1
|
Isik CM, Bayyurt EBT, Sahin NO. The MNK-SYNGAP1 axis in specific learning disorder: gene expression pattern and new perspectives. Eur J Pediatr 2025; 184:260. [PMID: 40108041 PMCID: PMC11922980 DOI: 10.1007/s00431-025-06089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/26/2025] [Accepted: 03/08/2025] [Indexed: 03/22/2025]
Abstract
Specific learning disorder (SLD) is a neurodevelopmental disorder that significantly affects children's academic performance. This study aimed to investigate the expression levels of the MAP Kinase Interacting Serine/Threonine Kinase 1-2 (MNK1, MNK2), Synaptic Ras GTPase Activating Protein 1 (SYNGAP1) genes, and the long non-coding RNA Synaptic Ras GTPase Activating Protein 1-Anti Sense1 (SYNGAP1-AS1), which are believed to play a key role in neurodevelopmental pathways, in children with SLD. Understanding the role of these genes in synaptic plasticity and cognitive function may provide insights into the molecular mechanisms underlying SLD. This study included 38 children diagnosed with SLD and 35 healthy controls aged 6 to 16. RNA was isolated from blood samples, and gene expression levels were measured using quantitative polymerase chain reaction (qPCR). The statistical analysis was conducted to compare the expression levels between the SLD and control groups and within SLD subgroups based on severity and sex. MNK1 and SYNGAP1 expression levels were significantly upregulated in the SLD group compared to the control group (8.33-fold and 16.52-fold increase, respectively; p < 0.001). lncSYNGAP1-AS1 showed a 26.58-fold increase, while MNK2 was downregulated by 2.2-fold, although these changes were not statistically significant. No significant differences were observed between sexes or between the severity subgroups of SLD. CONCLUSION he upregulation of MNK1 and SYNGAP1 in children with SLD suggests their involvement in the neurodevelopmental pathways associated with cognitive processes such as learning and memory. These findings provide a foundation for future research into the molecular basis and potential therapeutic targets of SLD. WHAT IS KNOWN • SYNGAP1 is a key regulator of synaptic plasticity and learning, primarily functioning through Ras signaling inhibition. Its deficiency impairs long-term potentiation (LTP) and is associated with neurodevelopmental disorders (NDDs) such as autism spectrum disorder (ASD) and intellectual disability. • The MAPK/ERK pathway plays a crucial role in learning and memory, and its dysregulation has been linked to several neurological conditions. MNK1/2 interacts with SYNGAP1 in synaptic signaling. WHAT IS NEW • This study is the first to demonstrate significant upregulation of SYNGAP1 and MKNK1 in children with SLD. • Understanding the role of the MKNK-SYNGAP1 axis may guide the development of targeted therapies aimed at enhancing synaptic plasticity to improve learning and memory outcomes in children with SLD.
Collapse
Affiliation(s)
- Cansu Mercan Isik
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey.
| | | | - Nil Ozbilum Sahin
- Department of Molecular Biology and Genetic, Faculty of Science, Cumhuriyet University, 58140, Sivas, Turkey
| |
Collapse
|
2
|
Zhao J, Bai X. Discovery of key biomarkers in tourette syndrome by network pharmacology. Front Pharmacol 2024; 15:1397203. [PMID: 39318779 PMCID: PMC11420008 DOI: 10.3389/fphar.2024.1397203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/14/2024] [Indexed: 09/26/2024] Open
Abstract
Background Yangxue Xifeng Decoction (YXD) has been utilized in clinical settings for the treatment of Tourette Syndrome (TS). However, the action mechanism of YXD needs further research. Methods The ingredients and targets of YXD were identified via database searches and then constructed an active ingredient-target network using Cytoscape. Pathway enrichment analysis was performed via Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). The core genes were determined by LASSO regression and SVM algorithm. Additionally, we analyzed the immune infiltration. The signaling pathways associated with core genes were investigated through KEGG and GO. We predicted the transcription factors using "RcisTarge". Results 127 active ingredients of YXD and 255 targets were obtained. TNF and the IL-17 signaling pathway were the main pathways. OPRM1 and VIM were screened out as core genes, which were associated with the immune infiltration. The signaling pathways involved in OPRM1 and VIM were enriched. Furthermore, remarkable correlation was found between OPRM1 and VIM levels and other TS-related genes such as MAPT and MAPT. Conclusion OPRM1 and MAPT, and the signaling pathways are associated with TS. YXD exerts its therapeutic TS through multi-component and multi-targets including immune infiltration.
