1
|
Andreatta T, Armini RS, Salaroli R, Vieira GM, Tavares CVC, Sanches H, Aguiar RM, Campos FV, Schenberg LC. Role of L- and T-type voltage-dependent calcium channels in the hierarchical organization of defensive responses to electrical stimulation of the rat dorsolateral periaqueductal gray. Neuropharmacology 2024; 258:110059. [PMID: 38992791 DOI: 10.1016/j.neuropharm.2024.110059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/23/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024]
Abstract
Stimulation of the dorsal half of the rat periaqueductal gray (DPAG) with 60-Hz pulses of increasing intensity, 30-μA pulses of increasing frequency, or increasing doses of an excitatory amino acid elicits sequential defensive responses of exophthalmia, immobility, trotting, galloping, and jumping. These responses may be controlled by voltage-gated calcium channel-specific firing patterns. Indeed, a previous study showed that microinjection of the DPAG with 15 nmol of verapamil, a putative blocker of L-type calcium channels, attenuated all defensive responses to electrical stimulation at the same site as the injection. Accordingly, here we investigated the effects of microinjection of lower doses (0.7 and 7 nmol) of both verapamil and mibefradil, a preferential blocker of T-type calcium channels, on DPAG-evoked defensive behaviors of the male rat. Behaviors were recorded either 24 h before or 10 min, 24 h, and 48 h after microinjection. Effects were analyzed by both threshold logistic analysis and repeated measures analysis of variance for treatment by session interactions. Data showed that the electrodes were all located within the dorsolateral PAG. Compared to the effects of saline, verapamil significantly attenuated exophthalmia, immobility, and trotting. Mibefradil significantly attenuated exophthalmia and marginally attenuated immobility while facilitating trotting. While galloping was not attenuated by either antagonist, jumping was unexpectedly attenuated by 0.7 nmol verapamil only. These results suggest that T-type calcium channels are involved in the low-threshold freezing responses of exophthalmia and immobility, whereas L-type calcium channels are involved in the trotting response that precedes the full-fledged escape responses of galloping and jumping.
Collapse
Affiliation(s)
- Tatiani Andreatta
- Department of Physiological Sciences, Health Science Center, Federal University of Espírito Santo, Brazil.
| | - Rubia Souza Armini
- Department of Physiological Sciences, Health Science Center, Federal University of Espírito Santo, Brazil.
| | - Ruam Salaroli
- Department of Physiological Sciences, Health Science Center, Federal University of Espírito Santo, Brazil.
| | - Guilherme Machado Vieira
- Department of Physiological Sciences, Health Science Center, Federal University of Espírito Santo, Brazil.
| | | | - Hugo Sanches
- Department of Physiological Sciences, Health Science Center, Federal University of Espírito Santo, Brazil.
| | - Rafael Moraes Aguiar
- Department of Physiological Sciences, Health Science Center, Federal University of Espírito Santo, Brazil; Department of Biochemistry and Immunology, Health Science Center, Federal University of Minas Gerais, Brazil.
| | - Fabiana Vasconcelos Campos
- Department of Physiological Sciences, Health Science Center, Federal University of Espírito Santo, Brazil; Department of Morphology, Health Science Center, Federal University of Espírito Santo, Brazil.
| | - Luiz Carlos Schenberg
- Department of Physiological Sciences, Health Science Center, Federal University of Espírito Santo, Brazil.
| |
Collapse
|
2
|
Cola RB, Roccaro-Waldmeyer DM, Naim S, Babalian A, Seebeck P, Alvarez-Bolado G, Celio MR. Chemo- and optogenetic activation of hypothalamic Foxb1-expressing neurons and their terminal endings in the rostral-dorsolateral PAG leads to tachypnea, bradycardia, and immobility. eLife 2024; 12:RP86737. [PMID: 38300670 PMCID: PMC10945554 DOI: 10.7554/elife.86737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
Foxb1 -expressing neurons occur in the dorsal premammillary nucleus (PMd) and further rostrally in the parvafox nucleus, a longitudinal cluster of neurons in the lateral hypothalamus of rodents. The descending projection of these Foxb1+ neurons end in the dorsolateral part of the periaqueductal gray (dlPAG). The functional role of the Foxb1+ neuronal subpopulation in the PMd and the parvafox nucleus remains elusive. In this study, the activity of the Foxb1+ neurons and of their terminal endings in the dlPAG in mice was selectively altered by employing chemo- and optogenetic tools. Our results show that in whole-body barometric plethysmography, hM3Dq-mediated, global Foxb1+ neuron excitation activates respiration. Time-resolved optogenetic gain-of-function manipulation of the terminal endings of Foxb1+ neurons in the rostral third of the dlPAG leads to abrupt immobility and bradycardia. Chemogenetic activation of Foxb1+ cell bodies and ChR2-mediated excitation of their axonal endings in the dlPAG led to a phenotypical presentation congruent with a 'freezing-like' situation during innate defensive behavior.
Collapse
Affiliation(s)
- Reto B Cola
- Anatomy and program in Neuroscience, Faculty of Science and Medicine, University of FribourgFribourgSwitzerland
| | - Diana M Roccaro-Waldmeyer
- Anatomy and program in Neuroscience, Faculty of Science and Medicine, University of FribourgFribourgSwitzerland
| | - Samara Naim
- Anatomy and program in Neuroscience, Faculty of Science and Medicine, University of FribourgFribourgSwitzerland
| | - Alexandre Babalian
- Anatomy and program in Neuroscience, Faculty of Science and Medicine, University of FribourgFribourgSwitzerland
| | - Petra Seebeck
- Zurich integrative Rodent Physiology (ZIRP), University of ZürichZürichSwitzerland
| | | | - Marco R Celio
- Anatomy and program in Neuroscience, Faculty of Science and Medicine, University of FribourgFribourgSwitzerland
| |
Collapse
|
3
|
Abstract
The frontal lobe is crucial and contributes to controlling truncal motion, postural responses, and maintaining equilibrium and locomotion. The rich repertoire of frontal gait disorders gives some indication of this complexity. For human walking, it is necessary to simultaneously achieve at least two tasks, such as maintaining a bipedal upright posture and locomotion. Particularly, postural control plays an extremely significant role in enabling the subject to maintain stable gait behaviors to adapt to the environment. To achieve these requirements, the frontal cortex (1) uses cognitive information from the parietal, temporal, and occipital cortices, (2) creates plans and programs of gait behaviors, and (3) acts on the brainstem and spinal cord, where the core posture-gait mechanisms exist. Moreover, the frontal cortex enables one to achieve a variety of gait patterns in response to environmental changes by switching gait patterns from automatic routine to intentionally controlled and learning the new paradigms of gait strategy via networks with the basal ganglia, cerebellum, and limbic structures. This chapter discusses the role of each area of the frontal cortex in behavioral control and attempts to explain how frontal lobe controls walking with special reference to postural control.
Collapse
Affiliation(s)
- Kaoru Takakusaki
- Department of Physiology, Division of Neuroscience, Asahikawa Medical University, Asahikawa, Japan.
| |
Collapse
|
4
|
Beebe NL, Silveira MA, Goyer D, Noftz WA, Roberts MT, Schofield BR. Neurotransmitter phenotype and axonal projection patterns of VIP-expressing neurons in the inferior colliculus. J Chem Neuroanat 2022; 126:102189. [PMID: 36375740 PMCID: PMC9772258 DOI: 10.1016/j.jchemneu.2022.102189] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
Neurons in the inferior colliculus (IC), the midbrain hub of the central auditory pathway, send ascending and descending projections to other auditory brain regions, as well as projections to other sensory and non-sensory brain regions. However, the axonal projection patterns of individual classes of IC neurons remain largely unknown. Vasoactive intestinal polypeptide (VIP) is a neuropeptide expressed by subsets of neurons in many brain regions. We recently identified a class of IC stellate neurons that we called VIP neurons because they are labeled by tdTomato (tdT) expression in VIP-IRES-Cre x Ai14 mice. Here, using fluorescence in situ hybridization, we found that tdT+ neurons in VIP-IRES-Cre x Ai14 mice express Vglut2, a marker of glutamatergic neurons, and VIP, suggesting that VIP neurons use both glutamatergic and VIPergic signaling to influence their postsynaptic targets. Next, using viral transfections with a Cre-dependent eGFP construct, we labeled the axonal projections of VIP neurons. As a group, VIP neurons project intrinsically, within the ipsilateral and contralateral IC, and extrinsically to all the major targets of the IC. Within the auditory system, VIP neurons sent axons and formed axonal boutons in higher centers, including the medial geniculate nucleus and the nucleus of the brachium of the IC. Less dense projections terminated in lower centers, including the nuclei of the lateral lemniscus, superior olivary complex, and dorsal cochlear nucleus. VIP neurons also project to several non-auditory brain regions, including the superior colliculus, periaqueductal gray, and cuneiform nucleus. The diversity of VIP projections compared to the homogeneity of VIP neuron intrinsic properties suggests that VIP neurons play a conserved role at the microcircuit level, likely involving neuromodulation through glutamatergic and VIPergic signaling, but support diverse functions at the systems level through their participation in different projection pathways.
Collapse
Affiliation(s)
- Nichole L Beebe
- Hearing Research Group, Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA.
| | - Marina A Silveira
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA.
| | - David Goyer
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA.
| | - William A Noftz
- Hearing Research Group, Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA.
| | - Michael T Roberts
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| | - Brett R Schofield
- Hearing Research Group, Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA.
| |
Collapse
|
5
|
Kirouac GJ, Li S, Li S. Convergence of monosynaptic inputs from neurons in the brainstem and forebrain on parabrachial neurons that project to the paraventricular nucleus of the thalamus. Brain Struct Funct 2022; 227:2409-2437. [PMID: 35838792 PMCID: PMC9418111 DOI: 10.1007/s00429-022-02534-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/30/2022] [Indexed: 11/28/2022]
Abstract
The paraventricular nucleus of the thalamus (PVT) projects to areas of the forebrain involved in regulating behavior. Homeostatic challenges and salient cues activate the PVT and evidence shows that the PVT regulates appetitive and aversive responses. The brainstem is a source of afferents to the PVT and the present study was done to determine if the lateral parabrachial nucleus (LPB) is a relay for inputs to the PVT. Retrograde tracing experiments with cholera toxin B (CTB) demonstrate that the LPB contains more PVT projecting neurons than other regions of the brainstem including the catecholamine cell groups. The hypothesis that the LPB is a relay for signals to the PVT was assessed using an intersectional monosynaptic rabies tracing approach. Sources of inputs to LPB included the reticular formation; periaqueductal gray (PAG); nucleus cuneiformis; and superior and inferior colliculi. Distinctive clusters of input cells to LPB-PVT projecting neurons were also found in the dorsolateral bed nucleus of the stria terminalis (BSTDL) and the lateral central nucleus of the amygdala (CeL). Anterograde viral tracing demonstrates that LPB-PVT neurons densely innervate all regions of the PVT in addition to providing collateral innervation to the preoptic area, lateral hypothalamus, zona incerta and PAG but not the BSTDL and CeL. The paper discusses the anatomical evidence that suggests that the PVT is part of a network of interconnected neurons involved in arousal, homeostasis, and the regulation of behavioral states with forebrain regions potentially providing descending modulation or gating of signals relayed from the LPB to the PVT.
