1
|
Zhang N, Li W, Wang F, Han C, Li G, Ren L, Hua C. Epigenetic Signatures and Prognostic Biomarkers Analysis of Methylation-Driven Genes in Uterine Endometrial Carcinosarcoma. Crit Rev Eukaryot Gene Expr 2025; 35:27-47. [PMID: 39957591 DOI: 10.1615/critreveukaryotgeneexpr.2024055577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Uterine corpus endometrial carcinoma (UCEC) is one of the most common gynecological malignancies, and understanding the molecular mechanisms underlying its development is essential for improving diagnosis and treatment. However, the role of DNA methylation, a key epigenetic modification, in UCEC prognosis prediction and clinical treatment strategies has rarely been studied. This study utilized publicly available datasets from The Cancer Genome Atlas (TCGA) and online bioinformatics tools to analyze the differential methylation and expression of six selected genes: TP53, PTEN, PTX3, TNK1, PPP2R1A, and KLRG2. These genes were chosen based on their known roles in cancer-related pathways, previous associations with oncogenic processes, and preliminary data showing significant changes in methylation and expression in UCEC compared with normal tissues. We integrated mRNA expression and DNA methylation data with the MethylMix method to identify genes with methylation-driven expression changes. Our analysis revealed that these genes exhibit distinct differential expression and methylation patterns in UCEC, suggesting potential regulatory mechanisms. The expression patterns across the six genes were observed, and TP53, TNK1, PPP2R1A, and KLRG2 were upregulated in tumors, and PTX3 was downregulated in tumors. At the same time, there was no significant change in the expression of PTEN gene. The differential expression correlates with changes in methylation, providing insights into the gene regulation occurring in UCEC. Additionally, Kaplan-Meier survival analysis revealed that the expression levels of specific genes, particularly PTX3, TNK1, and KLRG1, are significantly associated with overall survival in UCEC patients. Higher expression of these genes correlated with poorer survival outcomes, suggesting their potential as prognostic markers. In contrast, the expression of TP53, PTEN, and PPP2R1A did not show a significant impact on patient survival. The functional importance of these genes was investigated utilizing pathway enrichment and protein-protein interaction networks. Additionally, pathway enrichment analysis indicated these genes are involved in critical cancer pathways. The findings highlight the importance of integrating epigenetic and transcriptomic data to understand UCEC pathogenesis and suggest that the identified genes could serve as potential biomarkers for early diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Na Zhang
- Department of Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China 750002
| | - Wangshu Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China 110000; Dalian Women and Children's Medical Group, Dalian, Liaoning, China 116012
| | - Fang Wang
- Department of Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China 750002
| | - Cailing Han
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China 750004
| | - Guijun Li
- Peking University First Hospital Ningxia Women and Children's Hospital, Yinchuan, Ningxia, China 750004
| | - Liyun Ren
- Department of Gynecology, The Second People's Hospital of Yinchuan, Yinchuan, Ningxia, China, 75001
| | - Chen Hua
- Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
2
|
Fan X, Lv C, Xue M, Meng P, Qian X. Fe 3O 4 nanoparticles containing gambogic acid inhibit metastasis in colorectal cancer via the RORB/EMILIN1 axis. Cell Adh Migr 2024; 18:38-53. [PMID: 39533963 PMCID: PMC11562916 DOI: 10.1080/19336918.2024.2427585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/04/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
This research aims to study the effect of magnetic nanoparticles of Fe3O4 (MNP Fe3O4) containing gambogic acid (GA-MNP Fe3O4) on colorectal cancer (CRC). MNP Fe3O4 enhanced the antitumor effect of GA by inhibiting the malignant behavior of CRC cells. RORB was a target of GA, and GA activated RORB expression to inhibit metastasis of CRC. Knockdown of RORB impaired the effect of GA-MNP Fe3O4 on CRC metastasis. EMILIN1 was a target of RORB, and RORB promoted transcription of EMILIN1. Overexpression of EMILIN1 reversed the effect of knockdown of RORB on GA-MNP Fe3O4 and inhibited metastasis in CRC. These findings revealed that MNP Fe3O4 enhanced the antitumor effect of GA and activated RORB to promote EMILIN1 transcription and inhibit CRC metastasis.
Collapse
Affiliation(s)
- Xiaodong Fan
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Thyroid and Breast Oncological Surgery, Xuzhou Medical College Affiliated Huaian Hospital, Huaian, China
| | - Chunyang Lv
- Department of Hepatobiliary Surgery, Xuzhou Medical College Affiliated Huaian Hospital, Huaian, China
| | - Meiling Xue
- Department of Thyroid and Breast Oncological Surgery, Xuzhou Medical College Affiliated Huaian Hospital, Huaian, China
| | - Peng Meng
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, China
| | - Xiaoping Qian
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
3
|
Xie X, Zhang G, Liu N. Comprehensive analysis of abnormal methylation modification differential expression mRNAs between low-grade and high-grade intervertebral disc degeneration and its correlation with immune cells. Ann Med 2024; 56:2357742. [PMID: 38819022 PMCID: PMC11146251 DOI: 10.1080/07853890.2024.2357742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/10/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is an important cause of low back pain. The aim of this study is to identify the potential molecular mechanism of abnormal methylation-modified DNA in the progression of IDD, hoping to contribute to the diagnosis and management of IDD. METHODS Low-grade IDD (grade I-II) and high-grade IDD (grade III-V) data were downloaded from GSE70362 and GSE129789 datasets. The abnormally methylated modified differentially expressed mRNAs (DEmRNAs) were identified by differential expression analysis (screening criteria were p < .05 and |logFC| > 1) and differential methylation analysis (screening criteria were p < .05 and |δβ| > 0.1). The classification models were constructed, and the receiver operating characteristic analysis was also carried out. In addition, functional enrichment analysis and immune correlation analysis were performed and the miRNAs targeted for the abnormally methylated DEmRNAs were predicted. Finally, expression validation was performed using real-time PCR. RESULTS Compared with low-grade IDD, seven abnormal methylation-modified DEmRNAs (AOX1, IBSP, QDPR, ABLIM1, CRISPLD2, ACTC1 and EMILIN1) were identified in high-grade IDD, and the classification models of random forests (RF) and support vector machine (SVM) were constructed. Moreover, seven abnormal methylation-modified DEmRNAs and classification models have high diagnostic accuracy (area under the curve [AUC] > 0.8). We also found that AUC values of single abnormal methylation-modified DEmRNA were all lower than those of RF and SVM classification models. Pearson correlation analysis found that macrophages M2 and EMILIN1 had significant negative correlation, while macrophages M2 and IBSP had significant positive correlation. In addition, four targeted relationship pairs (hsa-miR-4728-5p-QDPR, hsa-miR-4533-ABLIM1, hsa-miR-4728-5p-ABLIM1 and hsa-miR-4534-CRISPLD2) and multiple signalling pathways (for example, PI3K-AKT signalling pathway, osteoclast differentiation and calcium signalling pathway) were also identified that may be involved in the progression of IDD. CONCLUSION The identification of abnormal methylation-modified DEmRNAs and the construction of classification models in this study were helpful for the diagnosis and management of IDD progression.
