1
|
Tirgar P, Vekaria M, Raval K. Pre-clinical Evaluation of Karanjin Against DMBA-Induced Breast Cancer in Female Sprague-Dawley Rats Through Modulation of SMAR1 and CDP/CUx genes. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1825-1839. [PMID: 39177785 DOI: 10.1007/s00210-024-03389-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
PURPOSE To investigate the chemoprotective potential of karanjin against 7,12-dimethylbenz(α)anthracene (DMBA)-induced breast cancer. METHODOLOGY Thirty-six female rats were utilized for the study. Breast cancer was induced through a subcutaneous injection of 35 mg/kg DMBA. The animals were allocated to six groups. Three groups were allocated for karanjin (50 mg/kg, 100 mg/kg, and 200 mg/kg), and received daily treatment for 20 weeks (including 2 weeks as pre-treatment). Doxorubicin (4 mg/kg) was administered to the standard control group twice a week for 20 weeks. The disease control (DC) and normal control (NC) groups received daily treatment with saline. After the treatment, oxidative stress parameters, biochemical parameters, and inflammatory parameters were estimated. CCAAT-displacement protein/cut homeobox (CUP/Cux) and scaffold/matrix attachment region binding protein 1 (SMAR1) expression levels were measured through gene expression analysis. Immunohistochemical (IHC) analysis was performed to estimate the expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2). RESULTS Tumor growth reduced significantly (P-value < 0.01) in karanjin-treated animals compared to the DC group. Karanjin significantly (P-value < 0.01) regulated the levels of oxidative stress parameters, biochemical parameters, and inflammatory parameters compared to the DC group. Karanjin treatment significantly (P-value < 0.001) regulated the expression levels of SMAR1 and CDP/Cux. A notable reduction in the IHC scores was observed for ER, PR, and HER2 expression in karanjin groups. CONCLUSION Karanjin demonstrated chemoprotective activity against DMBA-induced breast cancer in animals potentially through modulation of SMAR1 and CDP/Cux gene expression and reduction of ER, PR and HER2 expression levels.
Collapse
MESH Headings
- Animals
- Female
- 9,10-Dimethyl-1,2-benzanthracene/toxicity
- Rats, Sprague-Dawley
- Mammary Neoplasms, Experimental/chemically induced
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/prevention & control
- Rats
- Oxidative Stress/drug effects
- Receptor, ErbB-2/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
Collapse
Affiliation(s)
- Pravin Tirgar
- School of Pharmacy, RK University, Rajkot, Gujarat, India
| | | | - Keval Raval
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa-388421, Anand, Gujarat, India.
| |
Collapse
|
2
|
Wang W, Shi Y, Yan B, Cai Y, Zheng H, Zhang Y, Wang L, Wang H. The dual role of calnexin on malignant progression and tumor microenvironment in glioma. Sci Rep 2024; 14:30796. [PMID: 39730581 DOI: 10.1038/s41598-024-81192-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/25/2024] [Indexed: 12/29/2024] Open
Abstract
Glioma is the most common malignant brain tumor. Previous studies have reported that calnexin (CANX) is significantly up-regulated in a variety of malignant tumors, including glioma, but its biological function and mechanism in glioma is still unclear. In this study, differentially expressed proteins in 3 primary glioblastoma multiforme (GBM) tissues and 3 paracancer tissues were identified by liquid chromatography-tandem mass spectrometry-based proteomic and bioinformatic analysis. The biological function and molecular mechanism of CANX were studied in glioma cell lines (T98G and A172) by CCK-8 assay, matrigel invasion assay, wound healing assay, flow cytometry and so on. Bioinformatics methods were used to analyze the immune microenvironment of glioma patients in TCGA database, and single cell sequencing data of 8 cases of untreated primary GBM in GEO database were analyzed. Proteomic analysis found that CANX was significantly overexpressed in glioma tissues comparing with paracancer tissues. The data from TCGA validated this result and showed that CANX was associated with poor prognosis of patients. A series of experiments at the cellular level found that CANX overexpression significantly enhanced the proliferation, migration and invasion ability of GBM cells, whereas CANX silencing had opposite effects. Further research found this effect may be mediated through the activation of the PI3K/AKT/mTOR signaling. In addition, immune infiltration analysis found that CANX high-expression glioma tissues exhibited fewer CD8+ T cells, natural killer cells and mast cells, along with significantly decreased tumor purity and significantly increased immune checkpoints expression. Single cell sequencing data analysis indicated that CANX was primarily expressed in astrocytes and dendritic cells. In conclusion, this study suggested that CANX may promote the malignant progression of glioma through PI3K/AKT/mTOR signaling pathway and play an important role in glioma immune escape. Therefore, CANX may be a valuable therapeutic target for glioma.