Collapse
Affiliation(s)
- Gilbert J Kirouac
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Avenue, Winnipeg, MB, R3E 0W2, Canada. .,Departments of Psychiatry and Human Anatomy and Cell Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 0W2, Canada.
| | - Sa Li
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Avenue, Winnipeg, MB, R3E 0W2, Canada
| | - Shuanghong Li
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Avenue, Winnipeg, MB, R3E 0W2, Canada
| |
Collapse
|
6
|
Pessoa L, Medina L, Desfilis E. Refocusing neuroscience: moving away from mental categories and towards complex behaviours. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200534. [PMID: 34957851 PMCID: PMC8710886 DOI: 10.1098/rstb.2020.0534] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/01/2021] [Indexed: 11/12/2022] Open
Abstract
Mental terms-such as perception, cognition, action, emotion, as well as attention, memory, decision-making-are epistemically sterile. We support our thesis based on extensive comparative neuroanatomy knowledge of the organization of the vertebrate brain. Evolutionary pressures have moulded the central nervous system to promote survival. Careful characterization of the vertebrate brain shows that its architecture supports an enormous amount of communication and integration of signals, especially in birds and mammals. The general architecture supports a degree of 'computational flexibility' that enables animals to cope successfully with complex and ever-changing environments. Here, we suggest that the vertebrate neuroarchitecture does not respect the boundaries of standard mental terms, and propose that neuroscience should aim to unravel the dynamic coupling between large-scale brain circuits and complex, naturalistic behaviours. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.
Collapse
Affiliation(s)
- Luiz Pessoa
- Department of Psychology, University of Maryland, College Park, MD 20742, USA
| | - Loreta Medina
- Department of Experimental Medicine, Institut de Recerca Biomèdica de Lleida Fundació Dr. Pifarré (IRBLleida), University of Lleida, 25198 Lleida, Spain
| | - Ester Desfilis
- Department of Experimental Medicine, Institut de Recerca Biomèdica de Lleida Fundació Dr. Pifarré (IRBLleida), University of Lleida, 25198 Lleida, Spain
| |
Collapse
|
7
|
Yu H, Xiang X, Chen Z, Wang X, Dai J, Wang X, Huang P, Zhao ZD, Shen WL, Li H. Periaqueductal gray neurons encode the sequential motor program in hunting behavior of mice. Nat Commun 2021; 12:6523. [PMID: 34764279 PMCID: PMC8586038 DOI: 10.1038/s41467-021-26852-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 10/15/2021] [Indexed: 11/27/2022] Open
Abstract
Sequential encoding of motor programs is essential for behavior generation. However, whether it is critical for instinctive behavior is still largely unknown. Mouse hunting behavior typically contains a sequential motor program, including the prey search, chase, attack, and consumption. Here, we reveal that the neuronal activity in the lateral periaqueductal gray (LPAG) follows a sequential pattern and is time-locked to different hunting actions. Optrode recordings and photoinhibition demonstrate that LPAGVgat neurons are required for the prey detection, chase and attack, while LPAGVglut2 neurons are selectively required for the attack. Ablation of inputs that could trigger hunting, including the central amygdala, the lateral hypothalamus, and the zona incerta, interrupts the activity sequence pattern and substantially impairs hunting actions. Therefore, our findings reveal that periaqueductal gray neuronal ensembles encode the sequential hunting motor program, which might provide a framework for decoding complex instinctive behaviors. Hunting behavior typically contains a sequential motor program, including search, chase, attack, and consumption. Here, the authors show that periaqueductal gray neuronal ensembles encode the sequential hunting motor program, which might provide a framework for decoding complex instinctive behaviors.
Collapse
Affiliation(s)
- Hong Yu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.,College of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Xinkuan Xiang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Zongming Chen
- School of Life Science and Technology and Shanghai Institute of Advanced Immunochemical Studies, Shanghaitech University, Shanghai, 201210, China
| | - Xu Wang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Jiaqi Dai
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xinxin Wang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Pengcheng Huang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Zheng-Dong Zhao
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Wei L Shen
- School of Life Science and Technology and Shanghai Institute of Advanced Immunochemical Studies, Shanghaitech University, Shanghai, 201210, China.
| | - Haohong Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China. .,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China. .,Affiliated Mental Health Centre and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310013, China. .,The MOE Frontier Research Center of Brain & Brain-machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
8
|
Fedotova IB, Surina NM, Nikolaev GM, Revishchin AV, Poletaeva II. Rodent Brain Pathology, Audiogenic Epilepsy. Biomedicines 2021; 9:biomedicines9111641. [PMID: 34829870 PMCID: PMC8615954 DOI: 10.3390/biomedicines9111641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
The review presents data which provides evidence for the internal relationship between the stages of rodent audiogenic seizures and post-ictal catalepsy with the general pattern of animal reaction to the dangerous stimuli and/or situation. The wild run stage of audiogenic seizure fit could be regarded as an intense panic reaction, and this view found support in numerous experimental data. The phenomenon of audiogenic epilepsy probably attracted the attention of physiologists as rodents are extremely sensitive to dangerous sound stimuli. The seizure proneness in this group shares common physiological characteristics and depends on animal genotype. This concept could be the new platform for the study of epileptogenesis mechanisms.
Collapse
Affiliation(s)
- Irina B. Fedotova
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.B.F.); (N.M.S.); (G.M.N.)
| | - Natalia M. Surina
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.B.F.); (N.M.S.); (G.M.N.)
| | - Georgy M. Nikolaev
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.B.F.); (N.M.S.); (G.M.N.)
| | | | - Inga I. Poletaeva
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.B.F.); (N.M.S.); (G.M.N.)
- Correspondence:
| |
Collapse
|
9
|
Keay KA, Argueta MA, Zafir DN, Wyllie PM, Michael GJ, Boorman DC. Evidence that increased cholecystokinin (CCK) in the periaqueductal gray (PAG) facilitates changes in Resident-Intruder social interactions triggered by peripheral nerve injury. J Neurochem 2021; 158:1151-1171. [PMID: 34287873 DOI: 10.1111/jnc.15476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 11/26/2022]
Abstract
Individual differences in the effects of a chronic neuropathic injury on social behaviours characterize both the human experience and pre-clinical animal models. The impacts of these changes to the well-being of the individual are often underappreciated. Earlier work from our laboratory using GeneChip® microarrays identified increased cholecystokinin (CCK) gene expression in the periaqueductal gray (PAG) of rats that showed persistent changes in social interactions during a Resident-Intruder encounter following sciatic nerve chronic constriction injury (CCI). In this study, we confirmed these gene regulation patterns using RT-PCR and identified the anatomical location of the CCK-mRNA as well as the translated CCK peptides in the midbrains of rats with a CCI. We found that rats with persistent CCI-induced changes in social behaviours had increased CCK-mRNA in neurons of the ventrolateral PAG and dorsal raphe nuclei, as well as increased CCK-8 peptide expression in terminal boutons located in the lateral and ventrolateral PAG. The functional significance of these changes was explored by microinjecting small volumes of CCK-8 into the PAG of uninjured rats and observing their Resident-Intruder social interactions. Disturbances to social interactions identical to those observed in CCI rats were evoked when injection sites were located in the rostral lateral and ventrolateral PAG. We suggest that CCI-induced changes in CCK expression in these PAG regions contributes to the disruptions to social behaviours experienced by a subset of individuals with neuropathic injury.
Collapse
Affiliation(s)
- Kevin A Keay
- School of Medical Sciences and the Brain and Mind Centre, The University of Sydney, New South Wales, Australia
| | - Manuel A Argueta
- School of Medical Sciences and the Brain and Mind Centre, The University of Sydney, New South Wales, Australia
| | - Daniel N Zafir
- School of Medical Sciences and the Brain and Mind Centre, The University of Sydney, New South Wales, Australia
| | - Peter M Wyllie
- School of Medical Sciences and the Brain and Mind Centre, The University of Sydney, New South Wales, Australia
| | - Gregory J Michael
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Damien C Boorman
- School of Medical Sciences and the Brain and Mind Centre, The University of Sydney, New South Wales, Australia
| |
Collapse
|
10
|
Doan TH, Sato Y, Matsumoto M, Koganezawa T. Lateral Habenula Regulates Cardiovascular Autonomic Responses via the Serotonergic System in Rats. Front Neurosci 2021; 15:655617. [PMID: 33854416 PMCID: PMC8039147 DOI: 10.3389/fnins.2021.655617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
The lateral habenula (LHb) plays essential roles in behavioral responses to stressful events. Stress is tightly linked to autonomic responses such as cardiovascular responses, yet how the LHb regulates these responses is not well understood. To address this issue, we electrically stimulated the LHb in rats, measured its effects on heart rate (HR) and mean arterial pressure (MAP), and investigated the neural circuits that mediate these LHb-induced cardiovascular responses via the autonomic nervous system. We observed that stimulation of the LHb induced bradycardia and pressor responses, whereas stimulation of the adjacent areas changed neither the HR nor the MAP. Bilateral vagotomy and administration of a muscarinic receptor antagonist suppressed the LHb stimulation effect on the HR but not on the MAP, whereas administration of a β-adrenoceptor antagonist partly attenuated the effect on the MAP but not on the HR. Thus, the LHb-induced cardiovascular responses of the HR and the MAP were likely caused by activations of the cardiac parasympathetic nerves and the cardiovascular sympathetic nerves, respectively. Furthermore, administration of a non-selective 5-HT receptor antagonist significantly attenuated the LHb stimulation effects on both the MAP and the HR. A 5-HT2 receptor antagonist also attenuated the LHb stimulation effects. A low dose of a 5-HT1A receptor antagonist enhanced the LHb stimulation effects, but a high dose of the drug attenuated them. 5-HT1B and 5-HT1D receptor antagonists as well as a 5-HT7 receptor antagonist did not affect the LHb stimulation effects. Taken together, our findings suggest that the LHb regulates autonomic cardiovascular responses at least partly through the serotonergic system, particularly via the 5-HT1A and 5-HT2 receptors.
