1
|
Prades-Sagarra È, Lieuwes NG, Biemans R, Schuitmaker L, van Hoof SJ, Staut N, Verhaegen F, Yaromina A, Dubois LJ. L19-IL2 reverts radiation-induced lymphopenia in a mouse model of lung cancer. Radiother Oncol 2025; 208:110908. [PMID: 40288691 DOI: 10.1016/j.radonc.2025.110908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
PURPOSE Over half of radiotherapy-treated cancer patients develop radiation-induced lymphopenia (RIL). Severe RIL has been associated with worse prognosis and survival, and recent studies suggested that RIL also affects immunotherapy efficacy. We aimed to develop murine grade 2 (≥20 % decrease in absolute lymphocyte counts (ALC)) RIL models and to examine the effects of RIL on progression-free survival upon radiotherapy-immunotherapy treatment. MATERIALS AND METHODS C57BL6/J mice received heart, large blood vessels (LBV) or thoracic vertebrae irradiation (10 Gy) and ALC were monitored weekly. In tumour-bearing animals, Lewis Lung Carcinoma cells were injected subcutaneously one day prior to RIL induction. When tumours reached 212 ± 45 mm3, tumours were locally irradiated (10 Gy), and animals were injected with L19-IL2 (1 mg/kg, 3 times QOD) or vehicle intravenously. Tumour growth was monitored until reaching > 4 times treatment starting volume. Flow cytometry-based immune cell profiling was performed on blood collected 2 weeks post-tumour cell injection. RESULTS Radiation treatment plans targeting lymphocyte-rich organs were optimized to achieve maximal target coverage while minimal dose to normal tissues. In naïve animals, LBV and vertebrae irradiation led to grade 2 RIL, however heart irradiation induced only grade 1 RIL. In tumour-bearing animals, RIL induction was confirmed by a 16 % and 20 % drop in ALC upon LBV and vertebrae irradiation, respectively. Grade 2 RIL did not negatively influence progression-free survival upon radiotherapy. Radiation combined with L19-IL2 induced a tumour growth delay compared to radiotherapy only (p < 0.0005). LBV or vertebrae irradiation did not affect radiotherapy-immunotherapy outcome, explained by the restored and increased lymphocyte and eosinophil counts upon L19-IL2 administration (p < 0.05). L19-IL2 increased inducible regulatory and CD8+ T cells, especially in vertebrae (p < 0.01) and LBV (p = 0.07) irradiated animals, respectively. CONCLUSION Collectively, utilizing the developed murine RIL models, we observed that RIL did not negatively affect radiotherapy treatment outcome. L19-IL2 can be a promising strategy to restore lymphocyte counts and revert RIL.
Collapse
Affiliation(s)
- Èlia Prades-Sagarra
- The M-Lab, Department of Precision Medicine, GROW - Research Institute for Oncology & Reproduction, Maastricht University, Maastricht, the Netherlands
| | - Natasja G Lieuwes
- The M-Lab, Department of Precision Medicine, GROW - Research Institute for Oncology & Reproduction, Maastricht University, Maastricht, the Netherlands
| | - Rianne Biemans
- The M-Lab, Department of Precision Medicine, GROW - Research Institute for Oncology & Reproduction, Maastricht University, Maastricht, the Netherlands
| | - Lesley Schuitmaker
- The M-Lab, Department of Precision Medicine, GROW - Research Institute for Oncology & Reproduction, Maastricht University, Maastricht, the Netherlands
| | | | - Nick Staut
- SmART Scientific Solutions BV, Maastricht, the Netherlands
| | - Frank Verhaegen
- SmART Scientific Solutions BV, Maastricht, the Netherlands; MAASTRO Clinic, Radiotherapy Division, GROW - Research Institute for Oncology & Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Ala Yaromina
- The M-Lab, Department of Precision Medicine, GROW - Research Institute for Oncology & Reproduction, Maastricht University, Maastricht, the Netherlands
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW - Research Institute for Oncology & Reproduction, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
2
|
Beekman C, Carrasco-Rojas N, Withrow J, Dawson R, Bolch WE, Paganetti H. Radiation-Induced Lymphopenia: In Silico Replications of Preclinical Studies Suggest Importance of Dose to Lymphoid Organs. Int J Radiat Oncol Biol Phys 2025:S0360-3016(25)00358-X. [PMID: 40239822 DOI: 10.1016/j.ijrobp.2025.03.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 03/21/2025] [Accepted: 03/30/2025] [Indexed: 04/18/2025]