Collapse
Affiliation(s)
- Wenxia Wang
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- Shaanxi Lifegen Co. Ltd., Xi'an, China
| | - Yinmin Shi
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Bo Yan
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Yuang Cai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Han Zheng
- National Regional Children's Medical Center (Northwest), Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, No. 69, Xijuyuan Lane, Xi'an, 710003, China
| | - Yuan Zhang
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, China
| | - Liang Wang
- Department of Neurosurgery, Tangdu Hospital of Air Force Medical University, Xi'an, China
| | - Huijuan Wang
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China.
- Shaanxi Lifegen Co. Ltd., Xi'an, China.
| |
Collapse
|
3
|
Dhandapani H, Siddiqui A, Karadkar S, Tayalia P. In Vitro 3D Spheroid Model Preserves Tumor Microenvironment of Hot and Cold Breast Cancer Subtypes. Adv Healthc Mater 2023; 12:e2300164. [PMID: 37141121 DOI: 10.1002/adhm.202300164] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/11/2023] [Indexed: 05/05/2023]
Abstract
Dynamic interaction of cancer, immune, and stromal cells with extracellular matrix components modulates and resists the response of standard care therapies. To mimic this, an in vitro 3D spheroid model is designed using liquid overlay method to simulate hot (MDA-MB-231) and cold (MCF-7) breast tumor microenvironment (TME). This study shows increased mesenchymal phenotype, stemness, and suppressive microenvironment in MDA-MB-231-spheroids upon exposure to doxorubicin. Intriguingly, the presence of human dermal fibroblasts enhances cancer-associated fibroblast phenotype in MDA-MB-231-spheroids through increased expression of CXCL12 and FSP-1, leading to higher infiltration of immune cells (THP-1 monocytes). However, a suppressive TME is observed in both subtypes, as seen by upregulation of M2-macrophage-specific CD68 and CD206 markers. Specifically, increased PDL-1 expressing tumor-associated macrophages along with FoxP3 expressing T regulatory cells are found in MDA-MB-231-spheroids when cultured with peripheral blood mononuclear cells. Further, it is found that the addition of 1-methyl-tryptophan, a potent indoleamine-2,3-dioxygenase-1 inhibitor, subsides the suppressive phenotype by decreasing the M2 polarization via downregulation of tryptophan metabolism and IL10 expression, particularly in MCF-7 triculture spheroids. Thus, the in vitro 3D spheroid model of TME can be utilized in therapeutics to validate immunomodulatory drugs for various breast cancer subtypes.
