1
|
Chmykhalo VK, Deev RV, Tokarev AT, Polunina YA, Xue L, Shidlovskii YV. SWI/SNF Complex Connects Signaling and Epigenetic State in Cells of Nervous System. Mol Neurobiol 2025; 62:1536-1557. [PMID: 39002058 DOI: 10.1007/s12035-024-04355-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
SWI/SNF protein complexes are evolutionarily conserved epigenetic regulators described in all eukaryotes. In metameric animals, the complexes are involved in all processes occurring in the nervous system, from neurogenesis to higher brain functions. On the one hand, the range of roles is wide because the SWI/SNF complexes act universally by mobilizing the nucleosomes in a chromatin template at multiple loci throughout the genome. On the other hand, the complexes mediate the action of multiple signaling pathways that control most aspects of neural tissue development and function. The issues are discussed to provide insight into the molecular basis of the multifaceted role of SWI/SNFs in cell cycle regulation, DNA repair, activation of immediate-early genes, neurogenesis, and brain and connectome formation. An overview is additionally provided for the molecular basis of nervous system pathologies associated with the SWI/SNF complexes and their contribution to neuroinflammation and neurodegeneration. Finally, we discuss the idea that SWI/SNFs act as an integration platform to connect multiple signaling and genetic programs.
Collapse
Affiliation(s)
- Victor K Chmykhalo
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St, Moscow, 119334, Russia.
| | - Roman V Deev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St, Moscow, 119334, Russia
| | - Artemiy T Tokarev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St, Moscow, 119334, Russia
| | - Yulia A Polunina
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St, Moscow, 119334, Russia
| | - Lei Xue
- School of Life Science and Technology, The First Rehabilitation Hospital of Shanghai, Tongji University, Shanghai, China
| | - Yulii V Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St, Moscow, 119334, Russia
- Department of Biology and General Genetics, Sechenov University, Moscow, Russia
| |
Collapse
|
2
|
Samardžija B, Petrović M, Zaharija B, Medija M, Meštrović A, Bradshaw NJ, Filošević Vujnović A, Andretić Waldowski R. Transgenic Drosophila melanogaster Carrying a Human Full-Length DISC1 Construct (UAS- hflDISC1) Showing Effects on Social Interaction Networks. Curr Issues Mol Biol 2024; 46:8526-8549. [PMID: 39194719 DOI: 10.3390/cimb46080502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
Disrupted in Schizophrenia 1 (DISC1) is a scaffold protein implicated in major mental illnesses including schizophrenia, with a significant negative impact on social life. To investigate if DISC1 affects social interactions in Drosophila melanogaster, we created transgenic flies with second or third chromosome insertions of the human full-length DISC1 (hflDISC1) gene fused to a UAS promotor (UAS-hflDISC1). Initial characterization of the insertion lines showed unexpected endogenous expression of the DISC1 protein that led to various behavioral and neurochemical phenotypes. Social interaction network (SIN) analysis showed altered social dynamics and organizational structures. This was in agreement with the altered levels of the locomotor activity of individual flies monitored for 24 h. Together with a decreased ability to climb vertical surfaces, the observed phenotypes indicate altered motor functions that could be due to a change in the function of the motor neurons and/or central brain. The changes in social behavior and motor function suggest that the inserted hflDISC1 gene influences nervous system functioning that parallels symptoms of DISC1-related mental diseases in humans. Furthermore, neurochemical analyses of transgenic lines revealed increased levels of hydrogen peroxide and decreased levels of glutathione, indicating an impact of DISC1 on the dynamics of redox regulation, similar to that reported in transgenic mammals. Future studies are needed to address the localization of DISC1 expression and to address how the redox parameter changes correlate with the observed behavioral changes.
Collapse
Affiliation(s)
- Bobana Samardžija
- Faculty of Biotechnology and Drug Development, University of Rijeka, Radmile Matejčić 2, 51 000 Rijeka, Croatia
| | - Milan Petrović
- Faculty of Informatics and Digital Technologies, University of Rijeka, Radmile Matejčić 2, 51 000 Rijeka, Croatia
| | - Beti Zaharija
- Faculty of Biotechnology and Drug Development, University of Rijeka, Radmile Matejčić 2, 51 000 Rijeka, Croatia
| | - Marta Medija
- Faculty of Biotechnology and Drug Development, University of Rijeka, Radmile Matejčić 2, 51 000 Rijeka, Croatia
| | - Ana Meštrović
- Faculty of Informatics and Digital Technologies, University of Rijeka, Radmile Matejčić 2, 51 000 Rijeka, Croatia
| | - Nicholas J Bradshaw
- Faculty of Biotechnology and Drug Development, University of Rijeka, Radmile Matejčić 2, 51 000 Rijeka, Croatia
| | - Ana Filošević Vujnović
- Faculty of Biotechnology and Drug Development, University of Rijeka, Radmile Matejčić 2, 51 000 Rijeka, Croatia
| | - Rozi Andretić Waldowski
- Faculty of Biotechnology and Drug Development, University of Rijeka, Radmile Matejčić 2, 51 000 Rijeka, Croatia
| |
Collapse
|
3
|
Mariano V, Kanellopoulos AK, Ricci C, Di Marino D, Borrie SC, Dupraz S, Bradke F, Achsel T, Legius E, Odent S, Billuart P, Bienvenu T, Bagni C. Intellectual Disability and Behavioral Deficits Linked to CYFIP1 Missense Variants Disrupting Actin Polymerization. Biol Psychiatry 2024; 95:161-174. [PMID: 37704042 DOI: 10.1016/j.biopsych.2023.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND 15q11.2 deletions and duplications have been linked to autism spectrum disorder, schizophrenia, and intellectual disability. Recent evidence suggests that dysfunctional CYFIP1 (cytoplasmic FMR1 interacting protein 1) contributes to the clinical phenotypes observed in individuals with 15q11.2 deletion/duplication syndrome. CYFIP1 plays crucial roles in neuronal development and brain connectivity, promoting actin polymerization and regulating local protein synthesis. However, information about the impact of single nucleotide variants in CYFIP1 on neurodevelopmental disorders is limited. METHODS Here, we report a family with 2 probands exhibiting intellectual disability, autism spectrum disorder, spastic tetraparesis, and brain morphology defects and who carry biallelic missense point mutations in the CYFIP1 gene. We used skin fibroblasts from one of the probands, the parents, and typically developing individuals to investigate the effect of the variants on the functionality of CYFIP1. In addition, we generated Drosophila knockin mutants to address the effect of the variants in vivo and gain insight into the molecular mechanism that underlies the clinical phenotype. RESULTS Our study revealed that the 2 missense variants are in protein domains responsible for maintaining the interaction within the wave regulatory complex. Molecular and cellular analyses in skin fibroblasts from one proband showed deficits in actin polymerization. The fly model for these mutations exhibited abnormal brain morphology and F-actin loss and recapitulated the core behavioral symptoms, such as deficits in social interaction and motor coordination. CONCLUSIONS Our findings suggest that the 2 CYFIP1 variants contribute to the clinical phenotype in the probands that reflects deficits in actin-mediated brain development processes.
Collapse
Affiliation(s)
- Vittoria Mariano
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland; Department of Human Genetics, KU Leuven, Belgium
| | | | - Carlotta Ricci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Daniele Di Marino
- Department of Life and Environmental Sciences, New York-Marche Structural Biology Center, Polytechnic University of Marche, Ancona, Italy; Department of Neuroscience, Neuronal Death and Neuroprotection Unit, Mario Negri Institute for Pharmacological Research-IRCCS, Milan, Italy
| | | | - Sebastian Dupraz
- Axonal Growth and Regeneration Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Frank Bradke
- Axonal Growth and Regeneration Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Tilmann Achsel
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Eric Legius
- Department of Human Genetics, KU Leuven, Belgium
| | - Sylvie Odent
- Service de Génétique Clinique, Centre Labellisé pour les Anomalies du Développement Ouest, Centre Hospitalier Universitaire de Rennes, Rennes, France; Institut de Génétique et Développement de Rennes, CNRS, UMR 6290, Université de Rennes, ERN-ITHACA, France
| | - Pierre Billuart
- Institut de Psychiatrie et de Neurosciences de Paris, Institut National de la Santé et de la Recherche Médicale U1266, Université de Paris Cité (UPC), Paris, France
| | - Thierry Bienvenu
- Institut de Psychiatrie et de Neurosciences de Paris, Institut National de la Santé et de la Recherche Médicale U1266, Université de Paris Cité (UPC), Paris, France
| | - Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
4
|
Szinyákovics J, Keresztes F, Kiss EA, Falcsik G, Vellai T, Kovács T. Potent New Targets for Autophagy Enhancement to Delay Neuronal Ageing. Cells 2023; 12:1753. [PMID: 37443788 PMCID: PMC10341134 DOI: 10.3390/cells12131753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Autophagy is a lysosomal-dependent degradation process of eukaryotic cells responsible for breaking down unnecessary and damaged intracellular components. Autophagic activity gradually declines with age due to genetic control, and this change contributes to the accumulation of cellular damage at advanced ages, thereby causing cells to lose their functionality and viability. This could be particularly problematic in post-mitotic cells including neurons, the mass destruction of which leads to various neurodegenerative diseases. Here, we aim to uncover new regulatory points where autophagy could be specifically activated and test these potential drug targets in neurodegenerative disease models of Drosophila melanogaster. One possible way to activate autophagy is by enhancing autophagosome-lysosome fusion that creates the autolysosome in which the enzymatic degradation happens. The HOPS (homotypic fusion and protein sorting) and SNARE (Snap receptor) protein complexes regulate the fusion process. The HOPS complex forms a bridge between the lysosome and autophagosome with the assistance of small GTPase proteins. Thus, small GTPases are essential for autolysosome maturation, and among these proteins, Rab2 (Ras-associated binding 2), Rab7, and Arl8 (Arf-like 8) are required to degrade the autophagic cargo. For our experiments, we used Drosophila melanogaster as a model organism. Nerve-specific small GTPases were silenced and overexpressed. We examined the effects of these genetic interventions on lifespan, climbing ability, and autophagy. Finally, we also studied the activation of small GTPases in a Parkinson's disease model. Our results revealed that GTP-locked, constitutively active Rab2 (Rab2-CA) and Arl8 (Arl8-CA) expression reduces the levels of the autophagic substrate p62/Ref(2)P in neurons, extends lifespan, and improves the climbing ability of animals during ageing. However, Rab7-CA expression dramatically shortens lifespan and inhibits autophagy. Rab2-CA expression also increases lifespan in a Parkinson's disease model fly strain overexpressing human mutant (A53T) α-synuclein protein. Data provided by this study suggests that Rab2 and Arl8 serve as potential targets for autophagy enhancement in the Drosophila nervous system. In the future, it might be interesting to assess the effect of Rab2 and Arl8 coactivation on autophagy, and it would also be worthwhile to validate these findings in a mammalian model and human cell lines. Molecules that specifically inhibit Rab2 or Arl8 serve as potent drug candidates to modulate the activity of the autophagic process in treating neurodegenerative pathologies. In the future, it would be reasonable to investigate which GAP enzyme can inhibit Rab2 or Arl8 specifically, but not affect Rab7, with similar medical purposes.
