affiliation(s)
- Yu Hou
- Department of Ophthalmology, 2nd Hospital of Jilin University, Changchun 130041, China.,Norman Bethune Health Science Center of Jilin University, Changchun 130021, China
| | - Yu-Xi He
- Department of Ophthalmology, 2nd Hospital of Jilin University, Changchun 130041, China
| | - Jia-Hao Zhang
- Department of Ophthalmology, 2nd Hospital of Jilin University, Changchun 130041, China.,Norman Bethune Health Science Center of Jilin University, Changchun 130021, China
| | - Shu-Rong Wang
- Department of Ophthalmology, 2nd Hospital of Jilin University, Changchun 130041, China
| | - Yan Zhang
- Department of Ophthalmology, 2nd Hospital of Jilin University, Changchun 130041, China
| |
Collapse
|
14
|
Kumari A, Shonibare Z, Monavarian M, Arend RC, Lee NY, Inman GJ, Mythreye K. TGFβ signaling networks in ovarian cancer progression and plasticity. Clin Exp Metastasis 2021; 38:139-161. [PMID: 33590419 PMCID: PMC7987693 DOI: 10.1007/s10585-021-10077-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
Epithelial ovarian cancer (EOC) is a leading cause of cancer-related death in women. Late-stage diagnosis with significant tumor burden, accompanied by recurrence and chemotherapy resistance, contributes to this poor prognosis. These morbidities are known to be tied to events associated with epithelial-mesenchymal transition (EMT) in cancer. During EMT, localized tumor cells alter their polarity, cell-cell junctions, cell-matrix interactions, acquire motility and invasiveness and an exaggerated potential for metastatic spread. Key triggers for EMT include the Transforming Growth Factor-β (TGFβ) family of growth factors which are actively produced by a wide array of cell types within a specific tumor and metastatic environment. Although TGFβ can act as either a tumor suppressor or promoter in cancer, TGFβ exhibits its pro-tumorigenic functions at least in part via EMT. TGFβ regulates EMT both at the transcriptional and post-transcriptional levels as outlined here. Despite recent advances in TGFβ based therapeutics, limited progress has been seen for ovarian cancers that are in much need of new therapeutic strategies. Here, we summarize and discuss several recent insights into the underlying signaling mechanisms of the TGFβ isoforms in EMT in the unique metastatic environment of EOCs and the current therapeutic interventions that may be relevant.
Collapse
Affiliation(s)
- Asha Kumari
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, WTI 320B, 1824 Sixth Avenue South, Birmingham, AL, 35294, USA
| | - Zainab Shonibare
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, WTI 320B, 1824 Sixth Avenue South, Birmingham, AL, 35294, USA
| | - Mehri Monavarian
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, WTI 320B, 1824 Sixth Avenue South, Birmingham, AL, 35294, USA
| | - Rebecca C Arend
- Department of Obstetrics and Gynecology-Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Nam Y Lee
- Division of Pharmacology, Chemistry and Biochemistry, College of Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - Gareth J Inman
- Cancer Research UK Beatson Institute and Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Karthikeyan Mythreye
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, WTI 320B, 1824 Sixth Avenue South, Birmingham, AL, 35294, USA.
| |
Collapse
|
15
|
Ustaszewski A, Janowska-Głowacka J, Wołyńska K, Pietrzak A, Badura-Stronka M. Genetic syndromes with vascular malformations - update on molecular background and diagnostics. Arch Med Sci 2020; 17:965-991. [PMID: 34336026 PMCID: PMC8314420 DOI: 10.5114/aoms.2020.93260] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 09/09/2018] [Indexed: 11/17/2022] Open
Abstract
Vascular malformations are present in a great variety of congenital syndromes, either as the predominant or additional feature. They pose a major challenge to the clinician: due to significant phenotype overlap, a precise diagnosis is often difficult to obtain, some of the malformations carry a risk of life threatening complications and, for many entities, treatment is not well established. To facilitate their recognition and aid in differentiation, we present a selection of notable congenital disorders of vascular system development, distinguishing between the heritable germinal and sporadic somatic mutations as their causes. Clinical features, genetic background and comprehensible description of molecular mechanisms is provided for each entity.
