1
|
Schmich SKP, Keck J, Bonaterra GA, Bertoune M, Adam A, Wilhelm B, Slater EP, Schwarzbach H, Fendrich V, Kinscherf R, Hildebrandt W. Effects of Monoamino-Oxidase-A (MAO-A) Inhibition on Skeletal Muscle Inflammation and Wasting through Pancreatic Ductal Adenocarcinoma in Triple Transgenic Mice. Biomedicines 2023; 11:biomedicines11030912. [PMID: 36979889 PMCID: PMC10046345 DOI: 10.3390/biomedicines11030912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Cancer cachexia describes a syndrome of muscle wasting and lipolysis that is still largely untreatable and negatively impacts prognosis, mobility, and healthcare costs. Since upregulation of skeletal muscle monoamine-oxidase-A (MAO-A), a source of reactive oxygen species, may contribute to cachexia, we investigated the effects of the MAO-inhibitor harmine-hydrochloride (HH, intraperitoneal, 8 weeks) on muscle wasting in a triple-transgenic mouse model of pancreatic ductal adenocarcinoma (PDAC) and wild type (WT) mice. Gastrocnemius and soleus muscle cryo-cross-sections were analyzed for fiber type-specific cross-sectional area (CSA), fraction and capillarization using ATPase- and lectin-stainings. Transcripts of pro-apoptotic, -atrophic, and -inflammatory signals were determined by RT-qPCR. Furthermore, we evaluated the integrity of neuromuscular junction (NMJ, pre-/post-synaptic co-staining) and mitochondrial ultrastructure (transmission electron microscopy). MAO-A expression in gastrocnemius muscle was increased with PDAC vs. WT (immunohistochemistry: p < 0.05; Western blot: by trend). PDAC expectedly reduced fiber CSA and upregulated IL-1β in both calf muscles, while MuRF1 expression increased in soleus muscle only. Although IL-1β decreased, HH caused an additional 38.65% (p < 0.001) decrease in gastrocnemius muscle (IIBX) fiber CSA. Moreover, soleus muscle CSA remained unchanged despite the downregulation of E3-ligases FBXO32 (p < 0.05) and MuRF1 (p < 0.01) through HH. Notably, HH significantly decreased the post-synaptic NMJ area (quadriceps muscle) and glutathione levels (gastrocnemius muscle), thereby increasing mitochondrial damage and centronucleation in soleus and gastrocnemius type IIBX fibers. Moreover, although pro-atrophic/-inflammatory signals are reversed, HH unfortunately fails to stop and rather promotes PDAC-related muscle wasting, possibly via denervation or mitochondrial damage. These differential adverse vs. therapeutic effects warrant studies regarding dose-dependent benefits and risks with consideration of other targets of HH, such as the dual-specificity tyrosine phosphorylation regulated kinases 1A and B (DYRK1A/B).
Collapse
Affiliation(s)
- Simon K. P. Schmich
- Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032 Marburg, Germany
| | - Jan Keck
- Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032 Marburg, Germany
| | - Gabriel A. Bonaterra
- Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032 Marburg, Germany
| | - Mirjam Bertoune
- Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032 Marburg, Germany
| | - Anna Adam
- Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032 Marburg, Germany
| | - Beate Wilhelm
- Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032 Marburg, Germany
| | - Emily P. Slater
- Department of Visceral-, Thoracic- and Vascular Surgery, Philipps University Marburg, 35043 Marburg, Germany
| | - Hans Schwarzbach
- Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032 Marburg, Germany
| | - Volker Fendrich
- Department of Visceral-, Thoracic- and Vascular Surgery, Philipps University Marburg, 35043 Marburg, Germany
| | - Ralf Kinscherf
- Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032 Marburg, Germany
| | - Wulf Hildebrandt
- Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032 Marburg, Germany
- Correspondence: ; Tel.: +49-6421-2864042; Fax: +49-6421-2868983
| |
Collapse
|
2
|
