1
|
Rastelli C, Greco A, Finocchiaro C, Penazzi G, Braun C, De Pisapia N. Neural dynamics of semantic control underlying generative storytelling. Commun Biol 2025; 8:513. [PMID: 40155709 PMCID: PMC11953393 DOI: 10.1038/s42003-025-07913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 03/10/2025] [Indexed: 04/01/2025] Open
Abstract
Storytelling has been pivotal for the transmission of knowledge across human history, yet the role of semantic control and its associated neural dynamics has been poorly investigated. Here, human participants generated stories that were either appropriate (ordinary), novel (random), or balanced (creative), while recording functional magnetic resonance imaging (fMRI). Deep language models confirmed participants adherence to task instructions. At the neural level, linguistic and visual areas exhibited neural synchrony across participants regardless of the semantic control level, with parietal and frontal regions being more synchronized during random ideation. Importantly, creative stories were differentiated by a multivariate pattern of neural activity in frontal and fronto-temporo-parietal cortices compared to ordinary and random stories. Crucially, similar brain regions were also encoding the features that distinguished the stories. Moreover, we found specific spatial frequency patterns underlying the modulation of semantic control during story generation, while functional coupling in default, salience, and control networks differentiated creative stories with their controls. Remarkably, the temporal irreversibility between visual and high-level areas was higher during creative ideation, suggesting the enhanced hierarchical structure of causal interactions as a neural signature of creative storytelling. Together, our findings highlight the neural mechanisms underlying the regulation of semantic exploration during narrative ideation.
Collapse
Affiliation(s)
- Clara Rastelli
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy.
- MEG Center, University of Tübingen, Tübingen, Germany.
- Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.
| | - Antonino Greco
- MEG Center, University of Tübingen, Tübingen, Germany
- Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Chiara Finocchiaro
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
| | - Gabriele Penazzi
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
| | - Christoph Braun
- MEG Center, University of Tübingen, Tübingen, Germany
- Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Nicola De Pisapia
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy.
| |
Collapse
|
2
|
Yang H, Gu S, Sun H, Zhang F, Dai Z, Pan P. Neural network localization in Parkinson's disease with impulse control disorders. Front Aging Neurosci 2025; 17:1549589. [PMID: 40224960 PMCID: PMC11985847 DOI: 10.3389/fnagi.2025.1549589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/17/2025] [Indexed: 04/15/2025] Open
Abstract
Background There is a huge heterogeneity of magnetic resonance imaging findings in Parkinson's disease (PD) with impulse control disorders (ICDs) studies. Here, we hypothesized that brain regions identified by structural and functional imaging studies of PD with ICDs could be reconciled in a common network. Methods In this study, an initial systematic literature review was conducted to collect and evaluate whole-brain functional and structural magnetic resonance imaging studies related to PD with ICDs. We subsequently utilized the Human Connectome Project (HCP) dataset (n = 1,093) and a novel functional connectivity network mapping (FCNM) technique to identify a common brain network affected in PD with ICDs. Results A total of 19 studies with 25 contrasts, incorporating 345 individuals with PD and ICDs, and 787 individuals with PD without ICDs were included in the analysis. By using the HCP dataset and a novel FCNM technique, we ultimately identified that the aberrant neural networks predominantly involve the default mode network (middle and inferior temporal gyrus, anterior cingulate cortex, angular gyrus) and subcortical network (caudate nucleus). Conclusion This study suggests that the heterogeneous neuroimaging findings in PD with ICDs can be attributed to shared abnormalities in the default mode and subcortical networks. These dysfunctions are associated with impaired self-regulation, decision-making, and heightened impulsivity in PD with ICDs. Our findings integrate diverse neuroimaging results from previous studies, providing a clearer understanding of the neurobiological mechanisms underlying PD with ICDs at a network level.
Collapse
Affiliation(s)
- Hucheng Yang
- Department of Radiology, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, China
- Department of Radiology, Binhai Maternal and Child Health Hospital, Yancheng, China
| | - Siyu Gu
- Department of Radiology, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, China
| | - Haihua Sun
- Department of Neurology, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, China
| | - Fengmei Zhang
- Department of Radiology, Binhai Maternal and Child Health Hospital, Yancheng, China
| | - Zhenyu Dai
- Department of Radiology, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, China
| | - Pinglei Pan
- Department of Neurology, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, China
| |
Collapse
|
3
|
Zhou L, Xu T, Feng T. The hippocampus-IPL connectivity links to ADHD traits through sensory processing sensitivity. Cereb Cortex 2025; 35:bhaf063. [PMID: 40103362 DOI: 10.1093/cercor/bhaf063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/20/2025] Open
Abstract
Accumulating evidence suggests that individuals with high sensory processing sensitivity often experience sensory overload and have difficulty sustaining attention, which can particularly resemble attention deficit symptoms of attention-deficit/hyperactivity disorder. However, due to the lack of understanding about the potential neural pathways involved in those processes, a comprehensive view of how sensory processing sensitivity and attention deficit are related is generally limited. Here, we quantified the sensory processing sensitivity and attention deficit using the Highly Sensitive Person Scale and the Adult Attention-deficit/Hyperactivity Disorder Self-Report Scale, respectively, to investigate the association between sensory processing sensitivity and attention deficit and further identify the corresponding neural substrates via the use of resting-state functional Magnetic Resonance Imaging (fMRI) analyses. On the behavioral level, the results indicated a significantly positive correlation between sensory processing sensitivity and attention deficit traits, while on the neural level, the sensory processing sensitivity score was positively correlated with functional connectivity between the rostral hippocampus and inferior parietal lobule, which is the core regions of the attention network. Mediation analysis revealed that hippocampus-Inferior Parietal Lobule (IPL) connectivity can further influence attention deficit through a mediating role of sensory processing sensitivity. Overall, these findings suggest that enhanced functional coupling between the hippocampus and attention network regions may heighten sensitivity to environmental stimuli, leading to increased distractibility and potentially contributing to attention deficit.
Collapse
Affiliation(s)
- Liyu Zhou
- Faculty of Psychology, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, China
| | - Ting Xu
- Faculty of Psychology, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, China
- Key Laboratory of Cognition and Personality, Ministry of Education, No. 2, Tiansheng Road, Beibei, Chongqing 400715, China
| | - Tingyong Feng
- Faculty of Psychology, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, China
- Key Laboratory of Cognition and Personality, Ministry of Education, No. 2, Tiansheng Road, Beibei, Chongqing 400715, China
| |
Collapse
|
4
|
Rafi H, Samson JL, Rudloff JB, Poznyak E, Gauthey M, Perroud N, Debbané M. Attention and emotion in adolescents with ADHD; a time-varying functional connectivity study. J Affect Disord 2025; 372:86-95. [PMID: 39551190 DOI: 10.1016/j.jad.2024.11.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 11/04/2024] [Accepted: 11/10/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND This study assessed adolescent brain-behavior relationships between large-scale dynamic functional network connectivity (FNC) and an integrated attention-deficit/hyperactivity disorder (ADHD) phenotype, including measures of inattention, impulsivity/hyperactivity and emotional dysregulation. Despite emotion dysregulation being a core clinical feature of ADHD, studies rarely assess its impact on large-scale FNC. METHODS We conducted resting-state functional magnetic resonance imaging in 78 adolescents (34 with ADHD) and obtained experimental and self-reported measures of inattention, impulsivity/hyperactivity, and emotional reactivity. We used multivariate analyses to evaluate group differences in dynamic FNC between the default mode, salience and central executive networks, meta-state functional connectivity and ADHD symptomology. RESULTS We present two significant group*behavior effects. Compared to controls, adolescents with ADHD had 1) diminished salience network-centered dynamic FNC that was driven by an integrated ADHD phenotype (p < .004, r = 0.57) and 2) more variable patterns of global connectivity, as measured through meta-state analysis, which were driven by heightened emotional reactivity (p < .002, r = 0.63). CONCLUSIONS Atypical patterns of dynamic FNC in adolescents with ADHD are associated with the affective and cognitive components of ADHD symptomology. Limitations include sample size and self-reported measures of emotional reactivity.
Collapse
Affiliation(s)
- Halima Rafi
- Developmental Clinical Psychology Research Unit, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland; Developmental Neuroimaging and Psychopathology Laboratory, Department of Psychiatry, University of Geneva, Geneva, Switzerland.
| | - Jessica Lee Samson
- Developmental Clinical Psychology Research Unit, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland; Developmental Neuroimaging and Psychopathology Laboratory, Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Juan Barrios Rudloff
- Developmental Clinical Psychology Research Unit, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland; Developmental Neuroimaging and Psychopathology Laboratory, Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Elena Poznyak
- Developmental Clinical Psychology Research Unit, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland; Developmental Neuroimaging and Psychopathology Laboratory, Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Melissa Gauthey
- Developmental Clinical Psychology Research Unit, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland; Developmental Neuroimaging and Psychopathology Laboratory, Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Nader Perroud
- Service of psychiatric specialties, Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Martin Debbané
- Developmental Clinical Psychology Research Unit, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland; Developmental Neuroimaging and Psychopathology Laboratory, Department of Psychiatry, University of Geneva, Geneva, Switzerland; Research Department of Clinical, Educational & Health Psychology, University College London, London, United Kingdom
| |
Collapse
|
5
|
Watters H, Davis A, Fazili A, Daley L, LaGrow TJ, Schumacher EH, Keilholz S. Infraslow Dynamic Patterns in Human Cortical Networks Track a Spectrum of External to Internal Attention. Hum Brain Mapp 2025; 46:e70049. [PMID: 39980439 PMCID: PMC11843030 DOI: 10.1002/hbm.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 02/22/2025] Open
Abstract
Early efforts to understand the human cerebral cortex focused on localization of function, assigning functional roles to specific brain regions. More recent evidence depicts the cortex as a dynamic system, organized into flexible networks with patterns of spatiotemporal activity corresponding to attentional demands. In functional MRI (fMRI), dynamic analysis of such spatiotemporal patterns is highly promising for providing non-invasive biomarkers of neurodegenerative diseases and neural disorders. However, there is no established neurotypical spectrum to interpret the burgeoning literature of dynamic functional connectivity from fMRI across attentional states. In the present study, we apply dynamic analysis of network-scale spatiotemporal patterns in a range of fMRI datasets across numerous tasks including a left-right moving dot task, visual working memory tasks, congruence tasks, multiple resting state datasets, mindfulness meditators, and subjects watching TV. We find that cortical networks show shifts in dynamic functional connectivity across a spectrum that tracks the level of external to internal attention demanded by these tasks. Dynamics of networks often grouped into a single task positive network show divergent responses along this axis of attention, consistent with evidence that definitions of a single task positive network are misleading. Additionally, somatosensory and visual networks exhibit strong phase shifting along this spectrum of attention. Results were robust on a group and individual level, further establishing network dynamics as a potential individual biomarker. To our knowledge, this represents the first study of its kind to generate a spectrum of dynamic network relationships across such an axis of attention.
Collapse
Affiliation(s)
- Harrison Watters
- Emory Neuroscience Graduate ProgramEmory UniversityAtlantaGeorgiaUSA
| | - Aleah Davis
- Agnes Scott CollegeDecaturGeorgiaUSA
- School of PsychologyGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Abia Fazili
- Emory Neuroscience Graduate ProgramEmory UniversityAtlantaGeorgiaUSA
| | - Lauren Daley
- School of PsychologyGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - T. J. LaGrow
- School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | | | - Shella Keilholz
- Department of Biomedical EngineeringEmory University/Georgia Institute of TechnologyAtlantaGeorgiaUSA
| |
Collapse
|
6
|
Xin X, Gu S, Wang C, Gao X. Abnormal brain entropy dynamics in ADHD. J Affect Disord 2025; 369:1099-1107. [PMID: 39442707 DOI: 10.1016/j.jad.2024.10.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/04/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Brain entropy (BEN) is a novel measure for irregularity and complexity of brain activities, which has been used to characterize abnormal brain activities in many brain disorders including attention-deficit/hyperactivity disorder (ADHD). While most research assumes BEN is stationary during scan sessions, the brain in resting state is also a highly dynamic system. The BEN dynamics in ADHD has not been explored. METHODS We used a sliding window approach to derive the dynamical brain entropy (dBEN) from resting-state functional magnetic resonance imaging (rfMRI) dataset that includes 98 ADHD patients and 111 healthy controls (HCs). We identified 3 reoccurring BEN states. We tested whether the BEN dynamics differ between ADHD and HC, and whether they are associated with ADHD symptom severity. RESULTS One BEN states, characterized by low overall BEN and low within-state BEN located in SMN (sensorimotor network) and VN (visual network), its FW (fractional window) and MDT (mean dwell time) were increased in ADHD and positively correlated with ADHD severity; another state characterized by high overall BEN and low within-state BEN located in DMN (default mode network) and ECN (executive control network), its FW and MDT were decreased in ADHD and negatively correlated with ADHD severity. LIMITATIONS The window length of dBEN analysis can be further optimized to suit more datasets. The co-variation between dBEN and other dynamical brain metrics was not explored. CONCLUSION Our findings revealed abnormal BEN dynamics in ADHD, providing new insights into clinical diagnosis and neuropathology of ADHD.
Collapse
Affiliation(s)
- Xiaoyang Xin
- Preschool College, Luoyang Normal University, Luoyang 471000, China; Center for Psychological Sciences, Zhejiang University, Hangzhou 310027, China
| | - Shuangshuang Gu
- Center for Psychological Sciences, Zhejiang University, Hangzhou 310027, China
| | - Cuiping Wang
- Preschool College, Luoyang Normal University, Luoyang 471000, China
| | - Xiaoqing Gao
- Center for Psychological Sciences, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
7
|
Koirala S, Grimsrud G, Mooney MA, Larsen B, Feczko E, Elison JT, Nelson SM, Nigg JT, Tervo-Clemmens B, Fair DA. Neurobiology of attention-deficit hyperactivity disorder: historical challenges and emerging frontiers. Nat Rev Neurosci 2024; 25:759-775. [PMID: 39448818 DOI: 10.1038/s41583-024-00869-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 10/26/2024]
Abstract
Extensive investigations spanning multiple levels of inquiry, from genetic to behavioural studies, have sought to unravel the mechanistic foundations of attention-deficit hyperactivity disorder (ADHD), with the aspiration of developing efficacious treatments for this condition. Despite these efforts, the pathogenesis of ADHD remains elusive. In this Review, we reflect on what has been learned about ADHD while also providing a framework that may serve as a roadmap for future investigations. We emphasize that ADHD is a highly heterogeneous disorder with multiple aetiologies that necessitates a multifactorial dimensional phenotype, rather than a fixed dichotomous conceptualization. We highlight new findings that suggest a more brain-wide, 'global' view of the disorder, rather than the traditional localizationist framework, which asserts that a limited set of brain regions or networks underlie ADHD. Last, we underscore how underpowered studies that have aimed to associate neurobiology with ADHD phenotypes have long precluded the field from making progress. However, a new age of ADHD research with refined phenotypes, advanced methods, creative study designs and adequately powered investigations is beginning to put the field on a good footing. Indeed, the field is at a promising juncture to advance the neurobiological understanding of ADHD and fulfil the promise of clinical utility.
Collapse
Affiliation(s)
- Sanju Koirala
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Gracie Grimsrud
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Michael A Mooney
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, USA
- Departments of Psychiatry, Oregon Health & Science University, Portland, OR, USA
- Center for Mental Health Innovation, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Bart Larsen
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Eric Feczko
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Jed T Elison
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Steven M Nelson
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Joel T Nigg
- Departments of Psychiatry, Oregon Health & Science University, Portland, OR, USA
- Center for Mental Health Innovation, Oregon Health & Science University, Portland, OR, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Brenden Tervo-Clemmens
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Damien A Fair
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA.