Collapse
Affiliation(s)
- Xuehu Xie
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Xicheng District, Beijing, China
| | - Guoqiang Zhang
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Xicheng District, Beijing, China
| | - Ning Liu
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Xicheng District, Beijing, China
| |
Collapse
|
4
|
Wojewodzic MW, Lavender JP. Diagnostic classification based on DNA methylation profiles using sequential machine learning approaches. PLoS One 2024; 19:e0307912. [PMID: 39240881 PMCID: PMC11379195 DOI: 10.1371/journal.pone.0307912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 07/10/2024] [Indexed: 09/08/2024] Open
Abstract
Aberrant methylation patterns in human DNA have great potential for the discovery of novel diagnostic and disease progression biomarkers. In this paper we used machine learning algorithms to identify promising methylation sites for diagnosing cancerous tissue and to classify patients based on methylation values at these sites. We used genome-wide DNA methylation patterns from both cancerous and normal tissue samples, obtained from the Genomic Data Commons consortium and trialled our methods on three types of urological cancer. A decision tree was used to identify the methylation sites most useful for diagnosis. The identified locations were then used to train a neural network to classify samples as either cancerous or non-cancerous. Using this two-step approach we found strong indicative biomarker panels for each of the three cancer types. These methods could likely be translated to other cancers and improved by using non-invasive liquid methods such as blood instead of biopsy tissue.
Collapse
Affiliation(s)
- Marcin W Wojewodzic
- Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway
- Chemical Toxicology, Norwegian Institute of Public Health, Oslo, Norway
- University of Birmingham, Birmingham, United Kingdom
| | | |
Collapse
|
5
|
Alrohaibani A, Yu Y, Gao L, McLean KM, Hetts J, Saglam O. PReferentially Expressed Antigen in MElanoma Expression in Uterine and Ovarian Carcinosarcomas. Int J Gynecol Pathol 2024; 43:284-289. [PMID: 38085958 DOI: 10.1097/pgp.0000000000000959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Carcinosarcoma (CS) is an aggressive form of gynecologic malignancy that accounts for ~5% of carcinomas in the endometrium and ovaries. There has been no significant improvement in survival over the last decades despite additional treatment options. PReferentially Expressed Antigen in MElanoma (PRAME) is an immunotherapy target used for the treatment of several solid tumors. We explored the PRAME protein expression levels in ovarian and uterine CS (n = 29). The expression levels were recorded by H-score (percentage of positively stained cells multiplied by staining intensity) in carcinomatous and sarcomatous components separately and compared by paired t-test. The marker expression levels of ovarian and uterine CS were tested against each other in the CS group. Sarcoma-predominant samples (>50% of the sampled tissue) were compared with samples without predominant sarcomatous components by a 2-sample pooled t-test. In addition, high-grade carcinomatous components of CS samples were tested against low-grade endometrioid carcinoma (International Federation of Gynecology and Obstetrics grades 1 and 2; n = 13), and sarcomatous components against uterine leiomyosarcoma (n = 14). There was no significant difference between any subgroups except for sarcomatous elements of CS and leiomyosarcoma ( P < 0.001). A weak positive correlation was found between H-scores of carcinomatous and sarcomatous components ( P = 0.062, r = 0.36). In the ovarian CS group, there was a moderate inverse correlation between age and the mean H-score of the carcinomatous component ( r = -0.683, P = 0.02). Our results further support PRAME overexpression in gynecologic cancers, including CS with similar expression levels in epithelial and mesenchymal components. PRAME might have a role in epithelial-mesenchymal transition in this group of cancers.
Collapse
|
6
|
Karlow JA, Pehrsson EC, Xing X, Watson M, Devarakonda S, Govindan R, Wang T. Non-small Cell Lung Cancer Epigenomes Exhibit Altered DNA Methylation in Smokers and Never-smokers. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:991-1013. [PMID: 37742993 PMCID: PMC10928376 DOI: 10.1016/j.gpb.2023.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 02/11/2023] [Accepted: 03/14/2023] [Indexed: 09/26/2023]
Abstract
Epigenetic alterations are widespread in cancer and can complement genetic alterations to influence cancer progression and treatment outcome. To determine the potential contribution of DNAmethylation alterations to tumor phenotype in non-small cell lung cancer (NSCLC) in both smoker and never-smoker patients, we performed genome-wide profiling of DNA methylation in 17 primary NSCLC tumors and 10 matched normal lung samples using the complementary assays, methylated DNA immunoprecipitation sequencing (MeDIP-seq) and methylation sensitive restriction enzyme sequencing (MRE-seq). We reported recurrent methylation changes in the promoters of several genes, many previously implicated in cancer, including FAM83A and SEPT9 (hypomethylation), as well as PCDH7, NKX2-1, and SOX17 (hypermethylation). Although many methylation changes between tumors and their paired normal samples were shared across patients, several were specific to a particular smoking status. For example, never-smokers displayed a greater proportion of hypomethylated differentially methylated regions (hypoDMRs) and a greater number of recurrently hypomethylated promoters, including those of ASPSCR1, TOP2A, DPP9, and USP39, all previously linked to cancer. Changes outside of promoters were also widespread and often recurrent, particularly methylation loss over repetitive elements, highly enriched for ERV1 subfamilies. Recurrent hypoDMRs were enriched for several transcription factor binding motifs, often for genes involved in signaling and cell proliferation. For example, 71% of recurrent promoter hypoDMRs contained a motif for NKX2-1. Finally, the majority of DMRs were located within an active chromatin state in tissues profiled using the Roadmap Epigenomics data, suggesting that methylation changes may contribute to altered regulatory programs through the adaptation of cell type-specific expression programs.
Collapse
Affiliation(s)
- Jennifer A Karlow
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Erica C Pehrsson
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiaoyun Xing
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mark Watson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Siddhartha Devarakonda
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ramaswamy Govindan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA.
| |
Collapse
|
7
|
Wang F, Song S, Guo B, Li Y, Wang H, Fu S, Wang L, Zhe X, Li H, Li D, Shao R, Pan Z. Increased TCP11 gene expression can inhibit the proliferation, migration and promote apoptosis of cervical cancer cells. BMC Cancer 2023; 23:853. [PMID: 37697257 PMCID: PMC10496356 DOI: 10.1186/s12885-023-11129-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/29/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Cervical cancer is a common gynecological malignancy. Gene microarray found that TCP11 gene was highly expressed in cervical cancer. However, the effect of TCP11 gene on the proliferation, apoptosis and migration of cervical cancer cells and its underlying molecular mechanisms are unclear. METHODS GEPIA database, tissue microarray, western blot and qRT-PCR were used to analyze the expression of TCP11 gene in cervical cancer tissues and cells and its relationship with patients' survival rate. The cell cycle and apoptosis were detected by flow cytometry, and the expressions of cell cycle and apoptosis related molecules and EMT-related molecules were detected by Western blot and qRT-PCR. RESULTS The results showed that TCP11 gene was highly expressed in cervical cancer tissues and cells compared with normal cervical tissues and cells, and its expression was positively correlated with patients' survival rate. The results of proliferation and migration assays showed that TCP11 overexpression inhibited the proliferation and migration of HeLa and SiHa cells. The results showed that TCP11 overexpression blocked the cell cycle of HeLa and SiHa cells, decreased the expression of CDK1 and Cyclin B1, and increased the apoptosis and the expression of caspase-3, cleaved-caspase-3 and cleaved-PARP. TCP11 overexpression increased the protein and mRNA expression of EMT-related molecules ZO-1 and E-cadherin. Conversely, TCP11 knockdown promoted the proliferation of HeLa and SiHa cells and the migration of HeLa cells. CONCLUSIONS TCP11 overexpression significantly inhibited the occurrence and development of cervical cancer cells, it may be a potentially beneficial biomarker for cervical cancer.