Collapse
Affiliation(s)
- Hemavathi Dhandapani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India
| | - Armaan Siddiqui
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India
| | - Shivam Karadkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India
| | - Prakriti Tayalia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India
| |
Collapse
|
4
|
Sun H, Zhang H, Jing L, Zhao H, Chen B, Song W. FBP1 is a potential prognostic biomarker and correlated with tumor immunosuppressive microenvironment in glioblastoma. Neurosurg Rev 2023; 46:187. [PMID: 37507483 DOI: 10.1007/s10143-023-02097-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/10/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023]
Abstract
Hypoxia has been shown to contribute to tumor immunosuppressive microenvironment and is an effective prognostic indicator. This study aimed to screen prognostic hypoxia-related genes (HRGs) in glioblastoma and investigate the association between HRGs and tumor immunosuppressive microenvironment. The glioblastoma-related mRNA data were collected from TCGA, GEO, and CGGA databases. Totally 200 HRGs were obtained from the GSEA website. The prognostic HRGs were screened by univariate Cox regression analysis. Somatic mutation data of glioblastoma from TCGA was visualized using the "maftools" of R package. Immune cell infiltration proportions were calculated by CIBERSORT. The TISIDB online tool was applied to analyze the relationship between HRGs and immunoinhibitors as well as the HRG expression in different glioblastoma immune and molecular subtypes. Hub gene's mRNA and protein levels in cell lines were determined by qRT-PCR and western blot, respectively. The effects of hub gene knockdown on cell viability and migration ability were evaluated employing CCK8 and wound healing assays. The univariate Cox regression showed that high level of FBP1 (fructose-1,6-bisphosphatase 1) was a poor prognostic biomarker, and FBP1 was mainly expressed in lymphocyte depleted immune subtype of glioblastoma. High FBP1 mRNA and protein levels have been successfully validated in vitro. The somatic mutation analysis suggested that TP53 mutation rate was the highest in the high FBP1 glioblastoma group, while EGFR mutation rate was the highest in the low FBP1 glioblastoma group. In the high FBP1 group, the infiltration proportions and types of immune cells were less, dominated by macrophages M2, and the expression of CTLA4, LAG3, TIGIT, PDL1, and PDL2 was significantly upregulated. The expression of FBP1 was positively correlated with several immunoinhibitors, such as IL-10 and TGFβ-1. In conclusion, we demonstrated that FBP1 could serve as a prognostic biomarker for glioblastoma. The immune microenvironment in the high FBP1 group might be suppressed by up-regulating immune checkpoints and immunoinhibitors.
Collapse
Affiliation(s)
- Hu Sun
- Department of Neurosurgery, Zibo Central Hospital, 255000 Zibo, Shandong, China
| | - Hui Zhang
- Department of Cardiology, Zibo Central Hospital, 255000 Zibo, Shandong, China
| | - Lijie Jing
- Department of Neurosurgery, Zibo Central Hospital, 255000 Zibo, Shandong, China
| | - Hao Zhao
- Department of Neurosurgery, Zibo Central Hospital, 255000 Zibo, Shandong, China
| | - Bing Chen
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Huangdao District, Qingdao, 266000, Shandong, China.
| | - Wei Song
- Department of Breast and Thyroid Surgery, Zibo Central Hospital, No. 54 Gongqingtuan West Road, 255000 Zibo, Qingdao, Shandong, China.
| |
Collapse
|
5
|
Bao P, Li P, Zhou X, Zhang H, You S, Xu Z, Wu Q. SMAR1 inhibits proliferation, EMT and Warburg effect of bladder cancer cells by suppressing the activity of the Wnt/β-catenin signaling pathway. Cell Cycle 2023; 22:229-241. [PMID: 35980125 PMCID: PMC9817122 DOI: 10.1080/15384101.2022.2112006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 07/01/2022] [Accepted: 08/08/2022] [Indexed: 01/11/2023] Open
Abstract
This study aimed to investigate the effects of scaffold matrix attachment region binding protein 1 (SMAR1) on the development of bladder cancer (BCa). SMAR1 expression in paired tumor and corresponding adjacent normal tissues from 55 BCa patients was detected by quantitative reverse transcription-polymerase chain reaction. BCa cells were transfected to regulate SMAR1 expression. BCa cells were treated with XAV-939, LiCl and 2-deoxyglucose. The effect of SMAR1 on the viability, proliferation, migration, invasion and Warburg effect of BCa cells was researched by counting kit-8, colony formation assay, Transwell and aerobic glycolysis assays. Western blot was performed to detect protein expression. BCa cell growth in vivo was recorded in nude mice. Immunohistochemical staining was performed for clinical and xenografted tumor tissue specimens. SMAR1 expression was down-regulated in BCa patients, associating with worse prognoses. SMAR1 knockdown enhanced the viability, proliferation, migration, invasion, EMT and Warburg effect of BCa cells. The opposite effect was found in the SMAR1 overexpression BCa cells. XAV-939 treatment reversed the elevation of β-catenin, c-Myc and Cyclin D1 proteins expression and Warburg effect in Bca cells post-SMAR1 knockdown. LiCl treatment abrogated the inhibition of β-catenin, c-Myc and Cyclin D1 proteins expression and Warburg effect proteins due to SMAR1 overexpression in BCa cells. SMAR1 overexpression inhibited the growth of BCa cells in vivo. SMAR1 might suppress the Wnt/β-catenin signaling pathway activity to inhibit the progression of BCa. It might be an effective treatment target for BCa.