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA.
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
8
|
Zhang Y, Duan M, He H. Deficient salience and default mode functional integration in high worry-proneness subject: a connectome-wide association study. Brain Imaging Behav 2024; 18:1560-1568. [PMID: 39382787 DOI: 10.1007/s11682-024-00951-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
Worry has been conceptualized as a relatively uncontrollable chain of thought that increases the risk of mental problems, such as anxiety disorders. Here, we examined the link between individual variation in the functional connectome and worry proneness, which remains unclear. A total of 32 high worry-proneness (HWP) subjects and 25 low worry-proneness (LWP) subjects were recruited. We conducted multivariate distance-based matrix regression to identify phenotypic relationships in high-dimensional brain resting-state functional connectivity data from HWP subjects. Multiple hub regions, including key brain nodes of the salience network (SN) and default mode network (DMN), were identified in HWP subjects. Follow-up analyses revealed that a high worry-proneness score was dominated by functional connectivity between the SN and the DMN. Moreover, HWP subjects showed hypoconnectivity between the cerebellum and the SN and DMN compared with LWP subjects. This cross-sectional study could not fully measure the causal relationships between changes in functional networks and worry proneness in healthy subjects. Functional changes in the cerebellum-cortical region might affect the modulation of external stimuli processing. Together, our results provide new insight into the role of key networks, including the SN, DMN and cerebellum, in understanding the potential mechanism underlying the high worry dimension in healthy subjects.
Collapse
Affiliation(s)
- Youxue Zhang
- School of Education and Psychology, Chengdu Normal University, Chengdu, 611130, China
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Mingjun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Hui He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China.
| |
Collapse
|
9
|
Joseph HM, Santosa H, Fisher N, Huppert T, Morgan JK. Greater Frontoparietal Connectivity During Task Engagement Among Toddlers With Parent-Reported Inattention. Dev Psychobiol 2024; 66:e22546. [PMID: 39236228 PMCID: PMC11463914 DOI: 10.1002/dev.22546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/26/2024] [Accepted: 08/18/2024] [Indexed: 09/07/2024]
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder with lifelong impairments. ADHD-related behaviors have been observed as early as toddlerhood for children who later develop ADHD. Children with ADHD have disrupted connectivity in neural circuitry involved in executive control of attention, including the prefrontal cortex (PFC) and dorsal attention network (DAN). It is not known if these alterations in connectivity can be identified before the onset of ADHD. Children (N = 51) 1.5-3 years old were assessed using functional near-infrared spectroscopy while engaging with a book. The relation between mother-reported ADHD-related behaviors and neural connectivity, computed using robust innovation-based correlation, was examined. Task engagement was high across the sample and unrelated to ADHD-related behaviors. Observed attention was associated with greater connectivity between the right lateral PFC and the right temporal parietal junction (TPJ). Children with greater ADHD-related behaviors had greater frontoparietal connectivity, particularly between the PFC bilaterally and the right TPJ. Toddlers at risk for developing ADHD may require increased frontoparietal connectivity to sustain attention. Future work is needed to examine early interventions that enhance developing attention and their effect on neural connectivity between the PFC and attention networks.
Collapse
Affiliation(s)
- Heather M. Joseph
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA
| | - Hendrik Santosa
- University of Pittsburgh, Department of Radiology, Pittsburgh, PA
| | - Nadiyah Fisher
- University of Pittsburgh, Department of Neuroscience, Pittsburgh, PA
| | - Theodore Huppert
- University of Pittsburgh School of Medicine, Department of Electrical and Computer Engineering, Pittsburgh, PA
| | - Judith K. Morgan
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA
- University of Pittsburgh, Department of Psychology, Pittsburgh, PA
| |
Collapse
|
10
|
Mitchell ME, Nugiel T. Puberty interacts with sleep and brain network organization to predict mental health. Front Hum Neurosci 2024; 18:1379945. [PMID: 39398321 PMCID: PMC11466844 DOI: 10.3389/fnhum.2024.1379945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/30/2024] [Indexed: 10/15/2024] Open
Abstract
Introduction Along with pubertal development, the transition to adolescence brings about increased risk for sleep disturbances and mental health problems. Functional connectivity of overlapping large-scale brain networks, such as increased connectivity between the default mode and dorsal attention networks, has been reported to relate to both sleep and mental health problems. Clarifying whether pubertal development interacts with sleep disturbances and functional brain networks to predict mental health may provide information to improve the timing and design of interventions targeting sleep disturbances in adolescents. Methods To examine how pubertal status and tempo relate to sleep disturbances and shape the relationship between sleep disturbances and mental health problems, we harnessed a large sample of children aged 10-14 years from the Adolescent Brain and Cognitive Development (ABCD) Study (N ~ 3,000-10,000). We used graph theoretical tools to probe how pubertal development concurrently interacts with sleep disturbances and brain network organization to predict mental health problems. Results We found that advanced pubertal status, but not pubertal tempo, predicted sleep disturbances; however, both pubertal status and tempo interact with sleep disturbances to predict mental health problems and engage in three-way interactions with sleep and brain network organization to predict mental health problems. Discussion Overall, this work suggests that less advanced pubertal status and slower tempo are risk factors for the strongest links between sleep disturbances, brain organization, and mental health problems. Further, our findings speak to the importance of accounting for interactions in the constellation of factors that surround complex behavioral and clinical syndromes, here internalizing and externalizing disorders, and provide new context to consider for targeted interventions.
Collapse
Affiliation(s)
- Mackenzie E. Mitchell
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Tehila Nugiel
- Department of Psychology, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
11
|
Bednarek L, Glover S, Ma X, Pittenger C, Pushkarskaya H. Externally orienting cues improve cognitive control in OCD. J Behav Ther Exp Psychiatry 2024; 84:101959. [PMID: 38531125 PMCID: PMC11192454 DOI: 10.1016/j.jbtep.2024.101959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/31/2023] [Accepted: 03/01/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND AND OBJECTIVES An executive overload model of obsessive-compulsive disorder (OCD) posits that broad difficulties with executive functioning in OCD result from an overload on the executive system by obsessive thoughts. It implies that, if individuals with OCD "snap out" of their obsessive thoughts, their performance on neurocognitive tasks will improve. METHODS We test this prediction using the revised Attention Network Test, ANT-R, and distinct subsamples of data from unmedicated OCD and healthy controls (HC). ANT-R includes Simon and Flanker tasks; in both, incongruent trials take longer to resolve ('conflict costs'). On some trials, a warning cue helps participants to respond faster ('alerting benefits'). In OCD (N = 34) and HC (N = 46), matched on age, IQ, and sex, we tested (1) the effect of OCD on alerting benefits, and (2) the effect of OCD on warning cue related reductions in conflict costs. In a distinct subsample of OCD (N = 32) and HC (N = 51), we assessed whether alerting benefits and cue-related reductions in conflict costs are associated differently with different OCD symptoms. RESULTS A warning cue can help individuals with OCD more than HC to improve performance on Simon and Flanker tasks. This effect is positively associated with severity of contamination symptoms. LIMITATIONS This study did not directly assess how distracted participants are by obsessive thoughts. It relied on the ANT-R subtraction measures. Symptom severity was assessed using self-report measures. CONCLUSIONS Difficulties in resolving conflict during decision-making in OCD can be modulated by a warning cue presented immediately before an attentional task.
Collapse
Affiliation(s)
- Lora Bednarek
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - Stephanie Glover
- PGSP-Stanford PsyD Consortium, Palo Alto University, Palo Alto, CA, United States
| | - Xiao Ma
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - Christopher Pittenger
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States; Department of Psychology, Yale University, New Haven, CT, United States; Yale Child Study Center, Yale School of Medicine, New Haven, CT, United States; Wu Tsai Institute, Yale University, New Haven, CT, United States; Yale Center for Brain and Mind Health, Yale School of Medicine, New Haven, CT, United States
| | - Helen Pushkarskaya
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States.
| |
Collapse
|
12
|
Göttlich M, Chatterjee K, Moran C, Heldmann M, Rogge B, Cirkel A, Brabant G, Münte TF. Altered brain functional connectivity in patients with resistance to thyroid hormone ß. PLoS One 2024; 19:e0306538. [PMID: 39172991 PMCID: PMC11341041 DOI: 10.1371/journal.pone.0306538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 06/19/2024] [Indexed: 08/24/2024] Open
Abstract
To investigate changes in brain network organization and possible neurobehavioral similarities to attention-deficit hyperactivity disorder (ADHD), we measured changes in brain resting-state functional connectivity (rs-fMRI) and cognitive domains in patients with resistance to thyroid hormone β (RTHβ) and compared them with those in healthy control subjects. In this prospective case-control study, twenty-one participants with genetically confirmed RTHβ were matched with 21 healthy controls. The Adult ADHD Self-Report Scale (ASRS-v1.1) and ADHD Rating Scale-IV were used to assess self-reported symptoms of ADHD. A voxel-wise and atlas-based approach was used to identify changes in the brain networks. The RTHβ group reported behavioral symptoms similar to those of ADHD. We found evidence of weaker network integration of the lingual and fusiform gyri in the RTHβ group, which was mainly driven by weaker connectivity to the bilateral insula and supplementary motor cortex. Functional connectivity between regions of the default mode network (angular gyrus/middle temporal gyrus) and regions of the cognitive control network (bilateral middle frontal gyrus) was increased in RTHβ patients compared to healthy controls. Increased connectivity between regions of the default mode network and the dorsolateral prefrontal cortex is frequently reported in ADHD and is interpreted to be associated with deficits in attention. Our finding of weaker connectivity of the lingual gyrus to the bilateral insula (salience network) in RTHβ patients has also been reported previously in ADHD and may reflect decreased habituation to visual stimuli and increased distractibility. Overall, our observations support the notion of neuropsychological similarities between RTHβ and ADHD.
Collapse
Affiliation(s)
- Martin Göttlich
- Institute of Medical Psychology, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Krishna Chatterjee
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Carla Moran
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Marcus Heldmann
- Department of Neurology, University of Lübeck, Lübeck, Germany
- Department of Psychology II, University of Lübeck, Lübeck, Germany
| | - Berenike Rogge
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Anna Cirkel
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Georg Brabant
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
| | - Thomas F. Münte
- Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| |
Collapse
|
13
|
Kautto A, Railo H, Mainela-Arnold E. Introducing the Intra-Individual Variability Hypothesis in Explaining Individual Differences in Language Development. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:2698-2707. [PMID: 38913843 DOI: 10.1044/2024_jslhr-23-00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
PURPOSE Response times (RTs) are commonly used in studying language acquisition. However, previous research utilizing RT in the context of language has largely overlooked the intra-individual variability (IIV) of RTs, which could hold significant information about the processes underlying language acquisition. METHOD We explored the association between language abilities and RT variability in visuomotor tasks using two data sets from previously published studies. The participants were 7- to 10-year-old children (n = 77). RESULTS Our results suggest that increased variability in RTs is associated with weaker language abilities. Specifically, this within-participant variability in visuomotor RTs, especially the proportion of unusually slow responses, predicted language abilities better than mean RTs, a factor often linked to language skills in past research. CONCLUSIONS Based on our findings, we introduce the IIV hypothesis in explaining individual differences in language development. According to our hypothesis, inconsistency in the timing of cognitive processes, reflected by increased IIV in RTs, degrades learning different aspects of language, and results in individual differences in language abilities. Future studies should further examine the relationship between IIV and language abilities, and test the extent to which the possible relationship is causal.
Collapse
Affiliation(s)
- Anna Kautto
- Department of Psychology and Speech-Language Pathology, University of Turku, Finland
- Department of Speech and Language Pathology, Åbo Akademi University, Turku, Finland
| | - Henry Railo
- Department of Psychology and Speech-Language Pathology, University of Turku, Finland
| | - Elina Mainela-Arnold
- Department of Psychology and Speech-Language Pathology, University of Turku, Finland
| |
Collapse
|
14
|
Liu L, Chen D, Huang F, Jia T, Cheng W, Pan M, Zhao M, Bu X, Liao X, Wang Y, Cao M, Qian Q, Feng J. Interference of default mode on attention networks in adults with attention-deficit/hyperactivity disorder and its association with genetic variants and treatment outcomes. CNS Neurosci Ther 2024; 30:e14900. [PMID: 39145420 PMCID: PMC11325164 DOI: 10.1111/cns.14900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 07/09/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
AIMS Altered brain functional connectivity has been proposed as the neurobiological underpinnings of attention-deficit/hyperactivity disorder (ADHD), and the default mode interference hypothesis is one of the most popular neuropsychological models. Here, we explored whether this hypothesis is supported in adults with ADHD and the association with high-risk genetic variants and treatment outcomes. METHODS Voxel-based whole-brain connectome analysis was conducted on resting-state functional MRI data from 84 adults with ADHD and 89 healthy controls to identify functional connectivity substrates corresponding to ADHD-related alterations. The candidate genetic variants and 12-week cognitive behavioral therapy data were leveraged from the same population to assess these associations. RESULTS We detected breakdowns of functional connectivity in the precuneus and left middle temporal gyrus in adults with ADHD, with exact contributions from decreased connectivity within the default mode, dorsal and ventral attention networks, as well as increased connectivity among them with the middle temporal gyrus serving as a crucial 'bridge'. Additionally, significant associations between the altered functional connectivity and genetic variants in both MAOA and MAOB were detected. Treatment restored brain function, with the amelioration of connectivity of the middle temporal gyrus, accompanied by improvements in ADHD core symptoms. CONCLUSIONS These findings support the interference of default mode on attention in adults with ADHD and its association with genetic risk variants and clinical management, providing insights into the underlying pathogenesis of ADHD and potential biomarkers for treatment evaluation.
Collapse
Affiliation(s)
- Lu Liu
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Di Chen
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Fudan University, Shanghai, China
| | - Fang Huang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- Mental Health Education and Counselling Center, Zhejiang University, Hangzhou, China
| | - Tianye Jia
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Fudan University, Shanghai, China
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Fudan University, Shanghai, China
| | - Meirong Pan
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Mengjie Zhao
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xuan Bu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xuhong Liao
- School of Systems Science, Beijing Normal University, Beijing, China
| | - Yufeng Wang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Miao Cao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Fudan University, Shanghai, China
| | - Qiujin Qian
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Taspinar G, Ozkurt N. A review of ADHD detection studies with machine learning methods using rsfMRI data. NMR IN BIOMEDICINE 2024; 37:e5138. [PMID: 38472163 DOI: 10.1002/nbm.5138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 03/14/2024]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a common mental health condition that significantly affects school-age children, causing difficulties with learning and daily functioning. Early identification is crucial, and reliable and objective diagnostic tools are necessary. However, current clinical evaluations of behavioral symptoms can be inconsistent and subjective. Functional magnetic resonance imaging (fMRI) is a non-invasive technique that has proven effective in detecting brain abnormalities in individuals with ADHD. Recent studies have shown promising outcomes in using resting state fMRI (rsfMRI)-based brain functional networks to diagnose various brain disorders, including ADHD. Several review papers have examined the detection of other diseases using fMRI data and machine learning or deep learning methods. However, no review paper has specifically addressed ADHD. Therefore, this study aims to contribute to the literature by reviewing the use of rsfMRI data and machine learning methods for detection of ADHD. The study provides general information about fMRI databases and detailed knowledge of the ADHD-200 database, which is commonly used for ADHD detection. It also emphasizes the importance of examining all stages of the process, including network and atlas selection, feature extraction, and feature selection, before the classification stage. The study compares the performance, advantages, and disadvantages of previous studies in detail. This comprehensive approach may be a useful starting point for new researchers in this area.