Abstract
PURPOSE To develop a computational framework to investigate the implications of lymphocyte recirculation for understanding radiation-induced lymphopenia (RIL) and to compare model predictions with preclinical in vivo studies. METHODS AND MATERIALS A whole-body compartmental model of lymphocyte migration in mice was developed, and unknown rate parameters were fitted to published experimental data. Using a stochastic representation of the model in combination with detailed mouse phantom meshes, implicit lymphocyte trajectories were computed. In parallel, a module was developed to reproduce small animal irradiation plans using either photon or proton beams. Combining these computational tools, we calculated the dose distribution of the recirculating lymphocyte pool in different irradiation scenarios and simulated the subsequent redistribution of viable lymphocytes. The relative importance of irradiation of secondary lymphoid organs (SLOs) versus the blood was investigated through in silico replications of 3 preclinical studies in which mice were locally irradiated. RESULTS Lymphocyte recirculation between the blood and SLOs attenuates lymphocyte depletion in 1 compartment by distributing the loss throughout the system. Because only a relatively small fraction (∼17% for mice) of the recirculating lymphocyte pool is in the blood at any given time, with most lymphocytes in the SLOs, the effect of SLO irradiation is greater than that of the blood. Predicted depletion trends correlated with those observed in preclinical studies but underestimated the degree of lymphopenia. The finding that proton beams can avert lymphopenia after whole-brain irradiation by sparing head and neck lymph nodes was reproduced. CONCLUSIONS The occurrence of RIL is associated with worse outcomes in patients with cancer but remains poorly understood. Therefore, a computational framework to replicate preclinical studies was developed to systematically investigate this phenomenon. Our simulations indicate that irradiation of SLOs contributes more to lymphocyte dose than blood irradiation. However, the expected cytotoxicity associated with the replicated preclinical studies could not fully account for the degree of lymphopenia observed.
Collapse
Affiliation(s)
- Chris Beekman
- Department of Radiation Oncology, Mass General Hospital/Harvard Medical School, Boston, Massachusetts.
| | | | - Julia Withrow
- Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Robert Dawson
- Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Wesley E Bolch
- Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Harald Paganetti
- Department of Radiation Oncology, Mass General Hospital/Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
3
|
Prades-Sagarra E, Yaromina A, Dubois L. Understanding the impact of radiation-induced lymphopenia: Preclinical and clinical research perspectives. Clin Transl Radiat Oncol 2024; 49:100852. [PMID: 39315059 PMCID: PMC11418132 DOI: 10.1016/j.ctro.2024.100852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/26/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Immunotherapy has revolutionized the field of cancer treatment, changing the standard of care to the use of immune checkpoint inhibitors. Radiotherapy can boost anti-tumour immune responses by changing the tumour microenvironment, but it also can cause radiotherapy-induced lymphopenia (RIL), a decrease in circulating lymphocyte counts. RIL has been associated with lower survival in patients undergoing radiotherapy, and new studies have suggested that it can also affect immunotherapy outcome. To study RIL's effects and to explore mitigation treatment strategies, preclinical models closely mimicking the clinical situation are needed. State-of-the-art image-guided small animal irradiators now offer the possibility to target specific organs in small animals to induce RIL, aiding research on its molecular mechanisms and prevention. This review covers the relationship between radiotherapy and RIL, its impact on patient survival, and future directions to generate models to investigate and prevent RIL.