Collapse
Affiliation(s)
- Tri Huu Doan
- Department of Physiology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
- Center for Advanced Training in Clinical Simulation, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Yuma Sato
- Department of Physiology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Master’s Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Masayuki Matsumoto
- Department of Cognitive and Behavioral Neuroscience, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Tadachika Koganezawa
- Department of Physiology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
11
|
Differential Encoding of Predator Fear in the Ventromedial Hypothalamus and Periaqueductal Grey. J Neurosci 2020; 40:9283-9292. [PMID: 33115925 DOI: 10.1523/jneurosci.0761-18.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/20/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022] Open
Abstract
The ventromedial hypothalamus is a central node of the mammalian predator defense network. Stimulation of this structure in rodents and primates elicits abrupt defensive responses, including flight, freezing, sympathetic activation, and panic, while inhibition reduces defensive responses to predators. The major efferent target of the ventromedial hypothalamus is the dorsal periaqueductal gray (dPAG), and stimulation of this structure also elicits flight, freezing, and sympathetic activation. However, reversible inhibition experiments suggest that the ventromedial hypothalamus and periaqueductal gray play distinct roles in the control of defensive behavior, with the former proposed to encode an internal state necessary for the motivation of defensive responses, while the latter serves as a motor pattern initiator. Here, we used electrophysiological recordings of single units in behaving male mice exposed to a rat to investigate the encoding of predator fear in the dorsomedial division of the ventromedial hypothalamus (VMHdm) and the dPAG. Distinct correlates of threat intensity and motor responses were found in both structures, suggesting a distributed encoding of sensory and motor features in the medial hypothalamic-brainstem instinctive network.SIGNIFICANCE STATEMENT Although behavioral responses to predatory threat are essential for survival, the underlying neuronal circuits remain undefined. Using single unit in vivo electrophysiological recordings in mice, we have identified neuronal populations in the medial hypothalamus and brainstem that encode defensive responses to a rat predator. We found that both structures encode both sensory as well as motor aspects of the behavior although with different kinetics. Our findings provide a framework for understanding how innate sensory cues are processed to elicit adaptive behavioral responses to threat and will help to identify targets for the pharmacological modulation of related pathologic behaviors.
Collapse
|
12
|
Borges-Aguiar AC, Schauffer LZ, de Kloet ER, Schenberg LC. Daily maternal separations during stress hyporesponsive period decrease the thresholds of panic-like behaviors to electrical stimulation of the dorsal periaqueductal gray of the adult rat. Behav Brain Res 2018; 344:132-144. [PMID: 29466713 DOI: 10.1016/j.bbr.2018.02.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/29/2018] [Accepted: 02/16/2018] [Indexed: 02/04/2023]
Abstract
The present study examined whether early life maternal separation (MS), a model of childhood separation anxiety, predisposes to panic at adulthood. For this purpose, male pups were submitted to 3-h daily maternal separations along postnatal (PN) days of either the 'stress hyporesponsive period' (SHRP) from PN4 to PN14 (MS11) or throughout lactation from PN2 to PN21 (MS20). Pups were further reunited to conscious (CM) or anesthetized (AM) mothers to assess the effect of mother-pup interaction upon reunion. Controls were subjected to brief handling (15 s) once a day throughout lactation (BH20). As adults (PN60), rats were tested for the thresholds to evoke panic-like behaviors upon electrical stimulation of dorsal periaqueductal gray matter and exposed to an elevated plus-maze, an open-field, a forced swim and a sucrose preference test. A factor analysis was also performed to gain insight into the meaning of behavioral tests. MS11-CM rather than MS20-CM rats showed enhanced panic responses and reductions in both swimming and sucrose preference. Panic facilitations were less intense in mother-neglected rats. Although MS did not affect anxiety, MS11-AM showed robust reductions of defecation in an open-field. Factor analysis singled out anxiety, hedonia, exploration, coping and gut activity. Although sucrose preference and coping loaded on separate factors, appetite (adult weight) correlated with active coping in both forced swim and open-field (central area exploration). Concluding, whereas 3h-daily maternal separations during SHRP increased rat's susceptibility to experimental panic attacks, separations throughout lactation had no effects on panic and enhanced active coping.
Collapse
Affiliation(s)
- Ana Cristina Borges-Aguiar
- Department of Physiological Sciences, Health Science Center, Federal University of Espírito Santo, Brazil
| | - Luana Zanoni Schauffer
- Department of Physiological Sciences, Health Science Center, Federal University of Espírito Santo, Brazil
| | - Edo Ronald de Kloet
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Luiz Carlos Schenberg
- Department of Physiological Sciences, Health Science Center, Federal University of Espírito Santo, Brazil.
| |
Collapse
|
13
|
Mellott JG, Beebe NL, Schofield BR. GABAergic and non-GABAergic projections to the superior colliculus from the auditory brainstem. Brain Struct Funct 2018; 223:1923-1936. [PMID: 29302743 DOI: 10.1007/s00429-017-1599-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 12/22/2017] [Indexed: 02/02/2023]
Abstract
The superior colliculus (SC) contains an auditory space map that is shaped by projections from several subcortical auditory nuclei. Both GABAergic (inhibitory) and excitatory cells contribute to these inputs, but there are contradictory reports regarding the sources of these inputs. We used retrograde tracing techniques in guinea pigs to identify cells in the auditory brainstem that project to the SC. We combined retrograde tracing with immunohistochemistry for glutamic acid decarboxylase (GAD) to identify putative GABAergic cells that participate in this pathway. Following a tracer injection in the SC, the nucleus of the brachium of the inferior colliculus (NBIC) contained the most labeled cells, followed by the inferior colliculus (IC). Smaller populations were observed in the sagulum, paralemniscal area, periolivary nuclei and ventrolateral tegmental nucleus. Overall, only 10% of the retrogradely labeled cells were GAD immunopositive. The presumptive inhibitory cells were observed in the NBIC, IC, superior paraolivary nucleus, sagulum and paralemniscal area. We conclude that the guinea pig SC receives input from a diverse set of auditory brainstem nuclei, some of which provide GABAergic input. These diverse origins of input to the SC likely represent a variety of functions. Inputs from the NBIC and IC likely provide spatial information for guiding orienting behaviors. Inputs from subcollicular nuclei are less likely to provide spatial information; rather, they may provide a shorter route for auditory information to reach the SC, and could generate avoidance or escape responses to an external threat.
Collapse
Affiliation(s)
- Jeffrey G Mellott
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 State Route 44, PO Box 95, Rootstown, OH, USA
| | - Nichole L Beebe
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 State Route 44, PO Box 95, Rootstown, OH, USA
| | - Brett R Schofield
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 State Route 44, PO Box 95, Rootstown, OH, USA.
| |
Collapse
|
14
|
Roelofs K. Freeze for action: neurobiological mechanisms in animal and human freezing. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0206. [PMID: 28242739 PMCID: PMC5332864 DOI: 10.1098/rstb.2016.0206] [Citation(s) in RCA: 269] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2016] [Indexed: 12/14/2022] Open
Abstract
Upon increasing levels of threat, animals activate qualitatively different defensive modes, including freezing and active fight-or-flight reactions. Whereas freezing is a form of behavioural inhibition accompanied by parasympathetically dominated heart rate deceleration, fight-or-flight reactions are associated with sympathetically driven heart rate acceleration. Despite the potential relevance of freezing for human stress-coping, its phenomenology and neurobiological underpinnings remain largely unexplored in humans. Studies in rodents have shown that freezing depends on amygdala projections to the brainstem (periaqueductal grey). Recent neuroimaging studies in humans have indicated that similar brain regions may be involved in human freezing. In addition, flexibly shifting between freezing and active defensive modes is critical for adequate stress-coping and relies on fronto-amygdala connections. This review paper presents a model detailing these neural mechanisms involved in freezing and the shift to fight-or-flight action. Freezing is not a passive state but rather a parasympathetic brake on the motor system, relevant to perception and action preparation. Study of these defensive responses in humans may advance insights into human stress-related psychopathologies characterized by rigidity in behavioural stress reactions. The paper therefore concludes with a research agenda to stimulate translational animal–human research in this emerging field of human defensive stress responses. This article is part of the themed issue ‘Movement suppression: brain mechanisms for stopping and stillness’.
Collapse
Affiliation(s)
- Karin Roelofs
- Donders Institute for Brain Cognition and Behaviour and Behavioural Science Institute, Radboud University Nijmegen, Kapittelweg 29, 6525 EN, Nijmegen, The Netherlands
| |
Collapse
|
15
|
Roseberry T, Kreitzer A. Neural circuitry for behavioural arrest. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0197. [PMID: 28242731 DOI: 10.1098/rstb.2016.0197] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2016] [Indexed: 11/12/2022] Open
Abstract
The ability to stop ongoing movement is fundamental to animal survival. Behavioural arrest involves the hierarchical integration of information throughout the forebrain, which ultimately leads to the coordinated inhibition and activation of specific brainstem motor centres. Recent advances have shed light on multiple regions and pathways involved in this critical behavioural process. Here, we synthesize these new findings together with previous work to build a more complete understanding of the circuit mechanisms underlying suppression of ongoing action. We focus on three specific conditions leading to behavioural arrest: goal completion, fear and startle. We outline the circuitry responsible for the production of these behaviours and discuss their dysfunction in neurological disease.This article is part of the themed issue 'Movement suppression: brain mechanisms for stopping and stillness'.
Collapse
Affiliation(s)
- Thomas Roseberry
- The Gladstone Institutes, San Francisco, CA 94158, USA.,Neuroscience Graduate Program, University of California, San Francisco, CA 94158, USA
| | - Anatol Kreitzer
- The Gladstone Institutes, San Francisco, CA 94158, USA .,Neuroscience Graduate Program, University of California, San Francisco, CA 94158, USA.,Departments of Physiology and Neurology, University of California, San Francisco, CA 94158, USA.,Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
16
|
Median raphe region stimulation alone generates remote, but not recent fear memory traces. PLoS One 2017; 12:e0181264. [PMID: 28708877 PMCID: PMC5510848 DOI: 10.1371/journal.pone.0181264] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/28/2017] [Indexed: 01/08/2023] Open
Abstract
The median raphe region (MRR) is believed to control the fear circuitry indirectly, by influencing the encoding and retrieval of fear memories by amygdala, hippocampus and prefrontal cortex. Here we show that in addition to this established role, MRR stimulation may alone elicit the emergence of remote but not recent fear memories. We substituted electric shocks with optic stimulation of MRR in C57BL/6N male mice in an optogenetic conditioning paradigm and found that stimulations produced agitation, but not fear, during the conditioning trial. Contextual fear, reflected by freezing was not present the next day, but appeared after a 7 days incubation. The optogenetic silencing of MRR during electric shocks ameliorated conditioned fear also seven, but not one day after conditioning. The optogenetic stimulation patterns (50Hz theta burst and 20Hz) used in our tests elicited serotonin release in vitro and lead to activation primarily in the periaqueductal gray examined by c-Fos immunohistochemistry. Earlier studies demonstrated that fear can be induced acutely by stimulation of several subcortical centers, which, however, do not generate persistent fear memories. Here we show that the MRR also elicits fear, but this develops slowly over time, likely by plastic changes induced by the area and its connections. These findings assign a specific role to the MRR in fear learning. Particularly, we suggest that this area is responsible for the durable sensitization of fear circuits towards aversive contexts, and by this, it contributes to the persistence of fear memories. This suggests the existence a bottom-up control of fear circuits by the MRR, which complements the top-down control exerted by the medial prefrontal cortex.