Collapse
Affiliation(s)
- Jiali Zhao
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
- Harbin Hospital of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiaohong Bai
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
3
|
Hong Y, Ryun S, Chung CK. Evoking artificial speech perception through invasive brain stimulation for brain-computer interfaces: current challenges and future perspectives. Front Neurosci 2024; 18:1428256. [PMID: 38988764 PMCID: PMC11234843 DOI: 10.3389/fnins.2024.1428256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
Encoding artificial perceptions through brain stimulation, especially that of higher cognitive functions such as speech perception, is one of the most formidable challenges in brain-computer interfaces (BCI). Brain stimulation has been used for functional mapping in clinical practices for the last 70 years to treat various disorders affecting the nervous system, including epilepsy, Parkinson's disease, essential tremors, and dystonia. Recently, direct electrical stimulation has been used to evoke various forms of perception in humans, ranging from sensorimotor, auditory, and visual to speech cognition. Successfully evoking and fine-tuning artificial perceptions could revolutionize communication for individuals with speech disorders and significantly enhance the capabilities of brain-computer interface technologies. However, despite the extensive literature on encoding various perceptions and the rising popularity of speech BCIs, inducing artificial speech perception is still largely unexplored, and its potential has yet to be determined. In this paper, we examine the various stimulation techniques used to evoke complex percepts and the target brain areas for the input of speech-like information. Finally, we discuss strategies to address the challenges of speech encoding and discuss the prospects of these approaches.
Collapse
Affiliation(s)
- Yirye Hong
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seokyun Ryun
- Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Chun Kee Chung
- Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea
| |
Collapse
|
4
|
Li J, Zhou W, Liang L, Li Y, Xu K, Li X, Huang Z, Jin Y. Noninvasive electrical stimulation as a neuroprotective strategy in retinal diseases: a systematic review of preclinical studies. J Transl Med 2024; 22:28. [PMID: 38184580 PMCID: PMC10770974 DOI: 10.1186/s12967-023-04766-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/27/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Electrical activity has a crucial impact on the development and survival of neurons. Numerous recent studies have shown that noninvasive electrical stimulation (NES) has neuroprotective action in various retinal disorders. OBJECTIVE To systematically review the literature on in vivo studies and provide a comprehensive summary of the neuroprotective action and the mechanisms of NES on retinal disorders. METHODS Based on the PRISMA guideline, a systematic review was conducted in PubMed, Web of Science, Embase, Scopus and Cochrane Library to collect all relevant in vivo studies on "the role of NES on retinal diseases" published up until September 2023. Possible biases were identified with the adopted SYRCLE's tool. RESULTS Of the 791 initially gathered studies, 21 articles met inclusion/exclusion criteria for full-text review. The results revealed the neuroprotective effect of NES (involved whole-eye, transcorneal, transscleral, transpalpebral, transorbital electrical stimulation) on different retinal diseases, including retinitis pigmentosa, retinal degeneration, high-intraocular pressure injury, traumatic optic neuropathy, nonarteritic ischemic optic neuropathy. NES could effectively delay degeneration and apoptosis of retinal neurons, preserve retinal structure and visual function with high security, and its mechanism of action might be related to promoting the secretion of neurotrophins and growth factors, decreasing inflammation, inhibiting apoptosis. The quality scores of included studies ranged from 5 to 8 points (a total of 10 points), according to SYRCLE's risk of bias tool. CONCLUSION This systematic review indicated that NES exerts neuroprotective effects on retinal disease models mainly through its neurotrophic, anti-inflammatory, and anti-apoptotic capabilities. To assess the efficacy of NES in a therapeutic setting, however, well-designed clinical trials are required in the future.
Collapse
Affiliation(s)
- Jiaxian Li
- Department of Eye Function Laboratory, Eye Hospital, China Academy of Chinese Medical Sciences, 33 Lugu Road, Shijingshan District, Beijing, 100040, People's Republic of China
| | - Wei Zhou
- Department of Eye Function Laboratory, Eye Hospital, China Academy of Chinese Medical Sciences, 33 Lugu Road, Shijingshan District, Beijing, 100040, People's Republic of China
| | - Lina Liang
- Department of Eye Function Laboratory, Eye Hospital, China Academy of Chinese Medical Sciences, 33 Lugu Road, Shijingshan District, Beijing, 100040, People's Republic of China.
