1
|
Russo G, Scimone C, Palumbo L, Roscigno G, Sarracino C, Tomaiuolo I, Pisapia P, Pepe F, Rocco D, Gridelli C, Troncone G, Malapelle U. Biologics for novel driver altered non-small cell lung cancer: potential and pitfalls. Crit Rev Oncol Hematol 2025; 212:104748. [PMID: 40324663 DOI: 10.1016/j.critrevonc.2025.104748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025] Open
Abstract
Precision medicine has revolutionized clinical paradigm of lung cancer (LC) patients optimizing therapeutical options on the basis of molecular fingerprinting of tumor cells. The advent of the genomic era contributed to the widespread diffusion of sequencing technologies laying the basis for the approval of an increasing number of clinically relevant predictive biomarkers in clinical settings. In the rapidly evolving scenario of predictive biomarkers, mandatory testing genes demonstrated a statistically significant clinical benefit in LC patients elected to molecular tests, but emerging biomarkers are under investigation to raise the bar in the clinical management of LC patients. To date, promising IHC-based predictive biomarkers emerged as potentially integrative tools in the panel of clinically approved biomarkers. On this basis, genomic, transcriptomic and proteomic data are gaining ground toward "3D" biology" supporting the need of a multidimensional analysis of tumor cells to clinically stratify LC patients. Here we sought to overview the most promising biomarkers investigated in clinical trials to be integrated into diagnostic panel of predictive biomarkers tools for NSCLC patients.
Collapse
Affiliation(s)
- Gianluca Russo
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Claudia Scimone
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Lucia Palumbo
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Giuseppina Roscigno
- Department of Biology, Complesso Universitario Monte Sant'Angelo, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy
| | - Claudia Sarracino
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Ilaria Tomaiuolo
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Pasquale Pisapia
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Francesco Pepe
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Danilo Rocco
- Department of Pulmonary Oncology, AORN dei Colli Monaldi, Napoli, Italy
| | - Cesare Gridelli
- Division of Medical Oncology, 'S. G. Moscati' Hospital, Avellino, Italy
| | - Giancarlo Troncone
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Umberto Malapelle
- Department of Public Health, University Federico II of Naples, Naples, Italy.
| |
Collapse
|
2
|
Ruder S, Martinez J, Palmer J, Arham AB, Tagawa ST. Antibody-drug conjugates in urothelial carcinoma: current status and future. Curr Opin Urol 2025; 35:292-300. [PMID: 39844537 DOI: 10.1097/mou.0000000000001263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
PURPOSE OF REVIEW Antibody-drug conjugates (ADCs) are quickly becoming frontline standard of care in many tumor types, including urothelial carcinoma. This review summarizes recent clinical investigations into the use of ADCs targeting nectin-4, trophoblast cell surface antigen-2 (Trop-2), human epidermal growth factor receptor 2 (HER-2), and other antigens in urothelial carcinoma. RECENT FINDINGS This review covers efficacy and toxicity data of ADCs alone and in combination with immunotherapy; mechanisms of resistance; and preclinical studies that provide biological basis for clinical approaches. SUMMARY Enfortumab vedotin and sacituzumab govitecan can be used in an unselected group of patients with urothelial carcinoma whereas HER-2 ADCs have only been administered in those with high expression or amplification. Most are being studied in combination with immune checkpoint inhibitors. Data supports use of enfortumab vedotin in combination with pembrolizumab as first-line therapy in metastatic/unresectable locally advanced urothelial carcinoma. Sacituzumab govitecan may be used as later-line option in these patients. HER-2 therapy is still under investigation but has many recent promising results.
Collapse
MESH Headings
- Humans
- Immunoconjugates/therapeutic use
- Immunoconjugates/adverse effects
- Immunoconjugates/pharmacology
- Carcinoma, Transitional Cell/drug therapy
- Carcinoma, Transitional Cell/immunology
- Carcinoma, Transitional Cell/pathology
- Urinary Bladder Neoplasms/drug therapy
- Urinary Bladder Neoplasms/immunology
- Urinary Bladder Neoplasms/pathology
- Antibodies, Monoclonal/therapeutic use
- Antineoplastic Agents, Immunological/therapeutic use
- Antineoplastic Agents, Immunological/adverse effects
- Antibodies, Monoclonal, Humanized/therapeutic use
- Receptor, ErbB-2/antagonists & inhibitors
- Receptor, ErbB-2/immunology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Camptothecin/analogs & derivatives
- Camptothecin/therapeutic use
- Immune Checkpoint Inhibitors/therapeutic use
- Nectins
Collapse
Affiliation(s)
- Samuel Ruder
- Department of Medicine, Division of Hematology and Oncology, New York Presbyterian Weill Cornell Medical Center
| | - Juana Martinez
- Department of Medicine, Icahn School of Medicine at Mount Sinai Hospital, New York, New York, USA
| | - Jessica Palmer
- Department of Medicine, Division of Hematology and Oncology, New York Presbyterian Weill Cornell Medical Center
| | - Abdul Baseet Arham
- Department of Medicine, Division of Hematology and Oncology, New York Presbyterian Weill Cornell Medical Center
| | - Scott T Tagawa
- Department of Medicine, Division of Hematology and Oncology, New York Presbyterian Weill Cornell Medical Center
| |
Collapse
|
3
|
Leung K, Schaefer K, Lin Z, Yao Z, Wells JA. Engineered Proteins and Chemical Tools to Probe the Cell Surface Proteome. Chem Rev 2025; 125:4069-4110. [PMID: 40178992 PMCID: PMC12022999 DOI: 10.1021/acs.chemrev.4c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/05/2025] [Accepted: 03/07/2025] [Indexed: 04/05/2025]
Abstract
The cell surface proteome, or surfaceome, is the hub for cells to interact and communicate with the outside world. Many disease-associated changes are hard-wired within the surfaceome, yet approved drugs target less than 50 cell surface proteins. In the past decade, the proteomics community has made significant strides in developing new technologies tailored for studying the surfaceome in all its complexity. In this review, we first dive into the unique characteristics and functions of the surfaceome, emphasizing the necessity for specialized labeling, enrichment, and proteomic approaches. An overview of surfaceomics methods is provided, detailing techniques to measure changes in protein expression and how this leads to novel target discovery. Next, we highlight advances in proximity labeling proteomics (PLP), showcasing how various enzymatic and photoaffinity proximity labeling techniques can map protein-protein interactions and membrane protein complexes on the cell surface. We then review the role of extracellular post-translational modifications, focusing on cell surface glycosylation, proteolytic remodeling, and the secretome. Finally, we discuss methods for identifying tumor-specific peptide MHC complexes and how they have shaped therapeutic development. This emerging field of neo-protein epitopes is constantly evolving, where targets are identified at the proteome level and encompass defined disease-associated PTMs, complexes, and dysregulated cellular and tissue locations. Given the functional importance of the surfaceome for biology and therapy, we view surfaceomics as a critical piece of this quest for neo-epitope target discovery.
Collapse
Affiliation(s)
- Kevin
K. Leung
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Kaitlin Schaefer
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Zhi Lin
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Zi Yao
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - James A. Wells
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
- Department
of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
4
|
Papacharisi E, Braun AC, Vranic M, Pahl AM, Hechler T. Novel Amanitin-Based Antibody-Drug Conjugates Targeting TROP2 for the Treatment of Pancreatic Cancer. Mol Cancer Ther 2025; 24:485-496. [PMID: 39564769 PMCID: PMC11962393 DOI: 10.1158/1535-7163.mct-24-0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/24/2024] [Accepted: 11/18/2024] [Indexed: 11/21/2024]
Abstract
Trophoblast cell surface antigen 2 (TROP2) exhibits aberrant expression in pancreatic cancer, correlating with metastasis, advanced tumor stage, and poor prognosis in patients with pancreatic ductal adenocarcinoma. TROP2 has been recognized as a promising therapeutic target for antibody-drug conjugates (ADC), as evidenced by the approval of the anti-TROP2 ADC Trodelvy for the treatment of triple-negative breast cancer (TNBC). In this study, we report the generation of novel second-generation amanitin-based ADCs (ATAC) targeting TROP2, comprising the humanized RS7 antibody of Trodelvy (hRS7) and the highly potent payload amanitin. The specific in vitro binding, efficient antigen internalization, and high cytotoxicity of hRS7 ATACs with EC50 values in the picomolar range in TROP2-expressing cells constituted the foundation for preclinical in vivo evaluation. The hRS7 ATACs demonstrated a significant reduction in tumor growth in vivo in subcutaneous xenograft mouse models of pancreatic cancer and TNBC at well-tolerated doses. The antitumor efficacy correlated with the level of TROP2 expression on the tumors and the in vivo tumor uptake of the ATACs. The long half-life of 9.7 to 10.7 days of hRS7 ATACs without premature payload release in serum supported a high therapeutic index. Notably, the efficacy of the hRS7 ATACs was superior to that of Trodelvy with complete tumor eradication in both refractory pancreatic cancer and TNBC xenograft models. In summary, hRS7 ATACs represent a highly effective and well-tolerated targeted therapy, and our data support their development for pancreatic cancer and other TROP2-expressing tumors.
Collapse
|
5
|
Seehawer M, Polyak K. Epigenetic drivers of metalloproteinases and metastasis. Trends Cell Biol 2025:S0962-8924(25)00044-3. [PMID: 40089451 DOI: 10.1016/j.tcb.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/17/2025]
Abstract
Metalloproteinases (MPs) are crucial for development and homeostasis due to their diverse physiological functions, from the cellular to the organismal level. Their activity is tightly regulated at multiple levels, including epigenetic regulation through DNA methylation and histone modifications. Aberrant MP expression can result in pathological events, involving extracellular matrix remodeling, which can facilitate cancer cell invasion and dissemination. As clinical testing of MP inhibitors has been limited by toxicity, alternative approaches are needed. Epigenetically-driven MP expression is often specific to cancer cells, giving an enticing possibility for cancer cell-specific targeting. Moreover, aberrant epigenetic activity can also drive other metastatic events. Therefore, targeting the epigenetic regulators of MP expression may be a promising alternative approach for the prevention and treatment of metastatic disease.
Collapse
Affiliation(s)
- Marco Seehawer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Trerotola M, Relli V, Tripaldi R, Simeone P, Guerra E, Sacchetti A, Ceci M, Pantalone L, Ciufici P, Moschella A, Caiolfa VR, Zamai M, Alberti S. Large, recursive membrane platforms are associated to Trop-1, Trop-2, and protein kinase signaling for cell growth. Mol Biol Cell 2025; 36:ar38. [PMID: 39785844 PMCID: PMC11974968 DOI: 10.1091/mbc.e24-06-0267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/29/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025] Open
Abstract
The transmembrane glycoproteins Trop-1/EpCAM and Trop-2 independently trigger Ca2+ and kinase signals for cell growth and tumor progression. Our findings indicated that Trop-1 and Trop-2 tightly colocalize at macroscopic, ruffle-like protrusions (RLP), that elevate from the cell perimeter, and locally recur over hundreds of seconds. These previously unrecognized elevated membrane regions ≥20-µm-long, up to 1.5 µm high were revealed by Z-stack analysis and three-dimensional reconstruction of signal transducer-hosting plasma membrane regions. Trop-2 stimulates cell growth through a membrane supercomplex that comprises CD9, PKCα, ion pumps, and cytoskeletal components. Our findings indicated that the growth-driving Trop-2 supercomplex assembles at RLP. RLP behaved as sites of clustering of signal transducers, of phosphorylation/activation of growth-driving kinases, as recruitment sites of PKCα and as origin of Ca2+ signaling waves, suggesting RLP to be novel signaling platforms in living cells. RLP were induced by growth factors and disappeared upon growth factor deprivation and β-actin depolymerization, candidating RLP to be functional platforms for high-dimensional signaling for cell growth.
