1
|
Mahendra I, Kurniawan A, Febrian MB, Halimah I, Rizaludin A, Syarif DG. Cell-Derived Allograft Models as a Solution to the Obstacles of Preclinical Studies under Limited Resources: A Systematic Review on Experimental Lung Cancer Animal Models. Curr Rev Clin Exp Pharmacol 2025; 20:49-59. [PMID: 38659262 DOI: 10.2174/0127724328295592240419064719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND The use of appropriate animal models for cancer studies is a major challenge, particularly for investigators who lack the resources to maintain and use xenograft animals or genetically engineered mouse models (GEMM). In addition, several countries intending to incorporate these models must conduct importation procedures, posing an additional challenge. OBJECTIVE This review aimed to explore the use of cell-derived allograft or syngeneic models under limited resources. The results can be used by investigators, specifically from low-middle-income countries, to contribute to lung cancer eradication. METHODS A literature search was carried out on various databases, including PubMed, Web of Science, and Scopus. In addition, the publication year of the selected articles was set between 2013 and 2023 with different search components (SC), namely lung cancer (SC1), animal models (SC2), and preclinical studies (SC3). RESULTS This systematic review focused on selecting animals, cells, and methods that could be applied to generating allograft-type lung cancer animal models from 101 included articles. CONCLUSION Based on the results, the use of cell-derived allograft models in cancer studies is feasible and relevant, and it provides valuable insights regarding the conditions with limited resources.
Collapse
Affiliation(s)
- Isa Mahendra
- Research Center for Radioisotope, Radiopharmaceuticals and Biodosimetry Technology, National Research and Innovation Agency, Serpong, Indonesia
| | - Ahmad Kurniawan
- Research Center for Radioisotope, Radiopharmaceuticals and Biodosimetry Technology, National Research and Innovation Agency, Serpong, Indonesia
| | - Muhamad Basit Febrian
- Research Center for Radioisotope, Radiopharmaceuticals and Biodosimetry Technology, National Research and Innovation Agency, Serpong, Indonesia
| | - Iim Halimah
- Research Center for Radioisotope, Radiopharmaceuticals and Biodosimetry Technology, National Research and Innovation Agency, Serpong, Indonesia
| | - Asep Rizaludin
- Research Center for Radioisotope, Radiopharmaceuticals and Biodosimetry Technology, National Research and Innovation Agency, Serpong, Indonesia
| | - Dani Gustaman Syarif
- Research Center for Radiation Process Technology, National Research and Innovation Agency, Serpong, Indonesia
| |
Collapse
|
2
|
Le ND, Nguyen BL, Patil BR, Chun H, Kim S, Nguyen TOO, Mishra S, Tandukar S, Chang JH, Kim DY, Jin SG, Choi HG, Ku SK, Kim J, Kim JO. Antiangiogenic Therapeutic mRNA Delivery Using Lung-Selective Polymeric Nanomedicine for Lung Cancer Treatment. ACS NANO 2024; 18:8392-8410. [PMID: 38450656 DOI: 10.1021/acsnano.3c13039] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Therapeutic antibodies that block vascular endothelial growth factor (VEGF) show clinical benefits in treating nonsmall cell lung cancers (NSCLCs) by inhibiting tumor angiogenesis. Nonetheless, the therapeutic effects of systemically administered anti-VEGF antibodies are often hindered in NSCLCs because of their limited distribution in the lungs and their adverse effects on normal tissues. These challenges can be overcome by delivering therapeutic antibodies in their mRNA form to lung endothelial cells, a primary target of VEGF-mediated pulmonary angiogenesis, to suppress the NSCLCs. In this study, we synthesized derivatives of poly(β-amino esters) (PBAEs) and prepared nanoparticles to encapsulate the synthetic mRNA encoding bevacizumab, an anti-VEGF antibody used in the clinic. Optimization of nanoparticle formulations resulted in a selective lung transfection after intravenous administration. Notably, the optimized PBAE nanoparticles were distributed in lung endothelial cells, resulting in the secretion of bevacizumab. We analyzed the protein corona on the lung- and spleen-targeting nanoparticles using proteomics and found distinctive features potentially contributing to their organ-selectivity. Lastly, bevacizumab mRNA delivered by the lung-targeting PBAE nanoparticles more significantly inhibited tumor proliferation and angiogenesis than recombinant bevacizumab protein in orthotopic NSCLC mouse models, supporting the therapeutic potential of bevacizumab mRNA therapy and its selective delivery through lung-targeting nanoparticles. Our proof-of-principle results highlight the clinical benefits of nanoparticle-mediated mRNA therapy in anticancer antibody treatment in preclinical models.