| | - Yamin Li
- Department of Eye Function Laboratory, Eye Hospital, China Academy of Chinese Medical Sciences, 33 Lugu Road, Shijingshan District, Beijing, 100040, People's Republic of China
| | - Kai Xu
- Department of Eye Function Laboratory, Eye Hospital, China Academy of Chinese Medical Sciences, 33 Lugu Road, Shijingshan District, Beijing, 100040, People's Republic of China
| | - Xiaoyu Li
- Department of Eye Function Laboratory, Eye Hospital, China Academy of Chinese Medical Sciences, 33 Lugu Road, Shijingshan District, Beijing, 100040, People's Republic of China
| | - Ziyang Huang
- Department of Eye Function Laboratory, Eye Hospital, China Academy of Chinese Medical Sciences, 33 Lugu Road, Shijingshan District, Beijing, 100040, People's Republic of China
| | - Yu Jin
- Department of Eye Function Laboratory, Eye Hospital, China Academy of Chinese Medical Sciences, 33 Lugu Road, Shijingshan District, Beijing, 100040, People's Republic of China
| |
Collapse
|
5
|
Oz R, Edelman-Klapper H, Nivinsky-Margalit S, Slovin H. Microstimulation in the primary visual cortex: activity patterns and their relation to visual responses and evoked saccades. Cereb Cortex 2022; 33:5192-5209. [PMID: 36300613 DOI: 10.1093/cercor/bhac409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Intracortical microstimulation (ICMS) in the primary visual cortex (V1) can generate the visual perception of a small point of light, termed phosphene, and evoke saccades directed to the receptive field of the stimulated neurons. Although ICMS is widely used, a direct measurement of the spatio-temporal patterns of neural activity evoked by ICMS and their relation to the neural responses evoked by visual stimuli or how they relate to ICMS-evoked saccades are still missing. To investigate this, we combined ICMS with voltage-sensitive dye imaging in V1 of behaving monkeys and measured neural activity at a high spatial (meso-scale) and temporal resolution. We then compared the population response evoked by small visual stimuli to those evoked by microstimulation. Both stimulation types evoked population activity that spread over few millimeters in V1 and propagated to extrastriate areas. However, the population responses evoked by ICMS have shown faster dynamics for the activation transients and the horizontal propagation of activity revealed a wave-like propagation. Finally, neural activity in the ICMS condition was higher for trials with evoked saccades as compared with trials without saccades. Our results uncover the spatio-temporal patterns evoked by ICMS and their relation to visual processing and saccade generation.
Collapse
Affiliation(s)
- Roy Oz
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University , Ramat Gan 5290002, Israel
| | - Hadar Edelman-Klapper
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University , Ramat Gan 5290002, Israel
| | - Shany Nivinsky-Margalit
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University , Ramat Gan 5290002, Israel
| | - Hamutal Slovin
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University , Ramat Gan 5290002, Israel
| |
Collapse
|
6
|
Hayashida Y, Kameda S, Umehira Y, Ishikawa S, Yagi T. Multichannel stimulation module as a tool for animal studies on cortical neural prostheses. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:927581. [PMID: 36176924 PMCID: PMC9513350 DOI: 10.3389/fmedt.2022.927581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Intracortical microstimulation to the visual cortex is thought to be a feasible technique for inducing localized phosphenes in patients with acquired blindness, and thereby for visual prosthesis. In order to design effective stimuli for the prosthesis, it is important to elucidate relationships between the spatio-temporal patterns of stimuli and the resulting neural responses and phosphenes through pre-clinical animal studies. However, the physiological basis of effective spatial patterns of the stimuli for the prosthesis has been little investigated in the literature, at least partly because that the previously developed multi-channel stimulation systems were designed specifically for the clinical use. In the present, a 64-channel stimulation module was developed as a scalable tool for animal experiments. The operations of the module were verified by not only dry-bench tests but also physiological animal experiments in vivo. The results demonstrated its usefulness for examining the stimulus-response relationships in a quantitative manner, and for inducing the multi-site neural excitations with a multi-electrode array. In addition, this stimulation module could be used to generate spatially patterned stimuli with up to 4,096 channels in a dynamic way, in which the stimulus patterns can be updated at a certain frame rate in accordance with the incoming visual scene. The present study demonstrated that our stimulation module is applicable to the physiological and other future studies in animals on the cortical prostheses.
Collapse
Affiliation(s)
- Yuki Hayashida
- Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, Suita, Japan
- Department of Information Engineering, Graduate School of Engineering, Mie University, Tsu, Japan
| | - Seiji Kameda
- Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Yuichi Umehira
- Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Shinnosuke Ishikawa
- Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Tetsuya Yagi
- Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, Suita, Japan
- Department of Electrical and Electronic Engineering, School of Engineering, Fukui University of Technology, Fukui, Japan
| |
Collapse
|
7
|
de Ruyter van Steveninck J, Güçlü U, van Wezel R, van Gerven M. End-to-end optimization of prosthetic vision. J Vis 2022; 22:20. [PMID: 35703408 PMCID: PMC8899855 DOI: 10.1167/jov.22.2.20] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neural prosthetics may provide a promising solution to restore visual perception in some forms of blindness. The restored prosthetic percept is rudimentary compared to normal vision and can be optimized with a variety of image preprocessing techniques to maximize relevant information transfer. Extracting the most useful features from a visual scene is a nontrivial task and optimal preprocessing choices strongly depend on the context. Despite rapid advancements in deep learning, research currently faces a difficult challenge in finding a general and automated preprocessing strategy that can be tailored to specific tasks or user requirements. In this paper, we present a novel deep learning approach that explicitly addresses this issue by optimizing the entire process of phosphene generation in an end-to-end fashion. The proposed model is based on a deep auto-encoder architecture and includes a highly adjustable simulation module of prosthetic vision. In computational validation experiments, we show that such an approach is able to automatically find a task-specific stimulation protocol. The results of these proof-of-principle experiments illustrate the potential of end-to-end optimization for prosthetic vision. The presented approach is highly modular and our approach could be extended to automated dynamic optimization of prosthetic vision for everyday tasks, given any specific constraints, accommodating individual requirements of the end-user.