Collapse
Affiliation(s)
- Janka Szinyákovics
- Department of Genetics, Eötvös Loránd University (ELTE), H-1117 Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University (ELTE), Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
- ELKH-ELTE Genetic Research Group, H-1117 Budapest, Hungary
| | - Fanni Keresztes
- Department of Genetics, Eötvös Loránd University (ELTE), H-1117 Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University (ELTE), Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Eszter Anna Kiss
- Department of Genetics, Eötvös Loránd University (ELTE), H-1117 Budapest, Hungary
| | - Gergő Falcsik
- Department of Genetics, Eötvös Loránd University (ELTE), H-1117 Budapest, Hungary
| | - Tibor Vellai
- Department of Genetics, Eötvös Loránd University (ELTE), H-1117 Budapest, Hungary
- ELKH-ELTE Genetic Research Group, H-1117 Budapest, Hungary
| | - Tibor Kovács
- Department of Genetics, Eötvös Loránd University (ELTE), H-1117 Budapest, Hungary
| |
Collapse
|
5
|
Ssempijja F, Dare SS, Bukenya EEM, Kasozi KI, Kenganzi R, Fernandez EM, Vicente-Crespo M. Attenuation of Seizures, Cognitive Deficits, and Brain Histopathology by Phytochemicals of Imperata cylindrica (L.) P. Beauv (Poaceae) in Acute and Chronic Mutant Drosophila melanogaster Epilepsy Models. J Evid Based Integr Med 2023; 28:2515690X231160191. [PMID: 36866635 PMCID: PMC9989407 DOI: 10.1177/2515690x231160191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 08/09/2022] [Accepted: 02/06/2023] [Indexed: 03/04/2023] Open
Abstract
Imperata cylindrica is a globally distributed plant known for its antiepileptic attributes, but there is a scarcity of robust evidence for its efficacy. The study investigated neuroprotective attributes of Imperata cylindrica root extract on neuropathological features of epilepsy in a Drosophila melanogaster mutant model of epilepsy. It was conducted on 10-day-old (at the initiation of study) male post-eclosion bang-senseless paralytic Drosophila (parabss1) involved acute (1-3 h) and chronic (6-18 days) experiments; n = 50 flies per group (convulsions tests); n = 100 flies per group (learning/memory tests and histological examination). Administrations were done in 1 g standard fly food, per os. The mutant flies of study (parabss1) showed marked age-dependent progressive brain neurodegeneration and axonal degeneration, significant (P < 0.05) bang sensitivity and convulsions, and cognitive deficits due to up-regulation of the paralytic gene in our mutants. The neuropathological findings were significantly (P < 0.05) alleviated in dose and duration-dependent fashions to near normal/normal after acute and chronic treatment with extract similar to sodium valproate. Therefore, para is expressed in neurons of brain tissues in our mutant flies to bring about epilepsy phenotypes and behaviors of the current juvenile and old-adult mutant D. melanogaster models of epilepsy. The herb exerts neuroprotection by anticonvulsant and antiepileptogenic mechanisms in mutant D. melanogaster due to plant flavonoids, polyphenols, and chromones (1 and 2) which exert antioxidative and receptor or voltage-gated sodium ion channels' inhibitory properties, and thus causing reduced inflammation and apoptosis, increased tissue repair, and improved cell biology in the brain of mutant flies. The methanol root extract provides anticonvulsant and antiepileptogenic medicinal values which protect epileptic D. melanogaster. Therefore, the herb should be advanced for more experimental and clinical studies to confirm its efficacy in treating epilepsy.
Collapse
Affiliation(s)
- Fred Ssempijja
- Department of Anatomy, Faculty of Medicine, Mbarara University of Science and Technology, P.O Box 1410, Mbarara, Uganda
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Samuel Sunday Dare
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
- School of Medicine, Kabale University, P.O Box 317, Kabale, Uganda
| | - Edmund E. M. Bukenya
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
- School of Medicine, Kabale University, P.O Box 317, Kabale, Uganda
| | | | - Ritah Kenganzi
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, Kampala International University Teaching Hospital, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Edgar Mario Fernandez
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Marta Vicente-Crespo
- Institute of Biomedical Research, Kampala International University Western Campus, P.O Box 71, Bushenyi, Uganda
- Department of Biochemistry, Faculty of Biomedical Sciences, Kampala International University Western Campus, P.O Box 71, Bushenyi, Uganda
| |
Collapse
|
6
|
Cabana-Domínguez J, Antón-Galindo E, Fernàndez-Castillo N, Singgih EL, O'Leary A, Norton WH, Strekalova T, Schenck A, Reif A, Lesch KP, Slattery D, Cormand B. The translational genetics of ADHD and related phenotypes in model organisms. Neurosci Biobehav Rev 2023; 144:104949. [PMID: 36368527 DOI: 10.1016/j.neubiorev.2022.104949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent neurodevelopmental disorder resulting from the interaction between genetic and environmental risk factors. It is well known that ADHD co-occurs frequently with other psychiatric disorders due, in part, to shared genetics factors. Although many studies have contributed to delineate the genetic landscape of psychiatric disorders, their specific molecular underpinnings are still not fully understood. The use of animal models can help us to understand the role of specific genes and environmental stimuli-induced epigenetic modifications in the pathogenesis of ADHD and its comorbidities. The aim of this review is to provide an overview on the functional work performed in rodents, zebrafish and fruit fly and highlight the generated insights into the biology of ADHD, with a special focus on genetics and epigenetics. We also describe the behavioral tests that are available to study ADHD-relevant phenotypes and comorbid traits in these models. Furthermore, we have searched for new models to study ADHD and its comorbidities, which can be useful to test potential pharmacological treatments.
Collapse
Affiliation(s)
- Judit Cabana-Domínguez
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| | - Ester Antón-Galindo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Euginia L Singgih
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Aet O'Leary
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany; Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Tartu, Estonia
| | - William Hg Norton
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Tatyana Strekalova
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany, and Department of Neuropsychology and Psychiatry, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany, and Department of Neuropsychology and Psychiatry, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands
| | - David Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| |
Collapse
|
7
|
Mutations in trpγ, the homologue of TRPC6 autism candidate gene, causes autism-like behavioral deficits in Drosophila. Mol Psychiatry 2022; 27:3328-3342. [PMID: 35501408 PMCID: PMC9708601 DOI: 10.1038/s41380-022-01555-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 03/15/2022] [Accepted: 03/29/2022] [Indexed: 11/09/2022]
Abstract
Autism Spectrum Disorder (ASD) is characterized by impaired social communication, restricted interests, and repetitive and stereotyped behaviors. The TRPC6 (transient receptor potential channel 6) represents an ASD candidate gene under an oligogenic/multifactorial model based on the initial description and cellular characterization of an individual with ASD bearing a de novo heterozygous mutation disrupting TRPC6, together with the enrichment of disruptive TRPC6 variants in ASD cases as compared to controls. Here, we perform a clinical re-evaluation of the initial non-verbal patient, and also present eight newly reported individuals ascertained for ASD and bearing predicted loss-of-function mutations in TRPC6. In order to understand the consequences of mutations in TRPC6 on nervous system function, we used the fruit fly, Drosophila melanogaster, to show that null mutations in transient receptor gamma (trpγ; the fly gene most similar to TRPC6), cause a number of behavioral defects that mirror features seen in ASD patients, including deficits in social interactions (based on courtship behavior), impaired sleep homeostasis (without affecting the circadian control of sleep), hyperactivity in both young and old flies, and defects in learning and memory. Some defects, most notably in sleep, differed in severity between males and females and became normal with age. Interestingly, hyperforin, a TRPC6 agonist and the primary active component of the St. John's wort antidepressant, attenuated many of the deficits expressed by trpγ mutant flies. In summary, our results provide further evidence that the TRPC6 gene is a risk factor for ASD. In addition, they show that the behavioral defects caused by mutations in TRPC6 can be modeled in Drosophila, thereby establishing a paradigm to examine the impact of mutations in other candidate genes.
Collapse
|
8
|
Shilpa O, Anupama KP, Antony A, Gurushankara HP. Lead (Pb)-induced oxidative stress mediates sex-specific autistic-like behaviour in Drosophila melanogaster. Mol Neurobiol 2021; 58:6378-6393. [PMID: 34528217 DOI: 10.1007/s12035-021-02546-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/21/2021] [Indexed: 01/24/2023]
Abstract
Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental disorder characterised by three main behavioural symptoms: abnormal social interaction, verbal and non-verbal communication impairments, and repetitive and restricted activities or interests. Even though the exact aetiology of ASD remains unknown, studies have shown a link between genetics and environmental pollutants. Heavy metal lead (Pb), the environmental pollutant, is associated with ASD. Pb may also exhibit sex-specific ASD behaviour, as has been demonstrated in the global human populations. Drosophila melanogaster as a model has been used in the present study to understand the involvement of Pb-induced oxidative stress in developing ASD behaviour. The larval feeding technique has been employed to administer different Pb concentrations (0.2-0.8 mM) to Oregon-R (ORR), superoxide dismutase (Sod), or catalase (Cat) antioxidants overexpressed or knockdown flies. Adult Drosophila (5-day old) were used for Pb content, biochemical, and behavioural analysis.Pb accumulated in the Drosophila brain induces oxidative stress and exhibited a human autistic-like behaviour such as reduced climbing, increased grooming, increased social spacing, and decreased learning and memory in a sex-specific manner.Pb-induced autistic-like behaviour was intensified in Sod or Cat-knockdown flies, whereas Sod or Cat-overexpressed flies overcome that behavioural alterations. These results unequivocally proved that Pb-induced oxidative stress causes ASD behaviour of humans in Drosophila. Thus, Drosophila is used as a model organism to analyse ASD-like human behaviour and underlines the importance of using antioxidant therapy in alleviating ASD symptoms in children.
Collapse
Affiliation(s)
- Olakkaran Shilpa
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya, 671320, Kasaragod, India
| | - Kizhakke Purayil Anupama
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya, 671320, Kasaragod, India
| | - Anet Antony
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya, 671320, Kasaragod, India
| | | |
Collapse
|
9
|
Andrew DR, Moe ME, Chen D, Tello JA, Doser RL, Conner WE, Ghuman JK, Restifo LL. Spontaneous motor-behavior abnormalities in two Drosophila models of neurodevelopmental disorders. J Neurogenet 2020; 35:1-22. [PMID: 33164597 DOI: 10.1080/01677063.2020.1833005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Mutations in hundreds of genes cause neurodevelopmental disorders with abnormal motor behavior alongside cognitive deficits. Boys with fragile X syndrome (FXS), a leading monogenic cause of intellectual disability, often display repetitive behaviors, a core feature of autism. By direct observation and manual analysis, we characterized spontaneous-motor-behavior phenotypes of Drosophila dfmr1 mutants, an established model for FXS. We recorded individual 1-day-old adult flies, with mature nervous systems and prior to the onset of aging, in small arenas. We scored behavior using open-source video-annotation software to generate continuous activity timelines, which were represented graphically and quantitatively. Young dfmr1 mutants spent excessive time grooming, with increased bout number and duration; both were rescued by transgenic wild-type dfmr1+. By two grooming-pattern measures, dfmr1-mutant flies showed elevated repetitions consistent with perseveration, which is common in FXS. In addition, the mutant flies display a preference for grooming posterior body structures, and an increased rate of grooming transitions from one site to another. We raise the possibility that courtship and circadian rhythm defects, previously reported for dfmr1 mutants, are complicated by excessive grooming. We also observed significantly increased grooming in CASK mutants, despite their dramatically decreased walking phenotype. The mutant flies, a model for human CASK-related neurodevelopmental disorders, displayed consistently elevated grooming indices throughout the assay, but transient locomotory activation immediately after placement in the arena. Based on published data identifying FMRP-target transcripts and functional analyses of mutations causing human genetic neurodevelopmental disorders, we propose the following proteins as candidate mediators of excessive repetitive behaviors in FXS: CaMKIIα, NMDA receptor subunits 2A and 2B, NLGN3, and SHANK3. Together, these fly-mutant phenotypes and mechanistic insights provide starting points for drug discovery to identify compounds that reduce dysfunctional repetitive behaviors.