Collapse
|
17
|
Müller CJT, Quintino-dos-Santos JW, Schimitel FG, Tufik S, Beijamini V, Canteras NS, Schenberg LC. On the verge of a respiratory-type panic attack: Selective activations of rostrolateral and caudoventrolateral periaqueductal gray matter following short-lasting escape to a low dose of potassium cyanide. Neuroscience 2017; 348:228-240. [DOI: 10.1016/j.neuroscience.2017.02.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 12/05/2016] [Accepted: 02/12/2017] [Indexed: 10/20/2022]
|
18
|
Forcelli PA, Waguespack HF, Malkova L. Defensive Vocalizations and Motor Asymmetry Triggered by Disinhibition of the Periaqueductal Gray in Non-human Primates. Front Neurosci 2017; 11:163. [PMID: 28424576 PMCID: PMC5372797 DOI: 10.3389/fnins.2017.00163] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/13/2017] [Indexed: 11/13/2022] Open
Abstract
Rapid and reflexive responses to threats are present across phylogeny. The neural circuitry mediating reflexive defense reactions has been well-characterized in a variety of species, for example, in rodents and cats, the detection of and species-typical response to threats is mediated by a network of structures including the midbrain tectum (deep and intermediate layers of the superior colliculus [DLSC]), periaqueductal gray (PAG), and forebrain structures such as the amygdala and hypothalamus. However, relatively little is known about the functional architecture of defense circuitry in primates. We have previously reported that pharmacological activation of the DLSC evokes locomotor asymmetry, defense-associated vocalizations, cowering behavior, escape responses, and attack of inanimate objects (Holmes et al., 2012; DesJardin et al., 2013; Forcelli et al., 2016). Here, we sought to determine if pharmacological activation of the PAG would induce a similar profile of responses. We activated the PAG in three awake, behaving macaques by microinfusion of GABA-A receptor antagonist, bicuculline methiodide. Activation of PAG evoked defense-associated vocalizations and postural/locomotor asymmetry, but not motor defense responses (e.g., cowering, escape behavior). These data suggest a partial dissociation between the role of the PAG and the DLSC in the defense network of macaques, but a general conservation of the role of PAG in defense responses across species.
Collapse
Affiliation(s)
- Patrick A Forcelli
- Department of Pharmacology and Physiology, Georgetown UniversityWashington, DC, USA.,Interdisciplinary Program in Neuroscience, Georgetown UniversityWashington, DC, USA.,Department of Neuroscience, Georgetown UniversityWashington, DC, USA
| | - Hannah F Waguespack
- Department of Pharmacology and Physiology, Georgetown UniversityWashington, DC, USA
| | - Ludise Malkova
- Department of Pharmacology and Physiology, Georgetown UniversityWashington, DC, USA.,Interdisciplinary Program in Neuroscience, Georgetown UniversityWashington, DC, USA
| |
Collapse
|
19
|
Zingg B, Chou XL, Zhang ZG, Mesik L, Liang F, Tao HW, Zhang LI. AAV-Mediated Anterograde Transsynaptic Tagging: Mapping Corticocollicular Input-Defined Neural Pathways for Defense Behaviors. Neuron 2017; 93:33-47. [PMID: 27989459 PMCID: PMC5538794 DOI: 10.1016/j.neuron.2016.11.045] [Citation(s) in RCA: 511] [Impact Index Per Article: 63.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/22/2016] [Accepted: 11/23/2016] [Indexed: 11/26/2022]
Abstract
To decipher neural circuits underlying brain functions, viral tracers are widely applied to map input and output connectivity of neuronal populations. Despite the successful application of retrograde transsynaptic viruses for identifying presynaptic neurons of transduced neurons, analogous anterograde transsynaptic tools for tagging postsynaptically targeted neurons remain under development. Here, we discovered that adeno-associated viruses (AAV1 and AAV9) exhibit anterograde transsynaptic spread properties. AAV1-Cre from transduced presynaptic neurons effectively and specifically drives Cre-dependent transgene expression in selected postsynaptic neuronal targets, thus allowing axonal tracing and functional manipulations of the latter input-defined neuronal population. Its application in superior colliculus (SC) reveals that SC neuron subpopulations receiving corticocollicular projections from auditory and visual cortex specifically drive flight and freezing, two different types of defense behavior, respectively. Together with an intersectional approach, AAV-mediated anterograde transsynaptic tagging can categorize neurons by their inputs and molecular identity, and allow forward screening of distinct functional neural pathways embedded in complex brain circuits.
Collapse
Affiliation(s)
- Brian Zingg
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90033, USA
| | - Xiao-Lin Chou
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90033, USA
| | - Zheng-Gang Zhang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lukas Mesik
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90033, USA
| | - Feixue Liang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huizhong Whit Tao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Li I Zhang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
20
|
Melleu FF, Lino-de-Oliveira C, Marino-Neto J. The mesencephalic GCt-ICo complex and tonic immobility in pigeons (Columba livia): a c-Fos study. Brain Struct Funct 2016; 222:1253-1265. [PMID: 27447458 DOI: 10.1007/s00429-016-1275-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 07/14/2016] [Indexed: 01/09/2023]
Abstract
Tonic immobility (TI) is a response to a predator attack, or other inescapable danger, characterized by immobility, analgesia and unresponsiveness to external stimuli. In mammals, the periaqueductal gray (PAG) and deep tectal regions control the expression of TI as well as other defensive behaviors. In birds, little is known about the mesencephalic circuitry involved in the control of TI. Here, adult pigeons (both sex, n = 4/group), randomly assigned to non-handled, handled or TI groups, were killed 90 min after manipulations and the brains processed for detection of c-Fos immunoreactive cells (c-Fos-ir, marker for neural activity) in the mesencephalic central gray (GCt) and the adjacent nucleus intercollicularis (ICo). The NADPH-diaphorase staining delineated the boundaries of the sub nuclei in the ICo-GCt complex. Compared to non-handled, TI (but not handling) induced c-Fos-ir in NADPH-diaphorase-rich and -poor regions. After TI, the number of c-Fos-ir increased in the caudal and intermediate areas of the ICo (but not in the GCt), throughout the rostrocaudal axis of the dorsal stratum griseum periventriculare (SGPd) of the optic tectum and in the n. mesencephalicus lateralis pars dorsalis (MLd), which is part of the ascending auditory pathway. These data suggest that inescapable threatening stimuli such as TI may recruit neurons in discrete areas of ICo-GCt complex, deep tectal layer and in ascending auditory circuits that may control the expression of defensive behaviors in pigeons. Additionally, data indicate that the contiguous deep tectal SCPd (but not GCt) in birds may be functionally comparable to the mammalian dorsal PAG.
Collapse
Affiliation(s)
- Fernando Falkenburger Melleu
- Department of Physiological Sciences, CCB, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
| | - C Lino-de-Oliveira
- Department of Physiological Sciences, CCB, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - J Marino-Neto
- Department of Physiological Sciences, CCB, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
- Institute of Biomedical Engineering, EEL-CTC, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| |
Collapse
|
21
|
Wombolt JR, Caine NG. Patterns on serpentine shapes elicit visual attention in marmosets (Callithrix jacchus). Am J Primatol 2016; 78:928-36. [DOI: 10.1002/ajp.22563] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/03/2016] [Accepted: 05/12/2016] [Indexed: 11/09/2022]
Affiliation(s)
| | - Nancy G. Caine
- California State University San Marcos; San Marcos California
| |
Collapse
|
22
|
Negative emotions facilitate isometric force through activation of prefrontal cortex and periaqueductal gray. Neuroimage 2016; 124:627-640. [DOI: 10.1016/j.neuroimage.2015.09.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 08/12/2015] [Accepted: 09/14/2015] [Indexed: 02/04/2023] Open
|
23
|
Blumberg MS, Plumeau AM. A new view of "dream enactment" in REM sleep behavior disorder. Sleep Med Rev 2015; 30:34-42. [PMID: 26802823 DOI: 10.1016/j.smrv.2015.12.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/23/2015] [Accepted: 12/08/2015] [Indexed: 11/28/2022]
Abstract
Patients with REM sleep behavior disorder (RBD) exhibit increased muscle tone and exaggerated myoclonic twitching during REM sleep. In addition, violent movements of the limbs, and complex behaviors that can sometimes appear to involve the enactment of dreams, are associated with RBD. These behaviors are widely thought to result from a dysfunction involving atonia-producing neural circuitry in the brainstem, thereby unmasking cortically generated dreams. Here we scrutinize the assumptions that led to this interpretation of RBD. In particular, we challenge the assumption that motor cortex produces twitches during REM sleep, thus calling into question the related assumption that motor cortex is primarily responsible for all of the pathological movements of RBD. Moreover, motor cortex is not even necessary to produce complex behavior; for example, stimulation of some brainstem structures can produce defensive and aggressive behaviors in rats and monkeys that are strikingly similar to those reported in human patients with RBD. Accordingly, we suggest an interpretation of RBD that focuses increased attention on the brainstem as a source of the pathological movements and that considers sensory feedback from moving limbs as an important influence on the content of dream mentation.
Collapse
Affiliation(s)
- Mark S Blumberg
- Department of Psychological & Brain Sciences, The University of Iowa, Iowa City, IA 52242, USA; Department of Biology, The University of Iowa, Iowa City, IA 52242, USA; The DeLTA Center, The University of Iowa, Iowa City, IA 52242, USA.
| | - Alan M Plumeau
- Interdisciplinary Graduate Program in Neuroscience, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
24
|
Pickard GE, So KF, Pu M. Dorsal raphe nucleus projecting retinal ganglion cells: Why Y cells? Neurosci Biobehav Rev 2015; 57:118-31. [PMID: 26363667 PMCID: PMC4646079 DOI: 10.1016/j.neubiorev.2015.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 06/30/2015] [Accepted: 08/01/2015] [Indexed: 10/23/2022]
Abstract
Retinal ganglion Y (alpha) cells are found in retinas ranging from frogs to mice to primates. The highly conserved nature of the large, fast conducting retinal Y cell is a testament to its fundamental task, although precisely what this task is remained ill-defined. The recent discovery that Y-alpha retinal ganglion cells send axon collaterals to the serotonergic dorsal raphe nucleus (DRN) in addition to the lateral geniculate nucleus (LGN), medial interlaminar nucleus (MIN), pretectum and the superior colliculus (SC) has offered new insights into the important survival tasks performed by these cells with highly branched axons. We propose that in addition to its role in visual perception, the Y-alpha retinal ganglion cell provides concurrent signals via axon collaterals to the DRN, the major source of serotonergic afferents to the forebrain, to dramatically inhibit 5-HT activity during orientation or alerting/escape responses, which dis-facilitates ongoing tonic motor activity while dis-inhibiting sensory information processing throughout the visual system. The new data provide a fresh view of these evolutionarily old retinal ganglion cells.