Collapse
Affiliation(s)
- Marco Trerotola
- Laboratory of Cancer Pathology, Centre for Advanced Studies and Technology (CAST), University “G. D'Annunzio”, Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, University “G. d'Annunzio”, Chieti, Italy
| | - Valeria Relli
- Laboratory of Cancer Pathology, Centre for Advanced Studies and Technology (CAST), University “G. D'Annunzio”, Chieti, Italy
| | - Romina Tripaldi
- Laboratory of Cancer Pathology, Centre for Advanced Studies and Technology (CAST), University “G. D'Annunzio”, Chieti, Italy
| | - Pasquale Simeone
- Laboratory of Cancer Pathology, Centre for Advanced Studies and Technology (CAST), University “G. D'Annunzio”, Chieti, Italy
| | - Emanuela Guerra
- Laboratory of Cancer Pathology, Centre for Advanced Studies and Technology (CAST), University “G. D'Annunzio”, Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, University “G. d'Annunzio”, Chieti, Italy
| | - Andrea Sacchetti
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Martina Ceci
- Laboratory of Cancer Pathology, Centre for Advanced Studies and Technology (CAST), University “G. D'Annunzio”, Chieti, Italy
| | - Ludovica Pantalone
- Laboratory of Cancer Pathology, Centre for Advanced Studies and Technology (CAST), University “G. D'Annunzio”, Chieti, Italy
| | - Paolo Ciufici
- Laboratory of Cancer Pathology, Centre for Advanced Studies and Technology (CAST), University “G. D'Annunzio”, Chieti, Italy
| | - Antonino Moschella
- Unit of Medical Genetics, Department of Biomedical Sciences (BIOMORF), University of Messina, Messina, Italy
| | - Valeria R. Caiolfa
- Microscopy and Dynamic Imaging Unit, Centro National de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Experimental Imaging Centre, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Moreno Zamai
- Microscopy and Dynamic Imaging Unit, Centro National de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Experimental Imaging Centre, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Saverio Alberti
- Laboratory of Cancer Pathology, Centre for Advanced Studies and Technology (CAST), University “G. D'Annunzio”, Chieti, Italy
- Unit of Medical Genetics, Department of Biomedical Sciences (BIOMORF), University of Messina, Messina, Italy
| |
Collapse
|
7
|
Li S, Zhao X, Fu K, Zhu S, Pan C, Yang C, Wang F, To KK, Fu L. Resistance to antibody-drug conjugates: A review. Acta Pharm Sin B 2025; 15:737-756. [PMID: 40177568 PMCID: PMC11959940 DOI: 10.1016/j.apsb.2024.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 04/05/2025] Open
Abstract
Antibody-drug conjugates (ADCs) are antitumor drugs composed of monoclonal antibodies and cytotoxic payload covalently coupled by a linker. Currently, 15 ADCs have been clinically approved worldwide. More than 100 clinical trials at different phases are underway to investigate the newly developed ADCs. ADCs represent one of the fastest growing classes of targeted antitumor drugs in oncology drug development. It takes advantage of the specific targeting of tumor-specific antigen by antibodies to deliver cytotoxic chemotherapeutic drugs precisely to tumor cells, thereby producing promising antitumor efficacy and favorable adverse effect profiles. However, emergence of drug resistance has severely hindered the clinical efficacy of ADCs. In this review, we introduce the structure and mechanism of ADCs, describe the development of ADCs, summarized the latest research about the mechanisms of ADC resistance, discussed the strategies to overcome ADCs resistance, and predicted biomarkers for treatment response to ADC, aiming to contribute to the development of ADCs in the future.
Collapse
Affiliation(s)
- Sijia Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xinyu Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Kai Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shuangli Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Can Pan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chuan Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Kenneth K.W. To
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong 999077, China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
8
|
Dong C, Li Z. Circ_0096710 facilitates tumor growth via controlling ADAM10 expression in esophageal squamous cell carcinoma. Thorac Cancer 2025; 16:e15483. [PMID: 39620490 PMCID: PMC11729450 DOI: 10.1111/1759-7714.15483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/26/2024] [Accepted: 10/20/2024] [Indexed: 01/15/2025] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is a global cancer related to the sixth largest cause of death. Circular RNAs (circRNAs) have affected the progress of ESCC during recent years, but the mechanism is not completely clear. So here we probed the effects of hsa_circ_0096710 (circ_0096710) in ESCC. METHODS Relative levels of circ_0096710, miR-1294, and ADAM10 were quantified by the quantitative real-time reverse transcription-polymerase chain reaction in ESCC tissues. Western blot assessed ADAM10, PCNA, MMP2, VEGFA, and OCT4 protein levels. Cell proliferative capacity was assessed by cell counting and cell colony-forming assays. Transwell assays assessed cell migration and invasion. Angiogenesis was detected by tube formation assays. Stemness of cancer cells was estimated by sphere formation assays. Dual-luciferin reporter and RNA immunoprecipitation assays determined the targeting relationship between miR-1294 and circ_0096710 or ADAM10. RESULTS Relative levels of circ_0096710 and ADAM10 mRNA were upregulated in ESCC cells, yet miR-1294 was downregulated. Circ_0096710 silencing repressed ESCC cell proliferation, migration, invasion, angiogenesis, and stem-like properties. Moreover, circ_0096710 was an upstream target of miR-1294, and miR-1294 inhibition reversed the role of circ_0096710 downregulation in ESCC cells. Furthermore, ADAM10 was a downstream target of miR-1294, and miR-1294 overexpression suppressed ESCC cell proliferation, migration, invasion, angiogenesis, and stem-like properties by targeting ADAM10. Meanwhile, circ_0096710 upgraded ADAM10 expression through sponging miR-1294. Also, circ_0096710 downregulation restrained tumor growth in mouse models. CONCLUSION Circ_0096710 upregulates ADAM10 via mediating miR-1294 expression so as to accelerate the occurrence of ESCC, suggesting that circ_0096710 may be a potential therapeutic target for ESCC.
Collapse
Affiliation(s)
- Chaoqun Dong
- Department of Thoracic SurgeryShanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical UniversityTaiyuan CityChina
| | - Zhilong Li
- Department of Thoracic SurgeryShanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical UniversityTaiyuan CityChina
| |
Collapse
|
9
|
Khan S, Jandrajupalli SB, Bushara NZA, Raja RDP, Mirza S, Sharma K, Verma R, Kumar A, Lohani M. Targeting Refractory Triple-Negative Breast Cancer with Sacituzumab Govitecan: A New Era in Precision Medicine. Cells 2024; 13:2126. [PMID: 39768216 PMCID: PMC11674573 DOI: 10.3390/cells13242126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Advanced triple-negative breast cancer (TNBC) has poorer outcomes due to its aggressive behavior and restricted therapeutic options. While therapies like checkpoint inhibitors and PARP inhibitors offer some benefits, chemotherapy remains ineffective beyond the first line of treatment. Antibody-drug conjugates (ADCs) like sacituzumab govitecan-hziy (SG) represent a significant advancement. SG combines SN-38, an irinotecan derivative, with a Trop-2-targeting antibody via a pH-sensitive linking moiety, achieving a good drug:antibody ratio. In a phase I-II study involving metastatic TNBC (mTNBC) individuals, SG achieved an overall response rate of 33.3% and a median response period of 7.7 months. The phase III ASCENT trial demonstrated SG's efficacy in relapsed or refractory TNBC, improving median progression-free survival and median overall survival compared to chemotherapy. Common side effects include neutropenia, nausea, and fatigue. This article highlights the clinical potential, pharmacokinetics, safety profile, and resistance mechanisms of SG along with key ongoing clinical trials, emphasizing its role in managing refractory mTNBC, especially in third-line therapy. The review also discusses current strategies for managing adverse reactions and sequencing ADC treatments in clinical practice, along with the predicted basis of resistance. The optimal sequencing of SG relative to other ADCs, such as trastuzumab deruxtecan or T-DXd, remains an evolving question, especially as newer agents with distinct mechanisms of action and safety profiles enter the field. Further research is essential to establish evidence-based strategies for sequencing SG and addressing disease progression post-ADC therapy.
Collapse
Affiliation(s)
- Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, University of Ha’il, Ha’il 55473, Saudi Arabia; (S.K.); (S.M.)
| | - Suresh Babu Jandrajupalli
- Department of Preventive Dental Sciences, College of Dentistry, University of Ha’il, Ha’il 55473, Saudi Arabia; (S.B.J.); (N.Z.A.B.)
| | - Nashwa Zaki Ali Bushara
- Department of Preventive Dental Sciences, College of Dentistry, University of Ha’il, Ha’il 55473, Saudi Arabia; (S.B.J.); (N.Z.A.B.)
| | - Rama Devi Patel Raja
- Department of Biology, College of Science, University of Ha’il, Ha’il 55473, Saudi Arabia;
| | - Shadab Mirza
- Department of Basic Dental and Medical Sciences, College of Dentistry, University of Ha’il, Ha’il 55473, Saudi Arabia; (S.K.); (S.M.)
| | - Kuldeep Sharma
- Centre of Research Impact and Outcome, Chitkara University, Rajpura 140401, India;
| | - Rajan Verma
- Chitkara Center for Research and Development, Chitkara University, Baddi 174103, India;
| | - Ashish Kumar
- Department of Mechanical Engineering, Institute of Aeronautical Engineering, Hyderabad 500043, India;
- Division of Research and Development, Lovely Professional University, Phagwara 144411, India
| | - Mohtashim Lohani
- Department of Nursing, College of Nursing and Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
10
|
Liu Y, Huang W, Saladin RJ, Hsu JC, Cai W, Kang L. Trop2-Targeted Molecular Imaging in Solid Tumors: Current Advances and Future Outlook. Mol Pharm 2024; 21:5909-5928. [PMID: 39537365 PMCID: PMC11832138 DOI: 10.1021/acs.molpharmaceut.4c00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Trophoblast cell surface antigen 2 (Trop2), a transmembrane glycoprotein, plays a dual role in physiological and pathological processes. In healthy tissues, Trop2 facilitates development and orchestrates intracellular calcium signaling. However, its overexpression in numerous solid tumors shifts its function toward driving cell proliferation and metastasis, thus leading to a poor prognosis. The clinical relevance of Trop2 is underscored by its utility as both a biomarker for diagnostic imaging and a target for therapy. Notably, the U.S. Food and Drug Administration (FDA) has approved sacituzumab govitecan (SG), a novel Trop2-targeted agent, for treating triple-negative breast cancer (TNBC) and refractory urothelial cancer, highlighting the significance of Trop2 in clinical oncology. Molecular imaging, a powerful tool for visualizing and quantifying biological phenomena at the molecular and cellular levels, has emerged as a critical technique for studying Trop2. This approach encompasses various modalities, including optical imaging, positron emission tomography (PET), single photon emission computed tomography (SPECT), and targeted antibodies labeled with radioactive isotopes. Incorporating Trop2-targeted molecular imaging into clinical practice is vital for the early detection, prognostic assessment, and treatment planning of a broad spectrum of solid tumors. Our review captures the latest progress in Trop2-targeted molecular imaging, focusing on both diagnostic and therapeutic applications across diverse tumor types, including lung, breast, gastric, pancreatic, prostate, and cervical cancers, as well as salivary gland carcinomas. We critically evaluate the current state by examining the relevant applications, diagnostic accuracy, therapeutic efficacy, and inherent limitations. Finally, we analyze the challenges impeding widespread clinical application and offer insights into strategies for advancing the field, thereby guiding future research endeavors.
Collapse
Affiliation(s)
- Yongshun Liu
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Wenpeng Huang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Rachel J Saladin
- Departments of Radiology and Medical Physics, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Jessica C Hsu
- Departments of Radiology and Medical Physics, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
11
|
Deng J, Geng Z, Luan L, Jiang D, Lu J, Zhang H, Chen B, Liu X, Xing D. Novel Anti-Trop2 Nanobodies Disrupt Receptor Dimerization and Inhibit Tumor Cell Growth. Pharmaceutics 2024; 16:1255. [PMID: 39458590 PMCID: PMC11510716 DOI: 10.3390/pharmaceutics16101255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/20/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Trop2 (trophoblast cell-surface antigen 2) is overexpressed in multiple malignancies and is closely associated with poor prognosis, thus positioning it as a promising target for pan-cancer therapies. Despite the approval of Trop2-targeted antibody-drug conjugates (ADCs), challenges such as side effects, drug resistance, and limited efficacy persist. Recent studies have shown that the dimeric forms of Trop2 are crucial for its oncogenic functions, and the binding epitopes of existing Trop2-targeted drugs lie distant from the dimerization interface, potentially limiting their antitumor efficacy. Method: A well-established synthetic nanobody library was screened against Trop2-ECD. The identified nanobodies were extensively characterized, including their binding specificity and affinity, as well as their bioactivities in antigen-antibody endocytosis, cell proliferation, and the inhibition of Trop2 dimer assembly. Finally, ELISA based epitope analysis and AlphaFold 3 were employed to elucidate the binding modes of the nanobodies. Results: We identified two nanobodies, N14 and N152, which demonstrated high affinity and specificity for Trop2. Cell-based assays confirmed that N14 and N152 can facilitate receptor internalization and inhibit growth in Trop2-positive tumor cells. Epitope analysis uncovered that N14 and N152 are capable of binding with all three subdomains of Trop2-ECD and effectively disrupt Trop2 dimerization. Predictive modeling suggests that N14 and N152 likely target the epitopes at the interface of Trop2 cis-dimerization. The binding modality and mechanism of action demonstrated by N14 and N152 are unique among Trop2-targeted antibodies. Conclusions: we identified two novel nanobodies, N14 and N152, that specifically bind to Trop2. Importantly, these nanobodies exhibit significant anti-tumor efficacy and distinctive binding patterns, underscoring their potential as innovative Trop2-targeted therapeutics.