Collapse
Affiliation(s)
- Pengfei Bao
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University, The People’s Hospital of Lishui, Lishui, P. R. China
| | - Peng Li
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University, The People’s Hospital of Lishui, Lishui, P. R. China
| | - Xiaoqing Zhou
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University, The People’s Hospital of Lishui, Lishui, P. R. China
| | - Huijiang Zhang
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University, The People’s Hospital of Lishui, Lishui, P. R. China
| | - Shengjie You
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University, The People’s Hospital of Lishui, Lishui, P. R. China
| | - Zhaoyu Xu
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University, The People’s Hospital of Lishui, Lishui, P. R. China
| | - Qi Wu
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University, The People’s Hospital of Lishui, Lishui, P. R. China
| |
Collapse
|
6
|
Mercier R, LaPointe P. The role of cellular proteostasis in anti-tumor immunity. J Biol Chem 2022; 298:101930. [PMID: 35421375 PMCID: PMC9108985 DOI: 10.1016/j.jbc.2022.101930] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/21/2022] [Accepted: 03/31/2022] [Indexed: 12/25/2022] Open
Abstract
Immune checkpoint blockade therapy is perhaps the most important development in cancer treatment in recent memory. It is based on decades of investigation into the biology of immune cells and the role of the immune system in controlling cancer growth. While the molecular circuitry that governs the immune system in general - and anti-tumor immunity in particular - is intensely studied, far less attention has been paid to the role of cellular stress in this process. Proteostasis, intimately linked to cell stress responses, refers to the dynamic regulation of the cellular proteome and is maintained through a complex network of systems that govern the synthesis, folding, and degradation of proteins in the cell. Disruption of these systems can result in the loss of protein function, altered protein function, the formation of toxic aggregates, or pathologies associated with cell stress. However, the importance of proteostasis extends beyond its role in maintaining proper protein function; proteostasis governs how tolerant cells may be to mutations in protein coding genes and the overall half-life of proteins. Such gene expression changes may be associated with human diseases including neurodegenerative diseases, metabolic disease, and cancer and manifest at the protein level against the backdrop of the proteostasis network in any given cellular environment. In this review, we focus on the role of proteostasis in regulating immune responses against cancer as well the role of proteostasis in determining immunogenicity of cancer cells.
Collapse
Affiliation(s)
- Rebecca Mercier
- Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Paul LaPointe
- Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
7
|
Taylor BC, Balko JM. Mechanisms of MHC-I Downregulation and Role in Immunotherapy Response. Front Immunol 2022; 13:844866. [PMID: 35296095 PMCID: PMC8920040 DOI: 10.3389/fimmu.2022.844866] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/09/2022] [Indexed: 12/14/2022] Open
Abstract
Immunotherapy has become a key therapeutic strategy in the treatment of many cancers. As a result, research efforts have been aimed at understanding mechanisms of resistance to immunotherapy and how anti-tumor immune response can be therapeutically enhanced. It has been shown that tumor cell recognition by the immune system plays a key role in effective response to T cell targeting therapies in patients. One mechanism by which tumor cells can avoid immunosurveillance is through the downregulation of Major Histocompatibility Complex I (MHC-I). Downregulation of MHC-I has been described as a mechanism of intrinsic and acquired resistance to immunotherapy in patients with cancer. Depending on the mechanism, the downregulation of MHC-I can sometimes be therapeutically restored to aid in anti-tumor immunity. In this article, we will review current research in MHC-I downregulation and its impact on immunotherapy response in patients, as well as possible strategies for therapeutic upregulation of MHC-I.