Collapse
Affiliation(s)
- Gary E Pickard
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, 68583, United States; Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, United States; GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Kwok-Fai So
- Department of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; Department of Ophthalmology, The University of Hong Kong, Hong Kong, China; GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China; State Key Laboratory for Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China.
| | - Mingliang Pu
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China; Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, China; Key Laboratory for Visual Impairment and Restoration (Ministry of Education), Peking University, Beijing, China.
| |
Collapse
|
25
|
Translational approach to studying panic disorder in rats: hits and misses. Neurosci Biobehav Rev 2015; 46 Pt 3:472-96. [PMID: 25316571 DOI: 10.1016/j.neubiorev.2014.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/26/2014] [Accepted: 10/01/2014] [Indexed: 12/30/2022]
Abstract
Panic disorder (PD) patients are specifically sensitive to 5–7% carbon dioxide. Another startling feature of clinical panic is the counterintuitive lack of increments in ‘stress hormones’. PD is also more frequent in women and highly comorbid with childhood separation anxiety (CSA). On the other hand, increasing evidence suggests that panic is mediated at dorsal periaqueductal grey matter (DPAG). In line with prior studies showing that DPAG-evoked panic-like behaviours are attenuated by clinically-effective treatments with panicolytics, we show here that (i) the DPAG harbors a hypoxia-sensitive alarm system, which is activated by hypoxia and potentiated by hypercapnia, (ii) the DPAG suffocation alarm system is inhibited by clinically-effective treatments with panicolytics, (iii) DPAG stimulations do not increase stress hormones in the absence of physical exertion, (iv) DPAG-evoked panic-like behaviours are facilitated in neonatally-isolated adult rats, a model of CSA, and (v) DPAG-evoked responses are enhanced in the late diestrus of female rats. Data are consistent with the DPAG mediation of both respiratory and non-respiratory types of panic attacks.
Collapse
|
26
|
Auditory cortex controls sound-driven innate defense behaviour through corticofugal projections to inferior colliculus. Nat Commun 2015; 6:7224. [PMID: 26068082 PMCID: PMC4467028 DOI: 10.1038/ncomms8224] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 04/20/2015] [Indexed: 12/19/2022] Open
Abstract
Defense against environmental threats is essential for animal survival. However, the neural circuits responsible for transforming unconditioned sensory stimuli and generating defensive behaviours remain largely unclear. Here, we show that corticofugal neurons in the auditory cortex (ACx) targeting the inferior colliculus (IC) mediate an innate, sound-induced flight behaviour. Optogenetic activation of these neurons, or their projection terminals in the IC, is sufficient for initiating flight responses, while the inhibition of these projections reduces sound-induced flight responses. Corticocollicular axons monosynaptically innervate neurons in the cortex of the IC (ICx), and optogenetic activation of the projections from the ICx to the dorsal periaqueductal gray is sufficient for provoking flight behaviours. Our results suggest that ACx can both amplify innate acoustic-motor responses and directly drive flight behaviours in the absence of sound input through corticocollicular projections to ICx. Such corticofugal control may be a general feature of innate defense circuits across sensory modalities. Defense against environmental threats is essential for survival, yet the neural circuits mediating innate defensive behaviours are not completely understood. Here the authors demonstrate that descending projections from the auditory cortex to the midbrain mediate innate, sound-evoked flight behaviour.
Collapse
|
27
|
Liang F, Xiong XR, Zingg B, Ji XY, Zhang LI, Tao HW. Sensory Cortical Control of a Visually Induced Arrest Behavior via Corticotectal Projections. Neuron 2015; 86:755-67. [PMID: 25913860 DOI: 10.1016/j.neuron.2015.03.048] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/07/2015] [Accepted: 03/06/2015] [Indexed: 10/23/2022]
Abstract
Innate defense behaviors (IDBs) evoked by threatening sensory stimuli are essential for animal survival. Although subcortical circuits are implicated in IDBs, it remains largely unclear whether sensory cortex modulates IDBs and what the underlying neural pathways are. Here, we show that optogenetic silencing of corticotectal projections from layer 5 (L5) of the mouse primary visual cortex (V1) to the superior colliculus (SC) significantly reduces an SC-dependent innate behavior (i.e., temporary suspension of locomotion upon a sudden flash of light as short as milliseconds). Surprisingly, optogenetic activation of SC-projecting neurons in V1 or their axon terminals in SC sufficiently elicits the behavior, in contrast to other major L5 corticofugal projections. Thus, via the same corticofugal projection, visual cortex not only modulates the light-induced arrest behavior, but also can directly drive the behavior. Our results suggest that sensory cortex may play a previously unrecognized role in the top-down initiation of sensory-motor behaviors.
Collapse
Affiliation(s)
- Feixue Liang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Xiaorui R Xiong
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Neuroscience Graduate Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Brian Zingg
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Neuroscience Graduate Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Xu-ying Ji
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Li I Zhang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Huizhong W Tao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
28
|
Processing of visually evoked innate fear by a non-canonical thalamic pathway. Nat Commun 2015; 6:6756. [PMID: 25854147 PMCID: PMC4403372 DOI: 10.1038/ncomms7756] [Citation(s) in RCA: 223] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/24/2015] [Indexed: 12/28/2022] Open
Abstract
The ability of animals to respond to life-threatening stimuli is essential for survival. Although vision provides one of the major sensory inputs for detecting threats across animal species, the circuitry underlying defensive responses to visual stimuli remains poorly defined. Here, we investigate the circuitry underlying innate defensive behaviours elicited by predator-like visual stimuli in mice. Our results demonstrate that neurons in the superior colliculus (SC) are essential for a variety of acute and persistent defensive responses to overhead looming stimuli. Optogenetic mapping revealed that SC projections to the lateral posterior nucleus (LP) of the thalamus, a non-canonical polymodal sensory relay, are sufficient to mimic visually evoked fear responses. In vivo electrophysiology experiments identified a di-synaptic circuit from SC through LP to the lateral amygdale (Amg), and lesions of the Amg blocked the full range of visually evoked defensive responses. Our results reveal a novel collicular-thalamic-Amg circuit important for innate defensive responses to visual threats.
Collapse
|
29
|
de Souza Armini R, Bernabé CS, Rosa CA, Siller CA, Schimitel FG, Tufik S, Klein DF, Schenberg LC. In a rat model of panic, corticotropin responses to dorsal periaqueductal gray stimulation depend on physical exertion. Psychoneuroendocrinology 2015; 53:136-47. [PMID: 25618592 DOI: 10.1016/j.psyneuen.2014.12.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 12/29/2014] [Accepted: 12/29/2014] [Indexed: 01/06/2023]
Abstract
Panic disorder patients are exquisitely and specifically sensitive to hypercapnia. The demonstration that carbon dioxide provokes panic in fear-unresponsive amygdala-calcified Urbach-Wiethe patients emphasizes that panic is not fear nor does it require the activation of the amygdala. This is consonant with increasing evidence suggesting that panic is mediated caudally at midbrain's dorsal periaqueductal gray matter (DPAG). Another startling feature of the apparently spontaneous clinical panic is the counterintuitive lack of increments in corticotropin, cortisol and prolactin, generally considered 'stress hormones'. Here we show that the stress hormones are not changed during DPAG-evoked panic when escape is prevented by stimulating the rat in a small compartment. Neither did the corticotropin increase when physical exertion was statistically adjusted to the same degree as non-stimulated controls, as measured by lactate plasma levels. Conversely, neuroendocrine responses to foot-shocks were independent from muscular effort. Data are consonant with DPAG mediation of panic attacks.
Collapse
Affiliation(s)
- Rubia de Souza Armini
- Deparment of Physiological Sciences, Federal University of Espírito Santo, Vitória, ES, Brazil
| | | | - Caroline Azevedo Rosa
- Deparment of Physiological Sciences, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Carlos Antônio Siller
- Deparment of Physiological Sciences, Federal University of Espírito Santo, Vitória, ES, Brazil
| | | | - Sérgio Tufik
- Department of Psychobiology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Donald Franklin Klein
- Phyllis Green and Randolph Cowen Institute for Pediatric Neuroscience, Department of Child and Adolescent Psychiatry, New York University Langone Medical Center, USA; The Nathan S. Kline Institute for Psychiatric Research, USA; Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Luiz Carlos Schenberg
- Deparment of Physiological Sciences, Federal University of Espírito Santo, Vitória, ES, Brazil.
| |
Collapse
|
30
|
Schimitel FG, Müller CJT, Tufik S, Schenberg LC. Evidence of a suffocation alarm system sensitive to clinically-effective treatments with the panicolytics clonazepam and fluoxetine. J Psychopharmacol 2014; 28:1184-8. [PMID: 25277323 DOI: 10.1177/0269881114552714] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dyspnea, 'hunger for air', and the urge to flee are the cardinal symptoms of respiratory-type panic attacks. Patients also show baseline respiratory abnormalities and a higher rate of comorbid and antecedent respiratory diseases. Panic attacks are also precipitated by both the infusion of 0.5 M sodium lactate and the inhalation of 5-7% carbon dioxide (CO2) in predisposed patients, but not in healthy volunteers nor patients without panic disorder. Further studies show that patients with panic are also hyper-responsive to hypoxia. These and other observations led Klein (1993) to suggest that clinical panic is the misfiring of a suffocation alarm system. In rats, cytotoxic hypoxia of chemoreceptor cells by intravenous injection of potassium cyanide (KCN) produces short-lasting flight behaviors reminiscent of panic attacks. KCN-induced flight behaviors are blocked both by denervation of chemoreceptor cells and lesion of dorsal periaqueductal gray matter, a likely substrate of panic. Herein, we show that KCN-evoked flight behaviors are also attenuated by both acute and chronic treatment with clonazepam (0.01-0.3 mg/kg, intraperitoneally (i.p.)) and fluoxetine (1-4 mg/kg/day, i.p. for 21 days), respectively. Attenuation of KCN-evoked panic-like behaviors by clinically-effective treatment with panicolytics adds fresh evidence to the false suffocation alarm theory of panic disorder.