Collapse
Affiliation(s)
| | - Nalan Ozkurt
- Electric and Electronic Engineering, Yasar University Izmir, Izmir, Turkey
| |
Collapse
|
16
|
Routier L, Querné L, Fontaine C, Berquin P, Le Moing AG. Distinct attentional and executive profiles in neurofibromatosis type 1: Is there difference with primary attention deficit-hyperactivity disorder? Eur J Paediatr Neurol 2024; 51:93-99. [PMID: 38905883 DOI: 10.1016/j.ejpn.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/03/2024] [Accepted: 05/31/2024] [Indexed: 06/23/2024]
Abstract
PURPOSE Attentional and executive dysfunctions are the most frequent cognitive disorders in neurofibromatosis type 1 (NF1), with a high prevalence of attention deficit-hyperactivity disorder (ADHD). We (i) compared attentional profiles between NF1 children with and without ADHD and children with primary ADHD criteria and (ii) investigated the possible relationship between attentional disorders and "unidentified bright objects" (UBOs) in NF1. METHODS This retrospective study included 47 NF1 children, 25 with ADHD criteria (NF1+adhd group), matched for age, sex, and cognitive level with 47 children with primary ADHD (ADHD group). We collected computer task (sustained-attention, visuomotor-decision, inhibition, and cognitive-flexibility tasks) scores normalized for age and sex, and brain magnetic resonance imaging data. RESULTS (i) Working memory was impaired in all groups. (ii) Omissions (p < 0.002) and response-time variability (p < 0.05) in sustained-attention and visuomotor-decision tasks and errors (p < 0.02) in the cognitive-flexibility task were lower for the NFI+adhd and ADHD groups than for the NF1-no-adhd group. (iii) The NF1+adhd group had slower response times (p ≤ 0.02) for inhibition and visuomotor-decision tasks than the other groups. (iv) We found no relevant association between cognitive performance and UBOs. CONCLUSIONS NF1 children with ADHD have an attentional and executive functions deficit profile similar to that of children with primary ADHD, but with a slower response-time, increasing learning difficulties. The atypical connectivity of fronto-striatal pathways, poorer dopamine homeostasis, and increased GABA inhibition observed in NF1 renders vulnerable the development of the widely distributed neural networks that support attentional, working-memory, and executive functions.
Collapse
Affiliation(s)
- Laura Routier
- Pediatric Neurology Department, Amiens-Picardie University Hospital, 1 rue du Professeur Christian Cabrol, 80054, Amiens Cedex, France; INSERM UMR 1105, Research Group on Multimodal Analysis of Brain Function, University of Picardie Jules Verne, rue René Laennec, 80054, Amiens, Cedex, France; Pediatric Neurophysiology Unit, Amiens-Picardie University Hospital, 1 rue du Professeur Christian Cabrol, 80054, Amiens Cedex, France.
| | - Laurent Querné
- Pediatric Neurology Department, Amiens-Picardie University Hospital, 1 rue du Professeur Christian Cabrol, 80054, Amiens Cedex, France; INSERM UMR 1105, Research Group on Multimodal Analysis of Brain Function, University of Picardie Jules Verne, rue René Laennec, 80054, Amiens, Cedex, France
| | - Cécile Fontaine
- Pediatric Neurology Department, Amiens-Picardie University Hospital, 1 rue du Professeur Christian Cabrol, 80054, Amiens Cedex, France
| | - Patrick Berquin
- Pediatric Neurology Department, Amiens-Picardie University Hospital, 1 rue du Professeur Christian Cabrol, 80054, Amiens Cedex, France; INSERM UMR 1105, Research Group on Multimodal Analysis of Brain Function, University of Picardie Jules Verne, rue René Laennec, 80054, Amiens, Cedex, France
| | - Anne-Gaëlle Le Moing
- Pediatric Neurology Department, Amiens-Picardie University Hospital, 1 rue du Professeur Christian Cabrol, 80054, Amiens Cedex, France; INSERM UMR 1105, Research Group on Multimodal Analysis of Brain Function, University of Picardie Jules Verne, rue René Laennec, 80054, Amiens, Cedex, France
| |
Collapse
|
17
|
Kashyap R, Holla B, Bhattacharjee S, Sharma E, Mehta UM, Vaidya N, Bharath RD, Murthy P, Basu D, Nanjayya SB, Singh RL, Lourembam R, Chakrabarti A, Kartik K, Kalyanram K, Kumaran K, Krishnaveni G, Krishna M, Kuriyan R, Kurpad SS, Desrivieres S, Purushottam M, Barker G, Orfanos DP, Hickman M, Heron J, Toledano M, Schumann G, Benegal V. Childhood adversities characterize the heterogeneity in the brain pattern of individuals during neurodevelopment. Psychol Med 2024; 54:2599-2611. [PMID: 38509831 DOI: 10.1017/s0033291724000710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
BACKGROUND Several factors shape the neurodevelopmental trajectory. A key area of focus in neurodevelopmental research is to estimate the factors that have maximal influence on the brain and can tip the balance from typical to atypical development. METHODS Utilizing a dissimilarity maximization algorithm on the dynamic mode decomposition (DMD) of the resting state functional MRI data, we classified subjects from the cVEDA neurodevelopmental cohort (n = 987, aged 6-23 years) into homogeneously patterned DMD (representing typical development in 809 subjects) and heterogeneously patterned DMD (indicative of atypical development in 178 subjects). RESULTS Significant DMD differences were primarily identified in the default mode network (DMN) regions across these groups (p < 0.05, Bonferroni corrected). While the groups were comparable in cognitive performance, the atypical group had more frequent exposure to adversities and faced higher abuses (p < 0.05, Bonferroni corrected). Upon evaluating brain-behavior correlations, we found that correlation patterns between adversity and DMN dynamic modes exhibited age-dependent variations for atypical subjects, hinting at differential utilization of the DMN due to chronic adversities. CONCLUSION Adversities (particularly abuse) maximally influence the DMN during neurodevelopment and lead to the failure in the development of a coherent DMN system. While DMN's integrity is preserved in typical development, the age-dependent variability in atypically developing individuals is contrasting. The flexibility of DMN might be a compensatory mechanism to protect an individual in an abusive environment. However, such adaptability might deprive the neural system of the faculties of normal functioning and may incur long-term effects on the psyche.
Collapse
Affiliation(s)
- Rajan Kashyap
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Bharath Holla
- Department of Integrative Medicine, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Sagarika Bhattacharjee
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Eesha Sharma
- Department of Child and Adolescent Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Urvakhsh Meherwan Mehta
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Nilakshi Vaidya
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, PONS Centre, Charité Mental Health, Germany
- Department of Psychiatry, Centre for Addiction Medicine, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Rose Dawn Bharath
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Pratima Murthy
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Debashish Basu
- Department of Psychiatry, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | - Roshan Lourembam
- Department of Psychiatry, Regional Institute of Medical Sciences, Imphal, India
| | - Amit Chakrabarti
- Division of Mental Health, ICMR-Centre for Ageing and Mental Health, Kolkata, India
| | - Kamakshi Kartik
- Rishi Valley Rural Health Centre, Madanapalle, Chittoor, India
| | | | - Kalyanaraman Kumaran
- Epidemiology Research Unit, CSI Holdsworth Memorial Hospital, Mysore, India
- MRC Lifecourse Epidemiology Unit, University of Southampton, UK
| | - Ghattu Krishnaveni
- Epidemiology Research Unit, CSI Holdsworth Memorial Hospital, Mysore, India
| | - Murali Krishna
- Health Equity Cluster, Institute of Public Health, Bangalore, India
| | - Rebecca Kuriyan
- Division of Nutrition, St John's Research Institute, Bengaluru, India
| | - Sunita Simon Kurpad
- Department of Psychiatry & Department of Medical Ethics, St John's Research Institute, Bengaluru, India
| | - Sylvane Desrivieres
- SGDP Centre, Institute of Psychology, Psychiatry & Neuroscience, King's College London, London, UK
| | - Meera Purushottam
- Molecular Genetics Laboratory, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Gareth Barker
- Department of Neuroimaging, Institute of Psychology, Psychiatry & Neuroscience, King's College London, London, UK
| | | | - Matthew Hickman
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jon Heron
- Center for Public Health, Bristol Medical School, University of Bristol, Bristol, UK
| | - Mireille Toledano
- MRC Centre for Environment and Health, School of Public Health, Imperial College, London, UK
| | - Gunter Schumann
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, PONS Centre, Charité Mental Health, Germany
- PONS Centre, Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Vivek Benegal
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
| |
Collapse
|
18
|
Haipt A, Rosenbaum D, Fuhr K, Batra A, Ehlis AC. Differential effects of hypnotherapy and cognitive behavioral therapy on the default mode network of depressed patients. Front Psychol 2024; 15:1401946. [PMID: 38993341 PMCID: PMC11238146 DOI: 10.3389/fpsyg.2024.1401946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
Hypnosis has been applied in healing procedures since the earliest of recorded history and today it is implemented in a wholesome concept Hypnotherapy (HT1). On a neurophysiological level, hypnosis has been associated with parts of the Default Mode Network (DMN2), but its effects on this network when induced in a treatment setting of a widespread disorder, namely depression, have never been investigated. Depression is associated with abnormal functional connectivity (FC3) of the DMN. Cognitive Behavioral Therapy (CBT4) has proven itself to be an effective treatment for depression; effects of CBT on DMN-related regions are heterogeneous. In the past years, HT was found to be a promising alternative or helpful adjunction. Yet, its underlying mechanisms remain to be unclear. In this original study 75 depressed patients receiving either CBT or HT were included and measured during resting-state before and after therapy with functional near-infrared-spectroscopy (fNIRS5). On symptom level, results show a significant reduction in both groups. On a neurophysiological level, first exploratory analyses hint toward treatment effects in two components of the DMN. However, these effects do not withstand correction for multiple testing. Still, our study is a first stepstone in the investigation of neural mechanisms of HT and offers first ideas about possible implications.
Collapse
Affiliation(s)
- Alina Haipt
- Department of Psychophysiology and Optical Imaging, University Hospital of Tuebingen, Tuebingen, Germany
| | - David Rosenbaum
- Department of Psychophysiology and Optical Imaging, University Hospital of Tuebingen, Tuebingen, Germany
| | - Kristina Fuhr
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Tuebingen, Germany
| | - Anil Batra
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Tuebingen, Germany
| | - Ann-Christine Ehlis
- Department of Psychophysiology and Optical Imaging, University Hospital of Tuebingen, Tuebingen, Germany
| |
Collapse
|
19
|
Tsai CJ, Lin HY, Gau SSF. Correlation of altered intrinsic functional connectivity with impaired self-regulation in children and adolescents with ADHD. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01787-y. [PMID: 38906983 DOI: 10.1007/s00406-024-01787-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/16/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Attention-deficit hyperactivity disorder (ADHD) has a high prevalence of co-occurring impaired self-regulation (dysregulation), exacerbating adverse outcomes. Neural correlates underlying impaired self-regulation in ADHD remain inconclusive. We aimed to investigate the impact of dysregulation on intrinsic functional connectivity (iFC) in children with ADHD and the correlation of iFC with dysregulation among children with ADHD relative to typically developing controls (TDC). METHODS Resting-state functional MRI data of 71 children with ADHD (11.38 ± 2.44 years) and 117 age-matched TDC were used in the final analysis. We restricted our analyses to resting-state networks (RSNs) of interest derived from independent component analysis. Impaired self-regulation was estimated based on the Child Behavioral Checklist-Dysregulation Profile. RESULTS Children with ADHD showed stronger iFC than TDC in the left frontoparietal network, somatomotor network (SMN), visual network (VIS), default-mode network (DMN), and dorsal attention network (DAN) (FWE-corrected alpha < 0.05). After adding dysregulation levels as an extra regressor, the ADHD group only showed stronger iFC in the VIS and SMN. ADHD children with high dysregulation had higher precuneus iFC within DMN than ADHD children with low dysregulation. Angular gyrus iFC within DMN was positively correlated with dysregulation in the ADHD group but negatively correlated with dysregulation in the TDC group. Functional network connectivity showed ADHD had a greater DMN-DAN connection than TDC, regardless of the dysregulation level. CONCLUSIONS Our findings suggest that DMN connectivity may contribute to impaired self-regulation in ADHD. Impaired self-regulation should be considered categorical and dimensional moderators for the neural correlates of altered iFC in ADHD.
Collapse
Affiliation(s)
- Chia-Jui Tsai
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiang-Yuan Lin
- Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Susan Shur-Fen Gau
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, No. 7, Chung-Shan South Road, Taipei, 10002, Taiwan.
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University Hospital, Taipei, Taiwan.
- Department of Psychology, College of Science, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
20
|
Dakwar-Kawar O, Mentch-Lifshits T, Hochman S, Mairon N, Cohen R, Balasubramani P, Mishra J, Jordan J, Cohen Kadosh R, Berger I, Nahum M. Aperiodic and periodic components of oscillatory brain activity in relation to cognition and symptoms in pediatric ADHD. Cereb Cortex 2024; 34:bhae236. [PMID: 38858839 DOI: 10.1093/cercor/bhae236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/12/2024] [Indexed: 06/12/2024] Open
Abstract
Children with attention-deficit/hyperactivity disorder show deficits in processing speed, as well as aberrant neural oscillations, including both periodic (oscillatory) and aperiodic (1/f-like) activity, reflecting the pattern of power across frequencies. Both components were suggested as underlying neural mechanisms of cognitive dysfunctions in attention-deficit/hyperactivity disorder. Here, we examined differences in processing speed and resting-state-Electroencephalogram neural oscillations and their associations between 6- and 12-year-old children with (n = 33) and without (n = 33) attention-deficit/hyperactivity disorder. Spectral analyses of the resting-state EEG signal using fast Fourier transform revealed increased power in fronto-central theta and beta oscillations for the attention-deficit/hyperactivity disorder group, but no differences in the theta/beta ratio. Using the parameterization method, we found a higher aperiodic exponent, which has been suggested to reflect lower neuronal excitation-inhibition, in the attention-deficit/hyperactivity disorder group. While fast Fourier transform-based theta power correlated with clinical symptoms for the attention-deficit/hyperactivity disorder group only, the aperiodic exponent was negatively correlated with processing speed across the entire sample. Finally, the aperiodic exponent was correlated with fast Fourier transform-based beta power. These results highlight the different and complementary contribution of periodic and aperiodic components of the neural spectrum as metrics for evaluation of processing speed in attention-deficit/hyperactivity disorder. Future studies should further clarify the roles of periodic and aperiodic components in additional cognitive functions and in relation to clinical status.