Collapse
Affiliation(s)
- Brandie C. Taylor
- Department of Medicine, Cancer Biology, Vanderbilt University, Nashville, TN, United States
| | - Justin M. Balko
- Department of Medicine, Cancer Biology, Vanderbilt University, Nashville, TN, United States
- Department of Medicine, Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, United States
- *Correspondence: Justin M. Balko,
| |
Collapse
|
8
|
Zhang G, Zhang L, Sun S, Chen M. Identification of a Novel Defined Immune-Autophagy-Related Gene Signature Associated With Clinical and Prognostic Features of Kidney Renal Clear Cell Carcinoma. Front Mol Biosci 2022; 8:790804. [PMID: 34988121 PMCID: PMC8721006 DOI: 10.3389/fmolb.2021.790804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/22/2021] [Indexed: 12/23/2022] Open
Abstract
Background: As a common cancer of the urinary system in adults, renal clear cell carcinoma is metastatic in 30% of patients, and 1-2 years after diagnosis, 60% of patients die. At present, the rapid development of tumor immunology and autophagy had brought new directions to the treatment of renal cancer. Therefore, it was extremely urgent to find potential targets and prognostic biomarkers for immunotherapy combined with autophagy. Methods: Through GSE168845, immune-related genes, autophagy-related genes, and immune-autophagy-related differentially expressed genes (IAR-DEGs) were identified. Independent prognostic value of IAR-DEGs was determined by differential expression analysis, prognostic analysis, and univariate and multivariate Cox regression analyses. Then, the lasso Cox regression model was established to evaluate the correlation of IAR-DEGs with the immune score, immune checkpoint, iron death, methylation, and one-class logistic regression (OCLR) score. Results: In this study, it was found that CANX, BID, NAMPT, and BIRC5 were immune-autophagy-related genes with independent prognostic value, and the risk prognostic model based on them was well constructed. Further analysis showed that CANX, BID, NAMPT, and BIRC5 were significantly correlated with the immune score, immune checkpoint, iron death, methylation, and OCLR score. Further experimental results were consistent with the bioinformatics analysis. Conclusion: CANX, BID, NAMPT, and BIRC5 were potential targets and effective prognostic biomarkers for immunotherapy combined with autophagy in kidney renal clear cell carcinoma.
Collapse
Affiliation(s)
- Guangyuan Zhang
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China.,Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Lei Zhang
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China.,Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Si Sun
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Ming Chen
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China.,Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China.,Department of Urology, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| |
Collapse
|
9
|
Cordeiro YG, Mulder LM, van Zeijl RJM, Paskoski LB, van Veelen P, de Ru A, Strefezzi RF, Heijs B, Fukumasu H. Proteomic Analysis Identifies FNDC1, A1BG, and Antigen Processing Proteins Associated with Tumor Heterogeneity and Malignancy in a Canine Model of Breast Cancer. Cancers (Basel) 2021; 13:cancers13235901. [PMID: 34885011 PMCID: PMC8657005 DOI: 10.3390/cancers13235901] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/13/2021] [Accepted: 11/19/2021] [Indexed: 12/24/2022] Open
Abstract
New insights into the underlying biological processes of breast cancer are needed for the development of improved markers and treatments. The complex nature of mammary cancer in dogs makes it a great model to study cancer biology since they present a high degree of tumor heterogeneity. In search of disease-state biomarkers candidates, we applied proteomic mass spectrometry imaging in order to simultaneously detect histopathological and molecular alterations whilst preserving morphological integrity, comparing peptide expression between intratumor populations in distinct levels of differentiation. Peptides assigned to FNDC1, A1BG, and double-matching keratins 18 and 19 presented a higher intensity in poorly differentiated regions. In contrast, we observed a lower intensity of peptides matching calnexin, PDIA3, and HSPA5 in poorly differentiated cells, which enriched for protein folding in the endoplasmic reticulum and antigen processing, assembly, and loading of class I MHC. Over-representation of collagen metabolism, coagulation cascade, extracellular matrix components, cadherin-binding and cell adhesion pathways also distinguished cell populations. Finally, an independent validation showed FNDC1, A1BG, PDIA3, HSPA5, and calnexin as significant prognostic markers for human breast cancer patients. Thus, through a spatially correlated characterization of spontaneous carcinomas, we described key proteins which can be further validated as potential prognostic biomarkers.