Collapse
Affiliation(s)
- Ngoc Duy Le
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Bao Loc Nguyen
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | | | - HeeSang Chun
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - SiYoon Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | | | - Sunil Mishra
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Sudarshan Tandukar
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Jae-Hoon Chang
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Dong Young Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, Cheonan, 31116, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, Ansan, 15588, Republic of Korea
| | - Sae Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan, 38610, Republic of Korea
| | - Jeonghwan Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| |
Collapse
|
3
|
Moroz MA, Zurita J, Moroz A, Nikolov E, Likar Y, Dobrenkov K, Lee J, Shenker L, Blasberg R, Serganova I, Ponomarev V. Introducing a new reporter gene, membrane-anchored Cypridina luciferase, for multiplex bioluminescence imaging. MOLECULAR THERAPY-ONCOLYTICS 2021; 21:15-22. [PMID: 33851009 PMCID: PMC8020342 DOI: 10.1016/j.omto.2021.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/01/2021] [Indexed: 11/23/2022]
Abstract
Bioluminescence reporter gene imaging is a robust, high-throughput imaging modality that is useful for tracking cells and monitoring biological processes, both in cell culture and in small animals. We introduced and characterized a novel bioluminescence reporter—membrane-anchored Cypridina luciferase (maCLuc)—paired with a unique vargulin substrate. This luciferase-substrate pair has no cross-reactivity with established d-luciferin- or coelenterazine-based luciferase reporters. We compare maCLuc with several established luciferase-based reporter systems (firefly, click beetle, Renilla, and Gaussia luciferases), using both in vitro and in vivo models. We demonstrate the different imaging characteristics of these reporter systems, which allow for multiplexed-luciferase imaging of 3 and 4 separate targets concurrently in the same animal within 24 h. The imaging paradigms described here can be directly applied for simultaneous in vivo monitoring of multiple cell populations, the activity of selected signal transduction pathways, or a combination of both constitutive and inducible reporter imaging.
Collapse
Affiliation(s)
- Maxim A Moroz
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Juan Zurita
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anna Moroz
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Skolkovo Institute of Science and Technology, Moscow 143026, Russia
| | - Ekaterina Nikolov
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yury Likar
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Konstantin Dobrenkov
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jason Lee
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Larissa Shenker
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ronald Blasberg
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Inna Serganova
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vladimir Ponomarev
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
4
|
Alsawaftah N, Farooq A, Dhou S, Majdalawieh AF. Bioluminescence Imaging Applications in Cancer: A Comprehensive Review. IEEE Rev Biomed Eng 2021; 14:307-326. [PMID: 32746363 DOI: 10.1109/rbme.2020.2995124] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Bioluminescence imaging (BLI), an optical preclinical imaging modality, is an invaluable imaging modality due to its low-cost, high throughput, fast acquisition times, and functional imaging capabilities. BLI is being extensively used in the field of cancer imaging, especially with the recent developments in genetic-engineering, stem cell, and gene therapy treatments. The purpose of this paper is to provide a comprehensive review of the principles, developments, and current status of BLI in cancer research. This paper covers the fundamental BLI concepts including BLI reporters and enzyme-substrate systems, data acquisition, and image characteristics. It reviews the studies discussing the use of BLI in cancer research such as imaging tumor-characteristic phenomena including tumorigenesis, metastasis, cancer metabolism, apoptosis, hypoxia, and angiogenesis, and response to cancer therapy treatments including chemotherapy, radiotherapy, immunotherapy, gene therapy, and stem cell therapy. The key advantages and disadvantages of BLI compared to other common imaging modalities are also discussed.
Collapse
|
5
|
Li Y, Wu Y, Xia Q, Zhao Y, Zhao R, Deng S. Platycodon grandiflorus enhances the effect of DDP against lung cancer by down regulating PI3K/Akt signaling pathway. Biomed Pharmacother 2019; 120:109496. [DOI: 10.1016/j.biopha.2019.109496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 12/27/2022] Open
|
6
|
Liang HKT, Lai XS, Wei MF, Lu SH, Wen WF, Kuo SH, Chen CM, Tseng WYI, Lin FH. Intratumoral injection of thermogelling and sustained-release carboplatin-loaded hydrogel simplifies the administration and remains the synergistic effect with radiotherapy for mice gliomas. Biomaterials 2018; 151:38-52. [PMID: 29059540 DOI: 10.1016/j.biomaterials.2017.10.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Carboplatin, an antineoplastic agent, binds DNA and enhances radiotherapy (RT) effects. Carboplatin-loaded hydrogel (oxidized hyaluronic acid/adipic acid dihydrazide) enables the sustained drug release and facilitates the synergistic effect with RT. PURPOSE We investigated the effectiveness and convenience of hydrogel carboplatin combined with RT for mice glioma. MATERIALS AND METHODS Mouse glioma cells (ALTS1C1) were subcutaneously implanted in the right thigh of C57BL/6 mice on Day 0. The mice were categorized by treatments: sham, hydrogel, hydrogel carboplatin, aqueous carboplatin, RT, hydrogel carboplatin/RT, and aqueous carboplatin/RT. Hydrogel carboplatin (300 μg single dose on Day 7) or aqueous carboplatin (100 μg daily dose on Days 7, 8, and 9) was administered via intratumoral injection. RT was delivered a daily dose of 10 Gy on Days 8 and 9. RESULTS For mice administered hydrogel carboplatin/RT versus those administered aqueous carboplatin/RT, the 24-day tumor growth control rate and 104-day recurrence-free survival rate were 100% and 50% versus 100% and 66.7% (p = 0.648), respectively. However, mice receiving other treatments showed tumor progression by Day 24 and died within 40 days of tumor cell implantation. CONCLUSIONS Hydrogel carboplatin simplified intratumoral drug delivery and remained the synergistic effects with RT, which is potential for clinical applications.