Collapse
Affiliation(s)
- Jaap de Ruyter van Steveninck
- Department of Artificial Intelligence, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Umut Güçlü
- Department of Artificial Intelligence, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Richard van Wezel
- Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Biomedical Signal and Systems, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Marcel van Gerven
- Department of Artificial Intelligence, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
8
|
de Ruyter van Steveninck J, van Gestel T, Koenders P, van der Ham G, Vereecken F, Güçlü U, van Gerven M, Güçlütürk Y, van Wezel R. Real-world indoor mobility with simulated prosthetic vision: The benefits and feasibility of contour-based scene simplification at different phosphene resolutions. J Vis 2022; 22:1. [PMID: 35103758 PMCID: PMC8819280 DOI: 10.1167/jov.22.2.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 12/28/2021] [Indexed: 11/24/2022] Open
Abstract
Neuroprosthetic implants are a promising technology for restoring some form of vision in people with visual impairments via electrical neurostimulation in the visual pathway. Although an artificially generated prosthetic percept is relatively limited compared with normal vision, it may provide some elementary perception of the surroundings, re-enabling daily living functionality. For mobility in particular, various studies have investigated the benefits of visual neuroprosthetics in a simulated prosthetic vision paradigm with varying outcomes. The previous literature suggests that scene simplification via image processing, and particularly contour extraction, may potentially improve the mobility performance in a virtual environment. In the current simulation study with sighted participants, we explore both the theoretically attainable benefits of strict scene simplification in an indoor environment by controlling the environmental complexity, as well as the practically achieved improvement with a deep learning-based surface boundary detection implementation compared with traditional edge detection. A simulated electrode resolution of 26 × 26 was found to provide sufficient information for mobility in a simple environment. Our results suggest that, for a lower number of implanted electrodes, the removal of background textures and within-surface gradients may be beneficial in theory. However, the deep learning-based implementation for surface boundary detection did not improve mobility performance in the current study. Furthermore, our findings indicate that, for a greater number of electrodes, the removal of within-surface gradients and background textures may deteriorate, rather than improve, mobility. Therefore, finding a balanced amount of scene simplification requires a careful tradeoff between informativity and interpretability that may depend on the number of implanted electrodes.
Collapse
Affiliation(s)
- Jaap de Ruyter van Steveninck
- Department of Artificial Intelligence, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Tom van Gestel
- Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Paula Koenders
- Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Guus van der Ham
- Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Floris Vereecken
- Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Umut Güçlü
- Department of Artificial Intelligence, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Marcel van Gerven
- Department of Artificial Intelligence, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Yagmur Güçlütürk
- Department of Artificial Intelligence, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Richard van Wezel
- Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Biomedical Signal and Systems, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, the Netherlands
| |
Collapse
|
9
|
Bosking WH, Oswalt DN, Foster BL, Sun P, Beauchamp MS, Yoshor D. Percepts evoked by multi-electrode stimulation of human visual cortex. Brain Stimul 2022; 15:1163-1177. [PMID: 35985472 PMCID: PMC9831085 DOI: 10.1016/j.brs.2022.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/11/2022] [Accepted: 08/11/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Direct electrical stimulation of early visual cortex evokes the perception of small spots of light known as phosphenes. Previous studies have examined the location, size, and brightness of phosphenes evoked by stimulation of single electrodes. While it has been envisioned that concurrent stimulation of many electrodes could be used as the basis for a visual cortical prosthesis, the percepts resulting from multi-electrode stimulation have not been fully characterized. OBJECTIVE To understand the rules governing perception of phosphenes evoked by multi-electrode stimulation of visual cortex. METHODS Multi-electrode stimulation was conducted in human epilepsy patients. We examined the number and spatial arrangement of phosphenes evoked by stimulation of individual multi-electrode groups (n = 8), and the ability of subjects to discriminate between the pattern of phosphenes generated by stimulation of different multi-electrode groups (n = 7). RESULTS Simultaneous stimulation of pairs of electrodes separated by greater than 4 mm tended to produce perception of two distinct phosphenes. Simultaneous stimulation of three electrodes gave rise to a consistent spatial pattern of phosphenes, but with significant variation in the absolute location, size, and orientation of that pattern perceived on each trial. Although multi-electrode stimulation did not produce perception of recognizable forms, subjects could use the pattern of phosphenes evoked by stimulation to perform simple discriminations. CONCLUSIONS The number of phosphenes produced by multi-electrode stimulation can be predicted using a model for spread of activity in early visual cortex, but there are additional subtle effects that must be accounted for.