Elshafae SM, Kohart NA, Breitbach JT, Hildreth BE, Rosol TJ. The Effect of a Histone Deacetylase Inhibitor (AR-42) and Zoledronic Acid on Adult T-Cell Leukemia/Lymphoma Osteolytic Bone Tumors. Cancers (Basel) 2021; 13:cancers13205066. [PMID: 34680215 PMCID: PMC8533796 DOI: 10.3390/cancers13205066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Adult T-cell leukemia (ATL) Leukemia is an aggressive, peripheral blood (T-cell) neoplasm associated with human T-cell leukemia virus type 1 (HTLV-1) infection. Recent studies have implicated dysregulated histone deacetylases in ATL pathogenesis. ATL modulates the bone microenvironment of patients and activates osteoclasts (bone resorbing cells) that cause severe bone loss. The objective of this study was to assess the individual and dual effects of AR-42 (HDACi) and zoledronic acid (Zol) on the growth of ATL cells in vitro and in vivo. AR-42 and Zol reduced the viability of ATL cells in vitro. Additionally, Zol and Zol/AR-42 decreased ATL tumor growth and halted osteolysis in bone tumor xenografts in immunodeficient mice in vivo. Our study suggests that dual targeting of ATL cells (using HDACi) and bone osteoclasts (using bisphosphonates) may be exploited as a valuable approach to reduce bone tumor burden and improve the life quality of ATL patients. Abstract Adult T-cell leukemia/lymphoma (ATL) is an intractable disease affecting nearly 4% of Human T-cell Leukemia Virus Type 1 (HTLV-1) carriers. Acute ATL has a unique interaction with bone characterized by aggressive bone invasion, osteolytic metastasis, and hypercalcemia. We hypothesized that dual tumor and bone-targeted therapies would decrease tumor burden in bone, the incidence of metastasis, and ATL-associated osteolysis. Our goal was to evaluate dual targeting of both ATL bone tumors and the bone microenvironment using an anti-tumor HDACi (AR-42) and an osteoclast inhibitor (zoledronic acid, Zol), alone and in combination. Our results showed that AR-42, Zol, and AR-42/Zol significantly decreased the viability of multiple ATL cancer cell lines in vitro. Zol and AR-42/Zol decreased tumor growth in vivo. Zol ± AR-42 significantly decreased ATL-associated bone resorption and promoted new bone formation. AR-42-treated ATL cells had increased mRNA levels of PTHrP, ENPP2 (autotaxin) and MIP-1α, and TAX viral gene expression. AR-42 alone had no significant effect on tumor growth or osteolysis in mice. These findings indicate that Zol adjuvant therapy has the potential to reduce growth of ATL in bone and its associated osteolysis.
Collapse
Affiliation(s)
- Said M. Elshafae
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (S.M.E.); (N.A.K.); (J.T.B.)
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, Kalyubia 13736, Egypt
| | - Nicole A. Kohart
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (S.M.E.); (N.A.K.); (J.T.B.)
| | - Justin T. Breitbach
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (S.M.E.); (N.A.K.); (J.T.B.)
| | - Blake E. Hildreth
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Thomas J. Rosol
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Correspondence: ; Tel.: +1-740-593-2405
| |
Collapse
|
3
|
Nguyen A, Dzulko M, Murr J, Yen Y, Schneider G, Krämer OH. Class 1 Histone Deacetylases and Ataxia-Telangiectasia Mutated Kinase Control the Survival of Murine Pancreatic Cancer Cells upon dNTP Depletion. Cells 2021; 10:2520. [PMID: 34685500 PMCID: PMC8534202 DOI: 10.3390/cells10102520] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/13/2021] [Accepted: 09/18/2021] [Indexed: 12/20/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease with a dismal prognosis. Here, we show how an inhibition of de novo dNTP synthesis by the ribonucleotide reductase (RNR) inhibitor hydroxyurea and an inhibition of epigenetic modifiers of the histone deacetylase (HDAC) family affect short-term cultured primary murine PDAC cells. We used clinically relevant doses of hydroxyurea and the class 1 HDAC inhibitor entinostat. We analyzed the cells by flow cytometry and immunoblot. Regarding the induction of apoptosis and DNA replication stress, hydroxyurea and the novel RNR inhibitor COH29 are superior to the topoisomerase-1 inhibitor irinotecan which is used to treat PDAC. Entinostat promotes the induction of DNA replication stress by hydroxyurea. This is associated with an increase in the PP2A subunit PR130/PPP2R3A and a reduction of the ribonucleotide reductase subunit RRM2 and the DNA repair protein RAD51. We further show that class 1 HDAC activity promotes the hydroxyurea-induced activation of the checkpoint kinase ataxia-telangiectasia mutated (ATM). Unlike in other cell systems, ATM is pro-apoptotic in hydroxyurea-treated murine PDAC cells. These data reveal novel insights into a cytotoxic, ATM-regulated, and HDAC-dependent replication stress program in PDAC cells.