Collapse
Affiliation(s)
- David R Andrew
- Department of Neurology, University of Arizona Health Sciences, Tucson, AZ, USA.,Center for Insect Science, University of Arizona, Tucson, AZ, USA.,Department of Biological Sciences, Lycoming College, Williamsport, PA, USA
| | - Mariah E Moe
- Department of Neurology, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Dailu Chen
- Department of Neurology, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Judith A Tello
- Department of Neurology, University of Arizona Health Sciences, Tucson, AZ, USA.,Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, USA
| | - Rachel L Doser
- Department of Neurology, University of Arizona Health Sciences, Tucson, AZ, USA
| | - William E Conner
- Department of Biology, Wake Forest University, Winston-Salem, NC, USA
| | - Jaswinder K Ghuman
- Department of Psychiatry, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Linda L Restifo
- Department of Neurology, University of Arizona Health Sciences, Tucson, AZ, USA.,Center for Insect Science, University of Arizona, Tucson, AZ, USA.,Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, USA.,BIO5 Interdisciplinary Research Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
10
|
Mariano V, Achsel T, Bagni C, Kanellopoulos AK. Modelling Learning and Memory in Drosophila to Understand Intellectual Disabilities. Neuroscience 2020; 445:12-30. [PMID: 32730949 DOI: 10.1016/j.neuroscience.2020.07.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 12/24/2022]
Abstract
Neurodevelopmental disorders (NDDs) include a large number of conditions such as Fragile X syndrome, autism spectrum disorders and Down syndrome, among others. They are characterized by limitations in adaptive and social behaviors, as well as intellectual disability (ID). Whole-exome and whole-genome sequencing studies have highlighted a large number of NDD/ID risk genes. To dissect the genetic causes and underlying biological pathways, in vivo experimental validation of the effects of these mutations is needed. The fruit fly, Drosophila melanogaster, is an ideal model to study NDDs, with highly tractable genetics, combined with simple behavioral and circuit assays, permitting rapid medium-throughput screening of NDD/ID risk genes. Here, we review studies where the use of well-established assays to study mechanisms of learning and memory in Drosophila has permitted insights into molecular mechanisms underlying IDs. We discuss how technologies in the fly model, combined with a high degree of molecular and physiological conservation between flies and mammals, highlight the Drosophila system as an ideal model to study neurodevelopmental disorders, from genetics to behavior.
Collapse
Affiliation(s)
- Vittoria Mariano
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne 1005, Switzerland; Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Tilmann Achsel
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne 1005, Switzerland
| | - Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne 1005, Switzerland; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy.
| | | |
Collapse
|
11
|
Kepler LD, McDiarmid TA, Rankin CH. Habituation in high-throughput genetic model organisms as a tool to investigate the mechanisms of neurodevelopmental disorders. Neurobiol Learn Mem 2020; 171:107208. [DOI: 10.1016/j.nlm.2020.107208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/14/2020] [Accepted: 03/02/2020] [Indexed: 10/24/2022]
|
12
|
Harich B, Klein M, Ockeloen CW, van der Voet M, Schimmel‐Naber M, de Leeuw N, Schenck A, Franke B. From man to fly - convergent evidence links FBXO25 to ADHD and comorbid psychiatric phenotypes. J Child Psychol Psychiatry 2020; 61:545-555. [PMID: 31849056 PMCID: PMC7217029 DOI: 10.1111/jcpp.13161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Mental disorders, including Attention-Deficit/Hyperactivity Disorder (ADHD), have a complex etiology, and identification of underlying genetic risk factors is challenging. This study used a multistep approach to identify and validate a novel risk gene for ADHD and psychiatric comorbidity. METHODS In a single family, severely affected by ADHD and cooccurring disorders, we applied single nucleotide polymorphism (SNP)-array analysis to detect copy-number variations (CNVs) linked to disease. Genes present in the identified CNV were subsequently tested for their association with ADHD in the largest data set currently available (n = 55,374); this gene-set and gene-based association analyses were based on common genetic variants. Significant findings were taken forward for functional validation using Drosophila melanogaster as biological model system, altering gene expression using the GAL4-UAS system and a pan-neuronal driver, and subsequently characterizing locomotor activity and sleep as functional readouts. RESULTS We identified a copy number gain in 8p23.3, which segregated with psychiatric phenotypes in the family and was confirmed by quantitative RT-PCR. Common genetic variants in this locus were associated with ADHD, especially those in FBXO25 and TDRP. Overexpression of the FBXO25 orthologue in two Drosophila models consistently led to increased locomotor activity and reduced sleep compared with the genetic background control. CONCLUSIONS We combine ADHD risk gene identification in an individual family with genetic association testing in a large case-control data set and functional validation in a model system, together providing an important illustration of an integrative approach suggesting that FBXO25 contributes to key features of ADHD and comorbid neuropsychiatric disorders.
Collapse
Affiliation(s)
- Benjamin Harich
- Department of Human GeneticsDonders Institute for BrainCognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Marieke Klein
- Department of Human GeneticsDonders Institute for BrainCognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
- Department of PsychiatryUMC Utrecht Brain CenterUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Charlotte W. Ockeloen
- Department of Human GeneticsDonders Institute for BrainCognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Monique van der Voet
- Department of Human GeneticsDonders Institute for BrainCognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Marlies Schimmel‐Naber
- Department of Human GeneticsDonders Institute for BrainCognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Nicole de Leeuw
- Department of Human GeneticsDonders Institute for BrainCognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Annette Schenck
- Department of Human GeneticsDonders Institute for BrainCognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Barbara Franke
- Department of Human GeneticsDonders Institute for BrainCognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
- Department of PsychiatryDonders Institute for BrainCognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
13
|
Straub J, Gregor A, Sauerer T, Fliedner A, Distel L, Suchy C, Ekici AB, Ferrazzi F, Zweier C. Genetic interaction screen for severe neurodevelopmental disorders reveals a functional link between Ube3a and Mef2 in Drosophila melanogaster. Sci Rep 2020; 10:1204. [PMID: 31988313 PMCID: PMC6985129 DOI: 10.1038/s41598-020-58182-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 01/13/2020] [Indexed: 11/09/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) are clinically and genetically extremely heterogeneous with shared phenotypes often associated with genes from the same networks. Mutations in TCF4, MEF2C, UBE3A, ZEB2 or ATRX cause phenotypically overlapping, syndromic forms of NDDs with severe intellectual disability, epilepsy and microcephaly. To characterize potential functional links between these genes/proteins, we screened for genetic interactions in Drosophila melanogaster. We induced ubiquitous or tissue specific knockdown or overexpression of each single orthologous gene (Da, Mef2, Ube3a, Zfh1, XNP) and in pairwise combinations. Subsequently, we assessed parameters such as lethality, wing and eye morphology, neuromuscular junction morphology, bang sensitivity and climbing behaviour in comparison between single and pairwise dosage manipulations. We found most stringent evidence for genetic interaction between Ube3a and Mef2 as simultaneous dosage manipulation in different tissues including glia, wing and eye resulted in multiple phenotype modifications. We subsequently found evidence for physical interaction between UBE3A and MEF2C also in human cells. Systematic pairwise assessment of the Drosophila orthologues of five genes implicated in clinically overlapping, severe NDDs and subsequent confirmation in a human cell line revealed interactions between UBE3A/Ube3a and MEF2C/Mef2, thus contributing to the characterization of the underlying molecular commonalities.
Collapse
Affiliation(s)
- Jonas Straub
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Anne Gregor
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Tatjana Sauerer
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Anna Fliedner
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Laila Distel
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Christine Suchy
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Fulvia Ferrazzi
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany.
| |
Collapse
|
14
|
McDiarmid TA, Belmadani M, Liang J, Meili F, Mathews EA, Mullen GP, Hendi A, Wong WR, Rand JB, Mizumoto K, Haas K, Pavlidis P, Rankin CH. Systematic phenomics analysis of autism-associated genes reveals parallel networks underlying reversible impairments in habituation. Proc Natl Acad Sci U S A 2020; 117:656-667. [PMID: 31754030 PMCID: PMC6968627 DOI: 10.1073/pnas.1912049116] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A major challenge facing the genetics of autism spectrum disorders (ASDs) is the large and growing number of candidate risk genes and gene variants of unknown functional significance. Here, we used Caenorhabditis elegans to systematically functionally characterize ASD-associated genes in vivo. Using our custom machine vision system, we quantified 26 phenotypes spanning morphology, locomotion, tactile sensitivity, and habituation learning in 135 strains each carrying a mutation in an ortholog of an ASD-associated gene. We identified hundreds of genotype-phenotype relationships ranging from severe developmental delays and uncoordinated movement to subtle deficits in sensory and learning behaviors. We clustered genes by similarity in phenomic profiles and used epistasis analysis to discover parallel networks centered on CHD8•chd-7 and NLGN3•nlg-1 that underlie mechanosensory hyperresponsivity and impaired habituation learning. We then leveraged our data for in vivo functional assays to gauge missense variant effect. Expression of wild-type NLG-1 in nlg-1 mutant C. elegans rescued their sensory and learning impairments. Testing the rescuing ability of conserved ASD-associated neuroligin variants revealed varied partial loss of function despite proper subcellular localization. Finally, we used CRISPR-Cas9 auxin-inducible degradation to determine that phenotypic abnormalities caused by developmental loss of NLG-1 can be reversed by adult expression. This work charts the phenotypic landscape of ASD-associated genes, offers in vivo variant functional assays, and potential therapeutic targets for ASD.
Collapse
Affiliation(s)
- Troy A McDiarmid
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Manuel Belmadani
- Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2A1, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Joseph Liang
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Fabian Meili
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Eleanor A Mathews
- Genetic Models of Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Gregory P Mullen
- Biology Program, Oklahoma City University, Oklahoma City, OK 73106
| | - Ardalan Hendi
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Wan-Rong Wong
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - James B Rand
- Genetic Models of Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Kota Mizumoto
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Kurt Haas
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Paul Pavlidis
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 2B5, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2A1, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Catharine H Rankin
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 2B5, Canada;
- Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
15
|
Collins LT. The case for emulating insect brains using anatomical "wiring diagrams" equipped with biophysical models of neuronal activity. BIOLOGICAL CYBERNETICS 2019; 113:465-474. [PMID: 31696303 DOI: 10.1007/s00422-019-00810-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Developing whole-brain emulation (WBE) technology would provide immense benefits across neuroscience, biomedicine, artificial intelligence, and robotics. At this time, constructing a simulated human brain lacks feasibility due to limited experimental data and limited computational resources. However, I suggest that progress toward this goal might be accelerated by working toward an intermediate objective, namely insect brain emulation (IBE). More specifically, this would entail creating biologically realistic simulations of entire insect nervous systems along with more approximate simulations of non-neuronal insect physiology to make "virtual insects." I argue that this could be realistically achievable within the next 20 years. I propose that developing emulations of insect brains will galvanize the global community of scientists, businesspeople, and policymakers toward pursuing the loftier goal of emulating the human brain. By demonstrating that WBE is possible via IBE, simulating mammalian brains and eventually the human brain may no longer be viewed as too radically ambitious to deserve substantial funding and resources. Furthermore, IBE will facilitate dramatic advances in cognitive neuroscience, artificial intelligence, and robotics through studies performed using virtual insects.
Collapse
Affiliation(s)
- Logan T Collins
- Department of Psychology and Neuroscience, University of Colorado, Boulder, 2860 Wilderness Place, Boulder, CO, 80301, USA.
| |
Collapse
|
16
|
Fenckova M, Blok LER, Asztalos L, Goodman DP, Cizek P, Singgih EL, Glennon JC, IntHout J, Zweier C, Eichler EE, von Reyn CR, Bernier RA, Asztalos Z, Schenck A. Habituation Learning Is a Widely Affected Mechanism in Drosophila Models of Intellectual Disability and Autism Spectrum Disorders. Biol Psychiatry 2019; 86:294-305. [PMID: 31272685 PMCID: PMC7053436 DOI: 10.1016/j.biopsych.2019.04.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Although habituation is one of the most ancient and fundamental forms of learning, its regulators and its relevance for human disease are poorly understood. METHODS We manipulated the orthologs of 286 genes implicated in intellectual disability (ID) with or without comorbid autism spectrum disorder (ASD) specifically in Drosophila neurons, and we tested these models in light-off jump habituation. We dissected neuronal substrates underlying the identified habituation deficits and integrated genotype-phenotype annotations, gene ontologies, and interaction networks to determine the clinical features and molecular processes that are associated with habituation deficits. RESULTS We identified >100 genes required for habituation learning. For 93 of these genes, a role in habituation learning was previously unknown. These genes characterize ID disorders with macrocephaly and/or overgrowth and comorbid ASD. Moreover, individuals with ASD from the Simons Simplex Collection carrying damaging de novo mutations in these genes exhibit increased aberrant behaviors associated with inappropriate, stereotypic speech. At the molecular level, ID genes required for normal habituation are enriched in synaptic function and converge on Ras/mitogen-activated protein kinase (Ras/MAPK) signaling. Both increased Ras/MAPK signaling in gamma-aminobutyric acidergic (GABAergic) neurons and decreased Ras/MAPK signaling in cholinergic neurons specifically inhibit the adaptive habituation response. CONCLUSIONS Our work supports the relevance of habituation learning to ASD, identifies an unprecedented number of novel habituation players, supports an emerging role for inhibitory neurons in habituation, and reveals an opposing, circuit-level-based mechanism for Ras/MAPK signaling. These findings establish habituation as a possible, widely applicable functional readout and target for pharmacologic intervention in ID/ASD.