Collapse
Affiliation(s)
- Fang Wang
- Department of Biochemistry and Molecular Biology, School of Medicine, Xinjiang Endemic and Ethnic Disease and Education Ministry Key Laboratory, Shihezi University, Shihezi, Xinjiang, 832002, China
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Shuyan Song
- Department of Biochemistry and Molecular Biology, School of Medicine, Xinjiang Endemic and Ethnic Disease and Education Ministry Key Laboratory, Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Bingxuan Guo
- Department of Biochemistry and Molecular Biology, School of Medicine, Xinjiang Endemic and Ethnic Disease and Education Ministry Key Laboratory, Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Yangyang Li
- Department of Biochemistry and Molecular Biology, School of Medicine, Xinjiang Endemic and Ethnic Disease and Education Ministry Key Laboratory, Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Huijuan Wang
- Department of Biochemistry and Molecular Biology, School of Medicine, Xinjiang Endemic and Ethnic Disease and Education Ministry Key Laboratory, Shihezi University, Shihezi, Xinjiang, 832002, China
- Department of Clinical Laboratory, the First Affiliated Hospital of School of Medicine, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Shaowei Fu
- Department of Biochemistry and Molecular Biology, School of Medicine, Xinjiang Endemic and Ethnic Disease and Education Ministry Key Laboratory, Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Luyue Wang
- Department of Biochemistry and Molecular Biology, School of Medicine, Xinjiang Endemic and Ethnic Disease and Education Ministry Key Laboratory, Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Xiangyi Zhe
- Department of Biochemistry and Molecular Biology, School of Medicine, Xinjiang Endemic and Ethnic Disease and Education Ministry Key Laboratory, Shihezi University, Shihezi, Xinjiang, 832002, China.
| | - Hongtao Li
- Department of Biochemistry and Molecular Biology, School of Medicine, Xinjiang Endemic and Ethnic Disease and Education Ministry Key Laboratory, Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Dongmei Li
- Department of Biochemistry and Molecular Biology, School of Medicine, Xinjiang Endemic and Ethnic Disease and Education Ministry Key Laboratory, Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Renfu Shao
- Centre for Bioinnovation, School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, 4556, Australia
| | - Zemin Pan
- Department of Biochemistry and Molecular Biology, School of Medicine, Xinjiang Endemic and Ethnic Disease and Education Ministry Key Laboratory, Shihezi University, Shihezi, Xinjiang, 832002, China.
| |
Collapse
|
8
|
Sertier AS, Ferrari A, Pommier RM, Treilleux I, Boyault S, Devouassoux-Shisheboran M, Kielbassa J, Thomas E, Tonon L, Le Texier V, Charreton A, Morel AP, Floquet A, Joly F, Berton-Rigaud D, Ferron G, Arnould L, Croce S, Bataillon G, Saintigny P, Mery-Lamarche E, Sagan C, Senaratne AP, Gut IG, Calvo F, Viari A, Ouzounova M, Ray-Coquard I, Puisieux A. Dissecting the Origin of Heterogeneity in Uterine and Ovarian Carcinosarcomas. CANCER RESEARCH COMMUNICATIONS 2023; 3:830-841. [PMID: 37377900 PMCID: PMC10171113 DOI: 10.1158/2767-9764.crc-22-0520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/28/2023] [Accepted: 04/18/2023] [Indexed: 06/29/2023]
Abstract
Gynecologic carcinosarcomas (CS) are biphasic neoplasms composed of carcinomatous (C) and sarcomatous (S) malignant components. Because of their rarity and histologic complexity, genetic and functional studies on CS are scarce and the mechanisms of initiation and development remain largely unknown. Whole-genome analysis of the C and S components reveals shared genomic alterations, thus emphasizing the clonal evolution of CS. Reconstructions of the evolutionary history of each tumor further reveal that C and S samples are composed of both ancestral cell populations and component-specific subclones, supporting a common origin followed by distinct evolutionary trajectories. However, while we do not find any recurrent genomic features associated with phenotypic divergence, transcriptomic and methylome analyses identify a common mechanism across the cohort, the epithelial-to-mesenchymal transition (EMT), suggesting a role for nongenetic factors in inflicting changes to cellular fate. Altogether, these data accredit the hypothesis that CS tumors are driven by both clonal evolution and transcriptomic reprogramming, essential for susceptibility to transdifferentiation upon encountering environmental cues, thus linking CS heterogeneity to genetic, transcriptomic, and epigenetic influences. Significance We have provided a detailed characterization of the genomic landscape of CS and identified EMT as a common mechanism associated with phenotypic divergence, linking CS heterogeneity to genetic, transcriptomic, and epigenetic influences.
Collapse
Affiliation(s)
- Anne-Sophie Sertier
- Synergie Lyon Cancer, Plateforme de bioinformatique Gilles Thomas, Centre Léon Bérard, Lyon, France
| | - Anthony Ferrari
- Synergie Lyon Cancer, Plateforme de bioinformatique Gilles Thomas, Centre Léon Bérard, Lyon, France
| | - Roxane M. Pommier
- Synergie Lyon Cancer, Plateforme de bioinformatique Gilles Thomas, Centre Léon Bérard, Lyon, France
- Centre Léon Bérard, Lyon, France
| | | | - Sandrine Boyault
- Synergie Lyon Cancer, Plateforme de bioinformatique Gilles Thomas, Centre Léon Bérard, Lyon, France
- Centre Léon Bérard, Lyon, France
| | - Mojgan Devouassoux-Shisheboran
- Department of Pathology, Hospices Civils de Lyon, Lyon, France
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286 Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Janice Kielbassa
- Synergie Lyon Cancer, Plateforme de bioinformatique Gilles Thomas, Centre Léon Bérard, Lyon, France
- Centre Léon Bérard, Lyon, France
| | - Emilie Thomas
- Synergie Lyon Cancer, Plateforme de bioinformatique Gilles Thomas, Centre Léon Bérard, Lyon, France
| | - Laurie Tonon
- Synergie Lyon Cancer, Plateforme de bioinformatique Gilles Thomas, Centre Léon Bérard, Lyon, France
| | - Vincent Le Texier
- Synergie Lyon Cancer, Plateforme de bioinformatique Gilles Thomas, Centre Léon Bérard, Lyon, France
| | | | | | - Anne Floquet
- Institut Bergonié Comprehensive Cancer Centre, Bordeaux, France
| | | | | | - Gwenaël Ferron
- Institut Claudius-Regaud, IUCT Oncopole, Toulouse, France
| | - Laurent Arnould
- Department of Pathology, Centre Georges François Leclerc, Comprehensive Cancer Centre, Dijon, France
| | - Sabrina Croce
- Department of Biopathology, Institut Bergonié Comprehensive Cancer Centre, Bordeaux, France
| | | | - Pierre Saintigny
- Centre Léon Bérard, Lyon, France
- Department of Translational Medicine, Centre Léon Bérard, Lyon, France
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | | | - Christine Sagan
- Institut de Cancérologie de l'Ouest René-Gauducheau, Saint-Herblain, France
| | | | - Ivo G. Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Carrer Baldiri i Reixac 4, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Fabien Calvo
- Centre de Recherche des Cordeliers, Université de Paris-Cité, Paris France
| | - Alain Viari
- Synergie Lyon Cancer, Plateforme de bioinformatique Gilles Thomas, Centre Léon Bérard, Lyon, France
| | - Maria Ouzounova
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286 Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | | | - Alain Puisieux
- Centre Léon Bérard, Lyon, France
- Institut Curie, PSL Research University, Paris, France
- Chemical Biology of Cancer Laboratory, CNRS UMR 3666, INSERM U1143, Paris, France
| |
Collapse
|
9
|
Sigin VO, Kalinkin AI, Nikolaeva AF, Ignatova EO, Kuznetsova EB, Chesnokova GG, Litviakov NV, Tsyganov MM, Ibragimova MK, Vinogradov II, Vinogradov MI, Vinogradov IY, Zaletaev DV, Nemtsova MV, Kutsev SI, Tanas AS, Strelnikov VV. DNA Methylation and Prospects for Predicting the Therapeutic Effect of Neoadjuvant Chemotherapy for Triple-Negative and Luminal B Breast Cancer. Cancers (Basel) 2023; 15:cancers15051630. [PMID: 36900421 PMCID: PMC10001080 DOI: 10.3390/cancers15051630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/24/2023] [Accepted: 03/05/2023] [Indexed: 03/09/2023] Open
Abstract
Despite advances in the diagnosis and treatment of breast cancer (BC), the main cause of deaths is resistance to existing therapies. An approach to improve the effectiveness of therapy in patients with aggressive BC subtypes is neoadjuvant chemotherapy (NACT). Yet, the response to NACT for aggressive subtypes is less than 65% according to large clinical trials. An obvious fact is the lack of biomarkers predicting the therapeutic effect of NACT. In a search for epigenetic markers, we performed genome-wide differential methylation screening by XmaI-RRBS in cohorts of NACT responders and nonresponders, for triple-negative (TN) and luminal B tumors. The predictive potential of the most discriminative loci was further assessed in independent cohorts by methylation-sensitive restriction enzyme quantitative PCR (MSRE-qPCR), a promising method for the implementation of DNA methylation markers in diagnostic laboratories. The selected most informative individual markers were combined into panels demonstrating cvAUC = 0.83 (TMEM132D and MYO15B markers panel) for TN tumors and cvAUC = 0.76 (TTC34, LTBR and CLEC14A) for luminal B tumors. The combination of methylation markers with clinical features that correlate with NACT effect (clinical stage for TN and lymph node status for luminal B tumors) produces better classifiers, with cvAUC = 0.87 for TN tumors and cvAUC = 0.83 for luminal B tumors. Thus, clinical characteristics predictive of NACT response are independently additive to the epigenetic classifier and in combination improve prediction.