Collapse
Affiliation(s)
- Alexandra Nguyen
- Department of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, 55131 Mainz, Germany; (A.N.); (M.D.)
| | - Melanie Dzulko
- Department of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, 55131 Mainz, Germany; (A.N.); (M.D.)
| | - Janine Murr
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, 81675 München, Germany; (J.M.); (G.S.)
| | - Yun Yen
- Ph.D. Program for Cancer Biology and Drug Discovery, Taipei Medical University, 250 Wu Hsing Street, Taipei 110, Taiwan;
| | - Günter Schneider
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, 81675 München, Germany; (J.M.); (G.S.)
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Oliver H. Krämer
- Department of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, 55131 Mainz, Germany; (A.N.); (M.D.)
| |
Collapse
|
4
|
Bioinformatics Data Mining Repurposes the JAK2 (Janus Kinase 2) Inhibitor Fedratinib for Treating Pancreatic Ductal Adenocarcinoma by Reversing the KRAS (Kirsten Rat Sarcoma 2 Viral Oncogene Homolog)-Driven Gene Signature. J Pers Med 2020; 10:jpm10030130. [PMID: 32947833 PMCID: PMC7563462 DOI: 10.3390/jpm10030130] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/01/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is still one of the most aggressive and lethal cancer types due to the late diagnosis, high metastatic potential, and drug resistance. The development of novel therapeutic strategies is urgently needed. KRAS (Kirsten rat sarcoma 2 viral oncogene homolog) is the major driver mutation gene for PDAC tumorigenesis. In this study, we mined cancer genomics data and identified a common KRAS-driven gene signature in PDAC, which is related to cell–cell and cell–extracellular matrix (ECM) interactions. Higher expression of this gene signature was associated with poorer overall survival of PDAC patients. Connectivity Map (CMap) analysis and drug sensitivity profiling predicted that a clinically approved JAK2 (Janus kinase 2)-selective inhibitor, fedratinib (also known as TG-101348), could reverse the KRAS-driven gene signature and exhibit KRAS-dependent anticancer activity in PDAC cells. As an approved treatment for myelofibrosis, the pharmacological and toxicological profiles of fedratinib have been well characterized. It may be repurposed for treating KRAS-driven PDAC in the future.
Collapse
|
5
|
Mastoraki A, Schizas D, Vlachou P, Melissaridou NM, Charalampakis N, Fioretzaki R, Kole C, Savvidou O, Vassiliu P, Pikoulis E. Assessment of Synergistic Contribution of Histone Deacetylases in Prognosis and Therapeutic Management of Sarcoma. Mol Diagn Ther 2020; 24:557-569. [PMID: 32696211 DOI: 10.1007/s40291-020-00487-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sarcomas are a rare group of neoplasms with a mesenchymal origin that are mainly characterized by the abnormal growth of connective tissue cells. The standard treatment for local control of sarcomas includes surgery and radiation, while for adjuvant and palliative therapy, chemotherapy has been strongly recommended. Despite the availability of multimodal therapies, the survival rate for patients with sarcoma is still not satisfactory. In recent decades, there has been a considerable effort to overcome chemotherapy resistance in sarcoma cells. This has led to the investigation of more cellular compounds implicated in gene expression and transcription processes. Furthermore, it has been discovered that histone acetylation/deacetylation equilibrium is affected in carcinogenesis, leading to a modified chromatin structure and therefore changes in gene expression. In addition, histone deacetylase inhibition is found to play a key role in limiting the tumor burden in sarcomas, as histone deacetylase inhibitors act on well-described oncogenic signaling pathways. Histone deacetylase inhibitors disrupt the increased cell motility and invasiveness of sarcoma cells, undermining their metastatic potential. Moreover, their activity on evoking cell arrest has been extensively described, with histone deacetylase inhibitors regulating the reactivation of tumor suppressor genes and induction of apoptosis. Promoting autophagy and increasing cellular reactive oxygen species are also included in the antitumor activity of histone deacetylase inhibitors. It should be noted that many studies revealed the synergy between histone deacetylase inhibitors and other drugs, leading to the enhancement of an antitumor effect in sarcomas. Therefore, there is an urgent need for therapeutic interventions modulated according to the distinct clinical and molecular characteristics of each sarcoma subtype. It is concluded that a better understanding of histone deacetylase and histone deacetylase inhibitors could provide patients with sarcoma with more targeted and efficient therapies, which may contribute to significant improvement of their survival potential.