Collapse
Affiliation(s)
- Michaela Fenckova
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laura E R Blok
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lenke Asztalos
- Aktogen Limited, Department of Genetics, University of Cambridge, Cambridge, United Kingdom; Aktogen Hungary Limited, Bay Zoltán Nonprofit Limited for Applied Research, Institute for Biotechnology, Szeged, Hungary
| | - David P Goodman
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - Pavel Cizek
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Euginia L Singgih
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeffrey C Glennon
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joanna IntHout
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington; Howard Hughes Medical Institute, University of Washington, Seattle, Washington
| | - Catherine R von Reyn
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania; Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington
| | - Zoltan Asztalos
- Aktogen Limited, Department of Genetics, University of Cambridge, Cambridge, United Kingdom; Aktogen Hungary Limited, Bay Zoltán Nonprofit Limited for Applied Research, Institute for Biotechnology, Szeged, Hungary; Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
17
|
Zamurrad S, Hatch HAM, Drelon C, Belalcazar HM, Secombe J. A Drosophila Model of Intellectual Disability Caused by Mutations in the Histone Demethylase KDM5. Cell Rep 2019; 22:2359-2369. [PMID: 29490272 DOI: 10.1016/j.celrep.2018.02.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 12/08/2017] [Accepted: 02/05/2018] [Indexed: 10/17/2022] Open
Abstract
Mutations in KDM5 family histone demethylases cause intellectual disability in humans. However, the molecular mechanisms linking KDM5-regulated transcription and cognition remain unknown. Here, we establish Drosophila as a model to understand this connection by generating a fly strain harboring an allele analogous to a disease-causing missense mutation in human KDM5C (kdm5A512P). Transcriptome analysis of kdm5A512P flies revealed a striking downregulation of genes required for ribosomal assembly and function and a concomitant reduction in translation. kdm5A512P flies also showed impaired learning and/or memory. Significantly, the behavioral and transcriptional changes in kdm5A512P flies were similar to those specifically lacking demethylase activity. These data suggest that the primary defect of the KDM5A512P mutation is a loss of histone demethylase activity and reveal an unexpected role for this enzymatic function in gene activation. Because translation is critical for neuronal function, we propose that this defect contributes to the cognitive defects of kdm5A512P flies.
Collapse
Affiliation(s)
- Sumaira Zamurrad
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Hayden A M Hatch
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461, USA
| | - Coralie Drelon
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Helen M Belalcazar
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Julie Secombe
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461, USA.
| |
Collapse
|
18
|
Coll-Tané M, Krebbers A, Castells-Nobau A, Zweier C, Schenck A. Intellectual disability and autism spectrum disorders 'on the fly': insights from Drosophila. Dis Model Mech 2019; 12:dmm039180. [PMID: 31088981 PMCID: PMC6550041 DOI: 10.1242/dmm.039180] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Intellectual disability (ID) and autism spectrum disorders (ASD) are frequently co-occurring neurodevelopmental disorders and affect 2-3% of the population. Rapid advances in exome and genome sequencing have increased the number of known implicated genes by threefold, to more than a thousand. The main challenges in the field are now to understand the various pathomechanisms associated with this bewildering number of genetic disorders, to identify new genes and to establish causality of variants in still-undiagnosed cases, and to work towards causal treatment options that so far are available only for a few metabolic conditions. To meet these challenges, the research community needs highly efficient model systems. With an increasing number of relevant assays and rapidly developing novel methodologies, the fruit fly Drosophila melanogaster is ideally positioned to change gear in ID and ASD research. The aim of this Review is to summarize some of the exciting work that already has drawn attention to Drosophila as a model for these disorders. We highlight well-established ID- and ASD-relevant fly phenotypes at the (sub)cellular, brain and behavioral levels, and discuss strategies of how this extraordinarily efficient and versatile model can contribute to 'next generation' medical genomics and to a better understanding of these disorders.
Collapse
Affiliation(s)
- Mireia Coll-Tané
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Alina Krebbers
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Anna Castells-Nobau
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
19
|
Agrawal P, Chung P, Heberlein U, Kent C. Enabling cell-type-specific behavioral epigenetics in Drosophila: a modified high-yield INTACT method reveals the impact of social environment on the epigenetic landscape in dopaminergic neurons. BMC Biol 2019; 17:30. [PMID: 30967153 PMCID: PMC6456965 DOI: 10.1186/s12915-019-0646-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/07/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Epigenetic mechanisms play fundamental roles in brain function and behavior and stressors such as social isolation can alter animal behavior via epigenetic mechanisms. However, due to cellular heterogeneity, identifying cell-type-specific epigenetic changes in the brain is challenging. Here, we report the first use of a modified isolation of nuclei tagged in specific cell type (INTACT) method in behavioral epigenetics of Drosophila melanogaster, a method we call mini-INTACT. RESULTS Using ChIP-seq on mini-INTACT purified dopaminergic nuclei, we identified epigenetic signatures in socially isolated and socially enriched Drosophila males. Social experience altered the epigenetic landscape in clusters of genes involved in transcription and neural function. Some of these alterations could be predicted by expression changes of four transcription factors and the prevalence of their binding sites in several clusters. These transcription factors were previously identified as activity-regulated genes, and their knockdown in dopaminergic neurons reduced the effects of social experience on sleep. CONCLUSIONS Our work enables the use of Drosophila as a model for cell-type-specific behavioral epigenetics and establishes that social environment shifts the epigenetic landscape in dopaminergic neurons. Four activity-related transcription factors are required in dopaminergic neurons for the effects of social environment on sleep.
Collapse
Affiliation(s)
- Pavan Agrawal
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| | - Phuong Chung
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Ulrike Heberlein
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Clement Kent
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
- Department of Biology, York University, Toronto, Canada.
| |
Collapse
|
20
|
Fattahi Z, Sheikh TI, Musante L, Rasheed M, Taskiran II, Harripaul R, Hu H, Kazeminasab S, Alam MR, Hosseini M, Larti F, Ghaderi Z, Celik A, Ayub M, Ansar M, Haddadi M, Wienker TF, Ropers HH, Kahrizi K, Vincent JB, Najmabadi H. Biallelic missense variants in ZBTB11 can cause intellectual disability in humans. Hum Mol Genet 2019; 27:3177-3188. [PMID: 29893856 DOI: 10.1093/hmg/ddy220] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/04/2018] [Indexed: 11/12/2022] Open
Abstract
Exploring genes and pathways underlying intellectual disability (ID) provides insight into brain development and function, clarifying the complex puzzle of how cognition develops. As part of ongoing systematic studies to identify candidate ID genes, linkage analysis and next-generation sequencing revealed Zinc Finger and BTB Domain Containing 11 (ZBTB11) as a novel candidate ID gene. ZBTB11 encodes a little-studied transcription regulator, and the two identified missense variants in this study are predicted to disrupt canonical Zn2+-binding residues of its C2H2 zinc finger domain, leading to possible altered DNA binding. Using HEK293T cells transfected with wild-type and mutant GFP-ZBTB11 constructs, we found the ZBTB11 mutants being excluded from the nucleolus, where the wild-type recombinant protein is predominantly localized. Pathway analysis applied to ChIP-seq data deposited in the ENCODE database supports the localization of ZBTB11 in nucleoli, highlighting associated pathways such as ribosomal RNA synthesis, ribosomal assembly, RNA modification and stress sensing, and provides a direct link between subcellular ZBTB11 location and its function. Furthermore, given the report of prominent brain and spinal cord degeneration in a zebrafish Zbtb11 mutant, we investigated ZBTB11-ortholog knockdown in Drosophila melanogaster brain by targeting RNAi using the UAS/Gal4 system. The observed approximate reduction to a third of the mushroom body size-possibly through neuronal reduction or degeneration-may affect neuronal circuits in the brain that are required for adaptive behavior, specifying the role of this gene in the nervous system. In conclusion, we report two ID families segregating ZBTB11 biallelic mutations disrupting Zn2+-binding motifs and provide functional evidence linking ZBTB11 dysfunction to this phenotype.
Collapse
Affiliation(s)
- Zohreh Fattahi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Taimoor I Sheikh
- Molecular Neuropsychiatry & Development (MiND) Lab, Campbell Family Mental Health Research Institute, Center for Addiction and Mental Health, Toronto, ON, Canada
| | - Luciana Musante
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Memoona Rasheed
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Ricardo Harripaul
- Molecular Neuropsychiatry & Development (MiND) Lab, Campbell Family Mental Health Research Institute, Center for Addiction and Mental Health, Toronto, ON, Canada
| | - Hao Hu
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Somayeh Kazeminasab
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Masoumeh Hosseini
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Farzaneh Larti
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Zhila Ghaderi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Arzu Celik
- Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkey
| | - Muhammad Ayub
- Department of Psychiatry, Queen's University, Kingston, ON, Canada
| | - Muhammad Ansar
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Mohammad Haddadi
- Department of Biology, Faculty of Science, University of Zabol, Zabol, Iran
| | - Thomas F Wienker
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Hans Hilger Ropers
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - John B Vincent
- Molecular Neuropsychiatry & Development (MiND) Lab, Campbell Family Mental Health Research Institute, Center for Addiction and Mental Health, Toronto, ON, Canada
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
21
|
Dalla Vecchia E, Mortimer N, Palladino VS, Kittel-Schneider S, Lesch KP, Reif A, Schenck A, Norton WH. Cross-species models of attention-deficit/hyperactivity disorder and autism spectrum disorder: lessons from CNTNAP2, ADGRL3, and PARK2. Psychiatr Genet 2019; 29:1-17. [PMID: 30376466 PMCID: PMC7654943 DOI: 10.1097/ypg.0000000000000211] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 12/12/2022]
Abstract
Animal and cellular models are essential tools for all areas of biological research including neuroscience. Model systems can also be used to investigate the pathophysiology of psychiatric disorders such as attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). In this review, we provide a summary of animal and cellular models for three genes linked to ADHD and ASD in human patients - CNTNAP2, ADGRL3, and PARK2. We also highlight the strengths and weaknesses of each model system. By bringing together behavioral and neurobiological data, we demonstrate how a cross-species approach can provide integrated insights into gene function and the pathogenesis of ADHD and ASD. The knowledge gained from transgenic models will be essential to discover and validate new treatment targets for these disorders.
Collapse
Affiliation(s)
- Elisa Dalla Vecchia
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Niall Mortimer
- Division of Molecular Psychiatry, Centre of Mental Health, University of Wuerzburg, Wuerzburg
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona
- Department of Psychiatry, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Viola S. Palladino
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt Am Main, Germany
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt Am Main, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Centre of Mental Health, University of Wuerzburg, Wuerzburg
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
- Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt Am Main, Germany
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - William H.J. Norton
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| |
Collapse
|
22
|
Kazeminasab S, Taskiran II, Fattahi Z, Bazazzadegan N, Hosseini M, Rahimi M, Oladnabi M, Haddadi M, Celik A, Ropers HH, Najmabadi H, Kahrizi K. CNKSR1 gene defect can cause syndromic autosomal recessive intellectual disability. Am J Med Genet B Neuropsychiatr Genet 2018; 177:691-699. [PMID: 30450701 DOI: 10.1002/ajmg.b.32648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The advent of high-throughput sequencing technologies has led to an exponential increase in the identification of novel disease-causing genes in highly heterogeneous diseases. A novel frameshift mutation in CNKSR1 gene was detected by Next-Generation Sequencing (NGS) in an Iranian family with syndromic autosomal recessive intellectual disability (ARID). CNKSR1 encodes a connector enhancer of kinase suppressor of Ras 1, which acts as a scaffold component for receptor tyrosine kinase in mitogen-activated protein kinase (MAPK) cascades. CNKSR1 interacts with proteins which have already been shown to be associated with intellectual disability (ID) in the MAPK signaling pathway and promotes cell migration through RhoA-mediated c-Jun N-terminal kinase (JNK) activation. Lack of CNKSR1 transcripts and protein was observed in lymphoblastoid cells derived from affected patients using qRT-PCR and western blot analysis, respectively. Furthermore, RNAi-mediated knockdown of cnk, the CNKSR1 orthologue in Drosophila melanogaster brain, led to defects in eye and mushroom body (MB) structures. In conclusion, our findings support the possible role of CNKSR1 in brain development which can lead to cognitive impairment.