Collapse
Affiliation(s)
- E. Prades-Sagarra
- The M-Lab, Department of Precision Medicine, GROW - Research Institute for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - A. Yaromina
- The M-Lab, Department of Precision Medicine, GROW - Research Institute for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - L.J. Dubois
- The M-Lab, Department of Precision Medicine, GROW - Research Institute for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
4
|
von der Grün J, Broglie M, Guckenberger M, Balermpas P. A comprehensive and longitudinal evaluation of the different populations of lymphoid and myeloid cells in the peripheral blood of patients treated with chemoradiotherapy for head and neck cancer. Cancer Immunol Immunother 2024; 73:222. [PMID: 39235625 PMCID: PMC11377404 DOI: 10.1007/s00262-024-03810-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/12/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Immunotherapy provided significant survival benefits for recurrent and metastatic patients with head and neck cancer. These improvements could not be reproduced in patients treated with curative-intent chemoradiotherapy (CRT) and the optimal radio-immunotherapy (RIT) concepts have yet to be designed. Exploration and analysis of the pre-therapeutic immune status of these patients and the changes occurring during the treatment course could be crucial in rationally designing future combined treatments. METHODS Blood samples were collected from a cohort of 25 head and neck cancer patients treated with curative-intended (C)-RT prior to therapy, after the first week of treatment, and three months after treatment completion. Peripheral blood mononuclear cells (PBMCs) or all nucleated blood cells were isolated and analyzed via flow cytometry. RESULTS At baseline, patients showed reduced monocyte and lymphocyte counts compared to healthy individuals. Although overall CD8+ T-cell frequencies were reduced, the proportion of memory subsets were increased in patients. Radiotherapy (RT) treatment led to a further increase in CD8+ effector memory T-cells. Among myeloid populations, tumor-promoting subsets became less abundant after RT, in favor of pro-inflammatory cells. CONCLUSION The present study prospectively demonstrated a complex interplay and distinct longitudinal changes in the composition of lymphocytic and myeloid populations during curative (C)-RT of head and neck cancer. Further validation of this method in a larger cohort could allow for better treatment guidance and tailored incorporation of immunotherapies (IT) in the future.
Collapse
Affiliation(s)
- Jens von der Grün
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Universitäts Spital Zürich (USZ), Rämistrasse 100, 8091, Zurich, Switzerland
| | - Martina Broglie
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Universitäts Spital Zürich (USZ), Rämistrasse 100, 8091, Zurich, Switzerland
| | - Panagiotis Balermpas
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Universitäts Spital Zürich (USZ), Rämistrasse 100, 8091, Zurich, Switzerland.
| |
Collapse
|
5
|
Telarovic I, Yong CSM, Kurz L, Vetrugno I, Reichl S, Fernandez AS, Cheng HW, Winkler R, Guckenberger M, Kipar A, Ludewig B, Pruschy M. Delayed tumor-draining lymph node irradiation preserves the efficacy of combined radiotherapy and immune checkpoint blockade in models of metastatic disease. Nat Commun 2024; 15:5500. [PMID: 38951172 PMCID: PMC11217506 DOI: 10.1038/s41467-024-49873-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 06/21/2024] [Indexed: 07/03/2024] Open
Abstract
Cancer resistance to immune checkpoint inhibitors motivated investigations into leveraging the immunostimulatory properties of radiotherapy to overcome immune evasion and to improve treatment response. However, clinical benefits of radiotherapy-immunotherapy combinations have been modest. Routine concomitant tumor-draining lymph node irradiation (DLN IR) might be the culprit. As crucial sites for generating anti-tumor immunity, DLNs are indispensable for the in situ vaccination effect of radiotherapy. Simultaneously, DLN sparing is often not feasible due to metastatic spread. Using murine models of metastatic disease in female mice, here we demonstrate that delayed (adjuvant), but not neoadjuvant, DLN IR overcomes the detrimental effect of concomitant DLN IR on the efficacy of radio-immunotherapy. Moreover, we identify IR-induced disruption of the CCR7-CCL19/CCL21 homing axis as a key mechanism for the detrimental effect of DLN IR. Our study proposes delayed DLN IR as a strategy to maximize the efficacy of radio-immunotherapy across different tumor types and disease stages.
Collapse
Affiliation(s)
- Irma Telarovic
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Carmen S M Yong
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Immunology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Lisa Kurz
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Irene Vetrugno
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sabrina Reichl
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alba Sanchez Fernandez
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Hung-Wei Cheng
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Rona Winkler
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Anja Kipar
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Martin Pruschy
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Cella L, Monti S, Pacelli R, Palma G. Modeling frameworks for radiation induced lymphopenia: A critical review. Radiother Oncol 2024; 190:110041. [PMID: 38042499 DOI: 10.1016/j.radonc.2023.110041] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/17/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
Radiation-induced lymphopenia (RIL) is a frequent, and often considered unavoidable, side effect of radiation therapy (RT), whether or not chemotherapy is included. However, in the last few years several studies have demonstrated the detrimental effect of RIL on therapeutic outcomes, with conflicting findings concerning possible inferior patient survival. In addition, since immunotherapeutic treatment has become an integral part of cancer therapy, preserving the immune system is recognized as crucial. Given this background, various research groups have reported on different frameworks for modelling RIL, frequently based on different definitions of RIL itself, and discordant results have been reported. Our aim is to critically review the current literature on RIL modelling and summarize the different approaches recently proposed to improve the prediction of RIL after RT and aimed at immunity-sparing RT. A detailed description of these approaches will be outlined and illustrated through their applications as found in the literature from the last five years. Such a critical analysis represents the necessary starting step to develop an effective strategy that ultimately could harmonize the diverse modelling methods.