Collapse
Affiliation(s)
- Ornella Dakwar-Kawar
- School of Occupational Therapy, Hebrew University, Mount Scopus, Jerusalem, 9124001, Israel
| | - Tal Mentch-Lifshits
- School of Occupational Therapy, Hebrew University, Mount Scopus, Jerusalem, 9124001, Israel
| | - Shachar Hochman
- School of Psychology, Faculty of Health and Medical Sciences, Kate Granger Building, 30 Priestley Road, Surrey Research Park, Guildford, Surrey, GU2 7YH
| | - Noam Mairon
- School of Occupational Therapy, Hebrew University, Mount Scopus, Jerusalem, 9124001, Israel
| | - Reut Cohen
- School of Occupational Therapy, Hebrew University, Mount Scopus, Jerusalem, 9124001, Israel
| | - Pragathi Balasubramani
- Department of Psychiatry, University of California, UC San Diego 9500 Gilman Dr. La Jolla, CA 92093, United States
- Department of Cognitive Science, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Jyoti Mishra
- Department of Psychiatry, University of California, UC San Diego 9500 Gilman Dr. La Jolla, CA 92093, United States
| | - Josh Jordan
- Department of Psychology, Dominican University of California, 50 Acacia Avenue, San Rafael, CA 94901, United States
| | - Roi Cohen Kadosh
- School of Psychology, Faculty of Health and Medical Sciences, Kate Granger Building, 30 Priestley Road, Surrey Research Park, Guildford, Surrey, GU2 7YH
| | - Itai Berger
- Pediatric Neurology, Assuta-Ashdod University Hospital, Faculty of Health Sciences, Ben-Gurion University, Beer-Shevablvd 1, 84105 Beer Sheva, Israel
- School of Social Work and Social Welfare, Hebrew University, Mount Scopus, Jerusalem, 9124001, Israel
| | - Mor Nahum
- School of Occupational Therapy, Hebrew University, Mount Scopus, Jerusalem, 9124001, Israel
| |
Collapse
|
21
|
Wang Y, Ma L, Wang J, Ding Y, Liu N, Men W, Tan S, Gao JH, Qin S, He Y, Dong Q, Tao S. The neural and genetic underpinnings of different developmental trajectories of Attention-Deficit/Hyperactivity Symptoms in children and adolescents. BMC Med 2024; 22:223. [PMID: 38831366 PMCID: PMC11149188 DOI: 10.1186/s12916-024-03449-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 05/28/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND The trajectory of attention-deficit hyperactivity disorder (ADHD) symptoms in children and adolescents, encompassing descending, stable, and ascending patterns, delineates their ADHD status as remission, persistence or late onset. However, the neural and genetic underpinnings governing the trajectory of ADHD remain inadequately elucidated. METHODS In this study, we employed neuroimaging techniques, behavioral assessments, and genetic analyses on a cohort of 487 children aged 6-15 from the Children School Functions and Brain Development project at baseline and two follow-up tests for 1 year each (interval 1: 1.14 ± 0.32 years; interval 2: 1.14 ± 0.30 years). We applied a Latent class mixed model (LCMM) to identify the developmental trajectory of ADHD symptoms in children and adolescents, while investigating the neural correlates through gray matter volume (GMV) analysis and exploring the genetic underpinnings using polygenic risk scores (PRS). RESULTS This study identified three distinct trajectories (ascending-high, stable-low, and descending-medium) of ADHD symptoms from childhood through adolescence. Utilizing the linear mixed-effects (LME) model, we discovered that attention hub regions served as the neural basis for these three developmental trajectories. These regions encompassed the left anterior cingulate cortex/medial prefrontal cortex (ACC/mPFC), responsible for inhibitory control; the right inferior parietal lobule (IPL), which facilitated conscious focus on exogenous stimuli; and the bilateral middle frontal gyrus/precentral gyrus (MFG/PCG), accountable for regulating both dorsal and ventral attention networks while playing a crucial role in flexible modulation of endogenous and extrinsic attention. Furthermore, our findings revealed that individuals in the ascending-high group exhibited the highest PRS for ADHD, followed by those in the descending-medium group, with individuals in the stable-low group displaying the lowest PRS. Notably, both ascending-high and descending-medium groups had significantly higher PRS compared to the stable-low group. CONCLUSIONS The developmental trajectory of ADHD symptoms in the general population throughout childhood and adolescence can be reliably classified into ascending-high, stable-low, and descending-medium groups. The bilateral MFG/PCG, left ACC/mPFC, and right IPL may serve as crucial brain regions involved in attention processing, potentially determining these trajectories. Furthermore, the ascending-high pattern of ADHD symptoms exhibited the highest PRS for ADHD.
Collapse
Affiliation(s)
- Yanpei Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
| | - Leilei Ma
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Jiali Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yuyin Ding
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Ningyu Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Weiwei Men
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Shuping Tan
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, 100096, China
| | - Jia-Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Sha Tao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
22
|
Kofler MJ, Groves NB, Chan ESM, Marsh CL, Cole AM, Gaye F, Cibrian E, Tatsuki MO, Singh LJ. Working memory and inhibitory control deficits in children with ADHD: an experimental evaluation of competing model predictions. Front Psychiatry 2024; 15:1277583. [PMID: 38779551 PMCID: PMC11110569 DOI: 10.3389/fpsyt.2024.1277583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/07/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction Children with ADHD demonstrate difficulties on many different neuropsychological tests. However, it remains unclear whether this pattern reflects a large number of distinct deficits or a small number of deficit(s) that broadly impact test performance. The current study is among the first experiments to systematically manipulate demands on both working memory and inhibition, with implications for competing conceptual models of ADHD pathogenesis. Method A clinically evaluated, carefully phenotyped sample of 110 children with ADHD, anxiety disorders, or co-occurring ADHD+anxiety (Mage=10.35, 44 girls; 69% White Not Hispanic/Latino) completed a counterbalanced, double dissociation experiment, with two tasks each per inhibition (low vs. high) x working memory (low vs. high) condition. Results Bayesian and frequentist models converged in indicating that both manipulations successfully increased demands on their target executive function (BF10>5.33x108, p<.001). Importantly, occupying children's limited capacity working memory system produced slower response times and reduced accuracy on inhibition tasks (BF10>317.42, p<.001, d=0.67-1.53). It also appeared to differentially reduce inhibition (and non-inhibition) accuracy for children with ADHD relative to children with anxiety (BF10=2.03, p=.02, d=0.50). In contrast, there was strong evidence against models that view working memory deficits as secondary outcomes of underlying inhibition deficits in ADHD (BF01=18.52, p=.85). Discussion This pattern indicates that working memory broadly affects children's ability to inhibit prepotent tendencies and maintain fast/accurate performance, and may explain the errors that children with ADHD make on inhibition tests. These findings are broadly consistent with models describing working memory as a causal mechanism that gives rise to secondary impairments. In contrast, these findings provide evidence against models that view disinhibition as a cause of working memory difficulties or view working memory as a non-causal correlate or epiphenomenon in ADHD.
Collapse
Affiliation(s)
- Michael J. Kofler
- Department of Psychology, Florida State University, Tallahassee, FL, United States
| | - Nicole B. Groves
- Department of Psychiatry, Seattle Children’s Hospital, Seattle, WA, United States
| | - Elizabeth S. M. Chan
- Graduate School of Applied and Professional Psychology, Rutgers University, New Brunswick, NJ, United States
| | - Carolyn L. Marsh
- Department of Psychology, Florida State University, Tallahassee, FL, United States
| | - Alissa M. Cole
- Department of Psychology, Florida State University, Tallahassee, FL, United States
| | - Fatou Gaye
- Department of Psychology, Florida State University, Tallahassee, FL, United States
| | - Enrique Cibrian
- Department of Psychology, Florida State University, Tallahassee, FL, United States
| | - Miho O. Tatsuki
- Department of Psychology, Florida State University, Tallahassee, FL, United States
| | - Leah J. Singh
- Department of Psychology, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
23
|
Zhang F, Li Y, Liu L, Liu Y, Wang P, Biswal BB. Corticostriatal causality analysis in children and adolescents with attention-deficit/hyperactivity disorder. Psychiatry Clin Neurosci 2024; 78:291-299. [PMID: 38444215 PMCID: PMC11469573 DOI: 10.1111/pcn.13650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/26/2023] [Accepted: 01/16/2024] [Indexed: 03/07/2024]
Abstract
AIM The effective connectivity between the striatum and cerebral cortex has not been fully investigated in attention-deficit/hyperactivity disorder (ADHD). Our objective was to explore the interaction effects between diagnosis and age on disrupted corticostriatal effective connectivity and to represent the modulation function of altered connectivity pathways in children and adolescents with ADHD. METHODS We performed Granger causality analysis on 300 participants from a publicly available Attention-Deficit/Hyperactivity Disorder-200 dataset. By computing the correlation coefficients between causal connections between striatal subregions and other cortical regions, we estimated the striatal inflow and outflow connection to represent intermodulation mechanisms in corticostriatal pathways. RESULTS Interactions between diagnosis and age were detected in the superior occipital gyrus within the visual network, medial prefrontal cortex, posterior cingulate gyrus, and inferior parietal lobule within the default mode network, which is positively correlated with hyperactivity/impulsivity severity in ADHD. Main effect of diagnosis exhibited a general higher cortico-striatal causal connectivity involving default mode network, frontoparietal network and somatomotor network in ADHD compared with comparisons. Results from high-order effective connectivity exhibited a disrupted information pathway involving the default mode-striatum-somatomotor-striatum-frontoparietal networks in ADHD. CONCLUSION The interactions detected in the visual-striatum-default mode networks pathway appears to be related to the potential distraction caused by long-term abnormal information input from the retina in ADHD. Higher causal connectivity and weakened intermodulation may indicate the pathophysiological process that distractions lead to the impairment of motion planning function and the inhibition/control of this unplanned motion signals in ADHD.
Collapse
Affiliation(s)
- Fanyu Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology. University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yilu Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology. University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lin Liu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology. University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yefen Liu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology. University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Pan Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology. University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Bharat B. Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology. University of Electronic Science and Technology of China, Chengdu 611731, China
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| |
Collapse
|
24
|
Morgado F, Vandewouw MM, Hammill C, Kelley E, Crosbie J, Schachar R, Ayub M, Nicolson R, Georgiades S, Arnold P, Iaboni A, Kushki A, Taylor MJ, Anagnostou E, Lerch JP. Behaviour-correlated profiles of cerebellar-cerebral functional connectivity observed in independent neurodevelopmental disorder cohorts. Transl Psychiatry 2024; 14:173. [PMID: 38570480 PMCID: PMC10991387 DOI: 10.1038/s41398-024-02857-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 04/05/2024] Open
Abstract
The cerebellum, through its connectivity with the cerebral cortex, plays an integral role in regulating cognitive and affective processes, and its dysregulation can result in neurodevelopmental disorder (NDD)-related behavioural deficits. Identifying cerebellar-cerebral functional connectivity (FC) profiles in children with NDDs can provide insight into common connectivity profiles and their correlation to NDD-related behaviours. 479 participants from the Province of Ontario Neurodevelopmental Disorders (POND) network (typically developing = 93, Autism Spectrum Disorder = 172, Attention Deficit/Hyperactivity Disorder = 161, Obsessive-Compulsive Disorder = 53, mean age = 12.2) underwent resting-state functional magnetic resonance imaging and behaviour testing (Social Communication Questionnaire, Toronto Obsessive-Compulsive Scale, and Child Behaviour Checklist - Attentional Problems Subscale). FC components maximally correlated to behaviour were identified using canonical correlation analysis. Results were then validated by repeating the investigation in 556 participants from an independent NDD cohort provided from a separate consortium (Healthy Brain Network (HBN)). Replication of canonical components was quantified by correlating the feature vectors between the two cohorts. The two cerebellar-cerebral FC components that replicated to the greatest extent were correlated to, respectively, obsessive-compulsive behaviour (behaviour feature vectors, rPOND-HBN = -0.97; FC feature vectors, rPOND-HBN = -0.68) and social communication deficit contrasted against attention deficit behaviour (behaviour feature vectors, rPOND-HBN = -0.99; FC feature vectors, rPOND-HBN = -0.78). The statistically stable (|z| > 1.96) features of the FC feature vectors, measured via bootstrap re-sampling, predominantly comprised of correlations between cerebellar attentional and control network regions and cerebral attentional, default mode, and control network regions. In both cohorts, spectral clustering on FC loading values resulted in subject clusters mixed across diagnostic categories, but no cluster was significantly enriched for any given diagnosis as measured via chi-squared test (p > 0.05). Overall, two behaviour-correlated components of cerebellar-cerebral functional connectivity were observed in two independent cohorts. This suggests the existence of generalizable cerebellar network differences that span across NDD diagnostic boundaries.
Collapse
Affiliation(s)
- Felipe Morgado
- Dept. Medical Biophysics, University of Toronto, Toronto, Canada.
- Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada.
| | - Marlee M Vandewouw
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
- Autism Research Centre, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
| | - Christopher Hammill
- Data Science & Advanced Analytics, St. Michael's Hospital, University of Toronto, Toronto, Canada
| | | | - Jennifer Crosbie
- Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Russell Schachar
- Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Muhammad Ayub
- Department of Psychiatry, University College London, London, UK
| | - Robert Nicolson
- Department of Psychiatry, University of Western Ontario, London, Canada
- Lawson Research Institute, London, Canada
| | - Stelios Georgiades
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Canada
- Offord Centre for Child Studies, McMaster University, Hamilton, Canada
| | - Paul Arnold
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Psychiatry, University of Calgary, Calgary, Canada
| | - Alana Iaboni
- Autism Research Centre, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
| | - Azadeh Kushki
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
- Autism Research Centre, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
| | - Margot J Taylor
- Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada
- Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada
- Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Evdokia Anagnostou
- Autism Research Centre, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Jason P Lerch
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| |
Collapse
|
25
|
Roberts H, Schreiner MW, Pocius S, Dillahunt AK, Farstead B, Feldman D, Bessette KL, Kaufman EA, Slattery W, Jacobs RH, Jago D, Crowell SE, Watkins ER, Langenecker SA. State rumination predicts inhibitory control failures and dysregulation of default, salience, and cognitive control networks in youth at risk of depressive relapse: Findings from the RuMeChange trial. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2024; 16:100729. [PMID: 38769946 PMCID: PMC11105748 DOI: 10.1016/j.jadr.2024.100729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Background Trait rumination is a habitual response to negative experiences that can emerge during adolescence, increasing risk of depression. Trait rumination is correlated with poor inhibitory control (IC) and altered default mode network (DMN) and cognitive control network (CCN) engagement. Provoking state rumination in high ruminating youth permits investigation of rumination and IC at the neural level, highlighting potential treatment targets. Methods Fifty-three high-ruminating youth were cued with an unresolved goal that provoked state rumination, then completed a modified Sustained Attention to Response Task (SART) that measures IC (commissions on no-go trials) in a functional MRI study. Thought probes measured state rumination about that unresolved goal and task-focused thoughts during the SART. Results Greater state rumination during the SART was correlated with more IC failures. CCN engagement increased during rumination (relative to task-focus), including left dorsolateral prefrontal cortex and dorsalmedial prefrontal cortex. Relative to successful response suppression, DMN engagement increased during IC failures amongst individuals with higher state and trait rumination. Exploratory analyzes suggested more bothersome unresolved goals predicted higher left DLPFC activation during rumination. Limitations The correlational research design did not permit a direct contrast of causal accounts of the relationship between rumination and IC. Conclusions State rumination was associated with impaired IC and disrupted modulation of DMN and CCN. Increased CCN engagement during rumination suggested effortful suppression of negative thoughts, and this was greater for more bothersome unresolved goals. Relative task disengagement was observed during rumination-related errors. DMN-CCN dysregulation in high-ruminating youth may be an important treatment target.