Collapse
Affiliation(s)
- Aikaterini Mastoraki
- Third Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, 1 Rimini Street, Chaidari, Athens, Greece.
| | - Dimitrios Schizas
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Pigi Vlachou
- Third Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, 1 Rimini Street, Chaidari, Athens, Greece
| | - Nikoleta Maria Melissaridou
- Third Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, 1 Rimini Street, Chaidari, Athens, Greece
| | | | | | - Christo Kole
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Olga Savvidou
- First Department of Orthopedics, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Pantelis Vassiliu
- Fourth Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Emmanouil Pikoulis
- Third Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, 1 Rimini Street, Chaidari, Athens, Greece
| |
Collapse
|
6
|
Ehlers L, Bannert K, Rohde S, Berlin P, Reiner J, Wiese M, Doller J, Lerch MM, Aghdassi AA, Meyer F, Valentini L, Agrifoglio O, Metges CC, Lamprecht G, Jaster R. Preclinical insights into the gut-skeletal muscle axis in chronic gastrointestinal diseases. J Cell Mol Med 2020; 24:8304-8314. [PMID: 32628812 PMCID: PMC7412689 DOI: 10.1111/jcmm.15554] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/14/2020] [Indexed: 02/06/2023] Open
Abstract
Muscle wasting represents a constant pathological feature of common chronic gastrointestinal diseases, including liver cirrhosis (LC), inflammatory bowel diseases (IBD), chronic pancreatitis (CP) and pancreatic cancer (PC), and is associated with increased morbidity and mortality. Recent clinical and experimental studies point to the existence of a gut‐skeletal muscle axis that is constituted by specific gut‐derived mediators which activate pro‐ and anti‐sarcopenic signalling pathways in skeletal muscle cells. A pathophysiological link between both organs is also provided by low‐grade systemic inflammation. Animal models of LC, IBD, CP and PC represent an important resource for mechanistic and preclinical studies on disease‐associated muscle wasting. They are also required to test and validate specific anti‐sarcopenic therapies prior to clinical application. In this article, we review frequently used rodent models of muscle wasting in the context of chronic gastrointestinal diseases, survey their specific advantages and limitations and discuss possibilities for further research activities in the field. We conclude that animal models of LC‐, IBD‐ and PC‐associated sarcopenia are an essential supplement to clinical studies because they may provide additional mechanistic insights and help to identify molecular targets for therapeutic interventions in humans.
Collapse
Affiliation(s)
- Luise Ehlers
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock, Germany
| | - Karen Bannert
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock, Germany
| | - Sarah Rohde
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock, Germany
| | - Peggy Berlin
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock, Germany
| | - Johannes Reiner
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock, Germany
| | - Mats Wiese
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Julia Doller
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Markus M Lerch
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Ali A Aghdassi
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Fatuma Meyer
- Department of Agriculture and Food Sciences, Neubrandenburg Institute of Evidence-Based Nutrition (NIED), University of Applied Sciences Neubrandenburg, Neubrandenburg, Germany
| | - Luzia Valentini
- Department of Agriculture and Food Sciences, Neubrandenburg Institute of Evidence-Based Nutrition (NIED), University of Applied Sciences Neubrandenburg, Neubrandenburg, Germany
| | - Ottavia Agrifoglio
- Institute of Nutritional Physiology 'Oskar Kellner', Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Cornelia C Metges
- Institute of Nutritional Physiology 'Oskar Kellner', Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Georg Lamprecht
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock, Germany
| | - Robert Jaster
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
7
|
Suzuki T, Von Haehling S, Springer J. Promising models for cancer-induced cachexia drug discovery. Expert Opin Drug Discov 2020; 15:627-637. [PMID: 32050816 DOI: 10.1080/17460441.2020.1724954] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Cachexia is a frequent, multifactorial syndrome associated with cancer afflicting patients' quality of life, their ability to tolerate anti-neoplastic therapies and the therapies efficacy, as well as survival. Currently, there are no approved cancer cachexia treatments other than those for the treatment of the underlying cancer. Cancer cachexia (CC) is poorly understood and hence makes clinical trial design difficult at best. This underlines the importance of well-characterized animal models to further elucidate the pathophysiology of CC and drug discovery/development.Areas covered: This review gives an overview of the available animal models and their value and limitations in translational studies.Expert opinion: Using more than one CC model to test research questions or novel compounds/treatment strategies is strongly advisable. The main reason is that models have unique signaling modalities driving cachexia that may only relate to subgroups of cancer patients. Human xenograph CC models require the use of mice with a compromised immune system, limiting their value for translational experiments. It may prove beneficial to include standard care chemotherapy in the experimental design, as many chemotherapeutic agents can induce cachexia themselves and alter the metabolic and signaling derangements of CC and thus the response to new therapeutic strategies.