Collapse
Affiliation(s)
- Vladimir O. Sigin
- Research Centre for Medical Genetics, 115522 Moscow, Russia
- Correspondence: ; Tel.: +7-916-279-5124
| | | | | | - Ekaterina O. Ignatova
- Research Centre for Medical Genetics, 115522 Moscow, Russia
- N. N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Ekaterina B. Kuznetsova
- Research Centre for Medical Genetics, 115522 Moscow, Russia
- Laboratory of Medical Genetics, I. M. Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| | | | - Nikolai V. Litviakov
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Matvey M. Tsyganov
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Marina K. Ibragimova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Ilya I. Vinogradov
- Regional Clinical Oncology Dispensary, 390011 Ryazan, Russia
- Department of Pathological Anatomy, Ryazan State Medical University, 390026 Ryazan, Russia
| | | | - Igor Y. Vinogradov
- Department of Pathological Anatomy, Ryazan State Medical University, 390026 Ryazan, Russia
| | | | - Marina V. Nemtsova
- Research Centre for Medical Genetics, 115522 Moscow, Russia
- Laboratory of Medical Genetics, I. M. Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| | | | | | | |
Collapse
|
10
|
de Almeida BC, dos Anjos LG, Dobroff AS, Baracat EC, Yang Q, Al-Hendy A, Carvalho KC. Epigenetic Features in Uterine Leiomyosarcoma and Endometrial Stromal Sarcomas: An Overview of the Literature. Biomedicines 2022; 10:2567. [PMID: 36289829 PMCID: PMC9599831 DOI: 10.3390/biomedicines10102567] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
There is a consensus that epigenetic alterations play a key role in cancer initiation and its biology. Studies evaluating the modification in the DNA methylation and chromatin remodeling patterns, as well as gene regulation profile by non-coding RNAs (ncRNAs) have led to the development of novel therapeutic approaches to treat several tumor types. Indeed, despite clinical and translational challenges, combinatorial therapies employing agents targeting epigenetic modifications with conventional approaches have shown encouraging results. However, for rare neoplasia such as uterine leiomyosarcomas (LMS) and endometrial stromal sarcomas (ESS), treatment options are still limited. LMS has high chromosomal instability and molecular derangements, while ESS can present a specific gene fusion signature. Although they are the most frequent types of "pure" uterine sarcomas, these tumors are difficult to diagnose, have high rates of recurrence, and frequently develop resistance to current treatment options. The challenges involving the management of these tumors arise from the fact that the molecular mechanisms governing their progression have not been entirely elucidated. Hence, to fill this gap and highlight the importance of ongoing and future studies, we have cross-referenced the literature on uterine LMS and ESS and compiled the most relevant epigenetic studies, published between 2009 and 2022.
Collapse
Affiliation(s)
- Bruna Cristine de Almeida
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetricia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 05403-010, Brazil
| | - Laura Gonzalez dos Anjos
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetricia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 05403-010, Brazil
| | - Andrey Senos Dobroff
- UNM Comprehensive Cancer Center (UNMCCC), University of New Mexico, Albuquerque, NM 87131, USA
- Division of Molecular Medicine, Department of Internal Medicine, (UNM) School of Medicine, UNM Health Sciences Center, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Edmund Chada Baracat
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetricia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 05403-010, Brazil
| | - Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | - Katia Candido Carvalho
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetricia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 05403-010, Brazil
| |
Collapse
|
11
|
Yan L, Li X, Yuan Y. CLEC14A was up-regulated in hepatocellular carcinoma and may function as a potential diagnostic biomarker. Clinics (Sao Paulo) 2022; 77:100029. [PMID: 35576868 PMCID: PMC9118534 DOI: 10.1016/j.clinsp.2022.100029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/09/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE The current work aimed to investigate the expression and potential clinical significance of C-type Lectin domain family 14 (CLEC14A) in hepatocellular carcinoma. METHODS The relative expressions of CLEC14A in the Hepatocellular Carcinoma (HCC) tissue and adjacent normal tissue of 105 HCC patients were examined using RT-qPCR methods. Furthermore, Receiver Operating Characteristic (ROC) curve was drawn for exploring the diagnostic value of CLEC14A. Next, the expressions of CLEC14A in HCC cell lines and normal liver epithelial cells were compared, and the effects of knockdown of CLEC14A on the growth and apoptosis of HCC cells were examined. RESULTS The authors found that the expression of CLEC14A was markedly increased in hepatocellular carcinoma tumors in comparison with the adjacent tissue, and the expression level of CLEC14A was positively correlated with the size and differentiation of the tumor. Moreover, results of ROC analysis showed CLEC14A might function as a sensitive diagnostic biomarker for HCC. Furthermore, CLEC14A was up-regulated in HCC cell lines, and transient over-expression of CLEC14A decreased the proliferation and increased the apoptosis of HCC cells in vitro. CONCLUSIONS Our results suggested that CLEC14A was up-regulated in HCC and might function as a potential diagnostic marker.
Collapse
Affiliation(s)
- Lang Yan
- Chongqing University Three Gorges Hospital, Chongqing, China
| | - Xiang Li
- Chongqing University Three Gorges Hospital, Chongqing, China
| | - Yunfeng Yuan
- Chongqing University Three Gorges Hospital, Chongqing, China.
| |
Collapse
|
12
|
Di Fiore R, Suleiman S, Drago-Ferrante R, Felix A, O’Toole SA, O’Leary JJ, Ward MP, Beirne J, Yordanov A, Vasileva-Slaveva M, Subbannayya Y, Pentimalli F, Giordano A, Calleja-Agius J. LncRNA MORT (ZNF667-AS1) in Cancer-Is There a Possible Role in Gynecological Malignancies? Int J Mol Sci 2021; 22:7829. [PMID: 34360598 PMCID: PMC8346052 DOI: 10.3390/ijms22157829] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/09/2021] [Accepted: 07/17/2021] [Indexed: 01/21/2023] Open
Abstract
Gynecological cancers (GCs) are currently among the major threats to female health. Moreover, there are different histologic subtypes of these cancers, which are defined as 'rare' due to an annual incidence of <6 per 100,000 women. The majority of these tend to be associated with a poor prognosis. Long non-coding RNAs (lncRNAs) play a critical role in the normal development of organisms as well as in tumorigenesis. LncRNAs can be classified into tumor suppressor genes or oncogenes, depending on their function within the cellular context and the signaling pathways in which they are involved. These regulatory RNAs are potential therapeutic targets for cancer due to their tissue and tumor specificity. However, there still needs to be a deeper understanding of the mechanisms by which lncRNAs are involved in the regulation of numerous biological functions in humans, both in normal health and disease. The lncRNA Mortal Obligate RNA Transcript (MORT; alias ZNF667-AS1) has been identified as a tumor-related lncRNA. ZNF667-AS1 gene, located in the human chromosome region 19q13.43, has been shown to be silenced by DNA hypermethylation in several cancers. In this review, we report on the biological functions of ZNF667-AS1 from recent studies and describe the regulatory functions of ZNF667-AS1 in human disease, including cancer. Furthermore, we discuss the emerging insights into the potential role of ZNF667-AS1 as a biomarker and novel therapeutic target in cancer, including GCs (ovarian, cervical, and endometrial cancers).