Collapse
Affiliation(s)
- Junwen Deng
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; (J.D.); (Z.G.); (H.Z.)
- Qingdao Cancer Institute, Qingdao 266071, China
| | - Zhongmin Geng
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; (J.D.); (Z.G.); (H.Z.)
- Qingdao Cancer Institute, Qingdao 266071, China
| | - Linli Luan
- Noventi Biopharmaceuticals Co., Ltd., Shanghai 201203, China; (L.L.); (D.J.); (J.L.); (B.C.)
| | - Dingwen Jiang
- Noventi Biopharmaceuticals Co., Ltd., Shanghai 201203, China; (L.L.); (D.J.); (J.L.); (B.C.)
| | - Jian Lu
- Noventi Biopharmaceuticals Co., Ltd., Shanghai 201203, China; (L.L.); (D.J.); (J.L.); (B.C.)
| | - Hanzhong Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; (J.D.); (Z.G.); (H.Z.)
- Qingdao Cancer Institute, Qingdao 266071, China
| | - Bingguan Chen
- Noventi Biopharmaceuticals Co., Ltd., Shanghai 201203, China; (L.L.); (D.J.); (J.L.); (B.C.)
| | - Xinlin Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; (J.D.); (Z.G.); (H.Z.)
- Qingdao Cancer Institute, Qingdao 266071, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; (J.D.); (Z.G.); (H.Z.)
- Qingdao Cancer Institute, Qingdao 266071, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
Rosenbaum D, Saftig P. New insights into the function and pathophysiology of the ectodomain sheddase A Disintegrin And Metalloproteinase 10 (ADAM10). FEBS J 2024; 291:2733-2766. [PMID: 37218105 DOI: 10.1111/febs.16870] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
The 'A Disintegrin And Metalloproteinase 10' (ADAM10) has gained considerable attention due to its discovery as an 'α-secretase' involved in the nonamyloidogenic processing of the amyloid precursor protein, thereby possibly preventing the excessive generation of the amyloid beta peptide, which is associated with the pathogenesis of Alzheimer's disease. ADAM10 was found to exert many additional functions, cleaving about 100 different membrane proteins. ADAM10 is involved in many pathophysiological conditions, ranging from cancer and autoimmune disorders to neurodegeneration and inflammation. ADAM10 cleaves its substrates close to the plasma membrane, a process referred to as ectodomain shedding. This is a central step in the modulation of the functions of cell adhesion proteins and cell surface receptors. ADAM10 activity is controlled by transcriptional and post-translational events. The interaction of ADAM10 with tetraspanins and the way they functionally and structurally depend on each other is another topic of interest. In this review, we will summarize findings on how ADAM10 is regulated and what is known about the biology of the protease. We will focus on novel aspects of the molecular biology and pathophysiology of ADAM10 that were previously poorly covered, such as the role of ADAM10 on extracellular vesicles, its contribution to virus entry, and its involvement in cardiac disease, cancer, inflammation, and immune regulation. ADAM10 has emerged as a regulator controlling cell surface proteins during development and in adult life. Its involvement in disease states suggests that ADAM10 may be exploited as a therapeutic target to treat conditions associated with a dysfunctional proteolytic activity.
Collapse
Affiliation(s)
- David Rosenbaum
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Germany
| | - Paul Saftig
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Germany
| |
Collapse
|
13
|
Liu X, Ma L, Li J, Sun L, Yang Y, Liu T, Xing D, Yan S, Zhang M. Trop2-targeted therapies in solid tumors: advances and future directions. Theranostics 2024; 14:3674-3692. [PMID: 38948057 PMCID: PMC11209721 DOI: 10.7150/thno.98178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/04/2024] [Indexed: 07/02/2024] Open
Abstract
Trophoblast cell surface antigen 2 (Trop2) is overexpressed in a range of solid tumors and participants in multiple oncogenic signaling pathways, making it an attractive therapeutic target. In the past decade, the rapid development of various Trop2-targeted therapies, notably marked by the advent of the antibody-drug conjugate (ADC), revolutionized the outcome for patients facing Trop2-positive tumors with limited treatment opinions, such as triple-negative breast cancer (TNBC). This review provides a comprehensive summary of advances in Trop2-targeted therapies, including ADCs, antibodies, multispecific agents, immunotherapy, cancer vaccines, and small molecular inhibitors, along with in-depth discussions on their designs, mechanisms of action (MOAs), and limitations. Additionally, we emphasize the clinical research progress of these emerging Trop2-targeted agents, focusing on their clinical application and therapeutic efficacy against tumors. Furthermore, we propose directions for future research, such as enhancing our understanding of Trop2's structure and biology, exploring the best combination strategies, and tailoring precision treatment based on Trop2 testing methodologies.
Collapse
Affiliation(s)
- Xinlin Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Leina Ma
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Jiyixuan Li
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Li Sun
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Ying Yang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Ting Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Saisai Yan
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Miao Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| |
Collapse
|
14
|
Kamble PR, Kulkarni B, Malaviya A, Bajaj M, Breed AA, Jagtap D, Mahale S, Pathak BR. Comparison of Anti-Trop2 Extracellular Domain Antibodies Generated Against Peptide and Protein Immunogens for Targeting Trop2-Positive Tumour Cells. Appl Biochem Biotechnol 2024; 196:3402-3419. [PMID: 37656352 DOI: 10.1007/s12010-023-04706-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/02/2023]
Abstract
Trophoblast antigen 2 (Trop2) is a transmembrane glycoprotein upregulated in multiple solid tumours. Trop2-based passive immunotherapies are in clinical trials, while Trop2 targeting CAR-T cell-based therapies are also reported. Information about its T- and B-cell epitopes is needed for it to be pursued as an active immunotherapeutic target. This study focused on identification of immunodominant epitopes in the Trop2 extracellular domain (ECD) that can mount an efficient anti-Trop2 antibody response. In silico analysis using various B-cell epitope prediction tools was carried out to identify linear and conformational B-cell epitopes in the ECD of Trop2. Three linear peptide immunogens were shortlisted and synthesized. Along with linear peptides, truncated Trop2 ECD that possesses combination of linear and conformational epitopes was also selected. Recombinant protein immunogen was produced in 293-F suspension culture system and affinity purified. Antisera against different immunogens were characterized by ELISA and Western blotting. Two anti-peptide antisera detected recombinant and ectopically expressed Trop2 protein; however, they were unable to recognize the endogenous Trop2 protein expressed by cancer cells. Antibodies against truncated Trop2 ECD could bind to the endogenous Trop2 expressed on the surface of cancer cells. In addition to their high avidity, these polyclonal anti-sera against truncated Trop2 protein also mediated antibody-dependent cell-mediated cytotoxicity (ADCC). In summary, our comparative analysis demonstrated the utility of truncated Trop2 ECD as a promising candidate to be pursued as an active immunotherapeutic molecule against Trop2-positive cancer cells.
Collapse
Affiliation(s)
- Pradnya R Kamble
- Cellular and Structural Biology Division, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, 400012, India
| | - Bhalchandra Kulkarni
- Cellular and Structural Biology Division, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, 400012, India
| | | | - Madhulika Bajaj
- Cellular and Structural Biology Division, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, 400012, India
| | - Ananya A Breed
- Cellular and Structural Biology Division, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, 400012, India
| | - Dhanashree Jagtap
- Cellular and Structural Biology Division, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, 400012, India
| | - Smita Mahale
- Cellular and Structural Biology Division, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, 400012, India
| | - Bhakti R Pathak
- Cellular and Structural Biology Division, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, 400012, India.
| |
Collapse
|
15
|
Jiang Y, Zhou H, Liu J, Ha W, Xia X, Li J, Chao T, Xiong H. Progress and Innovative Combination Therapies in Trop-2-Targeted ADCs. Pharmaceuticals (Basel) 2024; 17:652. [PMID: 38794221 PMCID: PMC11125602 DOI: 10.3390/ph17050652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Precise targeting has become the main direction of anti-cancer drug development. Trophoblast cell surface antigen 2 (Trop-2) is highly expressed in different solid tumors but rarely in normal tissues, rendering it an attractive target. Trop-2-targeted antibody-drug conjugates (ADCs) have displayed promising efficacy in treating diverse solid tumors, especially breast cancer and urothelial carcinoma. However, their clinical application is still limited by insufficient efficacy, excessive toxicity, and the lack of biological markers related to effectiveness. This review summarizes the clinical trials and combination therapy strategies for Trop-2-targeted ADCs, discusses the current challenges, and provides new insights for future advancements.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tengfei Chao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.J.); (H.Z.); (J.L.); (W.H.); (X.X.); (J.L.)
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.J.); (H.Z.); (J.L.); (W.H.); (X.X.); (J.L.)
| |
Collapse
|
16
|
Tang W, Hu Y, Tu K, Gong Z, Zhu M, Yang T, Sarwar A, Dai B, Zhang D, Zhan Y, Zhang Y. Targeting Trop2 by Bruceine D suppresses breast cancer metastasis by blocking Trop2/β-catenin positive feedback loop. J Adv Res 2024; 58:193-210. [PMID: 37271476 PMCID: PMC10982870 DOI: 10.1016/j.jare.2023.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/28/2023] [Accepted: 05/28/2023] [Indexed: 06/06/2023] Open
Abstract
INTRODUCTION Tumor-associated calcium signal transducer 2 (Trop2) has been used as a transport gate for cytotoxic agents into cells in antibody-drug conjugate designs because of its expression in a wide range of solid tumors. However, the specific role of Trop2 itself in breast cancer progression remains unclear and small molecules targeting Trop2 have not yet been reported. OBJECTIVES To screen small molecules targeting Trop2, and to reveal its pharmacological effects and the molecular mechanisms of action. METHODS Small molecule targeting Trop2 was identified by cell membrane chromatography, and validated by cellular thermal shift assay and point mutation analyses. We investigated the pharmacological effects of Trop2 inhibitor using RNA-seq, human foreskin fibroblast (HFF)-derived extracellular matrix (ECM), Matrigel drop invasion assays, colony-forming assay, xenograft tumor model, 4T1 orthotopic metastasis model and 4T1 experimental metastasis model. The molecular mechanism was determined using immunoprecipitation, mass spectrometry, immunofluorescence, immunohistochemistry and Western blotting. RESULTS Here we identified Bruceine D (BD) as the inhibitor of Trop2, and demonstrated anti-metastasis effects of BD in breast cancer. Notably, Lys307 and Glu310 residues of Trop2 acted as critical sites for BD binding. Mechanistically, BD suppressed Trop2-induced cancer metastasis by blocking the formation of Trop2/β-catenin positive loop, in which the Trop2/β-catenin complex prevented β-catenin from being degraded via the ubiquitin-proteosome pathway. Destabilized β-catenin caused by BD reduced nucleus translocation, leading to the reduction of transcription of Trop2, the reversal of epithelial-mesenchymal transition (EMT) process, and the inhibition of ECM remodeling, further inhibiting cancer metastasis. Additionally, the inhibitory effects of BD on lung metastatic colonization and the beneficial effects of BD on prolongation of survival were validated in 4T1 experimental metastasis model. CONCLUSIONS These results support the tumor-promoting role of Trop2 in breast cancer by stabilizing β-catenin in Trop2/β-catenin positive loop, and suggest Bruceine D as a promising candidate for Trop2 inhibition.
Collapse
Affiliation(s)
- Wenjuan Tang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, China
| | - Yu Hu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, China
| | - Kaihui Tu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, China
| | - Zhengyan Gong
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, China
| | - Man Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, China
| | - Tianfeng Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, China
| | - Ammar Sarwar
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, China
| | - Bingling Dai
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, China
| | - Dongdong Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, China
| | - Yingzhuan Zhan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, China.