Collapse
Affiliation(s)
- Henrietta Roberts
- Mood Disorders Centre, School of Psychology, Sir Henry Wellcome Building for Mood Disorders Research, University of Exeter, Exeter EX4 4LN, UK
| | | | | | | | | | | | - Katie L. Bessette
- University of Utah, USA
- University of Illinois at Chicago, USA
- University of California at Los Angeles, USA
| | | | | | | | - David Jago
- Mood Disorders Centre, School of Psychology, Sir Henry Wellcome Building for Mood Disorders Research, University of Exeter, Exeter EX4 4LN, UK
| | | | - Edward R Watkins
- Mood Disorders Centre, School of Psychology, Sir Henry Wellcome Building for Mood Disorders Research, University of Exeter, Exeter EX4 4LN, UK
| | | |
Collapse
|
26
|
Faraone SV, Bellgrove MA, Brikell I, Cortese S, Hartman CA, Hollis C, Newcorn JH, Philipsen A, Polanczyk GV, Rubia K, Sibley MH, Buitelaar JK. Attention-deficit/hyperactivity disorder. Nat Rev Dis Primers 2024; 10:11. [PMID: 38388701 DOI: 10.1038/s41572-024-00495-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/24/2024]
Abstract
Attention-deficit/hyperactivity disorder (ADHD; also known as hyperkinetic disorder) is a common neurodevelopmental condition that affects children and adults worldwide. ADHD has a predominantly genetic aetiology that involves common and rare genetic variants. Some environmental correlates of the disorder have been discovered but causation has been difficult to establish. The heterogeneity of the condition is evident in the diverse presentation of symptoms and levels of impairment, the numerous co-occurring mental and physical conditions, the various domains of neurocognitive impairment, and extensive minor structural and functional brain differences. The diagnosis of ADHD is reliable and valid when evaluated with standard diagnostic criteria. Curative treatments for ADHD do not exist but evidence-based treatments substantially reduce symptoms and/or functional impairment. Medications are effective for core symptoms and are usually well tolerated. Some non-pharmacological treatments are valuable, especially for improving adaptive functioning. Clinical and neurobiological research is ongoing and could lead to the creation of personalized diagnostic and therapeutic approaches for this disorder.
Collapse
Affiliation(s)
- Stephen V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, Norton College of Medicine at SUNY Upstate Medical University, Syracuse, NY, USA.
| | - Mark A Bellgrove
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia
| | - Isabell Brikell
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Samuele Cortese
- Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
- Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK
- Solent NHS Trust, Southampton, UK
- Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York City, NY, USA
- DiMePRe-J-Department of Precision and Rigenerative Medicine-Jonic Area, University of Bari "Aldo Moro", Bari, Italy
| | - Catharina A Hartman
- Interdisciplinary Center Psychopathology and Emotion regulation (ICPE), Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Chris Hollis
- National Institute for Health and Care Research (NIHR) MindTech MedTech Co-operative and NIHR Nottingham Biomedical Research Centre, Institute of Mental Health, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Jeffrey H Newcorn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Guilherme V Polanczyk
- Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Katya Rubia
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neurosciences, King's College London, London, UK
- Department of Child & Adolescent Psychiatry, Transcampus Professor KCL-Dresden, Technical University, Dresden, Germany
| | | | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, Netherlands
- Karakter Child and Adolescent Psychiatry University Center, Nijmegen, Netherlands
| |
Collapse
|
27
|
Wu HY, Huang CM, Hsu AL, Chen CN, Wu CW, Chen JH. Functional neuroplasticity of facilitation and interference effects on inhibitory control following 3-month physical exercise in aging. Sci Rep 2024; 14:3682. [PMID: 38355770 PMCID: PMC10866924 DOI: 10.1038/s41598-024-53974-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 02/07/2024] [Indexed: 02/16/2024] Open
Abstract
Preservation of executive function, like inhibition, closely links to the quality of life in senior adults. Although neuroimaging literature has shown enhanced inhibitory function followed by aerobic exercise, current evidence implies inconsistent neuroplasticity patterns along different time durations of exercise. Hence, we conducted a 12-week exercise intervention on 12 young and 14 senior volunteers and repeatedly measured the inhibitory functionality of distinct aspects (facilitation and interference effects) using the numerical Stroop task and functional Magnetic Resonance Imaging. Results showcased improved accuracy and reduced reaction times (RT) after 12-week exercise, attributed to frontoparietal and default mode network effects. In young adults, the first phase (0 to six weeks) exercise increased the activation of the right superior medial frontal gyrus, associated with reduced RT in interference, but in the second intervention phase (six to twelve weeks), the decreased activation of the left superior medial frontal gyrus positively correlated with reduced RT in facilitation. In senior adults, the first six-week intervention led to reduced activations of the inferior frontal gyrus, inferior parietal gyrus, and default mode network regions, associated with the reduced RT in interference. Still, in the second intervention phase, only the visual area exhibited increased activity, associated with reduced RT in interference. Except for the distinctive brain plasticity between the two phases of exercise intervention, the between-group comparison also presented that the old group gained more cognitive benefits within the first six weeks of exercise intervention; however, the cognitive improvements in the young group occurred after six weeks of intervention. Limited by the sample size, these preliminary findings corroborated the benefits of aerobic exercise on the inhibitory functions, implying an age × exercise interaction on the brain plasticity for both facilitation and interference.
Collapse
Affiliation(s)
- Hong-Yi Wu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Chih-Mao Huang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ai-Ling Hsu
- Bachelor Program in Artificial Intelligence, Chang Gung University, Taoyuan, Taiwan
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chiao-Nan Chen
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Changwei W Wu
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, New Taipei, Taiwan.
- Research Center of Sleep Medicine, Taipei Medical University Hospital, Taipei, Taiwan.
| | - Jyh-Horng Chen
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
28
|
Yang S, Dong H, Albitos PJ, Wang Y, Fang Y, Cao L, Wang J, Sun L, Zhang H. Low-frequency variability in theta activity modulates the attention-fluctuation across task and resting states. Neuropsychologia 2024; 193:108757. [PMID: 38103680 DOI: 10.1016/j.neuropsychologia.2023.108757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/05/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Sustained attention is not constant but fluctuates influencing our task performance. Albeit intensive investigations, it remains unclear whether the attention-fluctuation during tasks is derived from its spontaneous fluctuation in the resting state. Here, we addressed this issue by investigating the attention-fluctuation in both task and resting states, through the EEG measurement of theta-variability. We found significant rest-task modulation of theta-variability, i.e., reduced theta-variability in the task state compared to the resting state. This task and rest modulation was manifested in the low-frequency of theta-variability (<0.1 Hz). Furthermore, the low-frequency theta-variability exhibited a significant rest-task correlation, however, only the low-frequency theta-variability in the task state but not in the resting state was correlated with the behavioral performance. These findings shed light on the low-frequency feature of attention-fluctuation, and advanced our understanding of sustained attention by suggesting that the theta-variability in low-frequencies was relevant to attention level in task state.
Collapse
Affiliation(s)
- Shiyou Yang
- Centre for Cognition and Brain Disorders, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairment, Hangzhou, Zhejiang, China; School of Psychology, Northeast Normal University, Changchun, Jilin, China
| | - Huimei Dong
- Centre for Cognition and Brain Disorders, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairment, Hangzhou, Zhejiang, China
| | - Princess Jane Albitos
- Centre for Cognition and Brain Disorders, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairment, Hangzhou, Zhejiang, China
| | - Yaoyao Wang
- Centre for Cognition and Brain Disorders, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairment, Hangzhou, Zhejiang, China
| | - Yantong Fang
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairment, Hangzhou, Zhejiang, China
| | - Longfei Cao
- Centre for Cognition and Brain Disorders, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairment, Hangzhou, Zhejiang, China
| | - Jinghua Wang
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairment, Hangzhou, Zhejiang, China; Department of Neurology the Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Li Sun
- Peking University Sixth Hospital, Institute of Mental Health, Beijing, China; NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Hang Zhang
- Centre for Cognition and Brain Disorders, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairment, Hangzhou, Zhejiang, China.
| |
Collapse
|
29
|
Onofrj M, Russo M, Delli Pizzi S, De Gregorio D, Inserra A, Gobbi G, Sensi SL. The central role of the Thalamus in psychosis, lessons from neurodegenerative diseases and psychedelics. Transl Psychiatry 2023; 13:384. [PMID: 38092757 PMCID: PMC10719401 DOI: 10.1038/s41398-023-02691-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
The PD-DLB psychosis complex found in Parkinson's disease (PD) and Dementia with Lewy Bodies (DLB) includes hallucinations, Somatic Symptom/Functional Disorders, and delusions. These disorders exhibit similar presentation patterns and progression. Mechanisms at the root of these symptoms also share similarities with processes promoting altered states of consciousness found in Rapid Eye Movement sleep, psychiatric disorders, or the intake of psychedelic compounds. We propose that these mechanisms find a crucial driver and trigger in the dysregulated activity of high-order thalamic nuclei set in motion by ThalamoCortical Dysrhythmia (TCD). TCD generates the loss of finely tuned cortico-cortical modulations promoted by the thalamus and unleashes the aberrant activity of the Default Mode Network (DMN). TCD moves in parallel with altered thalamic filtering of external and internal information. The process produces an input overload to the cortex, thereby exacerbating DMN decoupling from task-positive networks. These phenomena alter the brain metastability, creating dreamlike, dissociative, or altered states of consciousness. In support of this hypothesis, mind-altering psychedelic drugs also modulate thalamic-cortical pathways. Understanding the pathophysiological background of these conditions provides a conceptual bridge between neurology and psychiatry, thereby helping to generate a promising and converging area of investigation and therapeutic efforts.
Collapse
Affiliation(s)
- Marco Onofrj
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, Institute for Advanced Biomedical Technology-ITAB University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.
| | - Mirella Russo
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, Institute for Advanced Biomedical Technology-ITAB University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Stefano Delli Pizzi
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, Institute for Advanced Biomedical Technology-ITAB University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Danilo De Gregorio
- Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Inserra
- Neurobiological Psychiatry Unit, McGill University, Montreal, QC, Canada
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, McGill University, Montreal, QC, Canada
| | - Stefano L Sensi
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, Institute for Advanced Biomedical Technology-ITAB University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
30
|
Matsuhashi K, Itahashi T, Aoki R, Hashimoto RI. Meta-analysis of structural integrity of white matter and functional connectivity in developmental stuttering. Brain Res Bull 2023; 205:110827. [PMID: 38013029 DOI: 10.1016/j.brainresbull.2023.110827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023]
Abstract
Developmental stuttering is a speech disfluency disorder characterized by repetitions, prolongations, and blocks of speech. While a number of neuroimaging studies have identified alterations in localized brain activation during speaking in persons with stuttering (PWS), it is unclear whether neuroimaging evidence converges on alterations in structural integrity of white matter and functional connectivity (FC) among multiple regions involved in supporting fluent speech. In the present study, we conducted coordinate-based meta-analyses according to the PRISMA guidelines for available publications that studied fractional anisotropy (FA) using tract-based spatial statistics (TBSS) for structural integrity and the seed-based voxel-wise FC analyses. The search retrieved 11 publications for the TBSS FA studies, 29 seed-based FC datasets from 6 publications for the resting-state, and 29 datasets from 6 publications for the task-based studies. The meta-analysis of TBSS FA revealed that PWS exhibited FA reductions in the middle and posterior segments of the left superior longitudinal fasciculus. Furthermore, the analysis of resting-state FC demonstrated that PWS had reduced FC in the right supplementary motor area and inferior parietal cortex, whereas an increase in FC was observed in the left cerebellum crus I. Conversely, we observed increased FC for task-based FC in regions implicated in speech production or sequential movements, including the anterior cingulate cortex, posterior insula, and bilateral cerebellum crus I in PWS. Functional network characterization of the altered FCs revealed that the sets of reduced resting-state and increased task-based FCs were largely distinct, but the somatomotor and striatum/thalamus networks were foci of alterations in both conditions. These observations indicate that developmental stuttering is characterized by structural and functional alterations in multiple brain networks that support speech fluency or sequential motor processes, including cortico-cortical and subcortical connections.
Collapse
Affiliation(s)
- Kengo Matsuhashi
- Department of Language Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Takashi Itahashi
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Ryuta Aoki
- Department of Language Sciences, Tokyo Metropolitan University, Tokyo, Japan; Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | | |
Collapse
|
31
|
Schachar RJ. Fifty years of executive control research in attention-deficit/hyperactivity disorder:What we have learned and still need to know. Neurosci Biobehav Rev 2023; 155:105461. [PMID: 37949153 DOI: 10.1016/j.neubiorev.2023.105461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
For 50 years, attention-deficit/hyperactivity disorder (ADHD) has been considered a disorder of executive control (EC), the higher-order, cognitive skills that support self-regulation, goal attainment and what we generally call "attention." This review surveys our current understanding of the nature of EC as it pertains to ADHD and considers the evidence in support of eight hypotheses that can be derived from the EC theory of ADHD. This paper provides a resource for practitioners to aid in clinical decision-making. To support theory building, I draw a parallel between the EC theory of ADHD and the common gene-common variant model of complex traits such as ADHD. The conclusion offers strategies for advancing collaborative research.
Collapse
Affiliation(s)
- Russell J Schachar
- Department of Psychiatry, The Hospital for Sick Children and University of Toronto, Research Institute, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G1X8, Canada.
| |
Collapse
|
32
|
van der Horn HJ, Dodd AB, Wick TV, Robertson‐Benta CR, McQuaid JR, Hittson AK, Ling JM, Zotev V, Ryman SG, Erhardt EB, Phillips JP, Campbell RA, Sapien RE, Mayer AR. Neural correlates of cognitive control deficits in pediatric mild traumatic brain injury. Hum Brain Mapp 2023; 44:6173-6184. [PMID: 37800467 PMCID: PMC10619369 DOI: 10.1002/hbm.26504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/18/2023] [Accepted: 09/14/2023] [Indexed: 10/07/2023] Open
Abstract
There is a growing body of research showing that cerebral pathophysiological processes triggered by pediatric mild traumatic brain injury (pmTBI) may extend beyond the usual clinical recovery timeline. It is paramount to further unravel these processes, because the possible long-term cognitive effects resulting from ongoing secondary injury in the developing brain are not known. In the current fMRI study, neural processes related to cognitive control were studied in 181 patients with pmTBI at sub-acute (SA; ~1 week) and early chronic (EC; ~4 months) stages post-injury. Additionally, a group of 162 age- and sex-matched healthy controls (HC) were recruited at equivalent time points. Proactive (post-cue) and reactive (post-probe) cognitive control were examined using a multimodal attention fMRI paradigm for either congruent or incongruent stimuli. To study brain network function, the triple-network model was used, consisting of the executive and salience networks (collectively known as the cognitive control network), and the default mode network. Additionally, whole-brain voxel-wise analyses were performed. Decreased deactivation was found within the default mode network at the EC stage following pmTBI during both proactive and reactive control. Voxel-wise analyses revealed sub-acute hypoactivation of a frontal area of the cognitive control network (left pre-supplementary motor area) during proactive control, with a reversed effect at the EC stage after pmTBI. Similar effects were observed in areas outside of the triple-network during reactive control. Group differences in activation during proactive control were limited to the visual domain, whereas for reactive control findings were more pronounced during the attendance of auditory stimuli. No significant correlations were present between task-related activations and (persistent) post-concussive symptoms. In aggregate, current results show alterations in neural functioning during cognitive control in pmTBI up to 4 months post-injury, regardless of clinical recovery. We propose that subacute decreases in activity reflect a general state of hypo-excitability due to the injury, while early chronic hyperactivation represents a compensatory mechanism to prevent default mode interference and to retain cognitive control.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Josef M. Ling
- The Mind Research Network/LBERIAlbuquerqueNew MexicoUSA
| | - Vadim Zotev
- The Mind Research Network/LBERIAlbuquerqueNew MexicoUSA
| | | | - Erik B. Erhardt
- Department of Mathematics and StatisticsUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | | | - Richard A. Campbell
- Department of Psychiatry & Behavioral SciencesUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Robert E. Sapien
- Department of Emergency MedicineUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Andrew R. Mayer
- The Mind Research Network/LBERIAlbuquerqueNew MexicoUSA
- Department of Psychiatry & Behavioral SciencesUniversity of New MexicoAlbuquerqueNew MexicoUSA
- Department of PsychologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
- Department of NeurologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| |
Collapse
|
33
|
Jones JS, Monaghan A, Leyland-Craggs A, Astle DE. Testing the triple network model of psychopathology in a transdiagnostic neurodevelopmental cohort. Neuroimage Clin 2023; 40:103539. [PMID: 37992501 PMCID: PMC10709083 DOI: 10.1016/j.nicl.2023.103539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023]
Abstract
AIM The triple network model of psychopathology posits that altered connectivity between the Salience (SN), Central Executive (CEN), and Default Mode Networks (DMN) may underlie neurodevelopmental conditions. However, this has yet to be tested in a transdiagnostic sample of young people. METHOD We investigated this in 175 children (60 girls) that represent a heterogeneous population who are experiencing neurodevelopmental difficulties in cognition and behavior, and 60 comparison children (33 girls). Hyperactivity/impulsivity and inattention were assessed by parent-report. Resting-state functional Magnetic Resonance Imaging data were acquired and functional connectivity was calculated between independent network components and regions of interest. We then examined whether connectivity between the SN, CEN and DMN was dimensionally related to hyperactivity/impulsivity and inattention, whilst controlling for age, gender, and motion. RESULTS Hyperactivity/impulsivity was associated with increased functional connectivity between the SN, CEN, and DMN in at-risk children, whereas it was associated with decreased functional connectivity between the CEN and DMN in comparison children. These effects replicated in an adult parcellation of brain function and when using increasingly stringent exclusion criteria for in-scanner motion. CONCLUSION Triple network connectivity characterizes transdiagnostic neurodevelopmental difficulties with hyperactivity/impulsivity. We suggest that this may arise from delayed network segregation, difficulties sustaining CEN activity to regulate behavior, and/or a heightened developmental mismatch between neural systems implicated in cognitive control relative to those implicated in reward/affect processing.