Collapse
Affiliation(s)
- Fagna Giacomin Schimitel
- Department of Physiological Sciences, Federal University of Espírito Santo (UFES), Vitória, Brazil
| | | | - Sérgio Tufik
- Department of Psychobiology, Federal University of São Paulo (UFSP), São Paulo, Brazil
| | - Luiz Carlos Schenberg
- Department of Physiological Sciences, Federal University of Espírito Santo (UFES), Vitória, Brazil
| |
Collapse
|
31
|
Lorivel T, Roy V, Hilber P. Fear-related behaviors in Lurcher mutant mice exposed to a predator. GENES BRAIN AND BEHAVIOR 2014; 13:794-801. [DOI: 10.1111/gbb.12173] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/22/2014] [Accepted: 08/22/2014] [Indexed: 11/28/2022]
Affiliation(s)
- T. Lorivel
- Laboratoire de Psychologie et Neurosciences de la Cognition et de l'Affectivité, EA4700, Université de Rouen, LARC Neurosciences Network, Mont-Saint-Aignan Cedex
- Institut de Pharmacologie Moléculaire et Cellulaire IPMC, UMR7275 CNRS, Université de Nice - Sophia-Antipolis, Equipe “Développement de stratégies thérapeutiques innovantes pour le traitement de la dépression et de l'AVC”, Valbonne
- Centre d'Etudes des Transformations des Activités Physiques et Sportives, EA 3832; Université de Rouen; Mont-Saint-Aignan Cedex France
| | - V. Roy
- Laboratoire de Psychologie et Neurosciences de la Cognition et de l'Affectivité, EA4700, Université de Rouen, LARC Neurosciences Network, Mont-Saint-Aignan Cedex
| | - P. Hilber
- Laboratoire de Psychologie et Neurosciences de la Cognition et de l'Affectivité, EA4700, Université de Rouen, LARC Neurosciences Network, Mont-Saint-Aignan Cedex
| |
Collapse
|
32
|
Rahman MM, Kerskens CM, Chattarji S, O'Mara SM. Chronic immobilization stress occludes in vivo cortical activation in an animal model of panic induced by carbon dioxide inhalation. Front Behav Neurosci 2014; 8:311. [PMID: 25278852 PMCID: PMC4165356 DOI: 10.3389/fnbeh.2014.00311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/25/2014] [Indexed: 11/13/2022] Open
Abstract
Breathing high concentrations of carbon dioxide (CO2) can trigger panic and anxiety in humans. CO2 inhalation has been hypothesized to activate neural systems similar to those underlying fear learning, especially those involving the amygdala. Amygdala activity is also upregulated by stress. Recently, however, a separate pathway has been proposed for interoceptive panic and anxiety signals, as patients exhibited CO2-inhalation induced panic responses despite bilateral lesions of the amygdala. This paradoxical observation has raised the possibility that cortical circuits may underlie these responses. We sought to examine these divergent models by comparing in vivo brain activation in unstressed and chronically-stressed rats breathing CO2. Regional cerebral blood flow measurements using functional Magnetic Resonance Imaging (fMRI) in lightly-anaesthetized rats showed especially strong activation of the somatosensory cortex by CO2 inhalation in the unstressed group. Strikingly, prior exposure to chronic stress occluded this effect on cortical activity. This lends support to recent clinical observations and highlights the importance of looking beyond the traditional focus on limbic structures, such as the hippocampus and amygdala, to investigate a role for cortical areas in panic and anxiety in humans.
Collapse
Affiliation(s)
| | - Christian M Kerskens
- Trinity College Institute of Neuroscience, Trinity College Dublin Dublin, Ireland
| | - Sumantra Chattarji
- National Center for Biological Sciences, Tata Institute of Fundamental Research Bangalore, India
| | - Shane M O'Mara
- Trinity College Institute of Neuroscience, Trinity College Dublin Dublin, Ireland
| |
Collapse
|
33
|
Quintino-dos-Santos JW, Müller CJT, Bernabé CS, Rosa CA, Tufik S, Schenberg LC. Evidence that the periaqueductal gray matter mediates the facilitation of panic-like reactions in neonatally-isolated adult rats. PLoS One 2014; 9:e90726. [PMID: 24594924 PMCID: PMC3980704 DOI: 10.1371/journal.pone.0090726] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 02/03/2014] [Indexed: 01/22/2023] Open
Abstract
Plenty of evidence suggests that childhood separation anxiety (CSA) predisposes the subject to adult-onset panic disorder (PD). As well, panic is frequently comorbid with both anxiety and depression. The brain mechanisms whereby CSA predisposes to PD are but completely unknown in spite of the increasing evidence that panic attacks are mediated at midbrain's dorsal periaqueductal gray matter (DPAG). Accordingly, here we examined whether the neonatal social isolation (NSI), a model of CSA, facilitates panic-like behaviors produced by electrical stimulations of DPAG of rats as adults. Eventual changes in anxiety and depression were also assessed in the elevated plus-maze (EPM) and forced-swimming test (FST) respectively. Male pups were subjected to 3-h daily isolations from post-natal day 2 (PN2) until weaning (PN21) allotting half of litters in individual boxes inside a sound-attenuated chamber (NSI, n = 26) whilst siblings (sham-isolated rats, SHAM, n = 27) and dam were moved to another box in a separate room. Non-handled controls (CTRL, n = 18) remained undisturbed with dams until weaning. As adults, rats were implanted with electrodes into the DPAG (PN60) and subjected to sessions of intracranial stimulation (PN65), EPM (PN66) and FST (PN67-PN68). Groups were compared by Fisher's exact test (stimulation sites), likelihood ratio chi-square tests (stimulus-response threshold curves) and Bonferroni's post hoc t-tests (EPM and FST), for P<0.05. Notably, DPAG-evoked panic-like responses of immobility, exophthalmus, trotting, galloping and jumping were markedly facilitated in NSI rats relative to both SHAM and CTRL groups. Conversely, anxiety and depression scores either did not change or were even reduced in neonatally-handled groups relative to CTRL, respectively. Data are the first behavioral evidence in animals that early-life separation stress produces the selective facilitation of panic-like behaviors in adulthood. Most importantly, results implicate the DPAG not only in panic attacks but also in separation-anxious children's predispositions to the late development of PD.
Collapse
Affiliation(s)
- Jeyce Willig Quintino-dos-Santos
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, ES, Brazil
- Department of Sports, Federal University of Espírito Santo, Vitória, ES, Brazil
| | | | - Cristie Setúbal Bernabé
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Caroline Azevedo Rosa
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Sérgio Tufik
- Department of Psychobiology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Luiz Carlos Schenberg
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, ES, Brazil
- * E-mail:
| |
Collapse
|
34
|
Quintino-dos-Santos JW, Müller CJT, Santos AMC, Tufik S, Rosa CA, Schenberg LC. Long-lasting marked inhibition of periaqueductal gray-evoked defensive behaviors in inescapably-shocked rats. Eur J Neurosci 2013; 39:275-86. [PMID: 24188077 DOI: 10.1111/ejn.12410] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 10/03/2013] [Accepted: 10/04/2013] [Indexed: 11/28/2022]
Abstract
Clinical evidence suggests that depression and trauma predispose the subject to panic. Accordingly, here we examined the late effects of uncontrollable stress, a presumptive model of depression and/or traumatic disorder, on panic-like behaviors evoked by electrical stimulation of the dorsal periaqueductal gray (DPAG). Changes in anxiety and depression were also assessed in the elevated plus-maze (EPM) and forced-swimming test (FST), respectively. Rats with electrodes in the DPAG were subjected to a 7-day shuttle-box one-way escape yoked training with foot-shocks either escapable (ES) or inescapable (IS). The day after the end of one-way escape training, rats were trained in a two-way escape novel task (test-session) to ascertain the effectiveness of uncontrollable stress. DPAG stimulations were carried out in an open field, both before the escape training and 2 and 7 days after it, and EPM and FST were performed on the 8th and 10th days afterwards, respectively. Controls were either trained with fictive shocks (FS) or subjected to intracranial stimulations only. Although the ES rats performed significantly better than the IS group in the two-way escape task, groups did not differ with respect to either the anxiety or depression scores. Unexpectedly, however, IS rats showed a marked attenuation of DPAG-evoked freezing and flight behaviors relative to both the ES and FS groups, 2 and 7 days after one-way escape training. The conjoint inhibition of passive (freezing) and active (flight) defensive behaviors suggests that IS inhibits a DPAG in-built motivational system that may be implicated in depressed patients' difficulties in coping with daily-life stress.
Collapse
Affiliation(s)
- Jeyce W Quintino-dos-Santos
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Brazil; Department of Sports, Federal University of Espírito Santo, Vitória, Brazil
| | | | | | | | | | | |
Collapse
|
35
|
Casteels C, Gérard N, van Kuyck K, Pottel L, Nuttin B, Bormans G, Van Laere K. Small animal PET imaging of the type 1 cannabinoid receptor in a rodent model for anorexia nervosa. Eur J Nucl Med Mol Imaging 2013; 41:308-21. [PMID: 24006151 DOI: 10.1007/s00259-013-2522-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 07/11/2013] [Indexed: 11/29/2022]
Abstract
PURPOSE Several lines of evidence strongly implicate a dysfunctional endocannabinoid system (ECS) in eating disorders. Using [(18)F]MK-9470 and small animal positron emission tomography (PET), we investigated for the first time cerebral changes in type 1 cannabinoid (CB1) receptor binding in vivo in the activity-based rat model of anorexia (ABA), in comparison to distinct motor- and food-related control conditions and in relation to gender and behavioural variables. METHODS In total, experiments were conducted on 80 Wistar rats (23 male and 57 female). Male rats were assigned to the cross-sectional conditions: ABA (n = 12) and CONTROL (n = 11), whereas female rats were divided between two settings: (1) a cross-sectional design using ABA (n = 13), CONTROL (n = 9), and two extra control conditions for each of the variables manipulated in ABA, i.e. DIET (n = 8) and WHEEL (n = 9), and (2) a longitudinal one using ABA (n = 10) and CONTROL (n = 8) studied at baseline, during the model and upon recovery. The ABA group was subjected to food restriction in the presence of a running wheel, the DIET group to food restriction without wheel, the WHEEL group to a normal diet with wheel and CONTROL animals had a normal diet and no running wheel. Parametric CB1 receptor images of each group were spatially normalized to Paxinos space and analysed voxel-wise. RESULTS In the ABA model, absolute [(18)F]MK-9470 binding was significantly increased in all cortical and subcortical brain areas as compared to control conditions (male +67 %; female >51%, all p cluster < 6.3×10(-6)) that normalized towards baseline values after weight gain. Additionally, relative [(18)F]MK-9470 binding was increased in the hippocampus, inferior colliculus and entorhinal cortex of female ABA (+4.6%; p cluster < 1.3×10(-6)), whereas no regional differences were observed in male subjects. Again, relative [(18)F]MK-9470 binding values normalized upon weight gain. CONCLUSION These data point to a widespread transient disturbance of the endocannabinoid transmission, specifically for CB1 receptors in the ABA model. Our data also suggest (1) gender effects on regional CB1 receptor binding in the hippocampus and (2) add further proof to the validity of the ABA model to mimic aspects of human disease.