Collapse
Affiliation(s)
- Tsuyoshi Suzuki
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Germany and German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Stephan Von Haehling
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Germany and German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Jochen Springer
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
8
|
Schizas D, Mastoraki A, Naar L, Tsilimigras DI, Katsaros I, Fragkiadaki V, Karachaliou GS, Arkadopoulos N, Liakakos T, Moris D. Histone Deacetylases (HDACs) in Gastric Cancer: An Update of their Emerging Prognostic and Therapeutic Role. Curr Med Chem 2020; 27:6099-6111. [PMID: 31309879 DOI: 10.2174/0929867326666190712160842] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/23/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022]
Abstract
Chemotherapy resistance is a rising concern in Gastric Cancer (GC) and has led to the investigation of various cellular compounds. Α functional equilibrium of histone acetylation and deacetylation was discovered in all cells, regulated by Histone Acetyltransferases and Deacetylases (HDACs), controlling chromatin coiling status and changing gene expression appropriately. In accordance with recent research, this equilibrium can be dysregulated in cancer cells aiding in the process of carcinogenesis and tumor progression by altering histone and non-histone proteins affecting gene expression, cell cycle control, differentiation, and apoptosis in various malignancies. In addition, increased HDAC expression in GC cells has been associated with increased stage, tumor invasion, nodal metastases, increased distant metastatic potential, and decreased overall survival. HDAC inhibitors could be used as treatment regimens for GC patients and could develop important synergistic interactions with chemotherapy drugs. The aim of this article is to review the molecular identity and mechanism of action of HDAC inhibitors, as well as highlight their potential utility as anti-cancer agents in GC.
Collapse
Affiliation(s)
- Dimitrios Schizas
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Aikaterini Mastoraki
- Fourth Department of Surgery, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Leon Naar
- Fourth Department of Surgery, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Diamantis I Tsilimigras
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and James Cancer Hospital and Solove Research Institute, Columbus, Ohio, United States
| | - Ioannis Katsaros
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | | | - Georgia-Sofia Karachaliou
- Department of Medicine, Division of Hematology/Oncology, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Nikolaos Arkadopoulos
- Fourth Department of Surgery, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Theodore Liakakos
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Dimitrios Moris
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States
| |
Collapse
|
9
|
Bhattacharya S, Gong X, Wang E, Dutta SK, Caplette JR, Son M, Nguyen FT, Strano MS, Mukhopadhyay D. DNA-SWCNT Biosensors Allow Real-Time Monitoring of Therapeutic Responses in Pancreatic Ductal Adenocarcinoma. Cancer Res 2019; 79:4515-4523. [PMID: 31292162 DOI: 10.1158/0008-5472.can-18-3337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/15/2019] [Accepted: 07/03/2019] [Indexed: 01/05/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly desmoplastic cancer with limited treatment options. There is an urgent need for tools that monitor therapeutic responses in real time. Drugs such as gemcitabine and irinotecan elicit their therapeutic effect in cancer cells by producing hydrogen peroxide (H2O2). In this study, specific DNA-wrapped single-walled carbon nanotubes (SWCNT), which precisely monitor H2O2, were used to determine the therapeutic response of PDAC cells in vitro and tumors in vivo. Drug therapeutic efficacy was evaluated in vitro by monitoring H2O2 differences in situ using reversible alteration of Raman G-bands from the nanotubes. Implantation of the DNA-SWCNT probe inside the PDAC tumor resulted in approximately 50% reduction of Raman G-band intensity when treated with gemcitabine versus the pretreated tumor; the Raman G-band intensity reversed to its pretreatment level upon treatment withdrawal. In summary, using highly specific and sensitive DNA-SWCNT nanosensors, which can determine dynamic alteration of hydrogen peroxide in tumor, can evaluate the effectiveness of chemotherapeutics. SIGNIFICANCE: A novel biosensor is used to detect intratumoral hydrogen peroxide, allowing real-time monitoring of responses to chemotherapeutic drugs.