Collapse
Affiliation(s)
- Laura Cella
- Institute of Biostructures and Bioimaging, National Research Council, Naples, Italy.
| | - Serena Monti
- Institute of Biostructures and Bioimaging, National Research Council, Naples, Italy
| | - Roberto Pacelli
- Department of Advanced Biomedical Sciences, Federico II School of Medicine, Naples, Italy
| | - Giuseppe Palma
- Institute of Nanotechnology, National Research Council, Lecce, Italy
| |
Collapse
|
7
|
Sun L, Wang Y, Zhu L, Chen J, Chen Z, Qiu Z, Wu C. Analysis of the risk factors of radiation pneumonitis in patients after radiotherapy for esophageal squamous cell carcinoma. Front Oncol 2023; 13:1198872. [PMID: 38023119 PMCID: PMC10662299 DOI: 10.3389/fonc.2023.1198872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Objective To predict the risk factors of radiation pneumonitis (RP) in patients with esophageal squamous cell carcinoma (ESCC) who received radiotherapy. Methods From January 2015 to October 2021, 477 ESCC patients were enrolled and were assessed retrospectively. All these patients received radiotherapy for primary lesions or mediastinal metastatic lymph nodes. Clinical efficacy and adverse events (AEs) were observed. Univariate analysis identified clinical and dosimetric factors associated with the development of RP, and multivariate logistic regression analysis identified independent potential risk factors associated with the development of RP. Nomograms were constructed to predict RP based on the results of multivariate logistic regression analysis. Results Among the 477 ESCC patients, the incidence of RP was 22.2%, and the incidence of grade 4 or higher RP was 1.5%. Univariate analysis indicated that chronic obstructive pulmonary disease (COPD), pulmonary infection, leucopenia, PTV volume, V5, V20, V30 and MLD affected the occurrence of RP. The multivariate logistic regression analysis indicated that COPD (OR:1.821, 95%CI:1.111-2.985; P=0.017), pulmonary infection (OR:2.528, 95%CI:1.530-4.177; P<0.001), higher V20 (OR: 1.129, 95% CI:1.006-1.266; P=0.029) were significant independent predictors of RP in ESCC patients. COPD, pulmonary infection, V20 have been integrated for the RP nomogram. The rate of RP was significantly reduced in the V20<21.45% group. Further analysis indicated that the old age, diabetes, higher V20, and higher MLD were risk factors for grade 4 or higher RP. The area under the curve (AUC) value for V20 was 0.73 (95% CI, 0.567-0.893, P < 0.05). Conclusion We have determined the risk factors of RP and grade 4 or higher RP in ESCC patients after radiotherapy. MLD, V20, COPD were independent factors for RP. It was necessary to take measures to reduce or avoid the occurrence of RP for patients with these risk factors at the early stage.
Collapse
Affiliation(s)
- Lu Sun
- Department of Radiation Oncology, the People's Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yan Wang
- Department of Radiation Oncology, the People's Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lihua Zhu
- Department of Radiation Oncology, the People's Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jun Chen
- Department of Radiation Oncology, the People's Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhifu Chen
- Department of Radiation Oncology, the People's Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhiyuan Qiu
- Department of Oncology, the People’s Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chaoyang Wu
- Department of Radiation Oncology, the People's Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
8
|
Paganetti H. A review on lymphocyte radiosensitivity and its impact on radiotherapy. Front Oncol 2023; 13:1201500. [PMID: 37601664 PMCID: PMC10435323 DOI: 10.3389/fonc.2023.1201500] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
It is well known that radiation therapy causes lymphopenia in patients and that this is correlated with a negative outcome. The mechanism is not well understood because radiation can have both immunostimulatory and immunosuppressive effects. How tumor dose conformation, dose fractionation, and selective lymph node irradiation in radiation therapy does affect lymphopenia and immune response is an active area of research. In addition, understanding the impact of radiation on the immune system is important for the design and interpretation of clinical trials combining radiation with immune checkpoint inhibitors, both in terms of radiation dose and treatment schedules. Although only a few percent of the total lymphocyte population are circulating, it has been speculated that their increased radiosensitivity may contribute to, or even be the primary cause of, lymphopenia. This review summarizes published data on lymphocyte radiosensitivity based on human, small animal, and in vitro studies. The data indicate differences in radiosensitivity among lymphocyte subpopulations that affect their relative contribution and thus the dynamics of the immune response. In general, B cells appear to be more radiosensitive than T cells and NK cells appear to be the most resistant. However, the reported dose-response data suggest that in the context of lymphopenia in patients, aspects other than cell death must also be considered. Not only absolute lymphocyte counts, but also lymphocyte diversity and activity are likely to be affected by radiation. Taken together, the reviewed data suggest that it is unlikely that radiation-induced cell death in lymphocytes is the sole factor in radiation-induced lymphopenia.