Collapse
Affiliation(s)
- William H. Bosking
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA,Corresponding author. Department of Neurosurgery, University of Pennsylvania, 3700 Hamilton Walk, Richards Room 6A, Philadelphia, PA, 19104, USA. (W.H. Bosking)
| | - Denise N. Oswalt
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Brett L. Foster
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ping Sun
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Michael S. Beauchamp
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Daniel Yoshor
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
10
|
Beauchamp MS, Oswalt D, Sun P, Foster BL, Magnotti JF, Niketeghad S, Pouratian N, Bosking WH, Yoshor D. Dynamic Stimulation of Visual Cortex Produces Form Vision in Sighted and Blind Humans. Cell 2021; 181:774-783.e5. [PMID: 32413298 DOI: 10.1016/j.cell.2020.04.033] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/27/2019] [Accepted: 04/17/2020] [Indexed: 11/28/2022]
Abstract
A visual cortical prosthesis (VCP) has long been proposed as a strategy for restoring useful vision to the blind, under the assumption that visual percepts of small spots of light produced with electrical stimulation of visual cortex (phosphenes) will combine into coherent percepts of visual forms, like pixels on a video screen. We tested an alternative strategy in which shapes were traced on the surface of visual cortex by stimulating electrodes in dynamic sequence. In both sighted and blind participants, dynamic stimulation enabled accurate recognition of letter shapes predicted by the brain's spatial map of the visual world. Forms were presented and recognized rapidly by blind participants, up to 86 forms per minute. These findings demonstrate that a brain prosthetic can produce coherent percepts of visual forms.
Collapse
Affiliation(s)
- Michael S Beauchamp
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Denise Oswalt
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ping Sun
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brett L Foster
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - John F Magnotti
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Soroush Niketeghad
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nader Pouratian
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - William H Bosking
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniel Yoshor
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
11
|
Mazurek KA, Schieber MH. Injecting Information into the Mammalian Cortex: Progress, Challenges, and Promise. Neuroscientist 2020; 27:129-142. [PMID: 32648527 DOI: 10.1177/1073858420936253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
For 150 years artificial stimulation has been used to study the function of the nervous system. Such stimulation-whether electrical or optogenetic-eventually may be used in neuroprosthetic devices to replace lost sensory inputs and to otherwise introduce information into the nervous system. Efforts toward this goal can be classified broadly as either biomimetic or arbitrary. Biomimetic stimulation aims to mimic patterns of natural neural activity, so that the subject immediately experiences the artificial stimulation as if it were natural sensation. Arbitrary stimulation, in contrast, makes no attempt to mimic natural patterns of neural activity. Instead, different stimuli-at different locations and/or in different patterns-are assigned different meanings randomly. The subject's time and effort then are required to learn to interpret different stimuli, a process that engages the brain's inherent plasticity. Here we will examine progress in using artificial stimulation to inject information into the cerebral cortex and discuss the challenges for and the promise of future development.
Collapse
Affiliation(s)
- Kevin A Mazurek
- Department of Neuroscience, University of Rochester, Rochester, NY, USA.,Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY, USA
| | - Marc H Schieber
- Department of Neuroscience, University of Rochester, Rochester, NY, USA.,Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY, USA.,Department of Neurology, University of Rochester, Rochester, NY, USA.,Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| |
Collapse
|
12
|
Averna A, Pasquale V, Murphy MD, Rogantin MP, Van Acker GM, Nudo RJ, Chiappalone M, Guggenmos DJ. Differential Effects of Open- and Closed-Loop Intracortical Microstimulation on Firing Patterns of Neurons in Distant Cortical Areas. Cereb Cortex 2019; 30:2879-2896. [PMID: 31832642 DOI: 10.1093/cercor/bhz281] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/27/2019] [Accepted: 10/01/2019] [Indexed: 01/06/2023] Open
Abstract
Intracortical microstimulation can be used successfully to modulate neuronal activity. Activity-dependent stimulation (ADS), in which action potentials recorded extracellularly from a single neuron are used to trigger stimulation at another cortical location (closed-loop), is an effective treatment for behavioral recovery after brain lesion, but the related neurophysiological changes are still not clear. Here, we investigated the ability of ADS and random stimulation (RS) to alter firing patterns of distant cortical locations. We recorded 591 neuronal units from 23 Long-Evan healthy anesthetized rats. Stimulation was delivered to either forelimb or barrel field somatosensory cortex, using either RS or ADS triggered from spikes recorded in the rostral forelimb area (RFA). Both RS and ADS stimulation protocols rapidly altered spike firing within RFA compared with no stimulation. We observed increase in firing rates and change of spike patterns. ADS was more effective than RS in increasing evoked spikes during the stimulation periods, by producing a reliable, progressive increase in stimulus-related activity over time and an increased coupling of the trigger channel with the network. These results are critical for understanding the efficacy of closed-loop electrical microstimulation protocols in altering activity patterns in interconnected brain networks, thus modulating cortical state and functional connectivity.