Collapse
Affiliation(s)
- Yonara G. Cordeiro
- Laboratory of Comparative and Translational Oncology, Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, Brazil; (Y.G.C.); (L.B.P.); (R.F.S.)
| | - Leandra M. Mulder
- Center of Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (L.M.M.); (R.J.M.v.Z.); (P.v.V.); (A.d.R.); (B.H.)
| | - René J. M. van Zeijl
- Center of Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (L.M.M.); (R.J.M.v.Z.); (P.v.V.); (A.d.R.); (B.H.)
| | - Lindsay B. Paskoski
- Laboratory of Comparative and Translational Oncology, Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, Brazil; (Y.G.C.); (L.B.P.); (R.F.S.)
| | - Peter van Veelen
- Center of Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (L.M.M.); (R.J.M.v.Z.); (P.v.V.); (A.d.R.); (B.H.)
| | - Arnoud de Ru
- Center of Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (L.M.M.); (R.J.M.v.Z.); (P.v.V.); (A.d.R.); (B.H.)
| | - Ricardo F. Strefezzi
- Laboratory of Comparative and Translational Oncology, Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, Brazil; (Y.G.C.); (L.B.P.); (R.F.S.)
| | - Bram Heijs
- Center of Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (L.M.M.); (R.J.M.v.Z.); (P.v.V.); (A.d.R.); (B.H.)
| | - Heidge Fukumasu
- Laboratory of Comparative and Translational Oncology, Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, Brazil; (Y.G.C.); (L.B.P.); (R.F.S.)
- Correspondence: ; Tel.: +55-19-3565-6864
| |
Collapse
|
10
|
Pant R, Alam A, Choksi A, Shah VK, Firmal P, Chattopadhyay S. Chromatin remodeling protein SMAR1 regulates adipogenesis by modulating the expression of PPARγ. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159045. [PMID: 34450266 DOI: 10.1016/j.bbalip.2021.159045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/15/2021] [Accepted: 08/21/2021] [Indexed: 11/17/2022]
Abstract
Adipogenesis is described as the process of conversion of pre-adipocytes into differentiated lipid-laden adipocytes. Adipogenesis is known to be regulated by a myriad of transcription factors and co-regulators. However, there is a dearth of information regarding the mechanisms that regulate these transcription factors and hence control adipogenesis. PPARγ is the master transcriptional regulator of adipogenesis and its expression is essential for adipocyte differentiation. Herein, we identified that scaffold/matrix attachment region-binding protein 1 (SMAR1) negatively regulates adipogenesis. We observed that SMAR1 gets downregulated during adipocyte differentiation and knockdown of SMAR1 promotes lipid accumulation and adipocyte differentiation. Mechanistically, we have shown that SMAR1 suppresses PPARγ through recruitment of the HDAC1/mSin3a repressor complex to the PPARγ promoter. We further identified cell division cycle 20 (cdc20) mediated proteasomal degradation of SMAR1 during adipogenesis. Moreover, knockdown of cdc20 resulted in stabilization of SMAR1 and a reduction in adipocyte differentiation. Taken together, our observations suggest that SMAR1 functions as a negative regulator of adipogenesis by inhibiting PPARγ expression in differentiating adipocytes.