Collapse
Affiliation(s)
- Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Boston MA, United States
- Harvard Medical School, Boston MA, United States
| |
Collapse
|
9
|
Gregucci F, Spada S, Barcellos-Hoff MH, Bhardwaj N, Chan Wah Hak C, Fiorentino A, Guha C, Guzman ML, Harrington K, Herrera FG, Honeychurch J, Hong T, Iturri L, Jaffee E, Karam SD, Knott SR, Koumenis C, Lyden D, Marciscano AE, Melcher A, Mondini M, Mondino A, Morris ZS, Pitroda S, Quezada SA, Santambrogio L, Shiao S, Stagg J, Telarovic I, Timmerman R, Vozenin MC, Weichselbaum R, Welsh J, Wilkins A, Xu C, Zappasodi R, Zou W, Bobard A, Demaria S, Galluzzi L, Deutsch E, Formenti SC. Updates on radiotherapy-immunotherapy combinations: Proceedings of 6 th annual ImmunoRad conference. Oncoimmunology 2023; 12:2222560. [PMID: 37363104 PMCID: PMC10286673 DOI: 10.1080/2162402x.2023.2222560] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
Focal radiation therapy (RT) has attracted considerable attention as a combinatorial partner for immunotherapy (IT), largely reflecting a well-defined, predictable safety profile and at least some potential for immunostimulation. However, only a few RT-IT combinations have been tested successfully in patients with cancer, highlighting the urgent need for an improved understanding of the interaction between RT and IT in both preclinical and clinical scenarios. Every year since 2016, ImmunoRad gathers experts working at the interface between RT and IT to provide a forum for education and discussion, with the ultimate goal of fostering progress in the field at both preclinical and clinical levels. Here, we summarize the key concepts and findings presented at the Sixth Annual ImmunoRad conference.
Collapse
Affiliation(s)
- Fabiana Gregucci
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti, Bari, Italy
| | - Sheila Spada
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology, School of Medicine, University of California, San Francisco, CA, USA
| | - Nina Bhardwaj
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Alba Fiorentino
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti, Bari, Italy
- Department of Medicine and Surgery, LUM University, Casamassima, Bari, Italy
| | - Chandan Guha
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA
| | - Monica L. Guzman
- Division of Hematology/Oncology, Department of Medicine, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Kevin Harrington
- The Institute of Cancer Research/The Royal Marsden NHS Foundation Trust, National Institute for Health Research Biomedical Research Centre, London, UK
| | - Fernanda G. Herrera
- Centre Hospitalier Universitaire Vaudois, University of Lausanne and Ludwig Institute for Cancer Research at the Agora Cancer Research Center, Lausanne, Switzerland
| | - Jamie Honeychurch
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Theodore Hong
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lorea Iturri
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Elisabeth Jaffee
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Sana D. Karam
- Department of Radiation Oncology, University of Colorado, Aurora, CO, USA
| | - Simon R.V. Knott
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Lyden
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | | | - Alan Melcher
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, UK
| | - Michele Mondini
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif, France
- Université of Paris-Saclay, Saclay, France
- INSERM U1030, Radiothérapie Moléculaire et Innovation Thérapeutique, Villejuif, France
| | - Anna Mondino
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Zachary S. Morris
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sean Pitroda
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, USA
| | - Sergio A. Quezada
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Laura Santambrogio
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Stephen Shiao
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l’Universite de Montreal, Faculty of Pharmacy, Montreal, Canada
| | - Irma Telarovic
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Robert Timmerman
- Departments of Radiation Oncology and Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology, Radiation Oncology Service, Department of Oncology, CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ralph Weichselbaum
- Department of Radiation and Cellular Oncology, Ludwig Center for Metastases Research, University of Chicago, IL, USA
| | - James Welsh
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anna Wilkins
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom, Royal Marsden Hospital, Sutton, UK
| | - Chris Xu
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Roberta Zappasodi
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Weiping Zou
- Departments of Surgery and Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | | | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif, France
- Université of Paris-Saclay, Saclay, France
- INSERM U1030, Radiothérapie Moléculaire et Innovation Thérapeutique, Villejuif, France
| | - Silvia C. Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
10
|
Rajeev-Kumar G, Pitroda SP. Synergizing radiotherapy and immunotherapy: Current challenges and strategies for optimization. Neoplasia 2022; 36:100867. [PMID: 36563632 PMCID: PMC9798173 DOI: 10.1016/j.neo.2022.100867] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Numerous clinical studies are investigating the integration of radiotherapy and immune checkpoint inhibitors (ICI) in the management of advanced or metastatic solid cancers based on preclinical evidence demonstrating a synergistic interaction between these treatments. However, it remains unclear how to optimally integrate these therapeutic modalities in the treatment of cancer patients. Beyond disease-specific factors there exists numerous unanswered questions regarding optimal sequencing of radiation and ICI, as well as, radiation dosing and target selection. Here, we examine the available clinical evidence for combination radiation and ICI approaches and propose strategies to expand investigations of the potential synergy in cancer patients.