Collapse
Affiliation(s)
- Somayeh Kazeminasab
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Zohreh Fattahi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Niloofar Bazazzadegan
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Masoumeh Hosseini
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Maryam Rahimi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Morteza Oladnabi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mohammad Haddadi
- Department of Biology, Faculty of Science, University of Zabol, Zabol, Iran
| | - Arzu Celik
- Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkey
| | - Hans-Hilger Ropers
- Department of Human Molecular Genetics, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
23
|
McDiarmid TA, Au V, Loewen AD, Liang J, Mizumoto K, Moerman DG, Rankin CH. CRISPR-Cas9 human gene replacement and phenomic characterization in Caenorhabditis elegans to understand the functional conservation of human genes and decipher variants of uncertain significance. Dis Model Mech 2018; 11:dmm.036517. [PMID: 30361258 PMCID: PMC6307914 DOI: 10.1242/dmm.036517] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022] Open
Abstract
Our ability to sequence genomes has vastly surpassed our ability to interpret the genetic variation we discover. This presents a major challenge in the clinical setting, where the recent application of whole-exome and whole-genome sequencing has uncovered thousands of genetic variants of uncertain significance. Here, we present a strategy for targeted human gene replacement and phenomic characterization, based on CRISPR-Cas9 genome engineering in the genetic model organism Caenorhabditis elegans, that will facilitate assessment of the functional conservation of human genes and structure-function analysis of disease-associated variants with unprecedented precision. We validate our strategy by demonstrating that direct single-copy replacement of the C. elegans ortholog (daf-18) with the critical human disease-associated gene phosphatase and tensin homolog (PTEN) is sufficient to rescue multiple phenotypic abnormalities caused by complete deletion of daf-18, including complex chemosensory and mechanosensory impairments. In addition, we used our strategy to generate animals harboring a single copy of the known pathogenic lipid phosphatase inactive PTEN variant (PTEN-G129E), and showed that our automated in vivo phenotypic assays could accurately and efficiently classify this missense variant as loss of function. The integrated nature of the human transgenes allows for analysis of both homozygous and heterozygous variants and greatly facilitates high-throughput precision medicine drug screens. By combining genome engineering with rapid and automated phenotypic characterization, our strategy streamlines the identification of novel conserved gene functions in complex sensory and learning phenotypes that can be used as in vivo functional assays to decipher variants of uncertain significance.
Collapse
Affiliation(s)
- Troy A McDiarmid
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| | - Vinci Au
- Department of Zoology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada
| | - Aaron D Loewen
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| | - Joseph Liang
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| | - Kota Mizumoto
- Department of Zoology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada
| | - Donald G Moerman
- Department of Zoology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada
| | - Catharine H Rankin
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada .,Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
24
|
Perinatal exposure to low-dose imidacloprid causes ADHD-like symptoms: Evidences from an invertebrate model study. Food Chem Toxicol 2017; 110:402-407. [DOI: 10.1016/j.fct.2017.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/27/2017] [Accepted: 10/07/2017] [Indexed: 01/01/2023]
|
25
|
Kelly SM, Elchert A, Kahl M. Dissection and Immunofluorescent Staining of Mushroom Body and Photoreceptor Neurons in Adult Drosophila melanogaster Brains. J Vis Exp 2017. [PMID: 29155751 PMCID: PMC5755316 DOI: 10.3791/56174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nervous system development involves a sequential series of events that are coordinated by several signaling pathways and regulatory networks. Many of the proteins involved in these pathways are evolutionarily conserved between mammals and other eukaryotes, such as the fruit fly Drosophila melanogaster, suggesting that similar organizing principles exist during the development of these organisms. Importantly, Drosophila has been used extensively to identify cellular and molecular mechanisms regulating processes that are required in mammals including neurogenesis, differentiation, axonal guidance, and synaptogenesis. Flies have also been used successfully to model a variety of human neurodevelopmental diseases. Here we describe a protocol for the step-by-step microdissection, fixation, and immunofluorescent localization of proteins within the adult Drosophila brain. This protocol focuses on two example neuronal populations, mushroom body neurons and retinal photoreceptors, and includes optional steps to trace individual mushroom body neurons using Mosaic Analysis with a Repressible Cell Marker (MARCM) technique. Example data from both wild-type and mutant brains are shown along with a brief description of a scoring criteria for axonal guidance defects. While this protocol highlights two well-established antibodies for investigating the morphology of mushroom body and photoreceptor neurons, other Drosophila brain regions and the localization of proteins within other brain regions can also be investigated using this protocol.
Collapse
Affiliation(s)
- Seth M Kelly
- Program in Neuroscience, The College of Wooster; Department of Biology, The College of Wooster;
| | - Alexandra Elchert
- Program in Biochemistry, Cellular, and Molecular Biology, The College of Wooster
| | - Michael Kahl
- Department of Biology, The College of Wooster; Program in Biochemistry, Cellular, and Molecular Biology, The College of Wooster
| |
Collapse
|
26
|
Pandey H, Bourahmoune K, Honda T, Honjo K, Kurita K, Sato T, Sawa A, Furukubo-Tokunaga K. Genetic interaction of DISC1 and Neurexin in the development of fruit fly glutamatergic synapses. NPJ SCHIZOPHRENIA 2017; 3:39. [PMID: 29079805 PMCID: PMC5660244 DOI: 10.1038/s41537-017-0040-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 09/19/2017] [Accepted: 09/27/2017] [Indexed: 12/31/2022]
Abstract
Originally identified at the breakpoint of a (1;11)(q42.1; q14.3) chromosomal translocation in a Scottish family with a wide range of mental disorders, the DISC1 gene has been a focus of intensive investigations as an entry point to study the molecular mechanisms of diverse mental dysfunctions. Perturbations of the DISC1 functions lead to behavioral changes in animal models, which are relevant to psychiatric conditions in patients. In this work, we have expressed the human DISC1 gene in the fruit fly (Drosophila melanogaster) and performed a genetic screening for the mutations of psychiatric risk genes that cause modifications of DISC1 synaptic phenotypes at the neuromuscular junction. We found that DISC1 interacts with dnrx1, the Drosophila homolog of the human Neurexin (NRXN1) gene, in the development of glutamatergic synapses. While overexpression of DISC1 suppressed the total bouton area on the target muscles and stimulated active zone density in wild-type background, a partial reduction of the dnrx1 activity negated the DISC1–mediated synaptic alterations. Likewise, overexpression of DISC1 stimulated the expression of a glutamate receptor component, DGLURIIA, in wild-type background but not in the dnrx1 heterozygous background. In addition, DISC1 caused mislocalization of Discs large, the Drosophila PSD-95 homolog, in the dnrx1 heterozygous background. Analyses with a series of domain deletions have revealed the importance of axonal localization of the DISC1 protein for efficient suppression of DNRX1 in synaptic boutons. These results thus suggest an intriguing converging mechanism controlled by the interaction of DISC1 and Neurexin in the developing glutamatergic synapses. Fruit fly models uncover a potential new mechanism by which two schizophrenia risk factor genes interact to alter synaptic junctions. DISC1 gene alterations have previously been linked to psychiatric anomalies, although the gene has not been formally recognized as a schizophrenia risk factor. A US-Japan research collaboration led by the University of Tsukuba’s Katsuo Furukubo-Tokunaga expressed human DISC1 in fruit fly synapses to better understand the changes that take place when gene disruption leads to overexpression. The team found that overexpression of DISC1 affected the expression of the fruit fly counterpart to human ‘neurexin,’ a known risk factor for conditions including schizophrenia and autism spectrum disorders. The interaction between neurexin and DISC1 also influenced other synapse-altering genes. Further research is warranted to explore the roles of DISC1 and neurexin in psychiatric disease.
Collapse
Affiliation(s)
- Himani Pandey
- Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Katia Bourahmoune
- Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Takato Honda
- Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Ken Honjo
- Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Kazuki Kurita
- Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Tomohito Sato
- Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Akira Sawa
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
27
|
Klein M, Onnink M, van Donkelaar M, Wolfers T, Harich B, Shi Y, Dammers J, Arias-Vásquez A, Hoogman M, Franke B. Brain imaging genetics in ADHD and beyond - Mapping pathways from gene to disorder at different levels of complexity. Neurosci Biobehav Rev 2017; 80:115-155. [PMID: 28159610 PMCID: PMC6947924 DOI: 10.1016/j.neubiorev.2017.01.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/08/2016] [Accepted: 01/09/2017] [Indexed: 01/03/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common and often persistent neurodevelopmental disorder. Beyond gene-finding, neurobiological parameters, such as brain structure, connectivity, and function, have been used to link genetic variation to ADHD symptomatology. We performed a systematic review of brain imaging genetics studies involving 62 ADHD candidate genes in childhood and adult ADHD cohorts. Fifty-one eligible research articles described studies of 13 ADHD candidate genes. Almost exclusively, single genetic variants were studied, mostly focussing on dopamine-related genes. While promising results have been reported, imaging genetics studies are thus far hampered by methodological differences in study design and analysis methodology, as well as limited sample sizes. Beyond reviewing imaging genetics studies, we also discuss the need for complementary approaches at multiple levels of biological complexity and emphasize the importance of combining and integrating findings across levels for a better understanding of biological pathways from gene to disease. These may include multi-modal imaging genetics studies, bioinformatic analyses, and functional analyses of cell and animal models.
Collapse
Affiliation(s)
- Marieke Klein
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Marten Onnink
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Marjolein van Donkelaar
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Thomas Wolfers
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Benjamin Harich
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Yan Shi
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Janneke Dammers
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Department of Psychiatry, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Alejandro Arias-Vásquez
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Department of Psychiatry, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Martine Hoogman
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Barbara Franke
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Department of Psychiatry, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| |
Collapse
|
28
|
Abstract
BACKGROUND The sleep and cognitive dysfunction are common in major depressive disorders (MDDs). Recently, the 2-pore domain potassium channel twik-related K(+) channel 1 (TREK-1) has been identified to be closely related to the etiology of MDD. However, whether TREK-1 is involved in the regulation of sleep and cognition is still unknown. METHODS The present study tried to dissect the role of outwardly rectifying K+ channel-1 (ORK1) (TREK-1 homolog in Drosophila) in sleep and cognition in Drosophila. The mutant and over-expressed lines of ork1 were generated using Drosophila genetics. Sleep analysis and short-term memory experiments were used to test sleep time and short-term memory of the mutant and over-expressed ORK1 lines, respectively. RESULTS Our results showed that the learning index of ork1 mutant lines was increased compared with the wild type. However, ork1 mutant could obviously decrease sleep time in Drosophila. Contrary to the ork1 mutant lines, we also found that ORK1 over-expression could increase sleep time and decreased learning index in Drosophila. CONCLUSION Results from this study suggest that ORK1 might play an important role in the regulation of sleep time and short-term memory in Drosophila.