Collapse
Affiliation(s)
- Alberto Averna
- Rehab Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child science (DINOGMI), University of Genova, 16145 Genova, Italy.,Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Valentina Pasquale
- Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Maxwell D Murphy
- Department of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | - Gustaf M Van Acker
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Randolph J Nudo
- Department of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, KS 66160, USA.,Landon Center on Aging, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | - David J Guggenmos
- Department of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, KS 66160, USA.,Landon Center on Aging, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
13
|
Bosking WH, Beauchamp MS, Yoshor D. Electrical Stimulation of Visual Cortex: Relevance for the Development of Visual Cortical Prosthetics. Annu Rev Vis Sci 2017; 3:141-166. [PMID: 28753382 PMCID: PMC6916716 DOI: 10.1146/annurev-vision-111815-114525] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Electrical stimulation of the cerebral cortex is a powerful tool for exploring cortical function. Stimulation of early visual cortical areas is easily detected by subjects and produces simple visual percepts known as phosphenes. A device implanted in visual cortex that generates patterns of phosphenes could be used as a substitute for natural vision in blind patients. We review the possibilities and limitations of such a device, termed a visual cortical prosthetic. Currently, we can predict the location and size of phosphenes produced by stimulation of single electrodes. A functional prosthetic, however, must produce spatial temporal patterns of activity that will result in the perception of complex visual objects. Although stimulation of later visual cortical areas alone usually does not lead to a visual percept, it can alter visual perception and the performance of visual behaviors, and training subjects to use signals injected into these areas may be possible.
Collapse
Affiliation(s)
- William H Bosking
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030; , ,
| | - Michael S Beauchamp
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030; , ,
| | - Daniel Yoshor
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030; , ,
| |
Collapse
|
14
|
Lee SW, Fried SI. Enhanced Control of Cortical Pyramidal Neurons With Micromagnetic Stimulation. IEEE Trans Neural Syst Rehabil Eng 2017; 25:1375-1386. [PMID: 27893396 PMCID: PMC5498237 DOI: 10.1109/tnsre.2016.2631446] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Magnetic stimulation is less sensitive to the inflammatory reactions that plague conventional electrode-based cortical implants and therefore may be useful as a next-generation (implanted) cortical prosthetic. The fields arising from micro-coils are quite small however and thus, their ability to modulate cortical activity must first be established. Here, we show that layer V pyramidal neurons (PNs) can be strongly activated by micro-coil stimulation and further, the asymmetric fields arising from such coils do not simultaneously activate horizontally-oriented axon fibers, thus confining activation to a focal region around the coil. The spatially-narrow fields from micro-coils allowed the sensitivity of different regions within a single PN to be compared: while the proximal axon was most sensitive in naïve cells, repetitive stimulation over the apical dendrite led to a change in state of the neuron that reduced thresholds there to below those of the axon. Thus, our results raise the possibility that regardless of the mode of stimulation, penetration depths that target specific portions of the apical dendrite may actually be more effective than those that target Layer 6. Interestingly, the state change had similar properties to state changes described previously at the systems level, suggesting a possible neuronal mechanism underlying such responses.
Collapse
|
15
|
Intracortical microstimulation differentially activates cortical layers based on stimulation depth. Brain Stimul 2017; 10:684-694. [DOI: 10.1016/j.brs.2017.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/23/2017] [Accepted: 02/24/2017] [Indexed: 12/22/2022] Open
|
16
|
Lee SW, Fallegger F, Casse BDF, Fried SI. Implantable microcoils for intracortical magnetic stimulation. SCIENCE ADVANCES 2016; 2:e1600889. [PMID: 27957537 PMCID: PMC5148213 DOI: 10.1126/sciadv.1600889] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 11/03/2016] [Indexed: 05/20/2023]
Abstract
Neural prostheses that stimulate the neocortex have the potential to treat a wide range of neurological disorders. However, the efficacy of electrode-based implants remains limited, with persistent challenges that include an inability to create precise patterns of neural activity as well as difficulties in maintaining response consistency over time. These problems arise from fundamental limitations of electrodes as well as their susceptibility to implantation and have proven difficult to overcome. Magnetic stimulation can address many of these limitations, but coils small enough to be implanted into the cortex were not thought strong enough to activate neurons. We describe a new microcoil design and demonstrate its effectiveness for both activating cortical neurons and driving behavioral responses. The stimulation of cortical pyramidal neurons in brain slices in vitro was reliable and could be confined to spatially narrow regions (<60 μm). The spatially asymmetric fields arising from the coil helped to avoid the simultaneous activation of passing axons. In vivo implantation was safe and resulted in consistent and predictable behavioral responses. The high permeability of magnetic fields to biological substances may yield another important advantage because it suggests that encapsulation and other adverse effects of implantation will not diminish coil performance over time, as happens to electrodes. These findings suggest that a coil-based implant might be a useful alternative to existing electrode-based devices. The enhanced selectivity of microcoil-based magnetic stimulation will be especially useful for visual prostheses as well as for many brain-computer interface applications that require precise activation of the cortex.
Collapse
Affiliation(s)
- Seung Woo Lee
- Boston Veterans Affairs Healthcare System, Boston, MA 02130, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Florian Fallegger
- Palo Alto Research Center, a Xerox company, Palo Alto, CA 94304, USA
| | | | - Shelley I. Fried
- Boston Veterans Affairs Healthcare System, Boston, MA 02130, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Corresponding author.
| |
Collapse
|
17
|
Normann RA, Fernandez E. Clinical applications of penetrating neural interfaces and Utah Electrode Array technologies. J Neural Eng 2016; 13:061003. [PMID: 27762237 DOI: 10.1088/1741-2560/13/6/061003] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This paper briefly describes some of the recent progress in the development of penetrating microelectrode arrays and highlights the use of two of these devices, Utah electrode arrays and Utah slanted electrode arrays, in two therapeutic interventions: recording volitional skeletal motor commands from the central nervous system, and recording motor commands and evoking somatosensory percepts in the peripheral nervous system (PNS). The paper also briefly explores other potential sites for microelectrode array interventions that could be profitably pursued and that could have important consequences in enhancing the quality of life of patients that has been compromised by disorders of the central and PNSs.