Collapse
Affiliation(s)
- Riccardo Di Fiore
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Sherif Suleiman
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
| | | | - Ana Felix
- Department of Pathology, Instituto Portugues de Oncologia de Lisboa, NOVA Medical School, University NOVA of Lisbon, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal;
| | - Sharon A. O’Toole
- Departments of Obstetrics and Gynaecology, Trinity St James’s Cancer Institute, Trinity College Dublin, D08 HD53 Dublin, Ireland;
| | - John J. O’Leary
- Department of Histopathology, Trinity St James’s Cancer Institute, Emer Casey Molecular Pathology Laboratory, Trinity College Dublin and Coombe Women’s and Infants University Hospital, D08 RX0X Dublin, Ireland; (J.J.O.); (M.P.W.)
| | - Mark P. Ward
- Department of Histopathology, Trinity St James’s Cancer Institute, Emer Casey Molecular Pathology Laboratory, Trinity College Dublin and Coombe Women’s and Infants University Hospital, D08 RX0X Dublin, Ireland; (J.J.O.); (M.P.W.)
| | - James Beirne
- Department of Gynaecological Oncology, Trinity St James’s Cancer Institute, St James Hospital, Trinity College Dublin, D08 X4RX Dublin, Ireland;
| | - Angel Yordanov
- Department of Gynecologic Oncology, Medical University Pleven, 5800 Pleven, Bulgaria;
| | | | - Yashwanth Subbannayya
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway;
| | - Francesca Pentimalli
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy;
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
| |
Collapse
|
13
|
Sun H, Ma L, Chen J. Hyaluronan-mediated motility receptor expression functions as a prognostic biomarker in uterine carcinosarcoma based on bioinformatics analysis. J Int Med Res 2021; 49:3000605211021043. [PMID: 34111996 PMCID: PMC8202278 DOI: 10.1177/03000605211021043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE Uterine carcinosarcoma (UCS) is a rare, aggressive tumour with a high metastasis rate and poor prognosis. This study aimed to explore potential key genes associated with the prognosis of UCS. METHODS Transcriptional expression data were downloaded from the Gene Expression Profiling Interactive Analysis database and differentially expressed genes (DEGs) were subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses using Metascape. A protein-protein interaction network was constructed using the STRING website and Cytoscape software, and the top 30 genes obtained through the Maximal Clique Centrality algorithm were selected as hub genes. These hub genes were validated by clinicopathological and sequencing data for 56 patients with UCS from The Cancer Genome Atlas database. RESULTS A total of 1894 DEGs were identified, and the top 30 genes were considered as hub genes. Hyaluronan-mediated motility receptor (HMMR) expression was significantly higher in UCS tissues compared with normal tissues, and elevated expression of HMMR was identified as an independent prognostic factor for shorter survival in patients with UCS. CONCLUSIONS These results suggest that HMMR may be a potential biomarker for predicting the prognosis of patients with UCS.
Collapse
Affiliation(s)
- Hui Sun
- Department of Gynaecologic Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Li Ma
- Department of Gynaecologic Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Jie Chen
- Department of Gynaecologic Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| |
Collapse
|
14
|
Wang XW, Sun Q, Xu SB, Xu C, Xia CJ, Zhao QM, Zhang HH, Tan WQ, Zhang L, Yao SD. A 3-DNA methylation signature as a novel prognostic biomarker in patients with sarcoma by bioinformatics analysis. Medicine (Baltimore) 2021; 100:e26040. [PMID: 34011115 PMCID: PMC8137010 DOI: 10.1097/md.0000000000026040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 05/04/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Tumor-specific DNA methylation can potentially be a useful indicator in cancer diagnostics and monitoring. Sarcomas comprise a heterogeneous group of mesenchymal neoplasms which cause life-threatening tumors occurring throughout the body. Therefore, potential molecular detection and prognostic evaluation is very important for early diagnosis and treatment. METHODS We performed a retrospective study analyzing DNA methylation of 261 patients with sarcoma from The Cancer Genome Atlas (TCGA) database. Cox regression analyses were conducted to identify a signature associated with the overall survival (OS) of patients with sarcoma, which was validated in a validation dataset. RESULTS Three DNA methylation signatures were identified to be significantly associated with OS. Kaplan-Meier analysis showed that the 3-DNA methylation signature could significantly distinguish the high- and low-risk patients in both training (first two-thirds) and validation datasets (remaining one-third). Receiver operating characteristic (ROC) analysis confirmed that the 3-DNA methylation signature exhibited high sensitivity and specificity in predicting OS of patients. Also, the Kaplan-Meier analysis and the area under curve (AUC) values indicated that the 3-DNA methylation signature was independent of clinical characteristics, including age at diagnosis, sex, anatomic location, tumor residual classification, and histological subtypes. CONCLUSIONS The current study showed that the 3-DNA methylation model could efficiently function as a novel and independent prognostic biomarker and therapeutic target for patients with sarcoma.
Collapse
Affiliation(s)
| | - Qi Sun
- Department of Orthopedic Surgery, Fuyang Orthopedics and Traumatology Hospital, Zhejiang Chinese Medical University
| | - Shi-Bin Xu
- Department of Orthopedic Surgery, The First People's Hospital of Xiaoshan District
| | - Chao Xu
- Department of Oncology, Zhejiang Cancer Hospital
| | - Chen-Jie Xia
- Department of Orthopedic Surgery, Li Hui-Li Hospital, Ningbo
| | - Qi-Ming Zhao
- Department of Plastic Surgery, Zhejiang Hospital
| | | | - Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University College of Medicine
| | - Lei Zhang
- Department of Orthopedic Surgery, Xiaoshan Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou
| | - Shu-Dong Yao
- Department of Nephrology, Huzhou Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Huzhou, Zhejiang, China
| |
Collapse
|
15
|
Hunt AL, Pierobon M, Baldelli E, Oliver J, Mitchell D, Gist G, Bateman NW, Larry Maxwell G, Petricoin EF, Conrads TP. The impact of ultraviolet- and infrared-based laser microdissection technology on phosphoprotein detection in the laser microdissection-reverse phase protein array workflow. Clin Proteomics 2020; 17:9. [PMID: 32165870 PMCID: PMC7061469 DOI: 10.1186/s12014-020-09272-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
Reversible protein phosphorylation represents a key mechanism by which signals are transduced in eukaryotic cells. Dysregulated phosphorylation is also a hallmark of carcinogenesis and represents key drug targets in the precision medicine space. Thus, methods that preserve phosphoprotein integrity in the context of clinical tissue analyses are crucially important in cancer research. Here we investigated the impact of UV laser microdissection (UV LMD) and IR laser capture microdissection (IR LCM) on phosphoprotein abundance of key cancer signaling protein targets assessed by reverse-phase protein microarray (RPPA). Tumor epithelial cells from consecutive thin sections obtained from four high-grade serous ovarian cancers were harvested using either UV LMD or IR LCM methods. Phosphoprotein abundances for ten phosphoproteins that represent important drug targets were assessed by RPPA and revealed no significant differences in phosphoprotein integrity from those obtained using higher-energy UV versus the lower-energy IR laser methods.