Collapse
Affiliation(s)
- Jonathan S Jones
- MRC Cognition and Brain Sciences Unit, University of Cambridge, UK.
| | - Alicja Monaghan
- MRC Cognition and Brain Sciences Unit, University of Cambridge, UK
| | | | - Duncan E Astle
- MRC Cognition and Brain Sciences Unit, University of Cambridge, UK; Department of Psychiatry, University of Cambridge, UK
| |
Collapse
|
34
|
Kucyi A, Kam JWY, Andrews-Hanna JR, Christoff K, Whitfield-Gabrieli S. Recent advances in the neuroscience of spontaneous and off-task thought: implications for mental health. NATURE MENTAL HEALTH 2023; 1:827-840. [PMID: 37974566 PMCID: PMC10653280 DOI: 10.1038/s44220-023-00133-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/25/2023] [Indexed: 11/19/2023]
Abstract
People spend a remarkable 30-50% of awake life thinking about something other than what they are currently doing. These experiences of being "off-task" can be described as spontaneous thought when mental dynamics are relatively flexible. Here we review recent neuroscience developments in this area and consider implications for mental wellbeing and illness. We provide updated overviews of the roles of the default mode network and large-scale network dynamics, and we discuss emerging candidate mechanisms involving hippocampal memory (sharp-wave ripples, replay) and neuromodulatory (noradrenergic and serotonergic) systems. We explore how distinct brain states can be associated with or give rise to adaptive and maladaptive forms of thought linked to distinguishable mental health outcomes. We conclude by outlining new directions in the neuroscience of spontaneous and off-task thought that may clarify mechanisms, lead to personalized biomarkers, and facilitate therapy developments toward the goals of better understanding and improving mental health.
Collapse
Affiliation(s)
- Aaron Kucyi
- Department of Psychological and Brain Sciences, Drexel University
| | - Julia W. Y. Kam
- Department of Psychology and Hotchkiss Brain Institute, University of Calgary
| | | | | | | |
Collapse
|
35
|
Liu Q, Gao F, Wang X, Xia J, Yuan G, Zheng S, Zhong M, Zhu X. Cognitive inflexibility is linked to abnormal frontoparietal-related activation and connectivity in obsessive-compulsive disorder. Hum Brain Mapp 2023; 44:5460-5470. [PMID: 37683103 PMCID: PMC10543351 DOI: 10.1002/hbm.26457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/23/2023] [Accepted: 08/02/2023] [Indexed: 09/10/2023] Open
Abstract
Although it was acknowledged that patients with obsessive-compulsive disorder (OCD) would exhibit cognitive inflexibility, the underlying neural mechanism has not been fully clarified. Therefore, this study aimed to investigate the neural substrates involved in cognitive inflexibility among individuals with OCD. A total of 42 patients with OCD and 48 healthy controls (HCs) completed clinical assessment and functional magnetic resonance imaging (fMRI) data collection during cued task switching. Behavioral performances and fMRI activation were compared between the OCD group and the HC group. Psychophysiological interactions (PPIs) analyses were applied to explore functional connectivity related to task switching. Pearson correlation was used to investigate the relationships among behavioral performance, fMRI activity, and obsessive-compulsive symptoms in OCD. The OCD group had a greater switch cost than HCs (χ2 = 5.89, p < .05). A significant difference in reaction time was found during switch (χ2 = 17.72, p < .001) and repeat (χ2 = 16.60, p = .018) between the two groups, while there was no significant difference in group accuracy. Comparison of group differences showed that the OCD group had increased activation in the right superior parietal cortex (rSPL) during task switching, and exhibited increased connectivity of frontoparietal network/default mode network (FPN-DMN; i.e., middle frontal gyrus [MFG]/inferior parietal cortex-precuneus, MFG-middle/posterior cingulate gyrus) and within the FPN (inferior parietal cortex-postcentral gyrus). In the OCD group, the compulsion score was positively correlated with accuracy during switch (r = .405, p = .008, FDRq <.05), and negatively correlated with activation of rSPL (r = -.328, p = .034, FDRq >.05). Patients with OCD had impaired cognitive flexibility and cautious response strategy. The neural mechanism of cognitive inflexibility in OCD may involve increased activation in the rSPL, as well as hyperconnectivity within the FPN and between the FPN and DMN.
Collapse
Affiliation(s)
- Qian Liu
- Medical Psychological Centerthe Second Xiangya Hospital, Central South UniversityChangshaHunanChina
- Medical Psychological Institute of Central South UniversityChangshaHunanChina
- National Clinical Research Center for Mental DisordersChangshaHunanChina
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of EducationGuangzhouChina
- School of PsychologySouth China Normal UniversityGuangzhouChina
- Center for Studies of Psychological ApplicationSouth China Normal UniversityGuangzhouChina
- Guangdong Key Laboratory of Mental Health and Cognitive ScienceSouth China Normal UniversityGuangzhouChina
| | - Feng Gao
- Medical Psychological Centerthe Second Xiangya Hospital, Central South UniversityChangshaHunanChina
- Medical Psychological Institute of Central South UniversityChangshaHunanChina
- National Clinical Research Center for Mental DisordersChangshaHunanChina
| | - Xiang Wang
- Medical Psychological Centerthe Second Xiangya Hospital, Central South UniversityChangshaHunanChina
- Medical Psychological Institute of Central South UniversityChangshaHunanChina
- National Clinical Research Center for Mental DisordersChangshaHunanChina
| | - Jie Xia
- Medical Psychological Centerthe Second Xiangya Hospital, Central South UniversityChangshaHunanChina
- Medical Psychological Institute of Central South UniversityChangshaHunanChina
- National Clinical Research Center for Mental DisordersChangshaHunanChina
| | - Gangxuan Yuan
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of EducationGuangzhouChina
- School of PsychologySouth China Normal UniversityGuangzhouChina
- Center for Studies of Psychological ApplicationSouth China Normal UniversityGuangzhouChina
- Guangdong Key Laboratory of Mental Health and Cognitive ScienceSouth China Normal UniversityGuangzhouChina
| | - Shuxin Zheng
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of EducationGuangzhouChina
- School of PsychologySouth China Normal UniversityGuangzhouChina
- Center for Studies of Psychological ApplicationSouth China Normal UniversityGuangzhouChina
- Guangdong Key Laboratory of Mental Health and Cognitive ScienceSouth China Normal UniversityGuangzhouChina
| | - Mingtian Zhong
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of EducationGuangzhouChina
- School of PsychologySouth China Normal UniversityGuangzhouChina
- Center for Studies of Psychological ApplicationSouth China Normal UniversityGuangzhouChina
- Guangdong Key Laboratory of Mental Health and Cognitive ScienceSouth China Normal UniversityGuangzhouChina
| | - Xiongzhao Zhu
- Medical Psychological Centerthe Second Xiangya Hospital, Central South UniversityChangshaHunanChina
- Medical Psychological Institute of Central South UniversityChangshaHunanChina
- National Clinical Research Center for Mental DisordersChangshaHunanChina
| |
Collapse
|
36
|
Parlatini V, Itahashi T, Lee Y, Liu S, Nguyen TT, Aoki YY, Forkel SJ, Catani M, Rubia K, Zhou JH, Murphy DG, Cortese S. White matter alterations in Attention-Deficit/Hyperactivity Disorder (ADHD): a systematic review of 129 diffusion imaging studies with meta-analysis. Mol Psychiatry 2023; 28:4098-4123. [PMID: 37479785 PMCID: PMC10827669 DOI: 10.1038/s41380-023-02173-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/23/2023]
Abstract
Aberrant anatomical brain connections in attention-deficit/hyperactivity disorder (ADHD) are reported inconsistently across diffusion weighted imaging (DWI) studies. Based on a pre-registered protocol (Prospero: CRD42021259192), we searched PubMed, Ovid, and Web of Knowledge until 26/03/2022 to conduct a systematic review of DWI studies. We performed a quality assessment based on imaging acquisition, preprocessing, and analysis. Using signed differential mapping, we meta-analyzed a subset of the retrieved studies amenable to quantitative evidence synthesis, i.e., tract-based spatial statistics (TBSS) studies, in individuals of any age and, separately, in children, adults, and high-quality datasets. Finally, we conducted meta-regressions to test the effect of age, sex, and medication-naïvety. We included 129 studies (6739 ADHD participants and 6476 controls), of which 25 TBSS studies provided peak coordinates for case-control differences in fractional anisotropy (FA)(32 datasets) and 18 in mean diffusivity (MD)(23 datasets). The systematic review highlighted white matter alterations (especially reduced FA) in projection, commissural and association pathways of individuals with ADHD, which were associated with symptom severity and cognitive deficits. The meta-analysis showed a consistent reduced FA in the splenium and body of the corpus callosum, extending to the cingulum. Lower FA was related to older age, and case-control differences did not survive in the pediatric meta-analysis. About 68% of studies were of low quality, mainly due to acquisitions with non-isotropic voxels or lack of motion correction; and the sensitivity analysis in high-quality datasets yielded no significant results. Findings suggest prominent alterations in posterior interhemispheric connections subserving cognitive and motor functions affected in ADHD, although these might be influenced by non-optimal acquisition parameters/preprocessing. Absence of findings in children may be related to the late development of callosal fibers, which may enhance case-control differences in adulthood. Clinicodemographic and methodological differences were major barriers to consistency and comparability among studies, and should be addressed in future investigations.
Collapse
Affiliation(s)
- Valeria Parlatini
- Sackler Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK.
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK.
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK.
| | - Takashi Itahashi
- Medical Institute of Developmental Disabilities Research, Showa University, 6-11-11 Kita-karasuyama, Setagaya-ku, Tokyo, Japan
| | - Yeji Lee
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Siwei Liu
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Thuan T Nguyen
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore, Singapore
| | - Yuta Y Aoki
- Medical Institute of Developmental Disabilities Research, Showa University, 6-11-11 Kita-karasuyama, Setagaya-ku, Tokyo, Japan
- Department of Psychiatry, Aoki Clinic, Tokyo, Japan
| | - Stephanie J Forkel
- Donders Centre for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France
- Departments of Neurosurgery, Technical University of Munich School of Medicine, Munich, Germany
| | - Marco Catani
- Sackler Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK
| | - Katya Rubia
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK
| | - Juan H Zhou
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Declan G Murphy
- Sackler Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK
| | - Samuele Cortese
- Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
- Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK
- Solent NHS Trust, Southampton, UK
- Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York, NY, USA
- Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
37
|
Chang SE, Lenartowicz A, Hellemann GS, Uddin LQ, Bearden CE. Variability in Cognitive Task Performance in Early Adolescence Is Associated With Stronger Between-Network Anticorrelation and Future Attention Problems. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:948-957. [PMID: 37881561 PMCID: PMC10593900 DOI: 10.1016/j.bpsgos.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/22/2022] [Accepted: 11/09/2022] [Indexed: 11/28/2022] Open
Abstract
Background Intraindividual variability (IIV) during cognitive task performance is a key behavioral index of attention and a consistent marker of attention-deficit/hyperactivity disorder. In adults, lower IIV has been associated with anticorrelation between the default mode network (DMN) and dorsal attention network (DAN)-thought to underlie effective allocation of attention. However, whether these behavioral and neural markers of attention are 1) associated with each other and 2) can predict future attention-related deficits has not been examined in a developmental, population-based cohort. Methods We examined relationships at the baseline visit between IIV on 3 cognitive tasks, DMN-DAN anticorrelation, and parent-reported attention problems using data from the Adolescent Brain Cognitive Development (ABCD) Study (N = 11,878 participants, ages 9 to 10 years, female = 47.8%). We also investigated whether behavioral and neural markers of attention at baseline predicted attention problems 1, 2, and 3 years later. Results At baseline, greater DMN-DAN anticorrelation was associated with lower IIV across all 3 cognitive tasks (B = 0.22 to 0.25). Older age at baseline was associated with stronger DMN-DAN anticorrelation and lower IIV (B = -0.005 to -0.0004). Weaker DMN-DAN anticorrelation and IIV were cross-sectionally associated with attention problems (B = 1.41 to 7.63). Longitudinally, lower IIV at baseline was associated with less severe attention problems 1 to 3 years later, after accounting for baseline attention problems (B = 0.288 to 0.77). Conclusions The results suggest that IIV in early adolescence is associated with worsening attention problems in a representative cohort of U.S. youth. Attention deficits in early adolescence may be important for understanding and predicting future cognitive and clinical outcomes.
Collapse
Affiliation(s)
- Sarah E. Chang
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Agatha Lenartowicz
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Gerhard S. Hellemann
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
- Department of Public Health, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lucina Q. Uddin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Carrie E. Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
- Department of Psychology, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
38
|
Cai W, Mizuno Y, Tomoda A, Menon V. Bayesian dynamical system analysis of the effects of methylphenidate in children with attention-deficit/hyperactivity disorder: a randomized trial. Neuropsychopharmacology 2023; 48:1690-1698. [PMID: 37491674 PMCID: PMC10516959 DOI: 10.1038/s41386-023-01668-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/24/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023]
Abstract
Methylphenidate is a widely used and effective treatment for attention-deficit/hyperactivity disorder (ADHD), yet the underlying neural mechanisms and their relationship to changes in behavior are not fully understood. Specifically, it remains unclear how methylphenidate affects brain and behavioral dynamics, and the interplay between these dynamics, in individuals with ADHD. To address this gap, we used a novel Bayesian dynamical system model to investigate the effects of methylphenidate on latent brain states in 27 children with ADHD and 49 typically developing children using a double-blind, placebo-controlled crossover design. Methylphenidate remediated greater behavioral variability on a continuous performance task in children with ADHD. Children with ADHD exhibited aberrant latent brain state dynamics compared to typically developing children, with a single latent state showing particularly abnormal dynamics, which was remediated by methylphenidate. Additionally, children with ADHD showed brain state-dependent hyper-connectivity in the default mode network, which was also remediated by methylphenidate. Finally, we found that methylphenidate-induced changes in latent brain state dynamics, as well as brain state-related functional connectivity between salience and default mode networks, were correlated with improvements in behavioral variability. Taken together, our findings reveal a novel latent brain state dynamical process and circuit mechanism underlying the therapeutic effects of methylphenidate in childhood ADHD. We suggest that Bayesian dynamical system models may be particularly useful for capturing complex nonlinear changes in neural activity and behavioral variability associated with ADHD. Our approach may be of value to clinicians and researchers investigating the neural mechanisms underlying pharmacological treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Weidong Cai
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, USA.