Collapse
Affiliation(s)
- Richard A Normann
- Departments of Bioengineering and Ophthalmology, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
18
|
Cicmil N, Krug K. Playing the electric light orchestra--how electrical stimulation of visual cortex elucidates the neural basis of perception. Philos Trans R Soc Lond B Biol Sci 2016; 370:20140206. [PMID: 26240421 PMCID: PMC4528818 DOI: 10.1098/rstb.2014.0206] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Vision research has the potential to reveal fundamental mechanisms underlying sensory experience. Causal experimental approaches, such as electrical microstimulation, provide a unique opportunity to test the direct contributions of visual cortical neurons to perception and behaviour. But in spite of their importance, causal methods constitute a minority of the experiments used to investigate the visual cortex to date. We reconsider the function and organization of visual cortex according to results obtained from stimulation techniques, with a special emphasis on electrical stimulation of small groups of cells in awake subjects who can report their visual experience. We compare findings from humans and monkeys, striate and extrastriate cortex, and superficial versus deep cortical layers, and identify a number of revealing gaps in the ‘causal map′ of visual cortex. Integrating results from different methods and species, we provide a critical overview of the ways in which causal approaches have been used to further our understanding of circuitry, plasticity and information integration in visual cortex. Electrical stimulation not only elucidates the contributions of different visual areas to perception, but also contributes to our understanding of neuronal mechanisms underlying memory, attention and decision-making.
Collapse
Affiliation(s)
- Nela Cicmil
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Kristine Krug
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
19
|
Making sense: Determining the parameter space of electrical brain stimulation. Proc Natl Acad Sci U S A 2015; 112:15012-3. [PMID: 26607448 DOI: 10.1073/pnas.1520704112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
20
|
Lewis PM, Rosenfeld JV. Electrical stimulation of the brain and the development of cortical visual prostheses: An historical perspective. Brain Res 2015; 1630:208-24. [PMID: 26348986 DOI: 10.1016/j.brainres.2015.08.038] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 08/14/2015] [Indexed: 10/23/2022]
Abstract
Rapid advances are occurring in neural engineering, bionics and the brain-computer interface. These milestones have been underpinned by staggering advances in micro-electronics, computing, and wireless technology in the last three decades. Several cortically-based visual prosthetic devices are currently being developed, but pioneering advances with early implants were achieved by Brindley followed by Dobelle in the 1960s and 1970s. We have reviewed these discoveries within the historical context of the medical uses of electricity including attempts to cure blindness, the discovery of the visual cortex, and opportunities for cortex stimulation experiments during neurosurgery. Further advances were made possible with improvements in electrode design, greater understanding of cortical electrophysiology and miniaturisation of electronic components. Human trials of a new generation of prototype cortical visual prostheses for the blind are imminent. This article is part of a Special Issue entitled Hold Item.
Collapse
Affiliation(s)
- Philip M Lewis
- Monash Vision Group, Department of Electrical and Computer Systems Engineering, Monash University, Wellington Road, Clayton, VIC 3800, Australia; Department of Neurosurgery, Level 1 Old Baker Building, Alfred Hospital, 55 Commercial Road, Melbourne, VIC 3004, Australia; Department of Surgery, Monash University Central Clinical School, Level 6 Alfred Centre, 99 Commercial Road, Melbourne, VIC 3004, Australia; Monash Institute of Medical Engineering, Monash University, Wellington Road, Clayton, VIC 3800, Australia.
| | - Jeffrey V Rosenfeld
- Monash Vision Group, Department of Electrical and Computer Systems Engineering, Monash University, Wellington Road, Clayton, VIC 3800, Australia; Department of Neurosurgery, Level 1 Old Baker Building, Alfred Hospital, 55 Commercial Road, Melbourne, VIC 3004, Australia; Department of Surgery, Monash University Central Clinical School, Level 6 Alfred Centre, 99 Commercial Road, Melbourne, VIC 3004, Australia; Monash Institute of Medical Engineering, Monash University, Wellington Road, Clayton, VIC 3800, Australia; F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, United States.