Collapse
Affiliation(s)
- Adam Ustaszewski
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Katarzyna Wołyńska
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Pietrzak
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | | |
Collapse
|
16
|
Viallard C, Audiger C, Popovic N, Akla N, Lanthier K, Legault-Navarrete I, Melichar H, Costantino S, Lesage S, Larrivée B. BMP9 signaling promotes the normalization of tumor blood vessels. Oncogene 2020; 39:2996-3014. [PMID: 32042114 DOI: 10.1038/s41388-020-1200-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/10/2020] [Accepted: 01/29/2020] [Indexed: 01/09/2023]
Abstract
The presence of an immature tumor vascular network contributes to cancer dissemination and the development of resistance to therapies. Strategies to normalize the tumor vasculature are therefore of significant therapeutic interest for cancer treatments. VEGF inhibitors are used clinically to normalize tumor blood vessels. However, the time frame and dosage of these inhibitors required to achieve normalization is rather narrow, and there is a need to identify additional signaling targets to attain vascular normalization. In addition to VEGF, the endothelial-specific receptor Alk1 plays a critical role in vascular development and promotes vascular remodeling and maturation. Therefore, we sought to evaluate the effects of the Alk1 ligand BMP9 on tumor vascular formation. BMP9 overexpression in Lewis Lung Carcinoma (LLC) tumors significantly delayed tumor growth. Blood vessels in BMP9-overexpressing LLC tumors displayed markers of vascular maturation and were characterized by increased perivascular cell coverage. Tumor vasculature normalization was associated with decreased permeability and increased perfusion. These changes in vascular function in BMP9-overexpressing LLC tumors resulted in significant alterations of the tumor microenvironment, characterized by a decrease in hypoxia and an increase in immune infiltration. In conclusion, we show that BMP9 promotes vascular normalization in LLC tumors that leads to changes in the microenvironment.
Collapse
Affiliation(s)
- Claire Viallard
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département de Biologie Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Cindy Audiger
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département de Microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Natalija Popovic
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département de Biologie Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Naoufal Akla
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département de Biochimie, Université de Montréal, Montréal, QC, Canada
| | - Kevin Lanthier
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département de Biologie Moléculaire, Université de Montréal, Montréal, QC, Canada
| | | | - Heather Melichar
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Santiago Costantino
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département d'Ophtalmologie, Université de Montréal, Montréal, QC, Canada
| | - Sylvie Lesage
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département de Microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Bruno Larrivée
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada. .,Département de Biologie Moléculaire, Université de Montréal, Montréal, QC, Canada. .,Département d'Ophtalmologie, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
17
|
Peng H, Li Z, Fu J, Zhou R. Growth and differentiation factor 15 regulates PD-L1 expression in glioblastoma. Cancer Manag Res 2019; 11:2653-2661. [PMID: 31114328 PMCID: PMC6497826 DOI: 10.2147/cmar.s192095] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/20/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Gliomablastoma multiforme (GBM) is the most fatal form of all brain cancers in human with no successful treatment available. Programmed death-ligand 1 (PD-L1) is a coinhibitory ligand predominantly expressed by tumor cells. Growth differentiation factors (GDFs) are a subfamily of proteins belonging to the transforming growth factor beta superfamily that have functions predominantly in tissue development and cancer. Purpose: To investigat the expression of GDFs in GBMs, and explored the potential regulatory role of GDFs on PD-L1 expression in GBMs. Methods: GEO2R program were analyzed for the mRNA expression data of GDFs in GSE4290 dataset. Analysis of TCGA GBM datasets were further determined the relationship between GDFs and PD-L1. Western blot Western blot was used to detect the expression of PD-L1 in GBM cell lines. Results: GDFs displayed differential patterns of expression with GDF15 and myostatin (MSTN) highly enriched in GBM tissues. We also identified GDF15 as a novel regulator that induces PD-L1 expression in GBM cells. Consistently, GDF15 expression correlated with PD-L1 in TCGA GBM dataset. Further, GDF15 enhanced PD-L1 expression via Smad2/3 pathway in GBM cell line U87, U251 and SHG44, which was inhibited by Smad2/3 inhibitor SIS3. Knockdown of GDF15 attenuated Smad2/3 signaling and reduced PD-L1 expression in A172 and GIC6 glioma cells. Conclusion: GDF15 might be a novel regulator of PD-L1 expression in GBMs; targeting GDF15/PD-L1 pathway might be a promising therapeutic approach for GBM patients.