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, USA.
| | - Yoshifumi Mizuno
- Research Center for Child Mental Development, University of Fukui, Fukui, 910-1193, Japan
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, University of Fukui, Fukui, 910-1193, Japan
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, 910-1193, Japan
| | - Akemi Tomoda
- Research Center for Child Mental Development, University of Fukui, Fukui, 910-1193, Japan
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, University of Fukui, Fukui, 910-1193, Japan
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, 910-1193, Japan
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, USA.
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, USA.
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, USA.
| |
Collapse
|
39
|
Einziger T, Devor T, Ben-Shachar MS, Arazi A, Dinstein I, Klein C, Auerbach JG, Berger A. Increased neural variability in adolescents with ADHD symptomatology: Evidence from a single-trial EEG study. Cortex 2023; 167:25-40. [PMID: 37517356 DOI: 10.1016/j.cortex.2023.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/17/2023] [Accepted: 06/09/2023] [Indexed: 08/01/2023]
Abstract
Increased intrasubject variability of reaction time (RT) refers to inconsistency in an individual's speed of responding to a task. This increased variability has been suggested as a fundamental feature of attention deficit hyperactivity disorder (ADHD), however, its neural sources are still unclear. In this study, we aimed to examine whether such inconsistency at the behavioral level would be accompanied by inconsistency at the neural level; and whether different types of neural and behavioral variability would be related to ADHD symptomatology. We recorded electroencephalogram (EEG) data from 62 adolescents, who were part of a prospective longitudinal study on the development of ADHD. We examined trial-by-trial neural variability in response to visual stimuli in two cognitive tasks. Adolescents with high ADHD symptomatology exhibited an increased neural variability before the presentation of the stimulus, but when presented with a visual stimulus, this variability decreased to a level that was similar to that exhibited by participants with low ADHD symptomatology. In contrast with our prediction, neural variability was unrelated to the magnitude of behavioral variability. Our findings suggest that adolescents with higher symptoms are characterized by increased neural variability before the stimulation, which might reflect a difficulty in alertness to the forthcoming stimulus; but this increased neural variability does not seem to account for their RT variability.
Collapse
Affiliation(s)
- Tzlil Einziger
- Ruppin Academic Center, Department of Behavioral Sciences, Emek Hefer, Israel.
| | - Tali Devor
- Department of Psychology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Mattan S Ben-Shachar
- Department of Psychology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ayelet Arazi
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Germany
| | - Ilan Dinstein
- Department of Psychology, Ben-Gurion University of the Negev, Beer Sheva, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel; National Autism Research Center of Israel, Beer Sheva, Israel
| | - Christoph Klein
- Department of Child and Adolescent Psychiatry, Medical Faculty, University of Freiburg, Germany; Department of Child and Adolescent Psychiatry, Medical Faculty, University of Cologne, Germany; 2(nd) Department of Psychiatry, National and Kapodistrian University of Athens, Greece
| | - Judith G Auerbach
- Department of Psychology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Andrea Berger
- Department of Psychology, Ben-Gurion University of the Negev, Beer Sheva, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
40
|
Hu R, Tan F, Chen W, Wu Y, Jiang Y, Du W, Zuo Y, Gao B, Song Q, Miao Y. Microstructure abnormalities of the diffusion quantities in children with attention-deficit/hyperactivity disorder: an AFQ and TBSS study. Front Psychiatry 2023; 14:1237113. [PMID: 37674550 PMCID: PMC10477457 DOI: 10.3389/fpsyt.2023.1237113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023] Open
Abstract
Objective To explore the specific alterations of white matter microstructure in children with attention-deficit/hyperactivity disorder (ADHD) by automated fiber quantification (AFQ) and tract-based spatial statistics (TBSS), and to analyze the correlation between white matter abnormality and impairment of executive function. Methods In this prospective study, a total of twenty-seven patients diagnosed with ADHD (20 males, 7 females; mean age of 8.89 ± 1.67 years) and twenty-two healthy control (HC) individuals (11 males, 11 females, mean age of 9.82 ± 2.13 years) were included. All participants were scanned with diffusion kurtosis imaging (DKI) and assessed for executive functions. AFQ and TBSS analysis methods were used to investigate the white matter fiber impairment of ADHD patients, respectively. Axial diffusivity (AD), radial diffusivity (RD), mean diffusivity (MD) and fractional anisotropy (FA) of 17 fiber properties were calculated using the AFQ. The mean kurtosis (MK), axial kurtosis (AK), radial kurtosis (RK), mean diffusivity (MDDKI), axial diffusivity (ADDKI), radial diffusivity (RDDKI) and fractional anisotropy (FADKI) of DKI and AD, RD, MD, and FA of diffusion tensor imaging (DTI) assessed the integrity of the white matter based on TBSS. Partial correlation analyses were conducted to evaluate the correlation between white matter abnormalities and clinical test scores in ADHD while taking age, gender, and education years into account. The analyses were all family-wise error rate (FWE) corrected. Results ADHD patients performed worse on the Behavior Rating Inventory of Executive Function (BRIEF) test (p < 0.05). Minor variances existed in gender and age between ADHD and HC, but these variances did not yield statistically significant distinctions. There were no significant differences in TBSS for DKI and DTI parameters (p > 0.05, TFCE-corrected). Compared to HC volunteers, the mean AD value of right cingulum bundle (CB_R) fiber tract showed a significantly higher level in ADHD patients following the correction of FWE. As a result of the point-wise comparison between groups, significant alterations (FWE correction, p < 0.05) were mainly located in AD (nodes 36-38, nodes 83-97) and MD (nodes 92-95) of CB_R. There was no significant correlation between white matter diffusion parameters and clinical test scores in ADHD while taking age, gender, and education years into account. Conclusion The AFQ method can detect ADHD white matter abnormalities in a specific location with greater sensitivity, and the CB_R played a critical role. Our findings may be helpful in further studying the relationship between focal white matter abnormalities and ADHD.
Collapse
Affiliation(s)
- Rui Hu
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Radiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Fan Tan
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Wen Chen
- Department of Radiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yong Wu
- Department of Paediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yuhan Jiang
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wei Du
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuchen Zuo
- Department of Paediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Bingbing Gao
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qingwei Song
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanwei Miao
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
41
|
Wiker T, Norbom LB, Beck D, Agartz I, Andreassen OA, Alnæs D, Dahl A, Eilertsen EM, Moberget T, Ystrøm E, Westlye LT, Lebel C, Huster RJ, Tamnes CK. Reaction Time Variability in Children Is Specifically Associated With Attention Problems and Regional White Matter Microstructure. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:832-840. [PMID: 37003411 DOI: 10.1016/j.bpsc.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Increased intraindividual variability (IIV) in reaction times (RTs) has been suggested as a key cognitive and behavioral marker of attention problems, but findings for other dimensions of psychopathology are less consistent. Moreover, while studies have linked IIV to brain white matter microstructure, large studies testing the robustness of these associations are needed. METHODS We used data from the Adolescent Brain Cognitive Development (ABCD) Study baseline assessment to test the associations between IIV and psychopathology (n = 8622, age = 8.9-11.1 years) and IIV and white matter microstructure (n = 7958, age = 8.9-11.1 years). IIV was investigated using an ex-Gaussian distribution analysis of RTs in correct response go trials in the stop signal task. Psychopathology was measured by the Child Behavior Checklist and a bifactor structural equation model was performed to extract a general p factor and specific factors reflecting internalizing, externalizing, and attention problems. To investigate white matter microstructure, fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity were examined in 23 atlas-based tracts. RESULTS Increased IIV in both short and long RTs was positively associated with the specific attention problems factor (Cohen's d = 0.13 and d = 0.15, respectively). Increased IIV in long RTs was also positively associated with radial diffusivity in the left and right corticospinal tract (both tracts, d = 0.12). CONCLUSIONS Using a large sample and a data-driven dimensional approach to psychopathology, the results provide novel evidence for a small but specific association between IIV and attention problems in children and support previous findings on the relevance of white matter microstructure for IIV.
Collapse
Affiliation(s)
- Thea Wiker
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Research Center for Developmental Processes and Gradients in Mental Health, Department of Psychology, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.
| | - Linn B Norbom
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Research Center for Developmental Processes and Gradients in Mental Health, Department of Psychology, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Dani Beck
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Research Center for Developmental Processes and Gradients in Mental Health, Department of Psychology, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; KG Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden & Stockholm Health Care Services, Stockholm Region, Sweden
| | - Ole A Andreassen
- KG Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dag Alnæs
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychology, Pedagogy and Law, School of Health Sciences, Kristiania University College, Oslo, Norway
| | - Andreas Dahl
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Espen M Eilertsen
- Research Center for Developmental Processes and Gradients in Mental Health, Department of Psychology, University of Oslo, Oslo, Norway
| | - Torgeir Moberget
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Eivind Ystrøm
- Research Center for Developmental Processes and Gradients in Mental Health, Department of Psychology, University of Oslo, Oslo, Norway; Department of Mental Disorders, Norwegian Institute of Public Heath, Oslo, Norway
| | - Lars T Westlye
- KG Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Catherine Lebel
- Department of Radiology, University of Calgary, Alberta, Canada
| | - Rene J Huster
- Multimodal Imaging and Cognitive Control Laboratory, Department of Psychology, University of Oslo, Oslo, Norway; Cognitive and Translational Neuroscience Cluster, Department of Psychology, University of Oslo, Norway; Sleep Unit, Department of Otorhinolaryngology/Head and Neck Surgery, Lovisenberg Diakonale Hospital, Oslo, Norway
| | - Christian K Tamnes
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Research Center for Developmental Processes and Gradients in Mental Health, Department of Psychology, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| |
Collapse
|
42
|
Osborne JB, Zhang H, Carlson M, Shah P, Jonides J. The association between different sources of distraction and symptoms of attention deficit hyperactivity disorder. Front Psychiatry 2023; 14:1173989. [PMID: 37575583 PMCID: PMC10421702 DOI: 10.3389/fpsyt.2023.1173989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Adults with Attention-Deficit/Hyperactivity Disorder (ADHD) are generally distractible. Yet, the precise relationship between ADHD and distractibility remains under-specified in two respects. First, different sources of distraction, such as background noise or mind wandering, may not be equally associated with ADHD. Second, ADHD itself comprises a variety of symptoms that show considerable heterogeneity and it is unclear which ADHD symptoms are associated with which type of distraction. Methods The current study addresses these questions using one clinically evaluated sample (N = 69) and two large non-clinically evaluated samples (N = 569, N = 651). In all samples, participants completed questionnaires about their susceptibility to external distraction, unwanted intrusive thoughts, spontaneous mind-wandering and ADHD symptomatology. Results Traditional regression and novel network analyses revealed an overwhelming contribution of spontaneous mind-wandering in explaining ADHD symptoms, although external distraction and unwanted intrusive thoughts were also associated with a small number of ADHD symptoms. Discussion Findings support a growing body of literature linking spontaneous mind-wandering and ADHD, and they highlight the heterogeneity in the association between ADHD symptoms and different sources of distraction.
Collapse
Affiliation(s)
- Jahla B. Osborne
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | | | | | | | | |
Collapse
|
43
|
Linkovski O, Naftalovich H, David M, Seror Y, Kalanthroff E. The Effect of Symptom-Provocation on Inhibitory Control in Obsessive-Compulsive Disorder Patients Is Contingent upon Chronotype and Time of Day. J Clin Med 2023; 12:4075. [PMID: 37373768 DOI: 10.3390/jcm12124075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/03/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Studies have shown that alertness can affect inhibitory control, the mechanism responsible for stopping behaviors, thoughts, or emotions. Inhibitory control is particularly important for helping individuals with Obsessive-Compulsive Disorder (OCD) resisting their symptoms. Chronotype is the mechanism governing an individual's fluctuation of alertness throughout the day. Previous studies have shown that individuals with a 'morning' chronotype have worse OCD symptoms in the evening and vice versa. We administered a novel 'symptom-provocation stop signal task' (SP-SST), in which individually tailored OCD triggers were presented and inhibitory control was measured. Twenty-five treatment-seeking OCD patients completed the SP-SST three times per day for seven consecutive days. Stop signal reaction time (SSRT), which measures inhibitory control, was calculated separately for symptom-provocation trials and for neutral trials. Results yielded that: (a) stopping was significantly harder in the symptom-provocation compared to neutral trials, and (b) the chronotype by time-of-day interaction predicts inhibition for both symptom-provocation and neutral trials, indicating better inhibition in the optimal time of day. Furthermore, we concluded that individually tailored OCD triggers have a detrimental effect on inhibitory control. Most importantly, higher alertness levels, which can be predicted by the interaction of chronotype and time of day, affect inhibitory control, both in general and for OCD triggers specifically.
Collapse
Affiliation(s)
- Omer Linkovski
- Department of Psychology, Bar-Ilan University, Ramat-Gan 52900, Israel
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Hadar Naftalovich
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Mor David
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Yuval Seror
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Eyal Kalanthroff
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| |
Collapse
|
44
|
Huang H, Li R, Zhang J. A review of visual sustained attention: neural mechanisms and computational models. PeerJ 2023; 11:e15351. [PMID: 37334118 PMCID: PMC10274610 DOI: 10.7717/peerj.15351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 04/13/2023] [Indexed: 06/20/2023] Open
Abstract
Sustained attention is one of the basic abilities of humans to maintain concentration on relevant information while ignoring irrelevant information over extended periods. The purpose of the review is to provide insight into how to integrate neural mechanisms of sustained attention with computational models to facilitate research and application. Although many studies have assessed attention, the evaluation of humans' sustained attention is not sufficiently comprehensive. Hence, this study provides a current review on both neural mechanisms and computational models of visual sustained attention. We first review models, measurements, and neural mechanisms of sustained attention and propose plausible neural pathways for visual sustained attention. Next, we analyze and compare the different computational models of sustained attention that the previous reviews have not systematically summarized. We then provide computational models for automatically detecting vigilance states and evaluation of sustained attention. Finally, we outline possible future trends in the research field of sustained attention.