Collapse
Affiliation(s)
- Santanu Bhattacharya
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, Florida.,Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Jacksonville, Florida
| | - Xun Gong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Enfeng Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, Florida
| | - Shamit K Dutta
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, Florida
| | - Joseph R Caplette
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Jacksonville, Florida
| | - Manki Son
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Freddy T Nguyen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, Florida. .,Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Jacksonville, Florida
| |
Collapse
|
10
|
Penna F, Costelli P. New developments in investigational HDAC inhibitors for the potential multimodal treatment of cachexia. Expert Opin Investig Drugs 2018; 28:179-189. [PMID: 30526137 DOI: 10.1080/13543784.2019.1557634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Cachexia is a frequent feature of chronic diseases. This syndrome includes loss of body weight, depletion of skeletal muscle mass and altered metabolic homeostasis. Acceleration of protein and energy metabolism, impaired myogenesis, and systemic inflammation contribute to cachexia. Its occurrence impinges on treatment tolerance and on the quality of life of the patient, however, no effective therapy is available yet. AREAS COVERED This review focuses on the use of histone deacetylase inhibitors as pharmacological tools to prevent or delay cachexia, with reference to muscle wasting. EXPERT OPINION Novel histone deacetylase inhibitors could be considered as exercise mimetics and this supports their use as a treatment for muscle-wasting associated diseases, such as cachexia. The ability of some of these inhibitors to modulate the release of extracellular vesicles from tumor cells is a potential tool for restricting the development of cancer-induced muscle protein depletion. There are few clinical trials that are testing histone deacetylase inhibitors as a treatment for cachexia; this reflects the lack of robust experimental evidence of effectiveness. The determination of the pathogenic mechanisms of muscle wasting and the identification of suitable histone deacetylase inhibitors that target such mechanisms are necessary.
Collapse
Affiliation(s)
- Fabio Penna
- a Department of Clinical and Biological Science , University of Torino , Italy.,b Interuniversity Institute of Myology , Italy
| | - Paola Costelli
- a Department of Clinical and Biological Science , University of Torino , Italy.,b Interuniversity Institute of Myology , Italy
| |
Collapse
|
11
|
Schizas D, Mastoraki A, Naar L, Spartalis E, Tsilimigras DI, Karachaliou GS, Bagias G, Moris D. Concept of histone deacetylases in cancer: Reflections on esophageal carcinogenesis and treatment. World J Gastroenterol 2018; 24:4635-4642. [PMID: 30416311 PMCID: PMC6224471 DOI: 10.3748/wjg.v24.i41.4635] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/02/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023] Open
Abstract
Esophageal cancer (EC) presents a high mortality rate, mainly due to its aggressive nature. Squamous cell carcinoma is the most common histological type worldwide, though, a continuous increase in esophageal adenocarcinomas has been noted in the past decades. Common risk factors associated with EC include smoking, alcohol consumption, gastroesophageal reflux disease, Barrett's esophagus and obesity. In an effort to overcome chemotherapy resistance in oncology, it was discovered that histone acetylation/deacetylation equilibrium is altered in carcinogenesis, leading to changes in chromatin structure and altering expression of genes important in the cell cycle, differentiation and apoptosis. Based on this knowledge, histone acetylation was addressed as a potential novel chemotherapy drug target to repress cancer cell proliferation. There are four classes of histone deacetylases (HDACs) inhibitors with a variety of different mechanisms of actions that render them possible anti-cancer drugs. They arrest the cell cycle, inhibit differentiation and angiogenesis and induce apoptosis. They do not necessarily act on histone proteins, since they can also exert indirect anti-cancer effects, by modifying various cellular proteins. In addition, HDACs have also been associated with increased chemotherapy resistance. Based on the literature, HDACs have been associated with EC, with surveys revealing that increased expression of certain HDACs correlates with advanced TNM stages, tumor grade, metastatic potential and decreased 5-year overall and disease-free survival. The aim of this survey is to elucidate the molecular identity and mechanism of action of HDAC inhibitors as well as verify their potential utility as anti-cancer agents in esophageal cancer.
Collapse
Affiliation(s)
- Dimitrios Schizas
- 1st Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Aikaterini Mastoraki
- 1st Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Leon Naar
- 4th Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, Athens 12462, Greece
| | - Eleftherios Spartalis
- Laboratory of Experimental Surgery and Surgical Research, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Diamantis I Tsilimigras
- 1st Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Georgia-Sofia Karachaliou
- Laboratory of Experimental Surgery and Surgical Research, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - George Bagias
- Department of General, Visceral and Transplant Surgery, University Hospital Essen, Essen 45141, Germany
| | - Dimitrios Moris
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, United States
| |
Collapse
|
12
|
Abstract
Pancreatic cancer is the third leading cause of cancer death in the United States, with projections that it will become the second leading cause by the year 2030. It carries a dismal prognosis with a 5-year overall survival rate of less than 9% and is associated with numerous comorbidities, the most notable being cachexia. Defined as the loss of muscle mass not reversible by conventional nutritional support, cachexia is seen in over 85% of pancreatic cancer patients and contributes significantly to mortality, where nearly 30% of pancreatic cancer deaths are due to cachexia rather than tumor burden. Therefore, there is an urgent need to identify the mechanisms behind the development of muscle wasting in pancreatic cancer patients and design novel therapeutics targeting cachexia. This review highlights the current understanding surrounding the mechanisms underpinning the development of cachexia in pancreatic cancer, as well as the current mouse models of pancreatic cancer-induced muscle wasting described in the literature.