| |
Collapse
|
21
|
Brain control and information transfer. Exp Brain Res 2015; 233:3335-47. [DOI: 10.1007/s00221-015-4423-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 08/17/2015] [Indexed: 11/27/2022]
|
22
|
Lewis PM, Ackland HM, Lowery AJ, Rosenfeld JV. Restoration of vision in blind individuals using bionic devices: a review with a focus on cortical visual prostheses. Brain Res 2014; 1595:51-73. [PMID: 25446438 DOI: 10.1016/j.brainres.2014.11.020] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 11/05/2014] [Accepted: 11/08/2014] [Indexed: 12/13/2022]
Abstract
The field of neurobionics offers hope to patients with sensory and motor impairment. Blindness is a common cause of major sensory loss, with an estimated 39 million people worldwide suffering from total blindness in 2010. Potential treatment options include bionic devices employing electrical stimulation of the visual pathways. Retinal stimulation can restore limited visual perception to patients with retinitis pigmentosa, however loss of retinal ganglion cells precludes this approach. The optic nerve, lateral geniculate nucleus and visual cortex provide alternative stimulation targets, with several research groups actively pursuing a cortically-based device capable of driving several hundred stimulating electrodes. While great progress has been made since the earliest works of Brindley and Dobelle in the 1960s and 1970s, significant clinical, surgical, psychophysical, neurophysiological, and engineering challenges remain to be overcome before a commercially-available cortical implant will be realized. Selection of candidate implant recipients will require assessment of their general, psychological and mental health, and likely responses to visual cortex stimulation. Implant functionality, longevity and safety may be enhanced by careful electrode insertion, optimization of electrical stimulation parameters and modification of immune responses to minimize or prevent the host response to the implanted electrodes. Psychophysical assessment will include mapping the positions of potentially several hundred phosphenes, which may require repetition if electrode performance deteriorates over time. Therefore, techniques for rapid psychophysical assessment are required, as are methods for objectively assessing the quality of life improvements obtained from the implant. These measures must take into account individual differences in image processing, phosphene distribution and rehabilitation programs that may be required to optimize implant functionality. In this review, we detail these and other challenges facing developers of cortical visual prostheses in addition to briefly outlining the epidemiology of blindness, and the history of cortical electrical stimulation in the context of visual prosthetics.
Collapse
Affiliation(s)
- Philip M Lewis
- Department of Neurosurgery, Alfred Hospital, Melbourne, Australia; Department of Surgery, Monash University, Central Clinical School, Melbourne, Australia; Monash Vision Group, Faculty of Engineering, Monash University, Melbourne, Australia; Monash Institute of Medical Engineering, Monash University, Melbourne, Australia.
| | - Helen M Ackland
- Department of Neurosurgery, Alfred Hospital, Melbourne, Australia; Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia.
| | - Arthur J Lowery
- Monash Vision Group, Faculty of Engineering, Monash University, Melbourne, Australia; Monash Institute of Medical Engineering, Monash University, Melbourne, Australia; Department of Electrical and Computer Systems Engineering, Faculty of Engineering, Monash University, Melbourne, Australia.
| | - Jeffrey V Rosenfeld
- Department of Neurosurgery, Alfred Hospital, Melbourne, Australia; Department of Surgery, Monash University, Central Clinical School, Melbourne, Australia; Monash Vision Group, Faculty of Engineering, Monash University, Melbourne, Australia; Monash Institute of Medical Engineering, Monash University, Melbourne, Australia; F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, USA.
| |
Collapse
|
23
|
Born RT, Trott AR, Hartmann TS. Cortical magnification plus cortical plasticity equals vision? Vision Res 2014; 111:161-9. [PMID: 25449335 DOI: 10.1016/j.visres.2014.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 09/15/2014] [Accepted: 10/06/2014] [Indexed: 10/24/2022]
Abstract
Most approaches to visual prostheses have focused on the retina, and for good reasons. The earlier that one introduces signals into the visual system, the more one can take advantage of its prodigious computational abilities. For methods that make use of microelectrodes to introduce electrical signals, however, the limited density and volume occupying nature of the electrodes place severe limits on the image resolution that can be provided to the brain. In this regard, non-retinal areas in general, and the primary visual cortex in particular, possess one large advantage: "magnification factor" (MF)-a value that represents the distance across a sheet of neurons that represents a given angle of the visual field. In the foveal representation of primate primary visual cortex, the MF is enormous-on the order of 15-20 mm/deg in monkeys and humans, whereas on the retina, the MF is limited by the optical design of the eye to around 0.3m m/deg. This means that, for an electrode array of a given density, a much higher-resolution image can be introduced into V1 than onto the retina (or any other visual structure). In addition to this tremendous advantage in resolution, visual cortex is plastic at many different levels ranging from a very local ability to learn to better detect electrical stimulation to higher levels of learning that permit human observers to adapt to radical changes to their visual inputs. We argue that the combination of the large magnification factor and the impressive ability of the cerebral cortex to learn to recognize arbitrary patterns, might outweigh the disadvantages of bypassing earlier processing stages and makes V1 a viable option for the restoration of vision.
Collapse
Affiliation(s)
- Richard T Born
- Dept. of Neurobiology, Harvard Medical School, United States; Center for Brain Science, Harvard University, United States.
| | - Alexander R Trott
- Dept. of Neurobiology, Harvard Medical School, United States; Harvard PhD Program in Neuroscience, United States.
| | - Till S Hartmann
- Dept. of Neurobiology, Harvard Medical School, United States.
| |
Collapse
|