Collapse
Affiliation(s)
- Richa Pant
- National Centre for Cell Science, S P Pune University Campus, Ganeshkhind, Pune 411007, India.
| | - Aftab Alam
- National Centre for Cell Science, S P Pune University Campus, Ganeshkhind, Pune 411007, India; Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, United States of America
| | - Arpankumar Choksi
- National Centre for Cell Science, S P Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Vibhuti Kumar Shah
- National Centre for Cell Science, S P Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Priyanka Firmal
- National Centre for Cell Science, S P Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Samit Chattopadhyay
- National Centre for Cell Science, S P Pune University Campus, Ganeshkhind, Pune 411007, India; Department of Biological Sciences, BITS Pilani, K. K. Birla Goa Campus, NH 17B, Zuarinagar, Goa 403726, India; Indian Institute of Chemical Biology; 4, Raja S C Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
11
|
Lam STT, Lim CJ. Cancer Biology of the Endoplasmic Reticulum Lectin Chaperones Calreticulin, Calnexin and PDIA3/ERp57. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 59:181-196. [PMID: 34050867 DOI: 10.1007/978-3-030-67696-4_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The lectin chaperones calreticulin (CALR) and calnexin (CANX), together with their co-chaperone PDIA3, are increasingly implicated in studies of human cancers in roles that extend beyond their primary function as quality control facilitators of protein folding within the endoplasmic reticulum (ER). Led by the discovery that cell surface CALR functions as an immunogen that promotes anti-tumour immunity, studies have now expanded to include their potential uses as prognostic markers for cancers, and in regulation of oncogenic signaling that regulate such diverse processes including integrin-dependent cell adhesion and migration, proliferation, cell death and chemotherapeutic resistance. The diversity stems from the increasing recognition that these proteins have an equally diverse spectrum of subcellular and extracellular localization, and which are aberrantly expressed in tumour cells. This review describes key foundational discoveries and highlight recent findings that further our understanding of the plethora of activities mediated by CALR, CANX and PDIA3.
Collapse
Affiliation(s)
- Shing Tat Theodore Lam
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,Michael Cuccione Childhood Cancer Research Program, B.C. Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Chinten James Lim
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada. .,Michael Cuccione Childhood Cancer Research Program, B.C. Children's Hospital Research Institute, Vancouver, BC, Canada.
| |
Collapse
|
12
|
Lamba JK, Cao X, Raimondi S, Downing J, Ribeiro R, Gruber TA, Rubnitz J, Pounds S. DNA Methylation Clusters and Their Relation to Cytogenetic Features in Pediatric AML. Cancers (Basel) 2020; 12:cancers12103024. [PMID: 33080932 PMCID: PMC7603219 DOI: 10.3390/cancers12103024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022] Open
Abstract
Acute Myeloid Leukemia (AML) is characterized by recurrent genetic and cytogenetic lesions that are utilized for risk stratification and for making treatment decisions. In recent years, methylation dysregulation has been extensively studied and associated with risk groups and prognosis in adult AML, however, such studies in pediatric AML are limited. Moreover, the mutations in epigenetic genes such as DNMT3A, IDH1 or IDH2 are almost absent or rare in pediatric patients as compared to their abundance in adult AML. In the current study, we evaluated methylation patterns that occur with or independent of the well-defined cytogenetic features in pediatric AML patients enrolled on multi-site AML02 clinical trial (NCT00136084). Our results demonstrate that unlike adult AML, cytosine DNA methylation does not result in significant unique clusters in pediatric AML, however, DNA methylation signatures correlated significantly with the most common and recurrent cytogenetic features. Paired evaluation of DNA methylation and expression identified genes and pathways of biological relevance that hold promise for novel therapeutic strategies. Our results further demonstrate that epigenetic signatures occur complimentary to the well-established chromosomal/mutational landscape, implying that dysregulation of oncogenes or tumor suppressors might be leveraging both genetic and epigenetic mechanisms to impact biological pathways critical for leukemogenesis.