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, China.
| |
Collapse
|
17
|
Tsuchikama K, Anami Y, Ha SYY, Yamazaki CM. Exploring the next generation of antibody-drug conjugates. Nat Rev Clin Oncol 2024; 21:203-223. [PMID: 38191923 DOI: 10.1038/s41571-023-00850-2] [Citation(s) in RCA: 149] [Impact Index Per Article: 149.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/10/2024]
Abstract
Antibody-drug conjugates (ADCs) are a promising cancer treatment modality that enables the selective delivery of highly cytotoxic payloads to tumours. However, realizing the full potential of this platform necessitates innovative molecular designs to tackle several clinical challenges such as drug resistance, tumour heterogeneity and treatment-related adverse effects. Several emerging ADC formats exist, including bispecific ADCs, conditionally active ADCs (also known as probody-drug conjugates), immune-stimulating ADCs, protein-degrader ADCs and dual-drug ADCs, and each offers unique capabilities for tackling these various challenges. For example, probody-drug conjugates can enhance tumour specificity, whereas bispecific ADCs and dual-drug ADCs can address resistance and heterogeneity with enhanced activity. The incorporation of immune-stimulating and protein-degrader ADCs, which have distinct mechanisms of action, into existing treatment strategies could enable multimodal cancer treatment. Despite the promising outlook, the importance of patient stratification and biomarker identification cannot be overstated for these emerging ADCs, as these factors are crucial to identify patients who are most likely to derive benefit. As we continue to deepen our understanding of tumour biology and refine ADC design, we will edge closer to developing truly effective and safe ADCs for patients with treatment-refractory cancers. In this Review, we highlight advances in each ADC component (the monoclonal antibody, payload, linker and conjugation chemistry) and provide more-detailed discussions on selected examples of emerging novel ADCs of each format, enabled by engineering of one or more of these components.
Collapse
Affiliation(s)
- Kyoji Tsuchikama
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Yasuaki Anami
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Summer Y Y Ha
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Chisato M Yamazaki
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
18
|
Guerra E, Trerotola M, Relli V, Lattanzio R, Boujnah K, Travali N, Moschella A, Todaro P, Pierdomenico L, Di Pietro R, Tinari N, Alberti S. Phylogenetic conservation of Trop-2 across species-rodent and primate genomics model anti-Trop-2 therapy for pre-clinical benchmarks. Front Genet 2024; 14:1297367. [PMID: 38250577 PMCID: PMC10797630 DOI: 10.3389/fgene.2023.1297367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/23/2023] [Indexed: 01/23/2024] Open
Abstract
A phylogenetic conservation analysis of Trop-2 across vertebrate species showed a high degree of sequence conservation, permitting to explore multiple models as pre-clinical benchmarks. Sequence divergence and incomplete conservation of expression patterns were observed in mouse and rat. Primate Trop-2 sequences were found to be 95%-100% identical to the human sequence. Comparative three-dimension primate Trop-2 structures were obtained with AlphaFold and homology modeling. This revealed high structure conservation of Trop-2 (0.66 ProMod3 GMQE, 0.80-0.86 ± 0.05 QMEANDisCo scores), with conservative amino acid changes at variant sites. Primate TACSTD2/TROP2 cDNAs were cloned and transfectants for individual ORF were shown to be efficiently recognized by humanized anti-Trop-2 monoclonal antibodies (Hu2G10, Hu2EF). Immunohistochemistry analysis of Macaca mulatta (rhesus monkey) tissues showed Trop-2 expression patterns that closely followed those in human tissues. This led us to test Trop-2 targeting in vivo in Macaca fascicularis (cynomolgus monkey). Intravenously injected Hu2G10 and Hu2EF were well tolerated from 5 to 10 mg/kg. Neither neurological, respiratory, digestive, urinary symptoms, nor biochemical or hematological toxicities were detected during 28-day observation. Blood serum pharmacokinetic (PK) studies were conducted utilizing anti-idiotypic antibodies in capture-ELISA assays. Hu2G10 (t1/2 = 6.5 days) and Hu2EF (t1/2 = 5.5 days) were stable in plasma, and were detectable in the circulation up to 3 weeks after the infusion. These findings validate primates as reliable models for Hu2G10 and Hu2EF toxicity and PK, and support the use of these antibodies as next-generation anti-Trop-2 immunotherapy tools.
Collapse
Affiliation(s)
- Emanuela Guerra
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Marco Trerotola
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Valeria Relli
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Rossano Lattanzio
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Khouloud Boujnah
- Unit of Medical Genetics, Department of Biomedical Sciences—BIOMORF, University of Messina, Messina, Italy
| | - Nicole Travali
- Unit of Medical Genetics, Department of Biomedical Sciences—BIOMORF, University of Messina, Messina, Italy
| | - Antonino Moschella
- Unit of Medical Genetics, Department of Biomedical Sciences—BIOMORF, University of Messina, Messina, Italy
| | - Paolo Todaro
- Department of Human Pathology “Gaetano Barresi”, Section of Cytopathology, University of Messina, Azienda Ospedaliera Universitaria “Gaetano Martino”, Messina, Italy
| | - Laura Pierdomenico
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technologies (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Roberta Di Pietro
- Department of Medicine and Aging Sciences, Section of Biomorphology, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Nicola Tinari
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Saverio Alberti
- Unit of Medical Genetics, Department of Biomedical Sciences—BIOMORF, University of Messina, Messina, Italy
| |
Collapse
|
19
|
Tax G, Guay KP, Pantalone L, Ceci M, Soldà T, Hitchman CJ, Hill JC, Vasiljević S, Lia A, Modenutti CP, Straatman KR, Santino A, Molinari M, Zitzmann N, Hebert DN, Roversi P, Trerotola M. Rescue of secretion of rare-disease-associated misfolded mutant glycoproteins in UGGT1 knock-out mammalian cells. Traffic 2024; 25:e12927. [PMID: 38272446 PMCID: PMC10832616 DOI: 10.1111/tra.12927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/02/2023] [Accepted: 12/05/2023] [Indexed: 01/27/2024]
Abstract
Endoplasmic reticulum (ER) retention of misfolded glycoproteins is mediated by the ER-localized eukaryotic glycoprotein secretion checkpoint, UDP-glucose glycoprotein glucosyl-transferase (UGGT). The enzyme recognizes a misfolded glycoprotein and flags it for ER retention by re-glucosylating one of its N-linked glycans. In the background of a congenital mutation in a secreted glycoprotein gene, UGGT-mediated ER retention can cause rare disease, even if the mutant glycoprotein retains activity ("responsive mutant"). Using confocal laser scanning microscopy, we investigated here the subcellular localization of the human Trop-2-Q118E, E227K and L186P mutants, which cause gelatinous drop-like corneal dystrophy (GDLD). Compared with the wild-type Trop-2, which is correctly localized at the plasma membrane, these Trop-2 mutants are retained in the ER. We studied fluorescent chimeras of the Trop-2 Q118E, E227K and L186P mutants in mammalian cells harboring CRISPR/Cas9-mediated inhibition of the UGGT1 and/or UGGT2 genes. The membrane localization of the Trop-2 Q118E, E227K and L186P mutants was successfully rescued in UGGT1-/- cells. UGGT1 also efficiently reglucosylated Trop-2-Q118E-EYFP in cellula. The study supports the hypothesis that UGGT1 modulation would constitute a novel therapeutic strategy for the treatment of pathological conditions associated to misfolded membrane glycoproteins (whenever the mutation impairs but does not abrogate function), and it encourages the testing of modulators of ER glycoprotein folding quality control as broad-spectrum rescue-of-secretion drugs in rare diseases caused by responsive secreted glycoprotein mutants.
Collapse
Affiliation(s)
- Gabor Tax
- Leicester Institute of Chemical and Structural Biology and Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 7HR, England, United Kingdom
| | - Kevin P. Guay
- Department of Biochemistry and Molecular Biology, and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, United States
| | - Ludovica Pantalone
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Italy; Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Italy
| | - Martina Ceci
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Italy; Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Italy
| | - Tatiana Soldà
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, UniversitàdellaSvizzeraItaliana (USI), Bellinzona, Switzerland
| | - Charlie J. Hitchman
- Leicester Institute of Chemical and Structural Biology and Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 7HR, England, United Kingdom
| | - Johan C. Hill
- Institute of Glycobiology, Department of Biochemistry, South Parks Road, Oxford OX1 3RQ, United Kingdom
| | - Snežana Vasiljević
- Institute of Glycobiology, Department of Biochemistry, South Parks Road, Oxford OX1 3RQ, United Kingdom
| | - Andrea Lia
- Leicester Institute of Chemical and Structural Biology and Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 7HR, England, United Kingdom
- Institute of Sciences of Food Production, ISPA-CNR Unit of Lecce, via Monteroni, I-73100 Lecce, Italy
| | - Carlos P. Modenutti
- Departamento de QuímicaBiológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de QuímicaBiológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellón 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
| | - Kees R. Straatman
- Core Biotechnology Services, University of Leicester, University Road, Leicester LE1 7RH, England, United Kingdom
| | - Angelo Santino
- Institute of Sciences of Food Production, ISPA-CNR Unit of Lecce, via Monteroni, I-73100 Lecce, Italy
| | - Maurizio Molinari
- Institute of Glycobiology, Department of Biochemistry, South Parks Road, Oxford OX1 3RQ, United Kingdom
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nicole Zitzmann
- Institute of Glycobiology, Department of Biochemistry, South Parks Road, Oxford OX1 3RQ, United Kingdom
| | - Daniel N. Hebert
- Department of Biochemistry and Molecular Biology, and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, United States
| | - Pietro Roversi
- Leicester Institute of Chemical and Structural Biology and Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 7HR, England, United Kingdom
- Institute of AgriculturalBiology and Biotecnology, IBBA-CNR Unit of Milano, via Bassini 15, I-20133 Milano, Italy
| | - Marco Trerotola
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Italy; Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Italy
| |
Collapse
|
20
|
Liu X, Li J, Deng J, Zhao J, Zhao G, Zhang T, Jiang H, Liang B, Xing D, Wang J. Targeting Trop2 in solid tumors: a look into structures and novel epitopes. Front Immunol 2023; 14:1332489. [PMID: 38179054 PMCID: PMC10765514 DOI: 10.3389/fimmu.2023.1332489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024] Open
Abstract
Trophoblast cell surface antigen 2 (Trop2) exhibits limited expression in normal tissues but is over-expressed across various solid tumors. The effectiveness of anti-Trop2 antibody-drug conjugate (ADC) in managing breast cancer validates Trop2 as a promising therapeutic target for cancer treatment. However, excessive toxicity and a low response rate of ADCs pose ongoing challenges. Safer and more effective strategies should be developed for Trop2-positive cancers. The dynamic structural attributes and the oligomeric assembly of Trop2 present formidable obstacles to the progression of innovative targeted therapeutics. In this review, we summarize recent advancements in understanding Trop2's structure and provide an overview of the epitope characteristics of Trop2-targeted agents. Furthermore, we discuss the correlation between anti-Trop2 agents' epitopes and their respective functions, particularly emphasizing their efficacy and specificity in targeted therapies.
Collapse
Affiliation(s)
- Xinlin Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Jiyixuan Li
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Junwen Deng
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Jianan Zhao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Gaoxiang Zhao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Tingting Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Hongfei Jiang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Bing Liang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Jie Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| |
Collapse
|
21
|
Koltai T, Fliegel L. The Relationship between Trop-2, Chemotherapeutic Drugs, and Chemoresistance. Int J Mol Sci 2023; 25:87. [PMID: 38203255 PMCID: PMC10779383 DOI: 10.3390/ijms25010087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/08/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Trop-2 is a highly conserved one-pass transmembrane mammalian glycoprotein that is normally expressed in tissues such as the lung, intestines, and kidney during embryonic development. It is overexpressed in many epithelial cancers but is absent in non-epithelial tumors. Trop-2 is an intracellular calcium signal transducer that participates in the promotion of cell proliferation, migration, invasion, metastasis, and probably stemness. It also has some tumor suppressor effects. The pro-tumoral actions have been thoroughly investigated and reported. However, Trop-2's activity in chemoresistance is less well known. We review a possible relationship between Trop-2, chemotherapy, and chemoresistance. We conclude that there is a clear role for Trop-2 in some specific chemoresistance events. On the other hand, there is no clear evidence for its participation in multidrug resistance through direct drug transport. The development of antibody conjugate drugs (ACD) centered on anti-Trop-2 monoclonal antibodies opened the gates for the treatment of some tumors resistant to classic chemotherapies. Advanced urothelial tumors and breast cancer were among the first malignancies for which these ACDs have been employed. However, there is a wide group of other tumors that may benefit from anti-Trop-2 therapy as soon as clinical trials are completed.