Collapse
Affiliation(s)
- Haiqin Peng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Zhanzhan Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Jun Fu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| |
Collapse
|
18
|
Subileau M, Merdzhanova G, Ciais D, Collin-Faure V, Feige JJ, Bailly S, Vittet D. Bone Morphogenetic Protein 9 Regulates Early Lymphatic-Specified Endothelial Cell Expansion during Mouse Embryonic Stem Cell Differentiation. Stem Cell Reports 2018; 12:98-111. [PMID: 30595547 PMCID: PMC6335586 DOI: 10.1016/j.stemcr.2018.11.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 01/06/2023] Open
Abstract
Exogenous cues involved in the regulation of the initial steps of lymphatic endothelial development remain largely unknown. We have used an in vitro model based on the co-culture of vascular precursors derived from mouse embryonic stem cell (ESC) differentiation and OP9 stromal cells to examine the first steps of lymphatic specification and expansion. We found that bone morphogenetic protein 9 (BMP9) induced a dose-dependent biphasic effect on ESC-derived vascular precursors. At low concentrations, below 1 ng/mL, BMP9 expands the LYVE-1-positive lymphatic progeny and activates the calcineurin phosphatase/NFATc1 signaling pathway. In contrast, higher BMP9 concentrations preferentially enhance the formation of LYVE-1-negative endothelial cells. This effect results from an OP9 stromal cell-mediated VEGF-A secretion. RNA-silencing experiments indicate specific involvement of ALK1 and ALK2 receptors in these different BMP9 responses. BMP9 at low concentrations may be a useful tool to generate lymphatic endothelial cells from stem cells for cell-replacement strategies. Low doses of BMP9 raise lymph-vasculogenesis during ESC differentiation NFATc1 signaling operates in BMP9-induced lymphatic endothelial cell expansion High doses of BMP9 increase LYVE-1-negative endothelial cell formation A specific differential involvement of ALK1 and ALK2 mediates the BMP9 effects
Collapse
Affiliation(s)
- Mariela Subileau
- Univ. Grenoble Alpes, Inserm, CEA, BIG-BCI, Grenoble 38000, France
| | | | - Delphine Ciais
- Univ. Grenoble Alpes, Inserm, CEA, BIG-BCI, Grenoble 38000, France
| | | | | | - Sabine Bailly
- Univ. Grenoble Alpes, Inserm, CEA, BIG-BCI, Grenoble 38000, France
| | - Daniel Vittet
- Univ. Grenoble Alpes, Inserm, CEA, BIG-BCI, Grenoble 38000, France.
| |
Collapse
|
19
|
Ouarné M, Bouvard C, Boneva G, Mallet C, Ribeiro J, Desroches-Castan A, Soleilhac E, Tillet E, Peyruchaud O, Bailly S. BMP9, but not BMP10, acts as a quiescence factor on tumor growth, vessel normalization and metastasis in a mouse model of breast cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:209. [PMID: 30165893 PMCID: PMC6118004 DOI: 10.1186/s13046-018-0885-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Angiogenesis has become an attractive target for cancer therapy. However, despite the initial success of anti-VEGF (Vascular endothelial growth factor) therapies, the overall survival appears only modestly improved and resistance to therapy often develops. Other anti-angiogenic targets are thus urgently needed. The predominant expression of the type I BMP (bone morphogenetic protein) receptor ALK1 (activin receptor-like kinase 1) in endothelial cells makes it an attractive target, and phase I/II trials are currently being conducted. ALK1 binds with strong affinity to two ligands that belong to the TGF-ß family, BMP9 and BMP10. In the present work, we addressed their specific roles in tumor angiogenesis, cancer development and metastasis in a mammary cancer model. METHODS For this, we used knockout (KO) mice for BMP9 (constitutive Gdf2-deficient), for BMP10 (inducible Bmp10-deficient) and double KO mice (Gdf2 and Bmp10) in a syngeneic immunocompetent orthotopic mouse model of spontaneous metastatic breast cancer (E0771). RESULTS Our studies demonstrate a specific role for BMP9 in the E0771 mammary carcinoma model. Gdf2 deletion increased tumor growth while inhibiting vessel maturation and tumor perfusion. Gdf2 deletion also increased the number and the mean size of lung metastases. On the other hand, Bmp10 deletion did not significantly affect the E0771 mammary model and the double deletion (Gdf2 and Bmp10) did not lead to a stronger phenotype than the single Gdf2 deletion. CONCLUSIONS Altogether, our data show that in a tumor environment BMP9 and BMP10 play different roles and thus blocking their shared receptor ALK1 is maybe not appropriate. Indeed, BMP9, but not BMP10, acts as a quiescence factor on tumor growth, lung metastasis and vessel normalization. Our results also support that activating rather than blocking the BMP9 pathway could be a new strategy for tumor vessel normalization in order to treat breast cancer.