Collapse
Affiliation(s)
- Hsiang-Kuang Tony Liang
- Institute of Biomedical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan; Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital: No. 7, Chung Shan South Rd., Zhongzheng Dist., Taipei 10002, Taiwan; Radiation Science and Proton Therapy Center, National Taiwan University College of Medicine, No. 7, Chung Shan South Rd., Zhongzheng Dist., Taipei 10002, Taiwan; Department of Neurology, National Taiwan University Hospital, No. 7, Chung Shan South Rd., Zhongzheng Dist., Taipei 10002, Taiwan
| | - Xue-Shi Lai
- Institute of Biomedical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Ming-Feng Wei
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital: No. 7, Chung Shan South Rd., Zhongzheng Dist., Taipei 10002, Taiwan
| | - Szu-Huai Lu
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital: No. 7, Chung Shan South Rd., Zhongzheng Dist., Taipei 10002, Taiwan
| | - Wen-Fen Wen
- Department of Pathology, National Taiwan University Hospital, No. 7, Chung Shan South Rd., Zhongzheng Dist., Taipei 10002, Taiwan
| | - Sung-Hsin Kuo
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital: No. 7, Chung Shan South Rd., Zhongzheng Dist., Taipei 10002, Taiwan; Radiation Science and Proton Therapy Center, National Taiwan University College of Medicine, No. 7, Chung Shan South Rd., Zhongzheng Dist., Taipei 10002, Taiwan; Graduate Institute of Oncology, National Taiwan University College of Medicine: No. 1, Jen Ai Rd., Sec. 1, Zhongzheng Dist., Taipei 10051, Taiwan
| | - Chung-Ming Chen
- Institute of Biomedical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Wen-Yih Isaac Tseng
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine: No. 1, Jen Ai Rd. Sec. 1, Zhongzheng Dist., Taipei 10051, Taiwan
| | - Feng-Huei Lin
- Institute of Biomedical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan; Institute of Biomedical Engineering and Nano-medicine, National Health Research Institutes: No. 35, Keyan Rd., Zhunan Town, Miaoli County 35053, Taiwan.
| |
Collapse
|
7
|
Daguia Zambe JC, Zhai Y, Zhou Z, Du X, Wei Y, Ma F, Hua J. miR-19b-3p induces cell proliferation and reduces heterochromatin-mediated senescence through PLZF in goat male germline stem cells. J Cell Physiol 2017; 233:4652-4665. [DOI: 10.1002/jcp.26231] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/09/2017] [Indexed: 12/11/2022]
Affiliation(s)
- John Clotaire Daguia Zambe
- College of Veterinary Medicine; Shaanxi Centre of Stem Cells Engineering and Technology; Northwest A&F University; Yangling Shaanxi China
- Faculty of Science; Laboratoire des sciences Agronomiques et Biologiques pour le Développement (LASBAD); University of Bangui; Central Africa
| | - Yuanxin Zhai
- College of Veterinary Medicine; Shaanxi Centre of Stem Cells Engineering and Technology; Northwest A&F University; Yangling Shaanxi China
| | - Zhe Zhou
- College of Veterinary Medicine; Shaanxi Centre of Stem Cells Engineering and Technology; Northwest A&F University; Yangling Shaanxi China
| | - Xiaomi Du
- College of Veterinary Medicine; Shaanxi Centre of Stem Cells Engineering and Technology; Northwest A&F University; Yangling Shaanxi China
| | - Yudong Wei
- College of Veterinary Medicine; Shaanxi Centre of Stem Cells Engineering and Technology; Northwest A&F University; Yangling Shaanxi China
| | - Fanglin Ma
- College of Veterinary Medicine; Shaanxi Centre of Stem Cells Engineering and Technology; Northwest A&F University; Yangling Shaanxi China
| | - Jinlian Hua
- College of Veterinary Medicine; Shaanxi Centre of Stem Cells Engineering and Technology; Northwest A&F University; Yangling Shaanxi China
| |
Collapse
|