Collapse
Affiliation(s)
- Jatinder K. Lamba
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL 32608, USA
- Correspondence:
| | - Xueyuan Cao
- Department of Acute and Tertiary Care, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Susana Raimondi
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (S.R.); (J.D.)
| | - James Downing
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (S.R.); (J.D.)
| | - Raul Ribeiro
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (R.R.); (J.R.)
| | - Tanja A. Gruber
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Jeffrey Rubnitz
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (R.R.); (J.R.)
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| |
Collapse
|
13
|
Shah VK, Firmal P, Alam A, Ganguly D, Chattopadhyay S. Overview of Immune Response During SARS-CoV-2 Infection: Lessons From the Past. Front Immunol 2020; 11:1949. [PMID: 32849654 PMCID: PMC7426442 DOI: 10.3389/fimmu.2020.01949] [Citation(s) in RCA: 296] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022] Open
Abstract
After the 1918 flu pandemic, the world is again facing a similar situation. However, the advancement in medical science has made it possible to identify that the novel infectious agent is from the coronavirus family. Rapid genome sequencing by various groups helped in identifying the structure and function of the virus, its immunogenicity in diverse populations, and potential preventive measures. Coronavirus attacks the respiratory system, causing pneumonia and lymphopenia in infected individuals. Viral components like spike and nucleocapsid proteins trigger an immune response in the host to eliminate the virus. These viral antigens can be either recognized by the B cells or presented by MHC complexes to the T cells, resulting in antibody production, increased cytokine secretion, and cytolytic activity in the acute phase of infection. Genetic polymorphism in MHC enables it to present some of the T cell epitopes very well over the other MHC alleles. The association of MHC alleles and its downregulated expression has been correlated with disease severity against influenza and coronaviruses. Studies have reported that infected individuals can, after recovery, induce strong protective responses by generating a memory T-cell pool against SARS-CoV and MERS-CoV. These memory T cells were not persistent in the long term and, upon reactivation, caused local damage due to cross-reactivity. So far, the reports suggest that SARS-CoV-2, which is highly contagious, shows related symptoms in three different stages and develops an exhaustive T-cell pool at higher loads of viral infection. As there are no specific treatments available for this novel coronavirus, numerous small molecular drugs that are being used for the treatment of diseases like SARS, MERS, HIV, ebola, malaria, and tuberculosis are being given to COVID-19 patients, and clinical trials for many such drugs have already begun. A classical immunotherapy of convalescent plasma transfusion from recovered patients has also been initiated for the neutralization of viremia in terminally ill COVID-19 patients. Due to the limitations of plasma transfusion, researchers are now focusing on developing neutralizing antibodies against virus particles along with immuno-modulation of cytokines like IL-6, Type I interferons (IFNs), and TNF-α that could help in combating the infection. This review highlights the similarities of the coronaviruses that caused SARS and MERS to the novel SARS-CoV-2 in relation to their pathogenicity and immunogenicity and also focuses on various treatment strategies that could be employed for curing COVID-19.
Collapse
Affiliation(s)
- Vibhuti Kumar Shah
- Department of Biological Sciences, BITS Pilani, K. K. Birla Goa Campus, Goa, India
- National Centre for Cell Science, S. P. Pune University Campus, Pune, India
| | - Priyanka Firmal
- Department of Biological Sciences, BITS Pilani, K. K. Birla Goa Campus, Goa, India
- National Centre for Cell Science, S. P. Pune University Campus, Pune, India
| | - Aftab Alam
- National Centre for Cell Science, S. P. Pune University Campus, Pune, India
- Indian Institute of Chemical Biology, Kolkata, India
| | | | - Samit Chattopadhyay
- Department of Biological Sciences, BITS Pilani, K. K. Birla Goa Campus, Goa, India
- National Centre for Cell Science, S. P. Pune University Campus, Pune, India
- Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|