Collapse
Affiliation(s)
- Tomas Koltai
- Hospital del Centro Gallego de Buenos Aires, Buenos Aires 2199, Argentina;
| | - Larry Fliegel
- Department of Biochemistry, Faculty of Medicine, University of Alberta, 347 Medical Science Bldg., Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
22
|
Bangayan NJ, Wang L, Burton Sojo G, Noguchi M, Cheng D, Ta L, Gunn D, Mao Z, Liu S, Yin Q, Riedinger M, Li K, Wu AM, Stoyanova T, Witte ON. Dual-inhibitory domain iCARs improve the efficiency of the AND-NOT gate CAR T strategy. Proc Natl Acad Sci U S A 2023; 120:e2312374120. [PMID: 37963244 PMCID: PMC10666036 DOI: 10.1073/pnas.2312374120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/02/2023] [Indexed: 11/16/2023] Open
Abstract
CAR (chimeric antigen receptor) T cell therapy has shown clinical success in treating hematological malignancies, but its treatment of solid tumors has been limited. One major challenge is on-target, off-tumor toxicity, where CAR T cells also damage normal tissues that express the targeted antigen. To reduce this detrimental side-effect, Boolean-logic gates like AND-NOT gates have utilized an inhibitory CAR (iCAR) to specifically curb CAR T cell activity at selected nonmalignant tissue sites. However, the strategy seems inefficient, requiring high levels of iCAR and its target antigen for inhibition. Using a TROP2-targeting iCAR with a single PD1 inhibitory domain to inhibit a CEACAM5-targeting CAR (CEACAR), we observed that the inefficiency was due to a kinetic delay in iCAR inhibition of cytotoxicity. To improve iCAR efficiency, we modified three features of the iCAR-the avidity, the affinity, and the intracellular signaling domains. Increasing the avidity but not the affinity of the iCAR led to significant reductions in the delay. iCARs containing twelve different inhibitory signaling domains were screened for improved inhibition, and three domains (BTLA, LAIR-1, and SIGLEC-9) each suppressed CAR T function but did not enhance inhibitory kinetics. When inhibitory domains of LAIR-1 or SIGLEC-9 were combined with PD-1 into a single dual-inhibitory domain iCAR (DiCARs) and tested with the CEACAR, inhibition efficiency improved as evidenced by a significant reduction in the inhibitory delay. These data indicate that a delicate balance between CAR and iCAR signaling strength and kinetics must be achieved to regulate AND-NOT gate CAR T cell selectivity.
Collapse
Affiliation(s)
- Nathanael J. Bangayan
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA90095
| | - Liang Wang
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Giselle Burton Sojo
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Miyako Noguchi
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Donghui Cheng
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Lisa Ta
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA90095
| | - Donny Gunn
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Zhiyuan Mao
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA90095
| | - Shiqin Liu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA90095
| | - Qingqing Yin
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA90095
| | - Mireille Riedinger
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Keyu Li
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA90095
| | - Anna M. Wu
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA91010
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, David Geffen School of Medicine at University of California - Los Angeles, Los Angeles, CA90095
- Department of Radiation Oncology, City of Hope, Duarte, CA91010
| | - Tanya Stoyanova
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA90095
- Department of Urology, University of California, Los Angeles, CA90095
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA90095
| | - Owen N. Witte
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA90095
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA90095
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA90095
- Molecular Biology Institute, University of California, Los Angeles, CA90095
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA90095
- Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, CA90095
| |
Collapse
|
23
|
Guerra E, Trerotola M, Alberti S. Targeting Trop-2 as a Cancer Driver. J Clin Oncol 2023; 41:4688-4692. [PMID: 37549340 DOI: 10.1200/jco.23.01207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 08/09/2023] Open
Affiliation(s)
- Emanuela Guerra
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Marco Trerotola
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Saverio Alberti
- Unit of Medical Genetics, Department of Biomedical Sciences-BIOMORF, University of Messina, Messina, Italy
| |
Collapse
|
24
|
Upadhyay SS, Devasahayam Arokia Balaya R, Parate SS, Dagamajalu S, Keshava Prasad TS, Shetty R, Raju R. An assembly of TROP2-mediated signaling events. J Cell Commun Signal 2023; 17:1105-1111. [PMID: 37014471 PMCID: PMC10409939 DOI: 10.1007/s12079-023-00742-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/15/2023] [Indexed: 04/05/2023] Open
Abstract
Trophoblast cell surface antigen 2 (TROP2) is a calcium-transducing transmembrane protein mainly involved in embryo development. The aberrant expression of TROP2 is observed in numerous cancers, including triple-negative breast cancer, gastric, colorectal, pancreatic, squamous cell carcinoma of the oral cavity, and prostate cancers. The main signaling pathways mediated by TROP2 are calcium signaling, PI3K/AKT, JAK/STAT, MAPKs, and β-catenin signaling. However, collective information about the TROP2-mediated signaling pathway is not available for visualization or analysis. In this study, we constructed a TROP2 signaling map with respect to its role in different cancers. The data curation was done manually by following the NetPath annotation criteria. The described map consists of different molecular events, including 8 activation/inhibition, 16 enzyme catalysis, 19 gene regulations, 12 molecular associations, 39 induced-protein expressions, and 2 protein translocation. The data of the TROP2 pathway map is made freely accessible through the WikiPathways Database ( https://www.wikipathways.org/index.php/Pathway:WP5300 ). Development of TROP2 signaling pathway map.
Collapse
Affiliation(s)
- Shubham Sukerndeo Upadhyay
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018 India
| | | | - Sakshi Sanjay Parate
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018 India
| | - Shobha Dagamajalu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018 India
| | - T. S. Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018 India
| | - Rohan Shetty
- Department of Surgical Oncology, Yenepoya Medical College Hospital, Yenepoya (Deemed to Be University), Mangalore, 575018 India
| | - Rajesh Raju
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018 India
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, 575018 India
| |
Collapse
|
25
|
Guerra E, Trerotola M, Relli V, Lattanzio R, Ceci M, Boujnah K, Pantalone L, Di Pietro R, Iezzi M, Tinari N, Alberti S. The 2EF Antibody Targets a Unique N-Terminal Epitope of Trop-2 and Enhances the In Vivo Activity of the Cancer-Selective 2G10 Antibody. Cancers (Basel) 2023; 15:3721. [PMID: 37509383 PMCID: PMC10378344 DOI: 10.3390/cancers15143721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Trop-2 proteolytic processing in cancer cells exposes epitopes that were specifically targeted by the 2G10 antibody. We sought additional recognition of Trop-2 within difficult-to-reach, densely packed tumor sites. Trop-2 deletion mutants were employed in immunization and screening procedures, and these led to the recognition of a novel epitope in the N-terminal region of Trop-2, by the 2EF antibody. The 2EF mAb was shown to bind Trop-2 at cell-cell junctions in MCF-7 breast cancer cells, and in deeply seated sites in prostate cancer, that were inaccessible to benchmark anti-Trop-2 antibodies. The 2EF antibody was shown to inhibit the growth of HT29 colon tumor cells in vitro, with the highest activity at high cell density. In vivo, 2EF showed anticancer activity against SKOv3 ovarian, Colo205, HT29, HCT116 colon and DU-145 prostate tumors, with the highest impact on densely packed tumor sites, whereby 2EF outcompeted benchmark anti-Trop-2 antibodies. Given the different recognition modes of Trop-2 by 2EF and 2G10, we hypothesized the effective interaction of the two mAb in vivo. The 2EF mAb was indeed demonstrated to enhance the activity of 2G10 against tumor xenotransplants, opening novel avenues for Trop-2-targeted therapy. We humanized 2EF by state-of-the-art CDR grafting/re-modeling, yielding the Hu2EF for therapy of Trop-2-expressing tumors in patients.
Collapse
Affiliation(s)
- Emanuela Guerra
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (E.G.); (M.T.); (V.R.); (R.L.); (M.C.); (L.P.)
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Marco Trerotola
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (E.G.); (M.T.); (V.R.); (R.L.); (M.C.); (L.P.)
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Valeria Relli
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (E.G.); (M.T.); (V.R.); (R.L.); (M.C.); (L.P.)
| | - Rossano Lattanzio
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (E.G.); (M.T.); (V.R.); (R.L.); (M.C.); (L.P.)
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Martina Ceci
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (E.G.); (M.T.); (V.R.); (R.L.); (M.C.); (L.P.)
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Khouloud Boujnah
- Unit of Medical Genetics, Department of Biomedical Sciences—BIOMORF, University of Messina, 98125 Messina, Italy;
| | - Ludovica Pantalone
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (E.G.); (M.T.); (V.R.); (R.L.); (M.C.); (L.P.)
| | - Roberta Di Pietro
- Department of Medicine and Aging Sciences, Section of Biomorphology, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy;
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Manuela Iezzi
- Department of Neurosciences, Imaging and Clinical Sciences, Center for Advanced Studies and Technnology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Nicola Tinari
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Saverio Alberti
- Unit of Medical Genetics, Department of Biomedical Sciences—BIOMORF, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
26
|
Chen C, Chao Y, Zhang C, Hu W, Huang Y, Lv Y, Liu B, Ji D, Liu M, Yang B, Jiang L, Liang Y, Zhang H, Yuan G, Ying X, Ji W. TROP2 translation mediated by dual m 6A/m 7G RNA modifications promotes bladder cancer development. Cancer Lett 2023; 566:216246. [PMID: 37268280 DOI: 10.1016/j.canlet.2023.216246] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023]
Abstract
RNA modifications, including adenine methylation (m6A) of mRNA and guanine methylation (m7G) of tRNA, are crucial for the biological function of RNA. However, the mechanism underlying the translation of specific genes synergistically mediated by dual m6A/m7G RNA modifications in bladder cancer (BCa) remains unclear. We demonstrated that m6A methyltransferase METTL3-mediated programmable m6A modification of oncogene trophoblast cell surface protein 2 (TROP2) mRNA promoted its translation during malignant transformation of bladder epithelial cells. m7G methyltransferase METTL1 enhanced TROP2 translation by mediating m7G modification of certain tRNAs. TROP2 protein inhibition decreased the proliferation and invasion of BCa cells in vitro and in vivo. Moreover, synergistical knockout of METTL3/METTL1 inhibited BCa cell proliferation, migration, and invasion; however, TROP2 overexpression partially abrogated its effect. Furthermore, TROP2 expression was significantly positively correlated with the expression levels of METTL3 and METTL1 in BCa patients. Overall, our results revealed that METTL3/METTL1-mediated dual m6A/m7G RNA modifications enhanced TROP2 translation and promoted BCa development, indicating a novel RNA epigenetic mechanism in BCa.
Collapse
Affiliation(s)
- Cong Chen
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yinghui Chao
- Department of Pediatrics, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chengcheng Zhang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wenyu Hu
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yapeng Huang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yifan Lv
- Guangdong Key Laboratory of Urology, Department of Urology, Minimally Invasive Surgery Center, Guangzhou Urology Research Institute, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510080, China
| | - Bixia Liu
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ding Ji
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Mingrui Liu
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Baotong Yang
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510080, China
| | - Lujing Jiang
- Guangdong Provincial People's Hospital, Guangzhou, 510080, China
| | - Yaomin Liang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Haiqing Zhang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Gang Yuan
- Private Medical Service & Healthcare Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Xiaoling Ying
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510080, China.
| | - Weidong Ji
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
27
|
Guerra E, Di Pietro R, Stati G, Alberti S. A non-mutated TROP2 fingerprint in cancer genetics. Front Oncol 2023; 13:1151090. [PMID: 37456256 PMCID: PMC10338868 DOI: 10.3389/fonc.2023.1151090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
The advent of high throughput DNA sequencing is providing massive amounts of tumor-associated mutation data. Implicit in these analyses is the assumption that, by acquiring a series of hallmark changes, normal cells evolve along a neoplastic path. However, the lack of correlation between cancer risk and global exposure to mutagenic factors provides arguments against this model. This suggested that additional, non-mutagenic factors are at work in cancer development. A candidate determinant is TROP2, that stands out for its expression in the majority of solid tumors in human, for its impact on the prognosis of most solid cancers and for its role as driver of cancer growth and metastatic diffusion, through overexpression as a wild-type form. The Trop-2 signaling network encompasses CREB1, Jun, NF-κB, Rb, STAT1 and STAT3, through induction of cyclin D1 and MAPK/ERK. Notably, Trop-2-driven pathways vastly overlap with those activated by most functionally relevant/most frequently mutated RAS and TP53, and are co-expressed in a large fraction of individual tumor cases, suggesting functional overlap. Mutated Ras was shown to synergize with the TROP2-CYCLIND1 mRNA chimera in transforming primary cells into tumorigenic ones. Genomic loss of TROP2 was found to promote carcinogenesis in squamous cell carcinomas through modulation of Src and mutated Ras pathways. DNA methylation and TP53 status were shown to cause genome instability and TROP gene amplification, together with Trop-2 protein overexpression. These findings suggest that mutagenic and the TROP2 non-mutagenic pathways deeply intertwine in driving transformed cell growth and malignant progression of solid cancers.