Collapse
Affiliation(s)
- Cindy Casteels
- Division of Nuclear Medicine, University Hospital and KU Leuven, Herestraat 49 bus 7003, 3000, Leuven, Belgium,
| | | | | | | | | | | | | |
Collapse
|
36
|
Miki K, Yoshimoto M. Reprint of "Sympathetic nerve activity during sleep, exercise, and mental stress". Auton Neurosci 2013; 175:70-5. [DOI: 10.1016/j.autneu.2013.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 12/18/2012] [Accepted: 12/26/2012] [Indexed: 10/27/2022]
|
37
|
Stream-related preferences of inputs to the superior colliculus from areas of dorsal and ventral streams of mouse visual cortex. J Neurosci 2013; 33:1696-705. [PMID: 23345242 DOI: 10.1523/jneurosci.3067-12.2013] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Previous studies of intracortical connections in mouse visual cortex have revealed two subnetworks that resemble the dorsal and ventral streams in primates. Although calcium imaging studies have shown that many areas of the ventral stream have high spatial acuity whereas areas of the dorsal stream are highly sensitive for transient visual stimuli, there are some functional inconsistencies that challenge a simple grouping into "what/perception" and "where/action" streams known in primates. The superior colliculus (SC) is a major center for processing of multimodal sensory information and the motor control of orienting the eyes, head, and body. Visual processing is performed in superficial layers, whereas premotor activity is generated in deep layers of the SC. Because the SC is known to receive input from visual cortex, we asked whether the projections from 10 visual areas of the dorsal and ventral streams terminate in differential depth profiles within the SC. We found that inputs from primary visual cortex are by far the strongest. Projections from the ventral stream were substantially weaker, whereas the sparsest input originated from areas of the dorsal stream. Importantly, we found that ventral stream inputs terminated in superficial layers, whereas dorsal stream inputs tended to be patchy and either projected equally to superficial and deep layers or strongly preferred deep layers. The results suggest that the anatomically defined ventral and dorsal streams contain areas that belong to distinct functional systems, specialized for the processing of visual information and visually guided action, respectively.
Collapse
|
38
|
Defense-like behaviors evoked by pharmacological disinhibition of the superior colliculus in the primate. J Neurosci 2013; 33:150-5. [PMID: 23283329 DOI: 10.1523/jneurosci.2924-12.2013] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Stimulation of the intermediate and deep layers of superior colliculus (DLSC) in rodents evokes both orienting/pursuit (approach) and avoidance/flight (defense) responses (Dean et al., 1989). These two classes of response are subserved by distinct output projections associated with lateral (approach) and medial (defense) DLSC (Comoli et al., 2012). In non-human primates, DLSC has been examined only with respect to orienting/approach behaviors, especially eye movements, and defense-like behaviors have not been reported. Here we examined the profile of behavioral responses evoked by activation of DLSC by unilateral intracerebral infusions of the GABA(A) receptor antagonist, bicuculline methiodide (BIC), in nine freely moving macaques. Across animals, the most consistently evoked behavior was cowering (all animals), followed by increased vocalization and escape-like behaviors (seven animals), and attack of objects (three animals). The effects of BIC were dose-dependent within the range 2.5-14 nmol (threshold dose of 4.6 nmol). The behaviors and their latencies to onset did not vary across different infusion sites within DLSC. Cowering and escape-like behaviors resembled the defense-like responses reported after DLSC stimulation in rats, but in the macaques these responses were evoked from both medial and lateral sites within DLSC. Our findings are unexpected in the context of an earlier theoretical perspective (Dean et al., 1989) that emphasized a preferential role of the primate DLSC for approach rather than defensive responses. Our data provide the first evidence for induction of defense-like behaviors by activation of DLSC in monkeys, suggesting that the role of DLSC in responding to threats is conserved across species.
Collapse
|
39
|
Almeida-Santos AF, Moreira FA, Guimarães FS, Aguiar DC. Role of TRPV1 receptors on panic-like behaviors mediated by the dorsolateral periaqueductal gray in rats. Pharmacol Biochem Behav 2013; 105:166-72. [PMID: 23474373 DOI: 10.1016/j.pbb.2013.02.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 02/18/2013] [Accepted: 02/23/2013] [Indexed: 12/23/2022]
Abstract
The transient receptors potential vanilloid type 1 channels (TRPV1) are expressed in several brain regions related to defensive behaviors, including the dorsolateral periaqueductal gray (dlPAG). The endocannabinoid anandamide, in addition to its agonist activity at cannabinoid type 1 (CB1), is also proposed as an endogenous agonist of these receptors, through which it could facilitate anxiety-like responses. The aim of this work was to test the hypothesis that TRPV1 in the dlPAG of rats would mediate panic-like responses in two models, namely the escape responses induced by chemical stimulation of this structure or by exposure to the elevated T-Maze (ETM). Antagonism of TRPV1 with capsazepine injected into the dlPAG reduced the defense response induced by local NMDA-injection, suggesting an anti-aversive effect. In the ETM, capsazepine inhibited escape response, suggesting a panicolytic-like effect. Interestingly, this effect was prevented by a CB1 antagonist (AM251). The present study showed that antagonism of TRPV1 in the dlPAG induces panicolytic-like effects, which can be prevented by a CB1 antagonist. Therefore, these antiaversive effects of TRPV1 blockade may ultimately occur due to a predominant action of anandamide through CB1 receptors.
Collapse
Affiliation(s)
- A F Almeida-Santos
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | | | | | | |
Collapse
|
40
|
Sympathetic nerve activity during sleep, exercise, and mental stress. Auton Neurosci 2013; 174:15-20. [DOI: 10.1016/j.autneu.2012.12.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 12/18/2012] [Accepted: 12/26/2012] [Indexed: 11/18/2022]
|
41
|
Baldwin MKL, Kaas JH. Cortical projections to the superior colliculus in prosimian galagos (Otolemur garnetti). J Comp Neurol 2012; 520:2002-20. [PMID: 22173729 DOI: 10.1002/cne.23025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The superior colliculus (SC) is a key structure within the extrageniculate pathway of visual information to cortex and is highly involved in visuomotor functions. Previous studies in anthropoid primates have shown that superficial layers of the SC receive direct inputs from various visual cortical areas such as V1, V2, and middle temporal (MT), while deeper layers receive direct inputs from visuomotor cortical areas within the posterior parietal cortex and the frontal eye fields. Very little is known, however, about the corticotectal projections in prosimian primates. In the current study we investigated the sources of cortical inputs to the SC in prosimian galagos (Otolemur garnetti) using retrograde anatomical tracers placed into the SC. The superficial layers of the SC in galagos received the majority of their inputs from early visual areas and visual areas within the MT complex. Yet, surprisingly, MT itself had relatively few corticotectal projections. Deeper layers of the SC received direct projections from visuomotor areas including the posterior parietal cortex and premotor cortex. However, relatively few corticotectal projections originated within the frontal eye fields. While prosimian galagos resemble other primates in having early visual areas project to the superficial layers of the SC, with higher visuomotor regions projecting to deeper layers, the results suggest that MT and frontal eye field projections to the SC were sparse in early primates, remained sparse in present-day prosimian primates, and became more pronounced in anthropoid primates.
Collapse
Affiliation(s)
- Mary K L Baldwin
- Department of Psychology, Vanderbilt University, Nashville, Tennessee 37240, USA
| | | |
Collapse
|
42
|
Hayes DJ, Northoff G. Common brain activations for painful and non-painful aversive stimuli. BMC Neurosci 2012; 13:60. [PMID: 22676259 PMCID: PMC3464596 DOI: 10.1186/1471-2202-13-60] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 04/18/2012] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Identification of potentially harmful stimuli is necessary for the well-being and self-preservation of all organisms. However, the neural substrates involved in the processing of aversive stimuli are not well understood. For instance, painful and non-painful aversive stimuli are largely thought to activate different neural networks. However, it is presently unclear whether there is a common aversion-related network of brain regions responsible for the basic processing of aversive stimuli. To help clarify this issue, this report used a cross-species translational approach in humans (i.e. meta-analysis) and rodents (i.e. systematic review of functional neuroanatomy). RESULTS Animal and human data combined to show a core aversion-related network, consisting of similar cortical (i.e. MCC, PCC, AI, DMPFC, RTG, SMA, VLOFC; see results section or abbreviation section for full names) and subcortical (i.e. Amyg, BNST, DS, Hab, Hipp/Parahipp, Hyp, NAc, NTS, PAG, PBN, raphe, septal nuclei, Thal, LC, midbrain) regions. In addition, a number of regions appeared to be more involved in pain-related (e.g. sensory cortex) or non-pain-related (e.g. amygdala) aversive processing. CONCLUSIONS This investigation suggests that aversive processing, at the most basic level, relies on similar neural substrates, and that differential responses may be due, in part, to the recruitment of additional structures as well as the spatio-temporal dynamic activity of the network. This network perspective may provide a clearer understanding of why components of this circuit appear dysfunctional in some psychiatric and pain-related disorders.
Collapse
Affiliation(s)
- Dave J Hayes
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, K1Z 7K4, Canada
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, K1Z 7K4, Canada
| |
Collapse
|
43
|
Role of pulmonary stretch receptors and sympathetic system in the inhibition of reflex bradycardia produced by chemical stimulation of the periaqueductal gray matter of the rat. Neuroscience 2012; 210:222-33. [DOI: 10.1016/j.neuroscience.2012.02.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 02/12/2012] [Accepted: 02/22/2012] [Indexed: 11/21/2022]
|
44
|
Miguel TT, Gomes KS, Nunes-de-Souza RL. Contrasting effects of nitric oxide and corticotropin- releasing factor within the dorsal periaqueductal gray on defensive behavior and nociception in mice. Braz J Med Biol Res 2012; 45:299-307. [PMID: 22450373 PMCID: PMC3854172 DOI: 10.1590/s0100-879x2012007500043] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 03/14/2012] [Indexed: 01/28/2024] Open
Abstract
The anxiogenic and antinociceptive effects produced by glutamate N-methyl-D-aspartate receptor activation within the dorsal periaqueductal gray (dPAG) matter have been related to nitric oxide (NO) production, since injection of NO synthase (NOS) inhibitors reverses these effects. dPAG corticotropin-releasing factor receptor (CRFr) activation also induces anxiety-like behavior and antinociception, which, in turn, are selectively blocked by local infusion of the CRF type 1 receptor (CRFr1) antagonist, NBI 27914 [5-chloro-4-(N-(cyclopropyl)methyl-N-propylamino)-2-methyl-6-(2,4,6-trichlorophenyl)aminopyridine]. Here, we determined whether i) the blockade of the dPAG by CRFr1 attenuates the anxiogenic/antinociceptive effects induced by local infusion of the NO donor, NOC-9 [6-(2-hydroxy-1-methyl-2-nitrosohydrazino)-N-methyl-1-hexanamine], and ii) the anxiogenic/antinociceptive effects induced by intra-dPAG CRF are prevented by local infusion of N(ω)-propyl-L-arginine (NPLA), a neuronal NOS inhibitor, in mice. Male Swiss mice (12 weeks old, 25-35 g, N = 8-14/group) were stereotaxically implanted with a 7-mm cannula aimed at the dPAG. Intra-dPAG NOC-9 (75 nmol) produced defensive-like behavior (jumping and running) and antinociception (assessed by the formalin test). Both effects were reversed by prior local infusion of NBI 27914 (2 nmol). Conversely, intra-dPAG NPLA (0.4 nmol) did not modify the anxiogenic/antinociceptive effects of CRF (150 pmol). These results suggest that CRFr1 plays an important role in the defensive behavior and antinociception produced by NO within the dPAG. In contrast, the anxiogenic and antinociceptive effects produced by intra-dPAG CRF are not related to NO synthesis in this limbic midbrain structure.