Collapse
|
13
|
Lopez G, Braggio D, Zewdu A, Casadei L, Batte K, Bid HK, Koller D, Yu P, Iwenofu OH, Strohecker A, Choy E, Lev D, Pollock R. Mocetinostat combined with gemcitabine for the treatment of leiomyosarcoma: Preclinical correlates. PLoS One 2017; 12:e0188859. [PMID: 29186204 PMCID: PMC5706733 DOI: 10.1371/journal.pone.0188859] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/14/2017] [Indexed: 02/07/2023] Open
Abstract
Leiomyosarcoma (LMS) is a malignant soft tissue sarcoma (STS) with a dismal prognosis following metastatic disease. Chemotherapeutic intervention has demonstrated to have modest clinical efficacy with no curative potential in LMS patients. Previously, we demonstrated pan-HDAC inhibition to have a superior effect in various complex karyotypic sarcomas. In this study, our goal is to evaluate the therapeutic efficacy of mocetinostat alone and in combination with gemcitabine in LMS. Human leiomyosarcoma (LMS) cell lines were used for in vitro and in vivo studies. Compounds tested included the class I HDAC inhibitor, mocetinostat, and nucleoside analog, gemcitabine. MTS and clonogenic assays were used to evaluate the effect of mocetinostat on LMS cell growth. Cleaved caspase 3/7 analysis was used to determine the effects of mocetinostat on apoptosis. Compusyn software was used to determine in vitro synergy studies for the combination of mocetinostat plus gemcitabine. A LMS xenograft model in SCID mice was used to test the impact of mocetinostat alone, gemcitabine alone and the combination of mocetinostat plus gemcitabine. Mocetinostat abrogated LMS cell growth and clonogenic potential, and enhanced apoptosis in LMS cell lines. The combination of mocetinostat plus gemcitabine exhibited a synergistic effect in LMS cells in vitro. Similarly, mocetinostat combined with gemcitabine resulted in superior anti-LMS effects in vivo. Mocetinostat reduced the expression of gemcitabine-resistance markers RRM1, RRM2, and increased the expression of gemcitabine-sensitivity marker, hENT1, in LMS cells. LMS are aggressive, metastatic tumors with poor prognosis where effective therapeutic interventions are wanting. Our studies demonstrate the potential utility of mocetinostat combined with gemcitabine for the treatment of LMS.
Collapse
Affiliation(s)
- Gonzalo Lopez
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Danielle Braggio
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Abeba Zewdu
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Lucia Casadei
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Kara Batte
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Hemant Kumar Bid
- Life Science Institute, University of Michigan, Ann Arbor, MI, United States of America
| | - David Koller
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Peter Yu
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Obiajulu Hans Iwenofu
- Department of Pathology, The Ohio State University, Columbus, OH, United States of America
| | - Anne Strohecker
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Edwin Choy
- Division of Hematology Oncology, Massachusetts General Hospital, Boston, MA, United States of America
| | - Dina Lev
- Surgery B, Sheba Medical Center, Tel Aviv, Israel
| | - Raphael Pollock
- Department of Surgery, The Ohio State University, Columbus, OH, United States of America
- * E-mail:
| |
Collapse
|
14
|
Chen YJ, Wang WH, Wu WY, Hsu CC, Wei LR, Wang SF, Hsu YW, Liaw CC, Tsai WC. Novel histone deacetylase inhibitor AR-42 exhibits antitumor activity in pancreatic cancer cells by affecting multiple biochemical pathways. PLoS One 2017; 12:e0183368. [PMID: 28829799 PMCID: PMC5567660 DOI: 10.1371/journal.pone.0183368] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 08/02/2017] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Pancreatic cancer is one of the most lethal types of cancer with a 5-year survival rate of ~5%. Histone deacetylases (HDACs) participate in many cellular processes, including carcinogenesis, and pharmacological inhibition of HDACs has emerged as a potential therapeutic strategy. In this study, we explored antitumor activity of the novel HDAC inhibitor AR-42 in pancreatic cancer. METHODS Human pancreatic cancer cell lines BxPC-3 and PANC-1 were used in this study. Real-time PCR, RT-PCR, and western blotting were employed to investigate expression of specific genes and proteins, respectively. Translocation of apoptosis-inducing factor was investigated by immunofluorescence and subcellular fractionation. The number of