Collapse
Affiliation(s)
- Emanuela Guerra
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Roberta Di Pietro
- Department of Medicine and Aging Sciences, Section of Biomorphology, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Gianmarco Stati
- Department of Medicine and Aging Sciences, Section of Biomorphology, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Saverio Alberti
- Unit of Medical Genetics, Department of Biomedical Sciences - Biomedical Sciences (BIOMORF), University of Messina, Messina, Italy
| |
Collapse
|
28
|
Tax G, Guay KP, Soldà T, Hitchman CJ, Hill JC, Vasiljević S, Lia A, Modenutti CP, Straatman KR, Santino A, Molinari M, Zitzmann N, Hebert DN, Roversi P, Trerotola M. Rescue of secretion of a rare-disease associated mis-folded mutant glycoprotein in UGGT1 knock-out mammalian cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542711. [PMID: 37398215 PMCID: PMC10312515 DOI: 10.1101/2023.05.30.542711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Endoplasmic reticulum (ER) retention of mis-folded glycoproteins is mediated by the ERlocalised eukaryotic glycoprotein secretion checkpoint, UDP-glucose glycoprotein glucosyl-transferase (UGGT). The enzyme recognises a mis-folded glycoprotein and flags it for ER retention by reglucosylating one of its N-linked glycans. In the background of a congenital mutation in a secreted glycoprotein gene, UGGT-mediated ER retention can cause rare disease even if the mutant glycoprotein retains activity ("responsive mutant"). Here, we investigated the subcellular localisation of the human Trop-2 Q118E variant, which causes gelatinous droplike corneal dystrophy (GDLD). Compared with the wild type Trop-2, which is correctly localised at the plasma membrane, the Trop-2-Q118E variant is found to be heavily retained in the ER. Using Trop-2-Q118E, we tested UGGT modulation as a rescue-of-secretion therapeutic strategy for congenital rare disease caused by responsive mutations in genes encoding secreted glycoproteins. We investigated secretion of a EYFP-fusion of Trop-2-Q118E by confocal laser scanning microscopy. As a limiting case of UGGT inhibition, mammalian cells harbouring CRISPR/Cas9-mediated inhibition of the UGGT1 and/or UGGT2 gene expressions were used. The membrane localisation of the Trop-2-Q118E-EYFP mutant was successfully rescued in UGGT1-/- and UGGT1/2-/- cells. UGGT1 also efficiently reglucosylated Trop-2-Q118E-EYFP in cellula. The study supports the hypothesis that UGGT1 modulation constitutes a novel therapeutic strategy for the treatment of Trop-2-Q118E associated GDLD, and it encourages the testing of modulators of ER glycoprotein folding Quality Control (ERQC) as broad-spectrum rescueof-secretion drugs in rare diseases caused by responsive secreted glycoprotein mutants.
Collapse
Affiliation(s)
- Gábor Tax
- Leicester Institute of Chemical and Structural Biology and Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 7HR, England, United Kingdom
| | - Kevin P. Guay
- Department of Biochemistry and Molecular Biology, and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, United States
| | - Tatiana Soldà
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Charlie J. Hitchman
- Leicester Institute of Chemical and Structural Biology and Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 7HR, England, United Kingdom
| | - Johan C. Hill
- Institute of Glycobiology, Department of Biochemistry, South Parks Road, Oxford OX1 3RQ, United Kingdom
| | - Snežana Vasiljević
- Institute of Glycobiology, Department of Biochemistry, South Parks Road, Oxford OX1 3RQ, United Kingdom
| | - Andrea Lia
- Leicester Institute of Chemical and Structural Biology and Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 7HR, England, United Kingdom
- Institute of Sciences of Food Production, ISPA-CNR Unit of Lecce, via Monteroni, I-73100 Lecce, Italy
| | - Carlos P. Modenutti
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellón 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
| | - Kees R. Straatman
- Leicester Institute of Chemical and Structural Biology and Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 7HR, England, United Kingdom
- Core Biotechnology Services, University of Leicester, University Road, Leicester LE1 7RH, England, United Kingdom
| | - Angelo Santino
- Institute of Sciences of Food Production, ISPA-CNR Unit of Lecce, via Monteroni, I-73100 Lecce, Italy
| | - Maurizio Molinari
- Institute of Glycobiology, Department of Biochemistry, South Parks Road, Oxford OX1 3RQ, United Kingdom
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nicole Zitzmann
- Institute of Glycobiology, Department of Biochemistry, South Parks Road, Oxford OX1 3RQ, United Kingdom
| | - Daniel N. Hebert
- Department of Biochemistry and Molecular Biology, and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, United States
| | - Pietro Roversi
- Leicester Institute of Chemical and Structural Biology and Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 7HR, England, United Kingdom
- Institute of Agricultural Biology and Biotecnology, IBBACNR Unit of Milano, via Bassini 15, I-20133 Milano, Italy
| | - Marco Trerotola
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Italy; Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Italy
| |
Collapse
|
29
|
Esapa B, Jiang J, Cheung A, Chenoweth A, Thurston DE, Karagiannis SN. Target Antigen Attributes and Their Contributions to Clinically Approved Antibody-Drug Conjugates (ADCs) in Haematopoietic and Solid Cancers. Cancers (Basel) 2023; 15:1845. [PMID: 36980732 PMCID: PMC10046624 DOI: 10.3390/cancers15061845] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Antibody drug conjugates (ADCs) are powerful anti-cancer therapies comprising an antibody joined to a cytotoxic payload through a chemical linker. ADCs exploit the specificity of antibodies for their target antigens, combined with the potency of cytotoxic drugs, to selectively kill target antigen-expressing tumour cells. The recent rapid advancement of the ADC field has so far yielded twelve and eight ADCs approved by the US and EU regulatory bodies, respectively. These serve as effective targeted treatments for several haematological and solid tumour types. In the development of an ADC, the judicious choice of an antibody target antigen with high expression on malignant cells but restricted expression on normal tissues and immune cells is considered crucial to achieve selectivity and potency while minimising on-target off-tumour toxicities. Aside from this paradigm, the selection of an antigen for an ADC requires consideration of several factors relating to the expression pattern and biological features of the target antigen. In this review, we discuss the attributes of antigens selected as targets for antibodies used in clinically approved ADCs for the treatment of haematological and solid malignancies. We discuss target expression, functions, and cellular kinetics, and we consider how these factors might contribute to ADC efficacy.
Collapse
Affiliation(s)
- Benjamina Esapa
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
| | - Jiexuan Jiang
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
| | - Anthony Cheung
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London SE1 9RT, UK
| | - Alicia Chenoweth
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London SE1 9RT, UK
| | - David E. Thurston
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 9NH, UK
| | - Sophia N. Karagiannis
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London SE1 9RT, UK
| |
Collapse
|
30
|
Trop-2 is a ubiquitous and promising target in pancreatic adenocarcinoma. Clin Res Hepatol Gastroenterol 2023; 47:102108. [PMID: 36878461 DOI: 10.1016/j.clinre.2023.102108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/10/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND Trop-2 is overexpressed in tumor cells of various cancers, including pancreatic ductal adenocarcinoma (PDAC), and has emerged as a potent therapeutic target. We evaluated Trop-2 expression both at the transcriptomic and protein levels, and its correlation with tumor features and patients' outcomes in a large cohort of PDAC. METHODS We included patients undergoing pancreatic resection for PDAC in 5 academic hospitals in France and Belgium. Transcriptomic profiles were obtained from FFPE tissue samples, with paired primary -25and metastatic lesions when available. Protein expression was evaluated by immunohistochemistry (IHC) using tissue micro-arrays. RESULTS 495 patients (male 54%, median age 63 years) were included between 1996 and 2012. Trop-2 mRNA expression was significantly associated to tumor cellularity, but no association with survival nor with any clinical or pathological features was observed, with tumor cells showing an overall high expression among every subgroup. Trop-2 mRNA expression was maintained between primary and metastatic lesion in all 26 paired samples evaluated. In 50 tumors assessed by IHC, 30%, 68% and 2% harbored a high, medium, or low Trop-2 expression score, respectively. Trop-2 staining was significantly associated to mRNA expression, but not to survival or any pathological features. CONCLUSIONS Our results suggest Trop-2 overexpression as a ubiquitous marker of PDAC tumor cells and thus a promising therapeutic target to evaluate in these patients.
Collapse
|
31
|
Urriola-Muñoz P, Pattison LA, Smith ESJ. Dysregulation of ADAM10 shedding activity in naked mole-rat fibroblasts is due to deficient phosphatidylserine externalization. J Cell Physiol 2023; 238:761-775. [PMID: 36790936 DOI: 10.1002/jcp.30972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/16/2023]
Abstract
The naked mole-rat (NMR, Heterocephalus glaber) is of significant interest to biogerontological research, rarely developing age-associated diseases, such as cancer. The transmembrane glycoprotein CD44 is upregulated in certain cancers and CD44 cleavage by a disintegrin and metalloproteinase 10 (ADAM10) regulates cellular migration. Here we provide evidence that mature ADAM10 is expressed in NMR primary skin fibroblasts (NPSF), and that ionomycin increases cell surface ADAM10 localization. However, we observed an absence of ADAM10 mediated CD44 cleavage, as well as shedding of exogenous and overexpressed betacellulin in NPSF, whereas in mouse primary skin fibroblasts ionomycin induced ADAM10-dependent cleavage of both CD44 and betacellulin. Overexpressing a hyperactive form of the Ca2+ -dependent phospholipid scramblase ANO6 in NPSF increased phosphatidylserine (PS) externalization, which rescued the ADAM10 sheddase activity and promoted cell migration in NPSF in an ADAM10-dependent manner. These findings suggest that dysregulation of ADAM10 shedding activity is due to a deficient PS externalization in NMR.
Collapse
Affiliation(s)
| | - Luke A Pattison
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Ewan St J Smith
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| |
Collapse
|
32
|
Liu Y, Wang Y, Sun S, Chen Z, Xiang S, Ding Z, Huang Z, Zhang B. Understanding the versatile roles and applications of EpCAM in cancers: from bench to bedside. Exp Hematol Oncol 2022; 11:97. [PMID: 36369033 PMCID: PMC9650829 DOI: 10.1186/s40164-022-00352-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) functions not only in physiological processes but also participates in the development and progression of cancer. In recent decades, extensive efforts have been made to decipher the role of EpCAM in cancers. Great advances have been achieved in elucidating its structure, molecular functions, pathophysiological mechanisms, and clinical applications. Beyond its well-recognized role as a biomarker of cancer stem cells (CSCs) or circulating tumor cells (CTCs), EpCAM exhibits novel and promising value in targeted therapy. At the same time, the roles of EpCAM in cancer progression are found to be highly context-dependent and even contradictory in some cases. The versatile functional modules of EpCAM and its communication with other signaling pathways complicate the study of this molecule. In this review, we start from the structure of EpCAM and focus on communication with other signaling pathways. The impacts on the biology of cancers and the up-to-date clinical applications of EpCAM are also introduced and summarized, aiming to shed light on the translational prospects of EpCAM.