Collapse
|
29
|
Corthals K, Heukamp AS, Kossen R, Großhennig I, Hahn N, Gras H, Göpfert MC, Heinrich R, Geurten BRH. Neuroligins Nlg2 and Nlg4 Affect Social Behavior in Drosophila melanogaster. Front Psychiatry 2017; 8:113. [PMID: 28740469 PMCID: PMC5502276 DOI: 10.3389/fpsyt.2017.00113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/12/2017] [Indexed: 12/20/2022] Open
Abstract
The genome of Drosophila melanogaster includes homologs to approximately one-third of the currently known human disease genes. Flies and humans share many biological processes, including the principles of information processing by excitable neurons, synaptic transmission, and the chemical signals involved in intercellular communication. Studies on the molecular and behavioral impact of genetic risk factors of human neuro-developmental disorders [autism spectrum disorders (ASDs), schizophrenia, attention deficit hyperactivity disorders, and Tourette syndrome] increasingly use the well-studied social behavior of D. melanogaster, an organism that is amenable to a large variety of genetic manipulations. Neuroligins (Nlgs) are a family of phylogenetically conserved postsynaptic adhesion molecules present (among others) in nematodes, insects, and mammals. Impaired function of Nlgs (particularly of Nlg 3 and 4) has been associated with ASDs in humans and impaired social and communication behavior in mice. Making use of a set of behavioral and social assays, we, here, analyzed the impact of two Drosophila Nlgs, Dnlg2 and Dnlg4, which are differentially expressed at excitatory and inhibitory central nervous synapses, respectively. Both Nlgs seem to be associated with diurnal activity and social behavior. Even though deficiencies in Dnlg2 and Dnlg4 appeared to have no effects on sensory or motor systems, they differentially impacted on social interactions, suggesting that social behavior is distinctly regulated by these Nlgs.
Collapse
Affiliation(s)
- Kristina Corthals
- Department of Cellular Neurobiology, Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Alina Sophia Heukamp
- Department of Cellular Neurobiology, Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Robert Kossen
- Department of Cellular Neurobiology, Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Isabel Großhennig
- Department of Cellular Neurobiology, Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Nina Hahn
- Department of Cellular Neurobiology, Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Heribert Gras
- Department of Cellular Neurobiology, Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Martin C Göpfert
- Department of Cellular Neurobiology, Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Ralf Heinrich
- Department of Cellular Neurobiology, Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Bart R H Geurten
- Department of Cellular Neurobiology, Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
30
|
Place avoidance learning and memory in a jumping spider. Anim Cogn 2016; 20:275-284. [PMID: 27796659 DOI: 10.1007/s10071-016-1048-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 10/15/2016] [Accepted: 10/19/2016] [Indexed: 01/08/2023]
Abstract
Using a conditioned passive place avoidance paradigm, we investigated the relative importance of three experimental parameters on learning and memory in a salticid, Servaea incana. Spiders encountered an aversive electric shock stimulus paired with one side of a two-sided arena. Our three parameters were the ecological relevance of the visual stimulus, the time interval between trials and the time interval before test. We paired electric shock with either a black or white visual stimulus, as prior studies in our laboratory have demonstrated that S. incana prefer dark 'safe' regions to light ones. We additionally evaluated the influence of two temporal features (time interval between trials and time interval before test) on learning and memory. Spiders exposed to the shock stimulus learned to associate shock with the visual background cue, but the extent to which they did so was dependent on which visual stimulus was present and the time interval between trials. Spiders trained with a long interval between trials (24 h) maintained performance throughout training, whereas spiders trained with a short interval (10 min) maintained performance only when the safe side was black. When the safe side was white, performance worsened steadily over time. There was no difference between spiders tested after a short (10 min) or long (24 h) interval before test. These results suggest that the ecological relevance of the stimuli used and the duration of the interval between trials can influence learning and memory in jumping spiders.
Collapse
|
31
|
Brooks DS, Vishal K, Kawakami J, Bouyain S, Geisbrecht ER. Optimization of wrMTrck to monitor Drosophila larval locomotor activity. JOURNAL OF INSECT PHYSIOLOGY 2016; 93-94:11-17. [PMID: 27430166 PMCID: PMC5722213 DOI: 10.1016/j.jinsphys.2016.07.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 07/11/2016] [Accepted: 07/13/2016] [Indexed: 05/13/2023]
Abstract
An efficient and low-cost method of examining larval movement in Drosophila melanogaster is needed to study how mutations and/or alterations in the muscular, neural, and olfactory systems affect locomotor behavior. Here, we describe the implementation of wrMTrck, a freely available ImageJ plugin originally developed for examining multiple behavioral parameters in the nematode C. elegans. Our optimized method is rapid, reproducible and does not require automated microscope setups or the purchase of proprietary software. To demonstrate the utility of this method, we analyzed the velocity and crawling paths of two Drosophila mutants that affect muscle structure and/or function. Additionally, we show that this approach is useful for tracking the behavior of adult insects, including Tribolium castaneum and Drosophila melanogaster.
Collapse
Affiliation(s)
- David S Brooks
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, United States
| | - Kumar Vishal
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, United States
| | - Jessica Kawakami
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri, Kansas City, MO 64110, United States
| | - Samuel Bouyain
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri, Kansas City, MO 64110, United States
| | - Erika R Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, United States.
| |
Collapse
|
32
|
Furukubo-Tokunaga K, Kurita K, Honjo K, Pandey H, Ando T, Takayama K, Arai Y, Mochizuki H, Ando M, Kamiya A, Sawa A. DISC1 causes associative memory and neurodevelopmental defects in fruit flies. Mol Psychiatry 2016; 21:1232-43. [PMID: 26976042 PMCID: PMC4993648 DOI: 10.1038/mp.2016.15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/16/2016] [Accepted: 01/20/2016] [Indexed: 01/18/2023]
Abstract
Originally found in a Scottish family with diverse mental disorders, the DISC1 protein has been characterized as an intracellular scaffold protein that associates with diverse binding partners in neural development. To explore its functions in a genetically tractable system, we expressed the human DISC1 in fruit flies (Drosophila melanogaster). As in mammalian neurons, DISC1 is localized to diverse subcellular domains of developing fly neurons including the nuclei, axons and dendrites. Overexpression of DISC1 impairs associative memory. Experiments with deletion/mutation constructs have revealed the importance of amino-terminal domain (46-290) for memory suppression whereas carboxyl domain (598-854) and the amino-terminal residues (1-45) including the nuclear localization signal (NLS1) are dispensable. DISC1 overexpression also causes suppression of axonal and dendritic branching of mushroom body neurons, which mediate a variety of cognitive functions in the fly brain. Analyses with deletion/mutation constructs reveal that protein domains 598-854 and 349-402 are both required for the suppression of axonal branching, while amino-terminal domains including NLS1 are dispensable. In contrast, NLS1 was required for the suppression of dendritic branching, suggesting a mechanism involving gene expression. Moreover, domain 403-596 is also required for the suppression of dendritic branching. We also show that overexpression of DISC1 suppresses glutamatergic synaptogenesis in developing neuromuscular junctions. Deletion/mutation experiments have revealed the importance of protein domains 403-596 and 349-402 for synaptic suppression, while amino-terminal domains including NLS1 are dispensable. Finally, we show that DISC1 functionally interacts with the fly homolog of Dysbindin (DTNBP1) via direct protein-protein interaction in developing synapses.
Collapse
Affiliation(s)
| | - Kazuki Kurita
- Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Ken Honjo
- Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Himani Pandey
- Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Tetsuya Ando
- Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Kojiro Takayama
- Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Yuko Arai
- Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Hiroaki Mochizuki
- Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Mai Ando
- Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Atsushi Kamiya
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore MD, USA
| | - Akira Sawa
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore MD, USA
| |
Collapse
|
33
|
Versace E, Eriksson A, Rocchi F, Castellan I, Sgadò P, Haase A. Physiological and behavioral responses in Drosophila melanogaster to odorants present at different plant maturation stages. Physiol Behav 2016; 163:322-331. [PMID: 27195459 DOI: 10.1016/j.physbeh.2016.05.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/20/2016] [Accepted: 05/15/2016] [Indexed: 12/14/2022]
Abstract
The fruit fly Drosophila melanogaster feeds and oviposits on fermented fruit, hence its physiological and behavioral responses are expected to be tuned to odorants abundant during later stages of fruit maturation. We used a population of about two-hundred isogenic lines of D. melanogaster to assay physiological responses (electroantennograms (EAG)) and behavioral correlates (preferences and choice ratio) to odorants found at different stages of fruit maturation. We quantified electrophysiological and behavioral responses of D. melanogaster for the leaf compound β-cyclocitral, as well as responses to odorants mainly associated with later fruit maturation stages. Electrophysiological and behavioral responses were modulated by the odorant dose. For the leaf compound we observed a steep dose-response curve in both EAG and behavioral data and shallower curves for odorants associated with later stages of maturation. Our data show the connection between sensory and behavioral responses and are consistent with the specialization of D. melanogaster on fermented fruit and avoidance of high doses of compounds associated with earlier stages of maturation. Odor preferences were modulated in a non-additive way when flies were presented with two alternative odorants, and combinations of odorants elicited higher responses than single compounds.
Collapse
Affiliation(s)
| | - Anna Eriksson
- Center for Mind/Brain Sciences, University of Trento, Italy
| | | | - Irene Castellan
- Center for Mind/Brain Sciences, University of Trento, Italy; Department of Agricultural Sciences, University of Bologna, Italy; Faculty of Science and Technology, Free University of Bozen/Bolzano, Italy
| | - Paola Sgadò
- Center for Mind/Brain Sciences, University of Trento, Italy
| | - Albrecht Haase
- Center for Mind/Brain Sciences, University of Trento, Italy; Department of Physics, University of Trento, Italy
| |
Collapse
|
34
|
Esmaeeli-Nieh S, Fenckova M, Porter IM, Motazacker MM, Nijhof B, Castells-Nobau A, Asztalos Z, Weißmann R, Behjati F, Tzschach A, Felbor U, Scherthan H, Sayfati SM, Ropers HH, Kahrizi K, Najmabadi H, Swedlow JR, Schenck A, Kuss AW. BOD1 Is Required for Cognitive Function in Humans and Drosophila. PLoS Genet 2016; 12:e1006022. [PMID: 27166630 PMCID: PMC4864283 DOI: 10.1371/journal.pgen.1006022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 04/08/2016] [Indexed: 11/19/2022] Open
Abstract
Here we report a stop-mutation in the BOD1 (Biorientation Defective 1) gene, which co-segregates with intellectual disability in a large consanguineous family, where individuals that are homozygous for the mutation have no detectable BOD1 mRNA or protein. The BOD1 protein is required for proper chromosome segregation, regulating phosphorylation of PLK1 substrates by modulating Protein Phosphatase 2A (PP2A) activity during mitosis. We report that fibroblast cell lines derived from homozygous BOD1 mutation carriers show aberrant localisation of the cell cycle kinase PLK1 and its phosphatase PP2A at mitotic kinetochores. However, in contrast to the mitotic arrest observed in BOD1-siRNA treated HeLa cells, patient-derived cells progressed through mitosis with no apparent segregation defects but at an accelerated rate compared to controls. The relatively normal cell cycle progression observed in cultured cells is in line with the absence of gross structural brain abnormalities in the affected individuals. Moreover, we found that in normal adult brain tissues BOD1 expression is maintained at considerable levels, in contrast to PLK1 expression, and provide evidence for synaptic localization of Bod1 in murine neurons. These observations suggest that BOD1 plays a cell cycle-independent role in the nervous system. To address this possibility, we established two Drosophila models, where neuron-specific knockdown of BOD1 caused pronounced learning deficits and significant abnormalities in synapse morphology. Together our results reveal novel postmitotic functions of BOD1 as well as pathogenic mechanisms that strongly support a causative role of BOD1 deficiency in the aetiology of intellectual disability. Moreover, by demonstrating its requirement for cognitive function in humans and Drosophila we provide evidence for a conserved role of BOD1 in the development and maintenance of cognitive features.