Collapse
Affiliation(s)
- Marie Ouarné
- Univ. Grenoble Alpes, Inserm, CEA, BIG-Biologie du Cancer et de l'Infection, 38000, Grenoble, France
| | - Claire Bouvard
- Univ. Grenoble Alpes, Inserm, CEA, BIG-Biologie du Cancer et de l'Infection, 38000, Grenoble, France
| | - Gabriela Boneva
- Univ. Grenoble Alpes, Inserm, CEA, BIG-Biologie du Cancer et de l'Infection, 38000, Grenoble, France
| | - Christine Mallet
- Univ. Grenoble Alpes, Inserm, CEA, BIG-Biologie du Cancer et de l'Infection, 38000, Grenoble, France
| | - Johnny Ribeiro
- Inserm, U1033, Lyon, France.,Université Claude Bernard Lyon 1, Villeurbanne, France.,, Faculté de Médecine de Lyon Est, Lyon, France
| | - Agnès Desroches-Castan
- Univ. Grenoble Alpes, Inserm, CEA, BIG-Biologie du Cancer et de l'Infection, 38000, Grenoble, France
| | - Emmanuelle Soleilhac
- Univ. Grenoble Alpes, Inserm, CEA, BIG-Biologie à Grande Echelle, 38000, Grenoble, France
| | - Emmanuelle Tillet
- Univ. Grenoble Alpes, Inserm, CEA, BIG-Biologie du Cancer et de l'Infection, 38000, Grenoble, France
| | - Olivier Peyruchaud
- Inserm, U1033, Lyon, France.,Université Claude Bernard Lyon 1, Villeurbanne, France.,, Faculté de Médecine de Lyon Est, Lyon, France
| | - Sabine Bailly
- Univ. Grenoble Alpes, Inserm, CEA, BIG-Biologie du Cancer et de l'Infection, 38000, Grenoble, France.
| |
Collapse
|
20
|
Mediator kinase CDK8/CDK19 drives YAP1-dependent BMP4-induced EMT in cancer. Oncogene 2018; 37:4792-4808. [PMID: 29780169 DOI: 10.1038/s41388-018-0316-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 04/12/2018] [Accepted: 04/17/2018] [Indexed: 01/15/2023]
Abstract
CDK8 is a transcription-regulating kinase that controls TGF-β/BMP-responsive SMAD transcriptional activation and turnover through YAP1 recruitment. However, how the CDK8/YAP1 pathway influences SMAD1 response in cancer remains unclear. Here we report that SMAD1-driven epithelial-to-mesenchymal transition (EMT) is critically dependent on matrix rigidity and YAP1 in a wide spectrum of cancer models. We find that both genetic and pharmacological inhibition of CDK8 and its homologous twin kinase CDK19 leads to abrogation of BMP-induced EMT. Notably, selectively blocking CDK8/19 specifically abrogates tumor cell invasion, changes in EMT-associated transcription factors, E-cadherin expression and YAP nuclear localization both in vitro and in vivo in a murine syngeneic EMT model. Furthermore, RNA-seq meta-analysis reveals a direct correlation between CDK8 and EMT-associated transcription factors in patients. Our findings demonstrate that CDK8, an emerging therapeutic target, coordinates growth factor and mechanical cues during EMT and invasion.
Collapse
|
21
|
Teplyakov E, Wu Q, Liu J, Pugacheva EM, Loukinov D, Boukaba A, Lobanenkov V, Strunnikov A. The downregulation of putative anticancer target BORIS/CTCFL in an addicted myeloid cancer cell line modulates the expression of multiple protein coding and ncRNA genes. Oncotarget 2017; 8:73448-73468. [PMID: 29088719 PMCID: PMC5650274 DOI: 10.18632/oncotarget.20627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/23/2017] [Indexed: 12/27/2022] Open
Abstract
The BORIS/CTCFL gene, is a testis-specific CTCF paralog frequently erroneously activated in cancer, although its exact role in cancer remains unclear. BORIS is both a transcription factor and an architectural chromatin protein. BORIS' normal role is to establish a germline-like gene expression and remodel the epigenetic landscape in testis; it similarly remodels chromatin when activated in human cancer. Critically, at least one cancer cell line, K562, is dependent on BORIS for its self-renewal and survival. Here, we downregulate BORIS expression in the K562 cancer cell line to investigate downstream pathways regulated by BORIS. RNA-seq analyses of both mRNA and small ncRNAs, including miRNA and piRNA, in the knock-down cells revealed a set of differentially expressed genes and pathways, including both testis-specific and general proliferation factors, as well as proteins involved in transcription regulation and cell physiology. The differentially expressed genes included important transcriptional regulators such as SOX6 and LIN28A. Data indicate that both direct binding of BORIS to promoter regions and locus-control activity via long-distance chromatin domain regulation are involved. The sum of findings suggests that BORIS activation in leukemia does not just recapitulate the germline, but creates a unique regulatory network.
Collapse
Affiliation(s)
- Evgeny Teplyakov
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China.,The University of the Chinese Academy of Sciences, Beijing, China
| | - Qiongfang Wu
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Jian Liu
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | | | - Dmitry Loukinov
- NIH, NIAID, Laboratory of Immunogenetics, Rockville, MD, USA
| | - Abdelhalim Boukaba
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | | | - Alexander Strunnikov
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China.,The University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|