Collapse
Affiliation(s)
- Yiyang Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufei Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Sun
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeyu Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Xiang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeyang Ding
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
33
|
Liu X, Deng J, Yuan Y, Chen W, Sun W, Wang Y, Huang H, Liang B, Ming T, Wen J, Huang B, Xing D. Advances in Trop2-targeted therapy: Novel agents and opportunities beyond breast cancer. Pharmacol Ther 2022; 239:108296. [PMID: 36208791 DOI: 10.1016/j.pharmthera.2022.108296] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022]
Abstract
Trop2 is a transmembrane glycoprotein and calcium signal transducer with limited expression in normal human tissues. It is consistently overexpressed in a variety of malignant tumors and participates in several oncogenic signaling pathways that lead to tumor development, invasion, and metastasis. As a result, Trop2 has become an attractive therapeutic target in cancer treatment. The anti-Trop2 antibody-drug conjugate (Trodelvy™, sacituzumab govitecan) has been approved to treat metastatic triple-negative breast cancer. However, it is still unclear whether the success observed in Trop2-positive breast cancer could be replicated in other tumor types, owing to the differences in the expression levels and functions of Trop2 across cancer types. In this review, we summarize the recent progress on the structures and functions of Trop2 and highlight the potential diagnostic and therapeutic value of Trop2 beyond breast cancer. In addition, the promising novel Trop2-targeted agents in the clinic were discussed, which will likely alter the therapeutic landscape of Trop2-positive tumors in the future.
Collapse
Affiliation(s)
- Xinlin Liu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Junwen Deng
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Yang Yuan
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Wujun Chen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Wenshe Sun
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Yanhong Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Haiming Huang
- Shanghai Asia United Antibody Medical Co., Ltd, Shanghai 201203, China
| | - Bing Liang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Tao Ming
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Jialian Wen
- School of Social Science, The University of Manchester, Manchester, UK
| | - Binghuan Huang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China.
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
34
|
Švec J, Šťastná M, Janečková L, Hrčkulák D, Vojtěchová M, Onhajzer J, Kříž V, Galušková K, Šloncová E, Kubovčiak J, Pfeiferová L, Hrudka J, Matěj R, Waldauf P, Havlůj L, Kolář M, Kořínek V. TROP2 Represents a Negative Prognostic Factor in Colorectal Adenocarcinoma and Its Expression Is Associated with Features of Epithelial-Mesenchymal Transition and Invasiveness. Cancers (Basel) 2022; 14:4137. [PMID: 36077674 PMCID: PMC9454662 DOI: 10.3390/cancers14174137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/09/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Trophoblastic cell surface antigen 2 (TROP2) is a membrane glycoprotein overexpressed in many solid tumors with a poor prognosis, including intestinal neoplasms. In our study, we show that TROP2 is expressed in preneoplastic lesions, and its expression is maintained in most colorectal cancers (CRC). High TROP2 positivity correlated with lymph node metastases and poor tumor differentiation and was a negative prognostic factor. To investigate the role of TROP2 in intestinal tumors, we analyzed two mouse models with conditional disruption of the adenomatous polyposis coli (Apc) tumor-suppressor gene, human adenocarcinoma samples, patient-derived organoids, and TROP2-deficient tumor cells. We found that Trop2 is produced early after Apc inactivation and its expression is associated with the transcription of genes involved in epithelial-mesenchymal transition, the regulation of migration, invasiveness, and extracellular matrix remodeling. A functionally similar group of genes was also enriched in TROP2-positive cells from human CRC samples. To decipher the driving mechanism of TROP2 expression, we analyzed its promoter. In human cells, this promoter was activated by β-catenin and additionally by the Yes1-associated transcriptional regulator (YAP). The regulation of TROP2 expression by active YAP was verified by YAP knockdown in CRC cells. Our results suggest a possible link between aberrantly activated Wnt/β-catenin signaling, YAP, and TROP2 expression.
Collapse
Affiliation(s)
- Jiří Švec
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
- Department of Oncology, Third Faculty of Medicine, Charles University, University Hospital Kralovské Vinohrady, Šrobárova 1150/50, 100 34 Prague, Czech Republic
| | - Monika Šťastná
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Lucie Janečková
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Dušan Hrčkulák
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Martina Vojtěchová
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Jakub Onhajzer
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Vítězslav Kříž
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Kateřina Galušková
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Eva Šloncová
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Jan Kubovčiak
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Lucie Pfeiferová
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
- Department of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic
| | - Jan Hrudka
- Department of Pathology, Third Faculty of Medicine, Charles University, University Hospital Kralovské Vinohrady, Šrobárova 1150/50, 100 34 Prague, Czech Republic
| | - Radoslav Matěj
- Department of Pathology, Third Faculty of Medicine, Charles University, University Hospital Kralovské Vinohrady, Šrobárova 1150/50, 100 34 Prague, Czech Republic
- Department of Pathology and Molecular Medicine, Third Medical Faculty, Charles University, Thomayer University Hospital, Ruská 87, 100 00 Praha, Czech Republic
| | - Petr Waldauf
- Department of Anaesthesia and Intensive Care Medicine, Third Faculty of Medicine, Charles University, University Hospital Kralovské Vinohrady, Šrobárova 1150/50, 100 34 Prague, Czech Republic
| | - Lukáš Havlůj
- Department of General Surgery, Third Faculty of Medicine, Charles University, University Hospital Kralovské Vinohrady, Šrobárova 1150/50, 100 34 Prague, Czech Republic
| | - Michal Kolář
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Vladimír Kořínek
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| |
Collapse
|
35
|
Guerra E, Alberti S. The anti-Trop-2 antibody-drug conjugate Sacituzumab Govitecan-effectiveness, pitfalls and promises. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:501. [PMID: 35928735 PMCID: PMC9347060 DOI: 10.21037/atm-22-621] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Emanuela Guerra
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), University “G. D’Annunzio”, Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, University “G. D’Annunzio”, Chieti, Italy
| | - Saverio Alberti
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), University “G. D’Annunzio”, Chieti, Italy
- Unit of Medical Genetics, Department of Biomedical Sciences, University of Messina, Messina, Italy
| |
Collapse
|
36
|
Trop-2, Na+/K+ ATPase, CD9, PKCα, cofilin assemble a membrane signaling super-complex that drives colorectal cancer growth and invasion. Oncogene 2022; 41:1795-1808. [DOI: 10.1038/s41388-022-02220-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/10/2022] [Accepted: 01/27/2022] [Indexed: 12/20/2022]
|
37
|
Kamble PR, Patkar SR, Breed AA, Pathak BR. N-glycosylation status of Trop2 impacts its surface density, interaction with claudin-7 and exosomal release. Arch Biochem Biophys 2021; 714:109084. [PMID: 34774484 DOI: 10.1016/j.abb.2021.109084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/24/2021] [Accepted: 11/08/2021] [Indexed: 12/31/2022]
Abstract
Trophoblast antigen 2 (Trop2) is a type I transmembrane protein post-translationally modified by N-linked glycosylation. It was originally detected in trophoblasts but was later shown to be frequently overexpressed in many epithelial cancers. Recently, anti-Trop2 antibody-drug conjugate has been FDA approved for the treatment of metastatic triple-negative breast and urothelial carcinomas, making it an important tumor antigen. The current study explored the significance of N-glycosylation of Trop2 by substituting specific N-glycan addition sites by site-directed mutagenesis. The mutant proteins were characterized in transiently transfected HEK293 cells. The N-glycosylation mutants did not affect protein expression, stability, dimerization ability and matriptase mediated cleavage. However, N120A and N208A mutants showed decreased interaction with its binding partner claudin-7. Our earlier reported Trop2 mutant V194A, which shows aberrant glycosylation, also displayed hampered interaction with claudin-7. To further characterize the mutants, stable clones expressing wild type and mutant Trop2 were generated in OVCAR3 cell line. Interestingly, surface biotinylation assay showed significantly higher surface expression of N120A and N208A mutants whereas surface localization was drastically reduced for V194A Trop2 mutant. Though overexpression of wild type Trop2 did not cause any change in fibronectin-mediated FAK (Focal adhesion kinase) signaling; expression of N120A mutant, surprisingly downregulated FAK signaling. Furthermore, exosomal release of Trop2 was also decreased in N120A and N208A mutants. This data suggests that site-specific N-glycan addition determines Trop2 surface density, claudin-7 interaction and exosomal release.
Collapse
Affiliation(s)
- Pradnya R Kamble
- Cellular and Structural Biology Division, ICMR-National Institute for Research in Reproductive Health, Mumbai, India
| | - Shivali R Patkar
- Cellular and Structural Biology Division, ICMR-National Institute for Research in Reproductive Health, Mumbai, India
| | - Ananya A Breed
- Cellular and Structural Biology Division, ICMR-National Institute for Research in Reproductive Health, Mumbai, India
| | - Bhakti R Pathak
- Cellular and Structural Biology Division, ICMR-National Institute for Research in Reproductive Health, Mumbai, India.
| |
Collapse
|
38
|
Sun M, Zhang H, Jiang M, Chai Y, Qi J, Gao GF, Tan S. Structural insights into the cis and trans assembly of human trophoblast cell surface antigen 2. iScience 2021; 24:103190. [PMID: 34693228 PMCID: PMC8517388 DOI: 10.1016/j.isci.2021.103190] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/06/2021] [Accepted: 09/27/2021] [Indexed: 11/21/2022] Open
Abstract
Human trophoblast cell surface antigen 2 (TROP-2) is an important target of tumor therapy, and antibody-drug conjugates with sacituzumab targeting TROP-2 have been approved for the treatment of triple-negative breast cancer. Here, we report the crystal structures of TROP-2-ECD, which can be either cis- or trans-dimers depending on which distinct but overlapping interfaces is used to engage with monomers. The cis- or trans-tetrameric forms of TROP-2 can also be assembled with a non-overlapping interface with either cis- or trans-dimerization, suggesting that cis- and trans-dimers cluster on the cell surface. The binding site of sacituzumab on TROP-2 is mapped to be located on a stretched polypeptide in CPD (Q237-Q252), which is not involved in either cis- or trans-interactions. The present findings will improve understanding of the molecular assembly of TROP-2 on tumor cells and shed light on future design of biologics for tumor therapy.
Collapse
Affiliation(s)
- Meng Sun
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Helin Zhang
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Jiang
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianxun Qi
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - George F. Gao
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuguang Tan
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
39
|
Pavšič M. Trop2 Forms a Stable Dimer with Significant Structural Differences within the Membrane-Distal Region as Compared to EpCAM. Int J Mol Sci 2021; 22:ijms221910640. [PMID: 34638982 PMCID: PMC8508679 DOI: 10.3390/ijms221910640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 02/05/2023] Open
Abstract
Trop2 is a cell-surface transmembrane glycoprotein involved in the maintenance of epithelial tissue integrity and is an important carcinoma marker. It shares similar claudin-interaction capacity with its paralogue EpCAM, and both are implicated in signaling triggered by proteolytic cleavage within the ectodomain. However, the cell proliferation-regulating interactions with IGF-1, neuregulin-1, and α5β1 integrin appear to be Trop2-specific. To illuminate the structural differences between Trop2 and EpCAM, we report the first crystal structure of a Trop2 ectodomain dimer and compare it to the analogous part of EpCAM. While the overall fold of the two proteins is similar, the dimers differ. In Trop2, the inter-subunit contacts are more extensive than in EpCAM, and there are two major differences in the membrane-distal regions. The immunogenic N-terminal domain is in Trop2 almost colinear with the dimer interface plain and consequently more laterally exposed, and the cleft of yet unknown functionality between the two subunits is almost absent. Furthermore, the site of initial signaling-associated proteolytic cleavage in Trop2 is accessible in the dimeric state, while in EpCAM dimer destabilization is required. The structural differences highlight the divergent evolutionary path of the two proteins and pave the way for their structure-based utilization in therapy.