Collapse
Affiliation(s)
- Allison L. Hunt
- Women’s Service Line, Inova Health System, 3300 Gallows Rd., Falls Church, VA 22042 USA
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889 USA
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA USA
| | - Elisa Baldelli
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA USA
| | - Julie Oliver
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889 USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 720A Rockledge Drive, Suite 100, Bethesda, MD 20817 USA
| | - Dave Mitchell
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889 USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 720A Rockledge Drive, Suite 100, Bethesda, MD 20817 USA
| | - Glenn Gist
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889 USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 720A Rockledge Drive, Suite 100, Bethesda, MD 20817 USA
| | - Nicholas W. Bateman
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889 USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 720A Rockledge Drive, Suite 100, Bethesda, MD 20817 USA
| | - G. Larry Maxwell
- Women’s Service Line, Inova Health System, 3300 Gallows Rd., Falls Church, VA 22042 USA
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889 USA
| | - Emanuel F. Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA USA
| | - Thomas P. Conrads
- Women’s Service Line, Inova Health System, 3300 Gallows Rd., Falls Church, VA 22042 USA
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889 USA
- 3289 Woodburn Rd, Suite 375, Annandale, VA 22003 USA
| |
Collapse
|
16
|
Bacalini MG, Franceschi C, Gentilini D, Ravaioli F, Zhou X, Remondini D, Pirazzini C, Giuliani C, Marasco E, Gensous N, Di Blasio AM, Ellis E, Gramignoli R, Castellani G, Capri M, Strom S, Nardini C, Cescon M, Grazi GL, Garagnani P. Molecular Aging of Human Liver: An Epigenetic/Transcriptomic Signature. J Gerontol A Biol Sci Med Sci 2019; 74:1-8. [PMID: 29554203 DOI: 10.1093/gerona/gly048] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Indexed: 12/12/2022] Open
Abstract
The feasibility of liver transplantation from old healthy donors suggests that this organ is able to preserve its functionality during aging. To explore the biological basis of this phenomenon, we characterized the epigenetic profile of liver biopsies collected from 45 healthy liver donors ranging from 13 to 90 years old using the Infinium HumanMethylation450 BeadChip. The analysis indicates that a large remodeling in DNA methylation patterns occurs, with 8,823 age-associated differentially methylated CpG probes. Notably, these age-associated changes tended to level off after the age of 60, as confirmed by Horvath's clock. Using stringent selection criteria, we further identified a DNA methylation signature of aging liver including 75 genomic regions. We demonstrated that this signature is specific for liver compared to other tissues and that it is able to detect biological age-acceleration effects associated with obesity. Finally, we combined DNA methylation measurements with available expression data. Although the intersection between the two omic characterizations was low, both approaches suggested a previously unappreciated role of epithelial-mesenchymal transition and Wnt-signaling pathways in the aging of human liver.
Collapse
Affiliation(s)
| | - Claudio Franceschi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Italy.,DIMES-Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, Bologna, Italy.,CIG, Interdepartmental Center 'L. Galvani', Alma Mater Studiorum, Bologna, Italy
| | - Davide Gentilini
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - Francesco Ravaioli
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, Bologna, Italy
| | - Xiaoyuan Zhou
- Group of Clinical Genomic Networks, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, PR China.,University of Chinese Academy of Sciences, Beijing, PR China.,Department of Neurology, University of San Francisco, California
| | - Daniel Remondini
- Department of Physics and Astronomy (DIFA) and INFN Sez. Bologna, Alma Mater Studiorum, Italy
| | | | - Cristina Giuliani
- Department of Biological Geological and Environmental Sciences, Laboratory of Molecular Anthropology and Centre for Genome Biology, University of Bologna, Italy
| | - Elena Marasco
- CIG, Interdepartmental Center 'L. Galvani', Alma Mater Studiorum, Bologna, Italy
| | - Noémie Gensous
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, Bologna, Italy
| | | | - Ewa Ellis
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Gastone Castellani
- CIG, Interdepartmental Center 'L. Galvani', Alma Mater Studiorum, Bologna, Italy.,Department of Biological Geological and Environmental Sciences, Laboratory of Molecular Anthropology and Centre for Genome Biology, University of Bologna, Italy
| | - Miriam Capri
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, Bologna, Italy.,CIG, Interdepartmental Center 'L. Galvani', Alma Mater Studiorum, Bologna, Italy
| | - Stephen Strom
- Department of Laboratory Medicine, Karolinska Institute and Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Christine Nardini
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,CNR IAC "Mauro Picone", Roma, Italy.,Personal Genomics S.r.l., Verona, Italy
| | - Matteo Cescon
- General Surgery and Transplant Unit, Department of Medical and Surgical Sciences, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | | | - Paolo Garagnani
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, Bologna, Italy.,CIG, Interdepartmental Center 'L. Galvani', Alma Mater Studiorum, Bologna, Italy.,Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Applied Biomedical Research Center, S. Orsola-Malpighi Polyclinic, Bologna, Italy.,Institute of Molecular Genetics (IGM)-CNR, Unit of Bologna, Italy.,Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopaedic Institute, Bologna, Italy
| |
Collapse
|
17
|
Barker HE, Scott CL. Genomics of gynaecological carcinosarcomas and future treatment options. Semin Cancer Biol 2019; 61:110-120. [PMID: 31622660 DOI: 10.1016/j.semcancer.2019.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 12/25/2022]
Abstract
Gynaecological carcinosarcomas are the most lethal gynaecological malignancies that are often highly resistant to standard chemotherapy. They are composed of both carcinomatous and sarcomatous components and are associated with high rates of metastatic disease. Due to their rarity, molecular studies have been carried out on relatively few tumours, revealing a broad spectrum of heterogeneity. In this review, we have collated the gene mutations, gene expression, epigenetic regulation and protein expression reported by a number of studies on gynaecological carcinosarcomas. Based on these results, we describe potential therapeutics that may demonstrate efficacy and present any pre-clinical studies that have been carried out. We also describe the pre-clinical models currently available for future research to assess the potential of molecularly matched therapies. Interestingly, over-expression of many biomarkers in carcinosarcoma tumours often doesn't correlate with a worse prognosis. Therefore, we propose that profiling the mutational landscape, gene expression, and gene amplification/deletion may better indicate potential treatment strategies and predict response, thus improving outcomes for women with this rare, aggressive disease.
Collapse
Affiliation(s)
- Holly E Barker
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Clare L Scott
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia; Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, 3010, Australia; Royal Women's Hospital, Parkville, Victoria, 3052, Australia; Royal Melbourne Hospital, Parkville, Victoria, 3050, Australia; Peter MacCallum Cancer Centre, Grattan Street, Parkville, Victoria, 3010, Australia
| |
Collapse
|
18
|
Li R, Liang F, Li M, Zou D, Sun S, Zhao Y, Zhao W, Bao Y, Xiao J, Zhang Z. MethBank 3.0: a database of DNA methylomes across a variety of species. Nucleic Acids Res 2019; 46:D288-D295. [PMID: 29161430 PMCID: PMC5753180 DOI: 10.1093/nar/gkx1139] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/30/2017] [Indexed: 12/11/2022] Open
Abstract
MethBank (http://bigd.big.ac.cn/methbank) is a database that integrates high-quality DNA methylomes across a variety of species and provides an interactive browser for visualization of methylation data. Here, we present an updated implementation of MethBank (version 3.0) by incorporating more DNA methylomes from multiple species and equipping with more enhanced functionalities for data annotation and more friendly web interfaces for data presentation, search and visualization. MethBank 3.0 features large-scale integration of high-quality methylomes, involving 34 consensus reference methylomes derived from a large number of human samples, 336 single-base resolution methylomes from different developmental stages and/or tissues of five plants, and 18 single-base resolution methylomes from gametes and early embryos at multiple stages of two animals. Additionally, it is enhanced by improving the functionalities for data annotation, which accordingly enables systematic identification of methylation sites closely associated with age, sites with constant methylation levels across different ages, differentially methylated promoters, age-specific differentially methylated cytosines/regions, and methylated CpG islands. Moreover, MethBank provides tools to estimate human methylation age online and to identify differentially methylated promoters, respectively. Taken together, MethBank is upgraded with significant improvements and advances over the previous version, which is of great help for deciphering DNA methylation regulatory mechanisms for epigenetic studies.