apoptotic cells, cell cycle stages, and reactive oxygen species (ROS) generation levels were determined by flow cytometry. Cell invasiveness was examined by the Matrigel invasion assay. Efficacy of AR-42 in vivo was evaluated by utilizing BxPC-3 xenograft mouse model. RESULTS AR-42 inhibited pancreatic cancer cell proliferation by causing G2/M cell cycle arrest via regulating expression levels of genes and proteins involved in cell cycle. AR-42 also induced ROS generation and DNA damage, triggering apoptosis of pancreatic cancer cells via both caspase-3-dependent and caspase-3-independent pathways. In addition, AR-42 increased expression levels of negative regulators of p53 (miR-125b, miR-30d, and miR33), which could contribute to lower expression level of mutant p53 in pancreatic cancer cells. Cell invasion assay showed that AR-42 reduced cancer cell aggressiveness and significantly diminished BxPC-3 xenograft tumor growth in vivo. CONCLUSION AR-42, a novel HDAC inhibitor, inhibited pancreatic cancer cells by regulating p53 expression, inducing cell cycle arrest, particularly at the G2/M stage, and activating multiple apoptosis pathways. Additionally, AR-42 inhibited cell invasiveness and potently suppressed pancreatic cancer tumors in vivo. We conclude that by virtue of its multiple mechanisms of action, AR-42 possesses a considerable potential as an antitumor agent in pancreatic cancer.
Collapse
Affiliation(s)
- Yi-Jin Chen
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Hung Wang
- Department of Otolaryngology, Cathay General Hospital, Taipei City, Taiwan
- Department of Otolaryngology, Sijhih Cathay General Hospital, New Taipei City, Taiwan
- School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Wan-Yu Wu
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Chi Hsu
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ling-Rung Wei
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sheng-Fan Wang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Wen Hsu
- Department of Hospital and Health Care Administration, Chia Nan University of Pharmacy & Science, Tainan, Taiwan
| | - Chih-Chuang Liaw
- Doctoral Degree Program of Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Wan-Chi Tsai
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- * E-mail:
| |
Collapse
|
15
|
Zhu BY, Shang BY, Du Y, Li Y, Li L, Xu XD, Zhen YS. A new HDAC inhibitor cinnamoylphenazine shows antitumor activity in association with intensive macropinocytosis. Oncotarget 2017; 8:14748-14758. [PMID: 28107195 PMCID: PMC5362440 DOI: 10.18632/oncotarget.14714] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/08/2017] [Indexed: 02/06/2023] Open
Abstract
Previous studies have shown that intensive macropinocytosis occurs in cancer cells and neutral red (NR) is noted for its capability to enter into the cell massively through a process mimetic to macropinocytosis. In addition, trans-cinnamic acid (tCA) has been found to be an inhibitor of histone deacetylase (HDAC). In the present study, cinnamoylphenazine (CA-PZ) that consists of NR and tCA moieties was synthesized and evaluated. As shown, CA-PZ massively entered into colon carcinoma HT-29 cells and pancreatic carcinoma MIA PaCa-2 cells and this entry was blocked by 5-(N-ethyl-N-isopropyl) amiloride (EIPA, an inhibitor of macropinocytosis), indicating a macropinocytosis-mediated uptake. Furthermore, CA-PZ markedly increased the protein expression levels of acetyl-H3, acetyl-H4 and p21 in HT-29 cells and MIA PaCa-2 cells. CA-PZ significantly inhibited the growth of colon carcinoma HT-29 and pancreatic carcinoma MIA PaCa-2 xenografts. By in vivo imaging, CA-PZ displayed prominent accumulation in the tumor xenografts. The study indicates that the newly synthesized CA-PZ acts as an HDAC inhibitor in association with intensive macropinocytosis-mediated intracellular delivery in cancer cells. The use of neutral red for preparation of chimeric molecules with the attribute of macropinocytosis-mediated intracellular delivery might open an alternative way for development of HDAC inhibitors.
Collapse
Affiliation(s)
- Bing-Yan Zhu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Bo-Yang Shang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yue Du
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yi Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Liang Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xian-Dong Xu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yong-Su Zhen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|