Collapse
Affiliation(s)
- Miha Pavšič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna Pot 113, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
40
|
Sun H, Chen Q, Liu W, Liu Y, Ruan S, Zhu C, Ruan Y, Ying S, Lin P. TROP2 modulates the progression in papillary thyroid carcinoma. J Cancer 2021; 12:6883-6893. [PMID: 34659576 PMCID: PMC8518010 DOI: 10.7150/jca.62461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/18/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Tumor-associated calcium signal transducer 2 (TROP2) is over expressed in various kinds of human cancers and plays important roles in the proliferation, invasion and metastasis of tumor cells. However, the expression and molecular mechanism of TROP2 in thyroid papillary carcinoma (PTC) are unclear. Methods: The expressions of TROP2 in PTC and control tissue were detected by real-time reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry. The proliferation and invasion of PTC cell lines were examined by cell cloning and transwell assays. RNA sequencing analysis and public data analysis were assessed to investigate the potential mechanisms of TROP2 in PTC. Gene correlation analysis was conducted to explore the association between TROP2 and the related gene ISG15 in patients with PTC. Results: The expression of TROP2 was significantly higher in PTC than control. The high expression of TROP2 protein was associated with lymph node metastasis, tumor size and capsular infiltration (P<0.05). SiRNA-mediated TROP2 gene expression silencing can significantly inhibit proliferation and migration of PTC cells. ISG15 decreased in TROP2 siRNA PTC cells and increased in PTC patients significantly. There was a significant correlation between the expression of TROP2 and ISG15 in PTC patients. TROP2 interacted directly with ATP6V1A, CEBPA and SOX5 and then further interacted with the immune genes. TROP2 expression and tumor-infiltrating immune cells were also correlated in thyroid cancer microenvironment. Conclusions: TROP2 promotes the development of PTC. TROP2 expression was correlated with ISG15 and tumor-infiltrating immune cells in thyroid cancer.
Collapse
Affiliation(s)
- Huali Sun
- Department of Radiotherapy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, P. R. China
| | - Qi Chen
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, P. R. China
| | - Weiping Liu
- Nuclear Medicine Department, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, P. R. China
| | - Yanmei Liu
- Department of Radiotherapy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, P. R. China
| | - Sihan Ruan
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, P. R. China
| | - Chumeng Zhu
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, P. R. China
| | - Yanyun Ruan
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, P. R. China
| | - Shenpeng Ying
- Department of Radiotherapy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, P. R. China
| | - Peipei Lin
- Department of Radiotherapy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, P. R. China
| |
Collapse
|
41
|
Guerra E, Trerotola M, Relli V, Lattanzio R, Tripaldi R, Vacca G, Ceci M, Boujnah K, Garbo V, Moschella A, Zappacosta R, Simeone P, de Lange R, Weidle UH, Rotelli MT, Picciariello A, Depalo R, Querzoli P, Pedriali M, Bianchini E, Angelucci D, Pizzicannella G, Di Loreto C, Piantelli M, Antolini L, Sun XF, Altomare DF, Alberti S. Trop-2 induces ADAM10-mediated cleavage of E-cadherin and drives EMT-less metastasis in colon cancer. Neoplasia 2021; 23:898-911. [PMID: 34320447 PMCID: PMC8334386 DOI: 10.1016/j.neo.2021.07.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 11/28/2022] Open
Abstract
We recently reported that activation of Trop-2 through its cleavage at R87-T88 by ADAM10 underlies Trop-2–driven progression of colon cancer. However, the mechanism of action and pathological impact of Trop-2 in metastatic diffusion remain unexplored. Through searches for molecular determinants of cancer metastasis, we identified TROP2 as unique in its up-regulation across independent colon cancer metastasis models. Overexpression of wild-type Trop-2 in KM12SM human colon cancer cells increased liver metastasis rates in vivo in immunosuppressed mice. Metastatic growth was further enhanced by a tail-less, activated ΔcytoTrop-2 mutant, indicating the Trop-2 tail as a pivotal inhibitory signaling element. In primary tumors and metastases, transcriptome analysis showed no down-regulation of CDH1 by transcription factors for epithelial-to-mesenchymal transition, thus suggesting that the pro-metastatic activity of Trop-2 is through alternative mechanisms. Trop-2 can tightly interact with ADAM10. Here, Trop-2 bound E-cadherin and stimulated ADAM10-mediated proteolytic cleavage of E-cadherin intracellular domain. This induced detachment of E-cadherin from β-actin, and loss of cell-cell adhesion, acquisition of invasive capability, and membrane-driven activation of β-catenin signaling, which were further enhanced by the ΔcytoTrop-2 mutant. This Trop-2/E-cadherin/β-catenin program led to anti-apoptotic signaling, increased cell migration, and enhanced cancer-cell survival. In patients with colon cancer, activation of this Trop-2–centered program led to significantly reduced relapse-free and overall survival, indicating a major impact on progression to metastatic disease. Recently, the anti-Trop-2 mAb Sacituzumab govitecan-hziy was shown to be active against metastatic breast cancer. Our findings define the key relevance of Trop-2 as a target in metastatic colon cancer.
Collapse
Affiliation(s)
- Emanuela Guerra
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), "G. d' Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy; Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Marco Trerotola
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), "G. d' Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy; Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Valeria Relli
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), "G. d' Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy; Oncoxx Biotech, 66034 Lanciano (Chieti), Italy
| | - Rossano Lattanzio
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), "G. d' Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy; Department of Innovative Technologies in Medicine & Dentistry, 'G. d'Annunzio' University of Chieti-Pescara, 66100 Chieti, Italy
| | - Romina Tripaldi
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), "G. d' Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giovanna Vacca
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), "G. d' Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Martina Ceci
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), "G. d' Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Khouloud Boujnah
- Unit of Medical Genetics, Department of Biomedical Sciences - BIOMORF, University of Messina, 98125 Messina, Italy
| | - Valeria Garbo
- Unit of Medical Genetics, Department of Biomedical Sciences - BIOMORF, University of Messina, 98125 Messina, Italy
| | - Antonino Moschella
- Unit of Medical Genetics, Department of Biomedical Sciences - BIOMORF, University of Messina, 98125 Messina, Italy
| | - Romina Zappacosta
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), "G. d' Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Pasquale Simeone
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), "G. d' Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Robert de Lange
- Roche Diagnostics GmbH, Pharma Research, D-82372 Penzberg, Germany
| | - Ulrich H Weidle
- Roche Diagnostics GmbH, Pharma Research, D-82372 Penzberg, Germany
| | - Maria Teresa Rotelli
- General Surgery and Liver Transplantation Unit, Department of Emergency and Organ Transplantation, University 'Aldo Moro', 70124 Bari, Italy
| | - Arcangelo Picciariello
- General Surgery and Liver Transplantation Unit, Department of Emergency and Organ Transplantation, University 'Aldo Moro', 70124 Bari, Italy
| | | | - Patrizia Querzoli
- Section of Anatomic Pathology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Massimo Pedriali
- Operative Unit of Surgical Pathology, University Hospital, 44124 Ferrara, Italy
| | - Enzo Bianchini
- Operative Unit of Surgical Pathology, University Hospital, 44124 Ferrara, Italy
| | | | | | - Carla Di Loreto
- Department of Pathology, University of Udine, 33100 Udine, Italy
| | - Mauro Piantelli
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), "G. d' Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy; Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Laura Antolini
- Department of Clinical Medicine,Center for Biostatistics, Prevention and Biotechnology, University of Milano-Bicocca, 20900 Monza, Italy
| | - Xiao-Feng Sun
- Department of Oncology, and Department of Biomedical and Clinical Sciences Linköping University, SE-581 85 Linköping, Sweden
| | - Donato F Altomare
- Roche Diagnostics GmbH, Pharma Research, D-82372 Penzberg, Germany; General Surgery and Liver Transplantation Unit, Department of Emergency and Organ Transplantation, University 'Aldo Moro', 70124 Bari, Italy
| | - Saverio Alberti
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), "G. d' Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy; Oncoxx Biotech, 66034 Lanciano (Chieti), Italy; Unit of Medical Genetics, Department of Biomedical Sciences - BIOMORF, University of Messina, 98125 Messina, Italy.
| |
Collapse
|
42
|
Sun X, Jia L, Wang T, Zhang Y, Zhao W, Wang X, Chen H. Trop2 binding IGF2R induces gefitinib resistance in NSCLC by remodeling the tumor microenvironment. J Cancer 2021; 12:5310-5319. [PMID: 34335947 PMCID: PMC8317539 DOI: 10.7150/jca.57711] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/08/2021] [Indexed: 12/30/2022] Open
Abstract
Gefitinib has shown good efficacy in treating recurrent or advanced non-small cell lung cancer (NSCLC), but the drug resistance remains a clinical challenge in medical oncology. In addition, the complex interaction between tumor cells and heterogeneous stromal cells in the adjacent tumor microenvironment (TME) is also an important contributor to drug resistance. So, it is very necessary to detect the related target genes before and after gefitinib treatment dynamically. In this study, the relationship between Trop2 and gefitinib resistance in NSCLC was investigated, and the underlying mechanism was explored. Results showed that Trop2 was associated with EGFR gene mutation and drug resistance in clinical tissues. Trop2 was confirmed to induce gefitinib resistance in NSCLC, and Trop2 binding IGF2R promoted the IGF2-IGF1R-Akt axis to enhance gefitinib resistance and remodeling the TME in NSCLC. Notably, silencing of Trop2 in cancer cells combined with IGF1R inhibitor significantly decreased the proliferation of tumor cells and reshaped the NSCLC TME in vivo and in vitro, including the recruitment of macrophages. These findings deepened the understanding of the function of Trop2 and the involved mechanisms of gefitinib resistance, and may provide new molecular targets for NSCLC with gefitinib resistance.
Collapse
Affiliation(s)
- Xia Sun
- Emergency Center, Bayannur Hospital, Bayannur, Inner Mongolia, 015000, China
| | - Lizhou Jia
- Department of Pathology, Wannan Medical College, Wuhu, Anhui, 241002, China.,Cancer Center, Bayannur Hospital, Inner Mongolia, 015000, China
| | - Tengqi Wang
- Cancer Center, Bayannur Hospital, Inner Mongolia, 015000, China
| | - Yulian Zhang
- Emergency Center, Bayannur Hospital, Bayannur, Inner Mongolia, 015000, China
| | - Wei Zhao
- Department of Pathology, Nanjing First Hospital, Nanjing, Jiangsu, 211166, China
| | - Xiangcheng Wang
- Department of nuclear medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China.,Key Laboratory of Inner Mongolia Autonomous Region Molecular Imaging, Inner Mongolia Medical University, Hohhot, 010050, China
| | - Hao Chen
- Department of Pathology, Wannan Medical College, Wuhu, Anhui, 241002, China.,Faculty of medical science, Jinan University, Guangzhou, Guangdong, 510632, China
| |
Collapse
|
43
|
Sun H, Chen Q, Liu W, Liu Y, Ruan S, Zhu C, Ruan Y, Ying S, Lin P. TROP2 modulates the progression in papillary thyroid carcinoma. J Cancer 2021; 12. [PMID: 34659576 PMCID: PMC8518010 DOI: 10.7150/jca.62461&set/a 833480617+850328715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Background: Tumor-associated calcium signal transducer 2 (TROP2) is over expressed in various kinds of human cancers and plays important roles in the proliferation, invasion and metastasis of tumor cells. However, the expression and molecular mechanism of TROP2 in thyroid papillary carcinoma (PTC) are unclear. Methods: The expressions of TROP2 in PTC and control tissue were detected by real-time reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry. The proliferation and invasion of PTC cell lines were examined by cell cloning and transwell assays. RNA sequencing analysis and public data analysis were assessed to investigate the potential mechanisms of TROP2 in PTC. Gene correlation analysis was conducted to explore the association between TROP2 and the related gene ISG15 in patients with PTC. Results: The expression of TROP2 was significantly higher in PTC than control. The high expression of TROP2 protein was associated with lymph node metastasis, tumor size and capsular infiltration (P<0.05). SiRNA-mediated TROP2 gene expression silencing can significantly inhibit proliferation and migration of PTC cells. ISG15 decreased in TROP2 siRNA PTC cells and increased in PTC patients significantly. There was a significant correlation between the expression of TROP2 and ISG15 in PTC patients. TROP2 interacted directly with ATP6V1A, CEBPA and SOX5 and then further interacted with the immune genes. TROP2 expression and tumor-infiltrating immune cells were also correlated in thyroid cancer microenvironment. Conclusions: TROP2 promotes the development of PTC. TROP2 expression was correlated with ISG15 and tumor-infiltrating immune cells in thyroid cancer.
Collapse
Affiliation(s)
- Huali Sun
- Department of Radiotherapy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, P. R. China
| | - Qi Chen
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, P. R. China
| | - Weiping Liu
- Nuclear Medicine Department, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, P. R. China
| | - Yanmei Liu
- Department of Radiotherapy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, P. R. China
| | - Sihan Ruan
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, P. R. China
| | - Chumeng Zhu
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, P. R. China
| | - Yanyun Ruan
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, P. R. China
| | - Shenpeng Ying
- Department of Radiotherapy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, P. R. China
| | - Peipei Lin
- Department of Radiotherapy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, P. R. China
| |
Collapse
|