Collapse
Affiliation(s)
- Rujiao Li
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fang Liang
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Mengwei Li
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Zou
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shixiang Sun
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongbing Zhao
- Lymphocyte Nuclear Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wenming Zhao
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiming Bao
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingfa Xiao
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200438, China
| | - Zhang Zhang
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200438, China
| |
Collapse
|
19
|
Leskela S, Pérez-Mies B, Rosa-Rosa JM, Cristobal E, Biscuola M, Palacios-Berraquero ML, Ong S, Matias-Guiu Guia X, Palacios J. Molecular Basis of Tumor Heterogeneity in Endometrial Carcinosarcoma. Cancers (Basel) 2019; 11:cancers11070964. [PMID: 31324031 PMCID: PMC6678708 DOI: 10.3390/cancers11070964] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 02/08/2023] Open
Abstract
Endometrial carcinosarcoma (ECS) represents one of the most extreme examples of tumor heterogeneity among human cancers. ECS is a clinically aggressive, high-grade, metaplastic carcinoma. At the morphological level, intratumor heterogeneity in ECS is due to an admixture of epithelial (carcinoma) and mesenchymal (sarcoma) components that can include heterologous tissues, such as skeletal muscle, cartilage, or bone. Most ECSs belong to the copy-number high serous-like molecular subtype of endometrial carcinoma, characterized by the TP53 mutation and the frequently accompanied by a large number of gene copy-number alterations, including the amplification of important oncogenes, such as CCNE1 and c-MYC. However, a proportion of cases (20%) probably represent the progression of tumors initially belonging to the copy-number low endometrioid-like molecular subtype (characterized by mutations in genes such as PTEN, PI3KCA, or ARID1A), after the acquisition of the TP53 mutations. Only a few ECS belong to the microsatellite-unstable hypermutated molecular type and the POLE-mutated, ultramutated molecular type. A common characteristic of all ECSs is the modulation of genes involved in the epithelial to mesenchymal process. Thus, the acquisition of a mesenchymal phenotype is associated with a switch from E- to N-cadherin, the up-regulation of transcriptional repressors of E-cadherin, such as Snail Family Transcriptional Repressor 1 and 2 (SNAI1 and SNAI2), Zinc Finger E-Box Binding Homeobox 1 and 2 (ZEB1 and ZEB2), and the down-regulation, among others, of members of the miR-200 family involved in the maintenance of an epithelial phenotype. Subsequent differentiation to different types of mesenchymal tissues increases tumor heterogeneity and probably modulates clinical behavior and therapy response.
Collapse
Affiliation(s)
- Susanna Leskela
- Department of Pathology, Institute Ramón y Cajal for Health Research, 28034 Madrid, Spain.
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Belen Pérez-Mies
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Pathology, Hospital Ramón y Cajal, 28034 Madrid, Spain
| | - Juan Manuel Rosa-Rosa
- Department of Pathology, Institute Ramón y Cajal for Health Research, 28034 Madrid, Spain
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Eva Cristobal
- Department of Pathology, Institute Ramón y Cajal for Health Research, 28034 Madrid, Spain
| | - Michele Biscuola
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Pathology, Instituto de Biomedicina de Sevilla (IBiS), 41013 Seville, Spain
- Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | | | - SuFey Ong
- NanoString Technologies, Inc, Seattle, WA 98109, USA
| | - Xavier Matias-Guiu Guia
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Pathology, Hospital U Arnau de Vilanova, 25198 Lleida, Spain
- Department of Pathology, Hospital U de Bellvitge, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
- IRBLLEIDA, IDIBELL, University of Lleida, 25003 Lleida, Spain
| | - José Palacios
- Department of Pathology, Institute Ramón y Cajal for Health Research, 28034 Madrid, Spain.
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Faculty of Medicine, University of Alcalá de Henares, Alcalá de Henares, 28801 Madrid, Spain.
| |
Collapse
|
20
|
Rezapour S, Hosseinzadeh E, Marofi F, Hassanzadeh A. Epigenetic-based therapy for colorectal cancer: Prospect and involved mechanisms. J Cell Physiol 2019; 234:19366-19383. [PMID: 31020647 DOI: 10.1002/jcp.28658] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 12/15/2022]
Abstract
Epigenetic modifications are heritable variations in gene expression not encoded by the DNA sequence. According to reports, a large number of studies have been performed to characterize epigenetic modification during normal development and also in cancer. Epigenetics can be regarded more widely to contain all of the changes in expression of genes that make by adjusted interactions between the regulatory portions of DNA or messenger RNAs that lead to indirect variation in the DNA sequence. In the last decade, epigenetic modification importance in colorectal cancer (CRC) pathogenesis was demonstrated powerfully. Although developments in CRC therapy have been made in the last years, much work is required as it remains the second leading cause of cancer death. Nowadays, epigenetic programs and genetic change have pivotal roles in the CRC incidence as well as progression. While our knowledge about epigenetic mechanism in CRC is not comprehensive, selective histone modifications and resultant chromatin conformation together with DNA methylation most likely regulate CRC pathogenesis that involved genes expression. Undoubtedly, the advanced understanding of epigenetic-based gene expression regulation in the CRC is essential to make epigenetic drugs for CRC therapy. The major aim of this review is to deliver a summary of valuable results that represent evidence of principle for epigenetic-based therapeutic approaches employment in CRC with a focus on the advantages of epigenetic-based therapy in the inhibition of the CRC metastasis and proliferation.