Collapse
Affiliation(s)
- T T Miguel
- Programa Interinstitucional de Pós-Graduação em Ciências Fisiológicas, Universidade Federal de São Carlos, Araraquara, SP, Brasil
| | | | | |
Collapse
|
45
|
Schimitel F, de Almeida G, Pitol D, Armini R, Tufik S, Schenberg L. Evidence of a suffocation alarm system within the periaqueductal gray matter of the rat. Neuroscience 2012; 200:59-73. [DOI: 10.1016/j.neuroscience.2011.10.032] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 10/14/2011] [Accepted: 10/17/2011] [Indexed: 10/15/2022]
|
46
|
Cortico-subcortical visual, somatosensory, and motor activations for perceiving dynamic whole-body emotional expressions with and without striate cortex (V1). Proc Natl Acad Sci U S A 2011; 108:16188-93. [PMID: 21911384 DOI: 10.1073/pnas.1107214108] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Patients with striate cortex damage and clinical blindness retain the ability to process certain visual properties of stimuli that they are not aware of seeing. Here we investigated the neural correlates of residual visual perception for dynamic whole-body emotional actions. Angry and neutral emotional whole-body actions were presented in the intact and blind visual hemifield of a cortically blind patient with unilateral destruction of striate cortex. Comparisons of angry vs. neutral actions performed separately in the blind and intact visual hemifield showed in both cases increased activation in primary somatosensory, motor, and premotor cortices. Activations selective for intact hemifield presentation of angry compared with neutral actions were located subcortically in the right lateral geniculate nucleus and cortically in the superior temporal sulcus, prefrontal cortex, precuneus, and intraparietal sulcus. Activations specific for blind hemifield presentation of angry compared with neutral actions were found in the bilateral superior colliculus, pulvinar nucleus of the thalamus, amygdala, and right fusiform gyrus. Direct comparison of emotional modulation in the blind vs. intact visual hemifield revealed selective activity in the right superior colliculus and bilateral pulvinar for angry expressions, thereby showing a selective involvement of these subcortical structures in nonconscious visual emotion perception.
Collapse
|
47
|
Miguel TT, Nunes-de-Souza RL. Anxiogenic and antinociceptive effects induced by corticotropin-releasing factor (CRF) injections into the periaqueductal gray are modulated by CRF1 receptor in mice. Horm Behav 2011; 60:292-300. [PMID: 21723867 DOI: 10.1016/j.yhbeh.2011.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 06/04/2011] [Accepted: 06/08/2011] [Indexed: 11/28/2022]
Abstract
Chemical or electrical stimulation of the dorsal portion of the midbrain periaqueductal gray (dPAG) produces anxiogenic and antinociceptive effects. In rats, chemical stimulation of dPAG by local infusion of the neuropeptide corticotropin-releasing factor (CRF) provokes anxiogenic effects in the elevated plus-maze test (EPM). CRF also produces antinociception when injected intracerebroventricularly in rats, however it remains unclear whether this response is also observed following CRF injection into the dPAG in mice. Yet, given that there are CRF1 and CRF2 receptor subtypes within the PAG, it is important to show in which receptor subtypes CRF exert its anxiogenic and antinociceptive effects in the dPAG. Here, we investigated the role of these receptors in the anxiogenic (assessed in the EPM) and antinociceptive (assessed by the Formalin test: 2.5% formalin injection into the right hind paw) effects following intra-dPAG infusion of CRF in mice. The results show that intra-dPAG injections of CRF (75 pmol/0.1μl and 150 pmol/0.2 μl) produced dose-dependent anxiogenic and antinociceptive effects. In addition, local infusion of NBI 27914 (5-chloro-4-(N-(cyclopropyl)methyl-N-propylamino)-2-methyl-6-(2,4,6-trichlorophenyl)-aminopyridine; 2 nmol/0.2 μl), a CRF1 receptor antagonist, completely blocked both the anxiogenic and antinociceptive effects induced by local infusion of CRF, while that of antisauvagine 30 (ASV30; 1nmol/0.2μl), a CRF2 receptor antagonist, did not alter the CRF effects. Present results are suggestive that CRF1 (but not CRF2) receptors play a crucial role in the anxiogenic and antinociceptive effects induced by CRF in the dPAG in mice.
Collapse
Affiliation(s)
- Tarciso Tadeu Miguel
- Programa Interinstitucional de Pós-Graduação em Ciências Fisiológicas, Universidade Federal de São Carlos e Universidade Estadual Paulista (UFSCar & Unesp), Araraquara, SP, 14801-902, Brazil
| | | |
Collapse
|
48
|
Liu YJ, Wang Q, Li B. Neuronal responses to looming objects in the superior colliculus of the cat. BRAIN, BEHAVIOR AND EVOLUTION 2011; 77:193-205. [PMID: 21546772 DOI: 10.1159/000327045] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 03/02/2011] [Indexed: 11/19/2022]
Abstract
The superior colliculus (SC) in the mammalian mesencephalon is involved in avoidance or escape behaviors, but little is known about the response properties of collicular neurons to an object approaching on a collision course towards the animal. The present study identified two classes of looming-sensitive neurons, rho and eta cells, in the SC of the cat, but did not find any tau cell, which has been observed in the pigeon tectofugal pathway. The looming responses were characterized by distinct firing patterns, in which the neuronal discharge steadily increased as the object was approaching, and peaked approximately at the time of collision (rho cell) or some time earlier (eta cell). The response onset time of both rho and eta cells was linearly related to the square root of the diameter/velocity ratio of looming objects; whereas for eta cells, the response peak time was linearly related to the diameter/velocity ratio. The receptive fields of these collicular cells were composed of an excitatory center and a suppressive surround, but the occurrence and development of neuronal responses to looming stimuli were independent of the receptive-field organization. Although the cell number was relatively small in the deep layers of the SC, the proportion of looming-sensitive neurons was close to that in the superficial layers. These results suggest that a population of collicular cells is involved in signaling impending collision of a looming object with the animal and the neural mechanisms underlying the collision avoidance behaviors are to some extent conservative across species from insects to mammals.
Collapse
Affiliation(s)
- Yong-Jun Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | | |
Collapse
|
49
|
Stone E, Coote JH, Allard J, Lovick TA. GABAergic control of micturition within the periaqueductal grey matter of the male rat. J Physiol 2011; 589:2065-78. [PMID: 21486804 PMCID: PMC3090604 DOI: 10.1113/jphysiol.2010.202614] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/16/2010] [Accepted: 02/15/2011] [Indexed: 01/23/2023] Open
Abstract
In urethane-anaesthetised rats continuous infusion of saline into the bladder (6 ml h⁻¹) evoked periodic sharp rises in intravesicular pressure accompanied by rhythmic bursting of external urethral sphincter (EUS) EMG and expulsion of urine from the urethral meatus. Microinjection of the GABA agonist muscimol (250 pmol) into the caudal ventrolateral periaqueductal grey (PAG), but not at other sites in the PAG, either depressed reflex voiding frequency (-60%, n = 7) and tonic EUS EMG activity (-38%, n = 6) or completely inhibited voiding (four sites). Microinjection of the GABA antagonist bicuculline (BIC; 1 nmol) into the same region, to reduce ongoing GABA tone, increased reflex voiding frequency (+467%, n = 16) and tonic activity in the EUS (+56%, n = 7) whilst bursting activity in the EUS became desynchronised. Although muscimol failed to change reflex micturition when microinjected into the dorsal caudal PAG, microinjection of BIC at these sites evoked pronounced autonomic arousal and increased reflex voiding frequency (+237%, n = 34). The results demonstrate that the functional integrity of synapses in the caudal ventrolateral PAG is essential to permit micturition. Transmission through the region is normally regulated by a tonic GABAergic inhibitory influence. In contrast, the functional integrity of the dorsal caudal PAG is not essential for reflex micturition. However, micturition may be initiated from this region via projections to the caudal ventrolateral PAG, as part of the behavioural response to psychological threat or other stressful stimuli.
Collapse
Affiliation(s)
- E Stone
- School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK
| | | | | | | |
Collapse
|
50
|
Shafei MN, Nasimi A. Effect of glutamate stimulation of the cuneiform nucleus on cardiovascular regulation in anesthetized rats: role of the pontine Kolliker-Fuse nucleus. Brain Res 2011; 1385:135-43. [PMID: 21349254 DOI: 10.1016/j.brainres.2011.02.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 02/13/2011] [Accepted: 02/14/2011] [Indexed: 02/07/2023]
Abstract
Cuneiform nucleus (CnF) is a reticular nucleus of the midbrain involved in cardiovascular function and stress. There is no report on the cardiovascular effects of the glutamatergic system in the CnF. In the present study, we investigated the cardiovascular effects of glutamate and its NMDA and AMPA/kainate receptors in the CnF. In addition, the possible mediation of Kolliker-Fuse (KF) nucleus in the cardiovascular effects of the CnF was explored. l-glutamate, AP5 (an NMDA receptor antagonist), and CNQX (an AMPA/kainate receptor antagonist) (50-100 nl) were microinjected into the CnF of anesthetized rats. Also, the KF was blocked by cobalt chloride (CoCl(2)) then l-glutamate was microinjected into the CnF. The maximum changes of blood pressure and heart rate were compared with the pre-injection (paired t-test) and control (independent t-test) values. Microinjection of glutamate (25 nmol/100 nl) into the CnF produced either a short pressor and bradycardic or a long pressor and tachycardic responses. Microinjection of AP5 or CNQX alone did not affect the basal arterial pressure and heart rate. However, co-injection of glutamate with AP5 strongly attenuated the short and moderately attenuated the long cardiovascular responses elicited by glutamate. Co-injection of glutamate with CNQX did not attenuate the short and weakly attenuated the long cardiovascular responses elicited by glutamate. These data suggest that the responses are mediated mainly through NMDA receptors. Blockade of the KF nucleus strongly attenuated the short response and weakly attenuated the long response to glutamate microinjection, suggesting that the cardiovascular effects of glutamate in the CnF, especially the short responses, were mediated by the KF nucleus.
Collapse
|