Collapse
Affiliation(s)
- Sahar Esmaeeli-Nieh
- Department for Human Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Michaela Fenckova
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, Netherlands
| | - Iain M. Porter
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - M. Mahdi Motazacker
- Department for Human Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Bonnie Nijhof
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, Netherlands
| | - Anna Castells-Nobau
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, Netherlands
| | - Zoltan Asztalos
- Department Genetics, Aktogen Limited, University of Cambridge, Cambridge, United Kingdom
- Aktogen Hungary Ltd., Bay Zoltán Nonprofit Ltd., Institute for Biotechnology, Szeged, Hungary
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Robert Weißmann
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Farkhondeh Behjati
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Andreas Tzschach
- Department for Human Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ute Felbor
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Harry Scherthan
- Department for Human Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institut für Radiobiologie der Bundeswehr in Verbindung mit der Universität Ulm, München, Germany
| | - Seyed Morteza Sayfati
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - H. Hilger. Ropers
- Department for Human Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Jason R. Swedlow
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, Netherlands
| | - Andreas W. Kuss
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| |
Collapse
|
35
|
Cognitive Enhancement in Infants Associated with Increased Maternal Fruit Intake During Pregnancy: Results from a Birth Cohort Study with Validation in an Animal Model. EBioMedicine 2016; 8:331-340. [PMID: 27428442 PMCID: PMC4919537 DOI: 10.1016/j.ebiom.2016.04.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/05/2016] [Accepted: 04/20/2016] [Indexed: 12/26/2022] Open
Abstract
In-utero nutrition is an under-studied aspect of cognitive development. Fruit has been an important dietary constituent for early hominins and humans. Among 808 eligible CHILD-Edmonton sub-cohort subjects, 688 (85%) had 1-year cognitive outcome data. We found that each maternal daily serving of fruit (sum of fruit plus 100% fruit juice) consumed during pregnancy was associated with a 2.38 point increase in 1-year cognitive development (95% CI 0.39, 4.37; p < 0.05). Consistent with this, we found 30% higher learning Performance index (PI) scores in Drosophila offspring from parents who consumed 30% fruit juice supplementation prenatally (PI: 85.7; SE 1.8; p < 0.05) compared to the offspring of standard diet parents (PI: 65.0 SE 3.4). Using the Drosophila model, we also show that the cyclic adenylate monophosphate (cAMP) pathway may be a major regulator of this effect, as prenatal fruit associated cognitive enhancement was blocked in Drosophila rutabaga mutants with reduced Ca2 +-Calmodulin-dependent adenylyl cyclase. Moreover, gestation is a critical time for this effect as postnatal fruit intake did not enhance cognitive performance in either humans or Drosophila. Our study supports increased fruit consumption during pregnancy with significant increases in infant cognitive performance. Validation in Drosophila helps control for potential participant bias or unmeasured confounders. Gestational fruit intake positively correlates with infant cognitive performance. Similar findings in a birth cohort and in Drosophila learning and memory scores Cyclic adenylate monophosphate (cAMP) pathway may be a major regulator of this effect. Postnatal fruit intake did not enhance cognitive outcomes in humans or Drosophila.
Fruits have been an important part of the human diet for thousands of years. We wanted to know if more fruit intake improves our ability to learn. Using data from the Canadian Healthy Infant Longitudinal Development (CHILD) study, we found that mothers who ate more fruit during pregnancy had children who did better on developmental testing at 1 year of age. Similarly, fruit flies had improved learning and memory if their parents had more fruit juice in their diet. In both humans and in the flies, there was no improvement in learning when only the babies were fed fruit.
Collapse
|
36
|
van der Voet M, Harich B, Franke B, Schenck A. ADHD-associated dopamine transporter, latrophilin and neurofibromin share a dopamine-related locomotor signature in Drosophila. Mol Psychiatry 2016; 21:565-73. [PMID: 25962619 PMCID: PMC4804182 DOI: 10.1038/mp.2015.55] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 03/03/2015] [Accepted: 03/31/2015] [Indexed: 02/07/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common, highly heritable neuropsychiatric disorder with hyperactivity as one of the hallmarks. Aberrant dopamine signaling is thought to be a major theme in ADHD, but how this relates to the vast majority of ADHD candidate genes is illusive. Here we report a Drosophila dopamine-related locomotor endophenotype that is shared by pan-neuronal knockdown of orthologs of the ADHD-associated genes Dopamine transporter (DAT1) and Latrophilin (LPHN3), and of a gene causing a monogenic disorder with frequent ADHD comorbidity: Neurofibromin (NF1). The locomotor signature was not found in control models and could be ameliorated by methylphenidate, validating its relevance to symptoms of the disorder. The Drosophila ADHD endophenotype can be further exploited in high throughput to characterize the growing number of candidate genes. It represents an equally useful outcome measure for testing chemical compounds to define novel treatment options.
Collapse
Affiliation(s)
- M van der Voet
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - B Harich
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - B Franke
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud university medical center, Nijmegen, The Netherlands
| | - A Schenck
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
37
|
Disruption of POGZ Is Associated with Intellectual Disability and Autism Spectrum Disorders. Am J Hum Genet 2016; 98:541-552. [PMID: 26942287 DOI: 10.1016/j.ajhg.2016.02.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/05/2016] [Indexed: 12/24/2022] Open
Abstract
Intellectual disability (ID) and autism spectrum disorders (ASD) are genetically heterogeneous, and a significant number of genes have been associated with both conditions. A few mutations in POGZ have been reported in recent exome studies; however, these studies do not provide detailed clinical information. We collected the clinical and molecular data of 25 individuals with disruptive mutations in POGZ by diagnostic whole-exome, whole-genome, or targeted sequencing of 5,223 individuals with neurodevelopmental disorders (ID primarily) or by targeted resequencing of this locus in 12,041 individuals with ASD and/or ID. The rarity of disruptive mutations among unaffected individuals (2/49,401) highlights the significance (p = 4.19 × 10(-13); odds ratio = 35.8) and penetrance (65.9%) of this genetic subtype with respect to ASD and ID. By studying the entire cohort, we defined common phenotypic features of POGZ individuals, including variable levels of developmental delay (DD) and more severe speech and language delay in comparison to the severity of motor delay and coordination issues. We also identified significant associations with vision problems, microcephaly, hyperactivity, a tendency to obesity, and feeding difficulties. Some features might be explained by the high expression of POGZ, particularly in the cerebellum and pituitary, early in fetal brain development. We conducted parallel studies in Drosophila by inducing conditional knockdown of the POGZ ortholog row, further confirming that dosage of POGZ, specifically in neurons, is essential for normal learning in a habituation paradigm. Combined, the data underscore the pathogenicity of loss-of-function mutations in POGZ and define a POGZ-related phenotype enriched in specific features.
Collapse
|
38
|
Kochinke K, Zweier C, Nijhof B, Fenckova M, Cizek P, Honti F, Keerthikumar S, Oortveld M, Kleefstra T, Kramer J, Webber C, Huynen M, Schenck A. Systematic Phenomics Analysis Deconvolutes Genes Mutated in Intellectual Disability into Biologically Coherent Modules. Am J Hum Genet 2016; 98:149-64. [PMID: 26748517 DOI: 10.1016/j.ajhg.2015.11.024] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022] Open
Abstract
Intellectual disability (ID) disorders are genetically and phenotypically extremely heterogeneous. Can this complexity be depicted in a comprehensive way as a means of facilitating the understanding of ID disorders and their underlying biology? We provide a curated database of 746 currently known genes, mutations in which cause ID (ID-associated genes [ID-AGs]), classified according to ID manifestation and associated clinical features. Using this integrated resource, we show that ID-AGs are substantially enriched with co-expression, protein-protein interactions, and specific biological functions. Systematic identification of highly enriched functional themes and phenotypes revealed typical phenotype combinations characterizing process-defined groups of ID disorders, such as chromatin-related disorders and deficiencies in DNA repair. Strikingly, phenotype classification efficiently breaks down ID-AGs into subsets with significantly elevated biological coherence and predictive power. Custom-made functional Drosophila datasets revealed further characteristic phenotypes among ID-AGs and specific clinical classes. Our study and resource provide systematic insights into the molecular and clinical landscape of ID disorders, represent a significant step toward overcoming current limitations in ID research, and prove the utility of systematic human and cross-species phenomics analyses in highly heterogeneous genetic disorders.
Collapse
|
39
|
Versace E, Vallortigara G. Origins of Knowledge: Insights from Precocial Species. Front Behav Neurosci 2015; 9:338. [PMID: 26696856 PMCID: PMC4673401 DOI: 10.3389/fnbeh.2015.00338] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 11/20/2015] [Indexed: 01/01/2023] Open
Abstract
Behavioral responses are influenced by knowledge acquired during the lifetime of an individual and by predispositions transmitted across generations. Establishing the origin of knowledge and the role of the unlearned component is a challenging task, given that both learned and unlearned knowledge can orient perception, learning, and the encoding of environmental features since the first stages of life. Ethical and practical issues constrain the investigation of unlearned knowledge in altricial species, including human beings. On the contrary, precocial animals can be tested on a wide range of tasks and capabilities immediately after birth and in controlled rearing conditions. Insects and precocial avian species are very convenient models to dissect the knowledge systems that enable young individuals to cope with their environment in the absence of specific previous experience. We present the state of the art of research on the origins of knowledge that comes from different models and disciplines. Insects have been mainly used to investigate unlearned sensory preferences and prepared learning mechanisms. The relative simplicity of the neural system and fast life cycle of insects make them ideal models to investigate the neural circuitry and evolutionary dynamics of unlearned traits. Among avian species, chicks of the domestic fowl have been the focus of many studies, and showed to possess unlearned knowledge in the sensory, physical, spatial, numerical and social domains. Solid evidence shows the existence of unlearned knowledge in different domains in several species, from sensory and social preferences to the left-right representation of the mental number line. We show how non-mammalian models of cognition, and in particular precocial species, can shed light into the adaptive value and evolutionary history of unlearned knowledge.
Collapse
Affiliation(s)
- Elisabetta Versace
- Animal Cognition and Neuroscience Laboratory, Center for Mind/Brain Sciences, University of Trento Rovereto, Italy
| | - Giorgio Vallortigara
- Animal Cognition and Neuroscience Laboratory, Center for Mind/Brain Sciences, University of Trento Rovereto, Italy
| |
Collapse
|
40
|
Tamberg L, Sepp M, Timmusk T, Palgi M. Introducing Pitt-Hopkins syndrome-associated mutations of TCF4 to Drosophila daughterless. Biol Open 2015; 4:1762-71. [PMID: 26621827 PMCID: PMC4736037 DOI: 10.1242/bio.014696] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pitt-Hopkins syndrome (PTHS) is caused by haploinsufficiency of Transcription factor 4 (TCF4), one of the three human class I basic helix-loop-helix transcription factors called E-proteins. Drosophila has a single E-protein, Daughterless (Da), homologous to all three mammalian counterparts. Here we show that human TCF4 can rescue Da deficiency during fruit fly nervous system development. Overexpression of Da or TCF4 specifically in adult flies significantly decreases their survival rates, indicating that these factors are crucial even after development has been completed. We generated da transgenic fruit fly strains with corresponding missense mutations R578H, R580W, R582P and A614V found in TCF4 of PTHS patients and studied the impact of these mutations in vivo. Overexpression of wild type Da as well as human TCF4 in progenitor tissues induced ectopic sensory bristles and the rough eye phenotype. By contrast, overexpression of DaR580W and DaR582P that disrupt DNA binding reduced the number of bristles and induced the rough eye phenotype with partial lack of pigmentation, indicating that these act dominant negatively. Compared to the wild type, DaR578H and DaA614V were less potent in induction of ectopic bristles and the rough eye phenotype, respectively, suggesting that these are hypomorphic. All studied PTHS-associated mutations that we introduced into Da led to similar effects in vivo as the same mutations in TCF4 in vitro. Consequently, our Drosophila models of PTHS are applicable for further studies aiming to unravel the molecular mechanisms of this disorder. Summary: Introducing mutations of the TCF4 gene found in human patients into its fly orthologue daughterless allows the generation of Drosophila models for research into Pitt-Hopkins syndrome.