Collapse
Affiliation(s)
- Saleheh Rezapour
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Hosseinzadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Division of Hematology, Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Hassanzadeh
- Division of Hematology, Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
Wang Y, Liu D, Jin X, Song H, Lou G. Genome-wide characterization of aberrant DNA methylation patterns and the potential clinical implications in patients with endometrial cancer. Pathol Res Pract 2019; 215:137-143. [DOI: 10.1016/j.prp.2018.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 12/18/2022]
|
22
|
Survey of gynecological carcinosarcomas in families with breast and ovarian cancer predisposition. Cancer Genet 2018; 221:38-45. [DOI: 10.1016/j.cancergen.2017.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/13/2017] [Indexed: 12/21/2022]
|
23
|
Chui MH, Have C, Hoang LN, Shaw P, Lee CH, Clarke BA. Genomic profiling identifies GPC5 amplification in association with sarcomatous transformation in a subset of uterine carcinosarcomas. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2018; 4:69-78. [PMID: 29416878 PMCID: PMC5783974 DOI: 10.1002/cjp2.89] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 12/10/2017] [Accepted: 12/13/2017] [Indexed: 01/24/2023]
Abstract
Uterine carcinosarcoma, also known as Malignant Mixed Müllerian Tumour, is a high‐grade biphasic neoplasm composed of sarcomatous elements thought to originate via transdifferentiation from high‐grade endometrial carcinoma. To identify molecular factors contributing to the histogenesis of this tumour, we analyzed DNA extracted from matched carcinoma and sarcoma components from 12 cases of carcinosarcoma by a molecular inversion probe microarray to assess genomic copy number alterations (CNAs) and allelic imbalances. Widespread CNAs were identified in tumours with serous histology in the carcinoma component (9/12), while the remaining three cases with endometrioid carcinoma were near‐diploid. Quantification of the extent of genomic aberrations revealed a significant increase in sarcoma relative to carcinoma in tumours with well‐delineated histologic components. Focal amplification of 13q31.3 was identified in 6/12 profiled tumours, of which four harboured the aberration exclusively in the sarcoma component. This result was verified by fluorescence in situ hybridization against GPC5, the only gene situated within the minimal region of amplification. In a validation cohort composed of 97 carcinosarcomas and other uterine sarcomas, amplification of GPC5 (GPC5/CEP13 ratio ≥ 2.2) was identified in 11/97 (11.3%) cases (9/64 carcinosarcoma, 1/3 rhabdomyosarcoma, 1/21 leiomyosarcoma, 0/8 adenosarcoma, 0/1 undifferentiated endometrial sarcoma) and an additional 4 (2.8%) cases had low level gains (GPC5/CEP13 ratio ≥1.5 but <2.2). The functional relevance of Glypican‐5, the gene product of GPC5, in regulating differentiation and lineage commitment was demonstrated in an endometrial carcinoma cell line in vitro. In conclusion, we identified GPC5 amplification as a molecular event mediating epithelial‐mesenchymal transdifferentiation in a subset of uterine carcinosarcomas.
Collapse
Affiliation(s)
- M Herman Chui
- Department of PathologyUniversity Health Network, University of TorontoTorontoCanada
| | - Cherry Have
- Department of PathologyUniversity Health Network, University of TorontoTorontoCanada
| | - Lien N Hoang
- Department of Pathology, BC Cancer AgencyUniversity of British ColumbiaVancouverCanada
| | - Patricia Shaw
- Department of PathologyUniversity Health Network, University of TorontoTorontoCanada
| | - Cheng-Han Lee
- Department of Pathology, BC Cancer AgencyUniversity of British ColumbiaVancouverCanada
| | - Blaise A Clarke
- Department of PathologyUniversity Health Network, University of TorontoTorontoCanada
| |
Collapse
|
24
|
Bevilacqua C, Ducos B. Laser microdissection: A powerful tool for genomics at cell level. Mol Aspects Med 2017; 59:5-27. [PMID: 28927943 DOI: 10.1016/j.mam.2017.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 12/18/2022]
Abstract
Laser microdissection (LM) has become widely democratized over the last fifteen years. Instruments have evolved to offer more powerful and efficient lasers as well as new options for sample collection and preparation. Technological evolutions have also focused on the post-microdissection analysis capabilities, opening up investigations in all disciplines of experimental and clinical biology, thanks to the advent of new high-throughput methods of genome analysis, including RNAseq and proteomics, now globally known as microgenomics, i.e. analysis of biomolecules at the cell level. In spite of the advances these rapidly developing methods have allowed, the workflow for sampling and collection by LM remains a critical step in insuring sample integrity in terms of histology (accurate cell identification) and biochemistry (reliable analyzes of biomolecules). In this review, we describe the sample processing as well as the strengths and limiting factors of LM applied to the specific selection of one or more cells of interest from a heterogeneous tissue. We will see how the latest developments in protocols and methods have made LM a powerful and sometimes essential tool for genomic and proteomic analyzes of tiny amounts of biomolecules extracted from few cells isolated from a complex tissue, in their physiological context, thus offering new opportunities for understanding fundamental physiological and/or patho-physiological processes.
Collapse
Affiliation(s)
- Claudia Bevilacqua
- GABI, Plateforme @BRIDGE, INRA, AgroParisTech, Université Paris-Saclay, Domaine de Vilvert, 78350 Jouy en Josas, France.
| | - Bertrand Ducos
- LPS-ENS, CNRS UMR 8550, UPMC, Université Denis Diderot, PSL Research University, 24 Rue Lhomond, 75005 Paris France; High Throughput qPCR Core Facility, IBENS, 46 Rue d'Ulm, 75005 Paris France; Laser Microdissection Facility of Montagne Sainte Geneviève, CIRB Collège de France, Place Marcellin Berthelot, 75005 Paris France.
| |
Collapse
|
25
|
Garrido-Gil P, Fernandez-Rodríguez P, Rodríguez-Pallares J, Labandeira-Garcia JL. Laser capture microdissection protocol for gene expression analysis in the brain. Histochem Cell Biol 2017; 148:299-311. [PMID: 28560490 DOI: 10.1007/s00418-017-1585-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2017] [Indexed: 01/18/2023]
Abstract
Laser capture microdissection (LCM) allows the isolation of specific cell populations from complex tissues that can be then used for gene expression studies. However, there are no reproducible protocols to study RNA in the brain and, particularly, in the substantia nigra. RNA is a very labile biomolecule that is easily degraded during manipulation. LCM studies use low amounts of material and special precautions must be taken to preserve RNA yield and integrity, which are decisive for PCR analysis. The RNA yield and/or integrity can be affected negatively by tissue manipulation, LCM process and RNA extraction. We have optimized these three critical steps using nigral tissue sections, and developed a LCM protocol to obtain high-quality RNA for gene expression analysis. The optimal LCM protocol requires the use of 20 µm-thick tissue sections mounted on glass slides and processed for rapid tyrosine hydroxylase immunofluorescence. Additionally, a total microdissected tissue area of 1 mm2 and a column-based RNA extraction method were used to obtain a high RNA yield and integrity. In the rat substantia nigra, we demonstrated the expression of RNA for the angiotensin type 1 and type 2 receptors using this optimized LCM protocol. In conclusion, the LCM protocol reported here can be used to study the expression of both scarcely or abundantly expressed genes in the different brain regions of mammals under both physiological and pathological conditions.
Collapse
Affiliation(s)
- P Garrido-Gil
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, 15782, Santiago De Compostela, Spain.,Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - P Fernandez-Rodríguez
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, 15782, Santiago De Compostela, Spain
| | - J Rodríguez-Pallares
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, 15782, Santiago De Compostela, Spain.,Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jose L Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, 15782, Santiago De Compostela, Spain. .,Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
26
|
Majumder M, Dasgupta UB, Guha Mazumder DN, Das N. Skin score correlates with global DNA methylation and GSTO1 A140D polymorphism in arsenic-affected population of Eastern India. Toxicol Mech Methods 2017; 27:467-475. [PMID: 28436716 DOI: 10.1080/15376516.2017.1323255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Arsenic is a potent environmental toxicant causing serious public health concerns in India, Bangladesh and other parts of the world. Gene- and promoter-specific hypermethylation has been reported in different arsenic-exposed cell lines, whereas whole genome DNA methylation study suggested genomic hypo- and hypermethylation after arsenic exposure in in vitro and in vivo studies. Along with other characteristic biomarkers, arsenic toxicity leads to typical skin lesions. The present study demonstrates significant correlation between severities of skin manifestations with their whole genome DNA methylation status as well as with a particular polymorphism (Ala 140 Asp) status in arsenic metabolizing enzyme Glutathione S-transferase Omega-1 (GSTO1) in arsenic-exposed population of the district of Nadia, West Bengal, India.
Collapse
Affiliation(s)
- Moumita Majumder
- a Department of Molecular Biology , Surendranath College , Kolkata , India
| | - Uma B Dasgupta
- b Department of Life Science & Biotechnology , Jadavpur University , Kolkata , India
| | | | - Nilansu Das
- a Department of Molecular Biology , Surendranath College , Kolkata , India
| |
Collapse
|