Collapse
Affiliation(s)
- Huimin Huang
- National Engineering Research Center for E-learning, Central China Normal University, Wuhan, Hubei, China
| | - Rui Li
- National Engineering Research Center for E-learning, Central China Normal University, Wuhan, Hubei, China
| | - Junsong Zhang
- Brain Cognition and Intelligent Computing Lab, Department of Artificial Intelligence, School of Informatics, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
45
|
Crasta JE, Nebel MB, Svingos A, Tucker RN, Chen HW, Busch T, Caffo BS, Stephens J, Suskauer SJ. Rethinking recovery in adolescent concussions: Network-level functional connectivity alterations associated with motor deficits. Hum Brain Mapp 2023; 44:3271-3282. [PMID: 36999674 PMCID: PMC10171516 DOI: 10.1002/hbm.26280] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 02/10/2023] [Accepted: 03/06/2023] [Indexed: 04/01/2023] Open
Abstract
Adolescents who are clinically recovered from concussion continue to show subtle motor impairment on neurophysiological and behavioral measures. However, there is limited information on brain-behavior relationships of persistent motor impairment following clinical recovery from concussion. We examined the relationship between subtle motor performance and functional connectivity of the brain in adolescents with a history of concussion, status post-symptom resolution, and subjective return to baseline. Participants included 27 adolescents who were clinically recovered from concussion and 29 never-concussed, typically developing controls (10-17 years); all participants were examined using the Physical and Neurologic Examination of Subtle Signs (PANESS). Functional connectivity between the default mode network (DMN) or dorsal attention network (DAN) and regions of interest within the motor network was assessed using resting-state functional magnetic resonance imaging (rsfMRI). Compared to controls, adolescents clinically recovered from concussion showed greater subtle motor deficits as evaluated by the PANESS and increased connectivity between the DMN and left lateral premotor cortex. DMN to left lateral premotor cortex connectivity was significantly correlated with the total PANESS score, with more atypical connectivity associated with more motor abnormalities. This suggests that altered functional connectivity of the brain may underlie subtle motor deficits in adolescents who have clinically recovered from concussion. More investigation is required to understand the persistence and longer-term clinical relevance of altered functional connectivity and associated subtle motor deficits to inform whether functional connectivity may serve as an important biomarker related to longer-term outcomes after clinical recovery from concussion.
Collapse
Affiliation(s)
- Jewel E. Crasta
- Occupational Therapy DivisionThe Ohio State UniversityColumbusOhioUSA
| | - Mary Beth Nebel
- Brain Injury Clinical Research CenterKennedy Krieger InstituteBaltimoreMarylandUSA
| | - Adrian Svingos
- Brain Injury Clinical Research CenterKennedy Krieger InstituteBaltimoreMarylandUSA
| | - Robert N. Tucker
- Brain Injury Clinical Research CenterKennedy Krieger InstituteBaltimoreMarylandUSA
- Carle Illinois College of MedicineUniversity of Illinois at Urbana‐ChampaignChampaignILUSA
| | - Hsuan Wei Chen
- Brain Injury Clinical Research CenterKennedy Krieger InstituteBaltimoreMarylandUSA
| | - Tyler Busch
- Brain Injury Clinical Research CenterKennedy Krieger InstituteBaltimoreMarylandUSA
| | - Brian S. Caffo
- Department of BiostatisticsJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Jaclyn Stephens
- Department of Occupational TherapyColorado State UniversityFort CollinsColoradoUSA
| | - Stacy J. Suskauer
- Brain Injury Clinical Research CenterKennedy Krieger InstituteBaltimoreMarylandUSA
- Department of Physical Medicine and RehabilitationJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of PediatricsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
46
|
Gallen CL, Schachtner JN, Anguera-Singla R, Anguera JA, Gazzaley A. Influence of game features on attention in adults. Front Psychol 2023; 14:1123306. [PMID: 37228349 PMCID: PMC10203248 DOI: 10.3389/fpsyg.2023.1123306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/06/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction The incorporation of game features into cognitive tasks can inform us about the influence of reward and motivation on attention. Continuous performance tasks (CPTs), designed to assess attention abilities, are examples of cognitive tasks that have been targeted for the addition of game features. However, previous results have been mixed regarding how game elements affect attention abilities and task performance. Methods Here, we studied if there were factors that predict which individuals exhibit changes in attention from game features added to a CPT. Participants (N = 94, aged 21-71) played a traditional CPT and a game CPT with identical mechanics, but featured engaging game elements (aesthetics, storyline, competition, feedback, and reward). Results We first found corroborating evidence that game features have mixed effects on attention performance: most attention metrics of interest exhibited no overall difference between the traditional and game CPT, while game elements reduced performance for a few metrics. Importantly, we also found that specific behavioral and demographic profiles predicted individual differences in performance on the game CPT compared to the traditional CPT. Those with more attention difficulties (ADHD symptoms), more reward responsiveness, and younger adults performed better on the game CPT while, conversely, those with fewer ADHD symptoms, less reward responsiveness, and older adults performed better on the traditional CPT. Discussion These findings provide insights into how game features can influence attention in different individuals and have important implications for the use of game elements in cognitive tasks and training interventions.
Collapse
Affiliation(s)
- Courtney L. Gallen
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
- Neuroscape Center, University of California, San Francisco, San Francisco, CA, United States
| | - Jessica N. Schachtner
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
- Neuroscape Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Psychology, University of Arizona, Tucson, AZ, United States
| | - Roger Anguera-Singla
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
- Neuroscape Center, University of California, San Francisco, San Francisco, CA, United States
| | - Joaquin A. Anguera
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
- Neuroscape Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Adam Gazzaley
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
- Neuroscape Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
- Department of Physiology, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
47
|
Privodnova EY, Slobodskaya HR, Savostyanov AN, Bocharov AV, Saprigyn AE, Knyazev GG. Fast changes in default and control network activity underlying intraindividual response time variability in childhood: Does age and sex matter? Dev Psychobiol 2023; 65:e22382. [PMID: 37073590 DOI: 10.1002/dev.22382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 10/10/2022] [Accepted: 02/08/2023] [Indexed: 04/20/2023]
Abstract
Intraindividual response time variability (RTV) is considered as a general marker of neurological health. In adults, the central executive and salience networks (task-positive networks, TPN) and the default mode network (DMN) are critical for RTV. Given that RTV decreases with growing up, and that boys are likely somewhat behind girls with respect to the network development, we aimed to clarify age and sex effects. Electroencephalogram was recorded during Stroop-like test performance in 124 typically developing children aged 5-12 years. Network fluctuations were calculated as changes of current source density (CSD) in regions of interest (ROIs) from pretest to 1-s test interval. In boys, TPN activation (CSD increase in ROIs included in the TPN) was associated with lower RTV, suggesting a greater engagement of attentional control. In children younger than 9.5 years, higher response stability was associated with the predominance of TPN activation over DMN activation (CSD increase in ROIs included in the TPN > that in the DMN); this predominance increased with age, suggesting that variability among younger children may be due to network immaturity. These findings suggest that the TPN and DMN may play different roles within the network mechanisms of RTV in boys and girls and at different developmental stages.
Collapse
Affiliation(s)
- Evgeniya Yu Privodnova
- Laboratory of Cognitive Physiology, Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, Russia
- Department of Psychology, Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Helena R Slobodskaya
- Department of Child Development and Individual Differences, Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, Russia
| | - Alexander N Savostyanov
- Laboratory of Differential Psychophysiology, Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, Russia
- Institute for the Humanities, Novosibirsk State University, Novosibirsk, Russia
| | - Andrey V Bocharov
- Laboratory of Differential Psychophysiology, Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, Russia
- Institute for the Humanities, Novosibirsk State University, Novosibirsk, Russia
| | - Alexander E Saprigyn
- Laboratory of Differential Psychophysiology, Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, Russia
- Laboratory of Psychological Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Gennady G Knyazev
- Laboratory of Differential Psychophysiology, Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, Russia
| |
Collapse
|
48
|
Sonuga-Barke EJS, Becker SP, Bölte S, Castellanos FX, Franke B, Newcorn JH, Nigg JT, Rohde LA, Simonoff E. Annual Research Review: Perspectives on progress in ADHD science - from characterization to cause. J Child Psychol Psychiatry 2023; 64:506-532. [PMID: 36220605 PMCID: PMC10023337 DOI: 10.1111/jcpp.13696] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/08/2022] [Indexed: 12/20/2022]
Abstract
The science of attention-deficit/hyperactivity disorder (ADHD) is motivated by a translational goal - the discovery and exploitation of knowledge about the nature of ADHD to the benefit of those individuals whose lives it affects. Over the past fifty years, scientific research has made enormous strides in characterizing the ADHD condition and in understanding its correlates and causes. However, the translation of these scientific insights into clinical benefits has been limited. In this review, we provide a selective and focused survey of the scientific field of ADHD, providing our personal perspectives on what constitutes the scientific consensus, important new leads to be highlighted, and the key outstanding questions to be addressed going forward. We cover two broad domains - clinical characterization and, risk factors, causal processes and neuro-biological pathways. Part one focuses on the developmental course of ADHD, co-occurring characteristics and conditions, and the functional impact of living with ADHD - including impairment, quality of life, and stigma. In part two, we explore genetic and environmental influences and putative mediating brain processes. In the final section, we reflect on the future of the ADHD construct in the light of cross-cutting scientific themes and recent conceptual reformulations that cast ADHD traits as part of a broader spectrum of neurodivergence.
Collapse
Affiliation(s)
- Edmund J S Sonuga-Barke
- School of Academic Psychiatry, Institute of Psychology, Psychiatry & Neuroscience, King’s College London. UK
- Department of Child & Adolescent Psychiatry, Aarhus University, Denmark
| | - Stephen P. Becker
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, United States
| | - Sven Bölte
- Department of Women’s and Children’s Health, Karolinska Institutet, Sweden
- Division of Child and Adolescent Psychiatry, Center for Psychiatry Research, Stockholm County Council, Sweden
| | - Francisco Xavier Castellanos
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, USA
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Barbara Franke
- Departments of Human Genetics and Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Joel T. Nigg
- Department of Psychiatry, Oregon Health and Science University, USA
| | - Luis Augusto Rohde
- ADHD Outpatient Program & Developmental Psychiatry Program, Hospital de Clinica de Porto Alegre, Federal University of Rio Grande do Sul, Brazil; National Institute of Developmental Psychiatry, Brazil
| | - Emily Simonoff
- School of Academic Psychiatry, Institute of Psychology, Psychiatry & Neuroscience, King’s College London. UK
| |
Collapse
|
49
|
Xu C, Li H, Gao J, Li L, He F, Yu J, Ling Y, Gao J, Li J, Melloni L, Luo B, Ding N. Statistical learning in patients in the minimally conscious state. Cereb Cortex 2023; 33:2507-2516. [PMID: 35670595 DOI: 10.1093/cercor/bhac222] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 12/22/2022] Open
Abstract
When listening to speech, cortical activity can track mentally constructed linguistic units such as words, phrases, and sentences. Recent studies have also shown that the neural responses to mentally constructed linguistic units can predict the outcome of patients with disorders of consciousness (DoC). In healthy individuals, cortical tracking of linguistic units can be driven by both long-term linguistic knowledge and online learning of the transitional probability between syllables. Here, we investigated whether statistical learning could occur in patients in the minimally conscious state (MCS) and patients emerged from the MCS (EMCS) using electroencephalography (EEG). In Experiment 1, we presented to participants an isochronous sequence of syllables, which were composed of either 4 real disyllabic words or 4 reversed disyllabic words. An inter-trial phase coherence analysis revealed that the patient groups showed similar word tracking responses to real and reversed words. In Experiment 2, we presented trisyllabic artificial words that were defined by the transitional probability between words, and a significant word-rate EEG response was observed for MCS patients. These results suggested that statistical learning can occur with a minimal conscious level. The residual statistical learning ability in MCS patients could potentially be harnessed to induce neural plasticity.
Collapse
Affiliation(s)
- Chuan Xu
- Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Hangcheng Li
- Department of Rehabilitation, Hangzhou Mingzhou Brain Rehabilitation Hospital, Hangzhou 311215, China
| | - Jiaxin Gao
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou 310027, China
- Research Center for Advanced Artificial Intelligence Theory, Zhejiang Lab, Hangzhou 311121, China
| | - Lingling Li
- Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Fangping He
- Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jie Yu
- Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yi Ling
- Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jian Gao
- Department of Rehabilitation, Hangzhou Mingzhou Brain Rehabilitation Hospital, Hangzhou 311215, China
| | - Jingqi Li
- Department of Rehabilitation, Hangzhou Mingzhou Brain Rehabilitation Hospital, Hangzhou 311215, China
| | - Lucia Melloni
- New York University Comprehensive Epilepsy Center, 223 34th Street, New York, NY 10016, USA
| | - Benyan Luo
- Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Nai Ding
- Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou 310027, China
- Research Center for Advanced Artificial Intelligence Theory, Zhejiang Lab, Hangzhou 311121, China
| |
Collapse
|
50
|
Mizuno Y, Cai W, Supekar K, Makita K, Takiguchi S, Silk TJ, Tomoda A, Menon V. Methylphenidate Enhances Spontaneous Fluctuations in Reward and Cognitive Control Networks in Children With Attention-Deficit/Hyperactivity Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:271-280. [PMID: 36717325 DOI: 10.1016/j.bpsc.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/06/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Methylphenidate, a first-line treatment for attention-deficit/hyperactivity disorder (ADHD), is thought to influence dopaminergic neurotransmission in the nucleus accumbens (NAc) and its associated brain circuitry, but this hypothesis has yet to be systematically tested. METHODS We conducted a randomized, placebo-controlled, double-blind crossover trial including 27 children with ADHD. Children with ADHD were scanned twice with resting-state functional magnetic resonance imaging under methylphenidate and placebo conditions, along with assessment of sustained attention. We examined spontaneous neural activity in the NAc and the salience, frontoparietal, and default mode networks and their links to behavioral changes. Replicability of methylphenidate effects on spontaneous neural activity was examined in a second independent cohort. RESULTS Methylphenidate increased spontaneous neural activity in the NAc and the salience and default mode networks. Methylphenidate-induced changes in spontaneous activity patterns in the default mode network were associated with improvements in intraindividual response variability during a sustained attention task. Critically, despite differences in clinical trial protocols and data acquisition parameters, the NAc and the salience and default mode networks showed replicable patterns of methylphenidate-induced changes in spontaneous activity across two independent cohorts. CONCLUSIONS We provide reproducible evidence demonstrating that methylphenidate enhances spontaneous neural activity in NAc and cognitive control networks in children with ADHD, resulting in more stable sustained attention. Our findings identified a novel neural mechanism underlying methylphenidate treatment in ADHD to inform the development of clinically useful biomarkers for evaluating treatment outcomes.
Collapse
Affiliation(s)
- Yoshifumi Mizuno
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Research Center for Child Mental Development, University of Fukui, Fukui, Japan; Division of Developmental Higher Brain Functions, United Graduate School of Child Development, University of Fukui, Fukui, Japan; Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan.
| | - Weidong Cai
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Wu Tsai Neurosciences Institute, Stanford University, Stanford, California; Maternal & Child Health Research Institute, Stanford University, Stanford, California
| | - Kaustubh Supekar
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Wu Tsai Neurosciences Institute, Stanford University, Stanford, California; Maternal & Child Health Research Institute, Stanford University, Stanford, California
| | - Kai Makita
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan; Division of Developmental Higher Brain Functions, United Graduate School of Child Development, University of Fukui, Fukui, Japan
| | - Shinichiro Takiguchi
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, University of Fukui, Fukui, Japan; Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| | - Timothy J Silk
- Centre for Social and Early Emotional Development and School of Psychology, Deakin University, Geelong, Victoria, Australia; Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Akemi Tomoda
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan; Division of Developmental Higher Brain Functions, United Graduate School of Child Development, University of Fukui, Fukui, Japan; Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Department of Neurology and Neurological Sciences, Stanford University, Stanford, California; Wu Tsai Neurosciences Institute, Stanford University, Stanford, California; Maternal & Child Health Research Institute, Stanford University, Stanford, California.
| |
Collapse
|