Collapse
|
11
|
Darragh LB, Gadwa J, Pham TT, Van Court B, Neupert B, Olimpo NA, Nguyen K, Nguyen D, Knitz MW, Hoen M, Corbo S, Joshi M, Zhuang Y, Amann M, Wang XJ, Dow S, Kedl RM, Samedi V, Boss MK, Karam SD. Elective nodal irradiation mitigates local and systemic immunity generated by combination radiation and immunotherapy in head and neck tumors. Nat Commun 2022; 13:7015. [PMID: 36385142 PMCID: PMC9668826 DOI: 10.1038/s41467-022-34676-w] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 11/02/2022] [Indexed: 11/17/2022] Open
Abstract
In the setting of conventional radiation therapy, even when combined with immunotherapy, head and neck cancer often recurs locally and regionally. Elective nodal irradiation (ENI) is commonly employed to decrease regional recurrence. Given our developing understanding that immune cells are radio-sensitive, and that T cell priming occurs in the draining lymph nodes (DLNs), we hypothesize that radiation therapy directed at the primary tumor only will increase the effectiveness of immunotherapies. We find that ENI increases local, distant, and metastatic tumor growth. Multi-compartmental analysis of the primary/distant tumor, the DLNs, and the blood shows that ENI decreases the immune response systemically. Additionally, we find that ENI decreases antigen-specific T cells and epitope spreading. Treating the primary tumor with radiation and immunotherapy, however, fails to reduce regional recurrence, but this is reversed by either concurrent sentinel lymph node resection or irradiation. Our data support using lymphatic sparing radiation therapy for head and neck cancer.
Collapse
Affiliation(s)
- Laurel B Darragh
- Department of Radiation Oncology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Jacob Gadwa
- Department of Radiation Oncology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Tiffany T Pham
- Department of Otolaryngology Head and Neck Surgery, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Benjamin Van Court
- Department of Radiation Oncology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Brooke Neupert
- Department of Radiation Oncology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Nicholas A Olimpo
- Department of Radiation Oncology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Khoa Nguyen
- Department of Pathology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Diemmy Nguyen
- Department of Radiation Oncology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Michael W Knitz
- Department of Radiation Oncology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Maureen Hoen
- Department of Radiation Oncology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Sophia Corbo
- Department of Radiation Oncology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Molishree Joshi
- Department of Pharmacology, University of Colorado Denver at Anschutz Medical campus, Aurora, CO, USA
| | - Yonghua Zhuang
- Department of Pediatrics, Cancer Center Biostatistics Core, University of Colorado Anschutz Medical campus, Aurora, CO, USA
| | - Maria Amann
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED) Schlieren, Zurich, Switzerland
| | - Xiao-Jing Wang
- Department of Pathology and Laboratory Medicine, University of California Davis, School of Medicine, Davis, USA
- Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO, 80045, USA
| | - Steven Dow
- Department of Radiation Oncology, Colorado State University, Fort Collins, Colorado. Campus, Aurora, CO, USA
| | - Ross M Kedl
- Department of Radiation Oncology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Von Samedi
- Department of Pathology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA
| | - Mary-Keara Boss
- Department of Radiation Oncology, Colorado State University, Fort Collins, Colorado. Campus, Aurora, CO, USA
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA.
- Department of Immunology and Microbiology, University of Colorado Denver at Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|