Collapse
Affiliation(s)
- Laura Tamberg
- Laboratory of Molecular Neurobiology, Department of Gene Technology, Tallinn University of Technology, Akadeemia Rd.15, Tallinn 12618, Estonia
| | - Mari Sepp
- Laboratory of Molecular Neurobiology, Department of Gene Technology, Tallinn University of Technology, Akadeemia Rd.15, Tallinn 12618, Estonia
| | - Tõnis Timmusk
- Laboratory of Molecular Neurobiology, Department of Gene Technology, Tallinn University of Technology, Akadeemia Rd.15, Tallinn 12618, Estonia
| | - Mari Palgi
- Laboratory of Molecular Neurobiology, Department of Gene Technology, Tallinn University of Technology, Akadeemia Rd.15, Tallinn 12618, Estonia
| |
Collapse
|
41
|
Abstract
Genetic factors play a major part in intellectual disability (ID), but genetic studies have been complicated for a long time by the extreme clinical and genetic heterogeneity. Recently, progress has been made using different next-generation sequencing approaches in combination with new functional readout systems. This approach has provided novel insights into the biological pathways underlying ID, improved the diagnostic process and offered new targets for therapy. In this Review, we highlight the insights obtained from recent studies on the role of genetics in ID and its impact on diagnosis, prognosis and therapy. We also discuss the future directions of genetics research for ID and related neurodevelopmental disorders.
Collapse
|
42
|
Dubos A, Castells-Nobau A, Meziane H, Oortveld MAW, Houbaert X, Iacono G, Martin C, Mittelhaeuser C, Lalanne V, Kramer JM, Bhukel A, Quentin C, Slabbert J, Verstreken P, Sigrist SJ, Messaddeq N, Birling MC, Selloum M, Stunnenberg HG, Humeau Y, Schenck A, Herault Y. Conditional depletion of intellectual disability and Parkinsonism candidate gene ATP6AP2 in fly and mouse induces cognitive impairment and neurodegeneration. Hum Mol Genet 2015; 24:6736-55. [PMID: 26376863 PMCID: PMC4634377 DOI: 10.1093/hmg/ddv380] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 09/11/2015] [Indexed: 12/20/2022] Open
Abstract
ATP6AP2, an essential accessory component of the vacuolar H+ ATPase (V-ATPase), has been associated with intellectual disability (ID) and Parkinsonism. ATP6AP2 has been implicated in several signalling pathways; however, little is known regarding its role in the nervous system. To decipher its function in behaviour and cognition, we generated and characterized conditional knockdowns of ATP6AP2 in the nervous system of Drosophila and mouse models. In Drosophila, ATP6AP2 knockdown induced defective phototaxis and vacuolated photoreceptor neurons and pigment cells when depleted in eyes and altered short- and long-term memory when depleted in the mushroom body. In mouse, conditional Atp6ap2 deletion in glutamatergic neurons (Atp6ap2Camk2aCre/0 mice) caused increased spontaneous locomotor activity and altered fear memory. Both Drosophila ATP6AP2 knockdown and Atp6ap2Camk2aCre/0 mice presented with presynaptic transmission defects, and with an abnormal number and morphology of synapses. In addition, Atp6ap2Camk2aCre/0 mice showed autophagy defects that led to axonal and neuronal degeneration in the cortex and hippocampus. Surprisingly, axon myelination was affected in our mutant mice, and axonal transport alterations were observed in Drosophila. In accordance with the identified phenotypes across species, genome-wide transcriptome profiling of Atp6ap2Camk2aCre/0 mouse hippocampi revealed dysregulation of genes involved in myelination, action potential, membrane-bound vesicles and motor behaviour. In summary, ATP6AP2 disruption in mouse and fly leads to cognitive impairment and neurodegeneration, mimicking aspects of the neuropathology associated with ATP6AP2 mutations in humans. Our results identify ATP6AP2 as an essential gene for the nervous system.
Collapse
Affiliation(s)
- Aline Dubos
- Institut Clinique de la Souris, PHENOMIN, GIE CERBM, 1 rue Laurent Fries, 67404 Illkirch, France, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France, Centre National de la Recherche Scientifique, UMR7104, Illkirch, France, Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France and Université de Strasbourg, Illkirch, France
| | - Anna Castells-Nobau
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Hamid Meziane
- Institut Clinique de la Souris, PHENOMIN, GIE CERBM, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Merel A W Oortveld
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Xander Houbaert
- Team Synapse in Cognition, Institut Interdisciplinaire de NeuroScience, Centre National de la Recherche Scientifique CNRS UMR5297, Université de Bordeaux, Bordeaux, France
| | - Giovanni Iacono
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Christelle Martin
- Team Synapse in Cognition, Institut Interdisciplinaire de NeuroScience, Centre National de la Recherche Scientifique CNRS UMR5297, Université de Bordeaux, Bordeaux, France
| | - Christophe Mittelhaeuser
- Institut Clinique de la Souris, PHENOMIN, GIE CERBM, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Valérie Lalanne
- Institut Clinique de la Souris, PHENOMIN, GIE CERBM, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Jamie M Kramer
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Anuradha Bhukel
- Genetics, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Christine Quentin
- Genetics, Institute of Biology, Freie Universität Berlin, Berlin, Germany, NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jan Slabbert
- VIB, Center for the Biology of Disease, Leuven, Belgium, KU Leuven, Center for Human Genetics and Leuven Institute for Neuroscience and Disease (LIND), Leuven, Belgium
| | - Patrik Verstreken
- VIB, Center for the Biology of Disease, Leuven, Belgium, KU Leuven, Center for Human Genetics and Leuven Institute for Neuroscience and Disease (LIND), Leuven, Belgium
| | - Stefan J Sigrist
- Genetics, Institute of Biology, Freie Universität Berlin, Berlin, Germany, NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Nadia Messaddeq
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France, Centre National de la Recherche Scientifique, UMR7104, Illkirch, France, Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France and Université de Strasbourg, Illkirch, France
| | - Marie-Christine Birling
- Institut Clinique de la Souris, PHENOMIN, GIE CERBM, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Mohammed Selloum
- Institut Clinique de la Souris, PHENOMIN, GIE CERBM, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Henk G Stunnenberg
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Yann Humeau
- Team Synapse in Cognition, Institut Interdisciplinaire de NeuroScience, Centre National de la Recherche Scientifique CNRS UMR5297, Université de Bordeaux, Bordeaux, France
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands,
| | - Yann Herault
- Institut Clinique de la Souris, PHENOMIN, GIE CERBM, 1 rue Laurent Fries, 67404 Illkirch, France, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France, Centre National de la Recherche Scientifique, UMR7104, Illkirch, France, Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France and Université de Strasbourg, Illkirch, France
| |
Collapse
|
43
|
Klein M, van der Voet M, Harich B, van Hulzen KJ, Onnink AM, Hoogman M, Guadalupe T, Zwiers M, Groothuismink JM, Verberkt A, Nijhof B, Castells-Nobau A, Faraone SV, Buitelaar JK, Schenck A, Arias-Vasquez A, Franke B. Converging evidence does not support GIT1 as an ADHD risk gene. Am J Med Genet B Neuropsychiatr Genet 2015; 168:492-507. [PMID: 26061966 PMCID: PMC7164571 DOI: 10.1002/ajmg.b.32327] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/20/2015] [Indexed: 01/03/2023]
Abstract
Attention-Deficit/Hyperactivity Disorder (ADHD) is a common neuropsychiatric disorder with a complex genetic background. The G protein-coupled receptor kinase interacting ArfGAP 1 (GIT1) gene was previously associated with ADHD. We aimed at replicating the association of GIT1 with ADHD and investigated its role in cognitive and brain phenotypes. Gene-wide and single variant association analyses for GIT1 were performed for three cohorts: (1) the ADHD meta-analysis data set of the Psychiatric Genomics Consortium (PGC, N = 19,210), (2) the Dutch cohort of the International Multicentre persistent ADHD CollaboraTion (IMpACT-NL, N = 225), and (3) the Brain Imaging Genetics cohort (BIG, N = 1,300). Furthermore, functionality of the rs550818 variant as an expression quantitative trait locus (eQTL) for GIT1 was assessed in human blood samples. By using Drosophila melanogaster as a biological model system, we manipulated Git expression according to the outcome of the expression result and studied the effect of Git knockdown on neuronal morphology and locomotor activity. Association of rs550818 with ADHD was not confirmed, nor did a combination of variants in GIT1 show association with ADHD or any related measures in either of the investigated cohorts. However, the rs550818 risk-genotype did reduce GIT1 expression level. Git knockdown in Drosophila caused abnormal synapse and dendrite morphology, but did not affect locomotor activity. In summary, we could not confirm GIT1 as an ADHD candidate gene, while rs550818 was found to be an eQTL for GIT1. Despite GIT1's regulation of neuronal morphology, alterations in gene expression do not appear to have ADHD-related behavioral consequences. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- M Klein
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - M van der Voet
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - B Harich
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - KJ van Hulzen
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - AM Onnink
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands,Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, The Netherlands
| | - M Hoogman
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - T Guadalupe
- Department of Language and Genetics, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands,International Max Planck Research School for Language Sciences, Nijmegen, The Netherlands
| | - M Zwiers
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - JM Groothuismink
- Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - A Verberkt
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - B Nijhof
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - A Castells-Nobau
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - SV Faraone
- Department of Psychiatry, State University of New York (SUNY) Upstate Medical University, Syracuse, New York,Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York
| | - JK Buitelaar
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - A Schenck
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - A Arias-Vasquez
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands,Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, The Netherlands,Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - B Franke
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands,Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, The Netherlands
| | | |
Collapse
|
44
|
Androschuk A, Al-Jabri B, Bolduc FV. From Learning to Memory: What Flies Can Tell Us about Intellectual Disability Treatment. Front Psychiatry 2015; 6:85. [PMID: 26089803 PMCID: PMC4453272 DOI: 10.3389/fpsyt.2015.00085] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 05/19/2015] [Indexed: 01/13/2023] Open
Abstract
Intellectual disability (ID), previously known as mental retardation, affects 3% of the population and remains without pharmacological treatment. ID is characterized by impaired general mental abilities associated with defects in adaptive function in which onset occurs before 18 years of age. Genetic factors are increasing and being recognized as the causes of severe ID due to increased use of genome-wide screening tools. Unfortunately drug discovery for treatment of ID has not followed the same pace as gene discovery, leaving clinicians, patients, and families without the ability to ameliorate symptoms. Despite this, several model organisms have proven valuable in developing and screening candidate drugs. One such model organism is the fruit fly Drosophila. First, we review the current understanding of memory in human and its model in Drosophila. Second, we describe key signaling pathways involved in ID and memory such as the cyclic adenosine 3',5'-monophosphate (cAMP)-cAMP response element binding protein (CREB) pathway, the regulation of protein synthesis, the role of receptors and anchoring proteins, the role of neuronal proliferation, and finally the role of neurotransmitters. Third, we characterize the types of memory defects found in patients with ID. Finally, we discuss how important insights gained from Drosophila learning and memory could be translated in clinical research to lead to better treatment development.
Collapse
Affiliation(s)
- Alaura Androschuk
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Basma Al-Jabri
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Francois V. Bolduc
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
45
|
Kaur K, Simon AF, Chauhan V, Chauhan A. Effect of bisphenol A on Drosophila melanogaster behavior – A new model for the studies on neurodevelopmental disorders. Behav Brain Res 2015; 284:77-84. [DOI: 10.1016/j.bbr.2015.02.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 01/30/2015] [Accepted: 02/01/2015] [Indexed: 02/07/2023]
|
46
|
Zordan MA, Sandrelli F. Circadian Clock Dysfunction and Psychiatric Disease: Could Fruit Flies have a Say? Front Neurol 2015; 6:80. [PMID: 25941512 PMCID: PMC4403521 DOI: 10.3389/fneur.2015.00080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/24/2015] [Indexed: 12/15/2022] Open
Abstract
There is evidence of a link between the circadian system and psychiatric diseases. Studies in humans and mammals suggest that environmental and/or genetic disruption of the circadian system leads to an increased liability to psychiatric disease. Disruption of clock genes and/or the clock network might be related to the etiology of these pathologies; also, some genes, known for their circadian clock functions, might be associated to mental illnesses through clock-independent pleiotropy. Here, we examine the features which we believe make Drosophila melanogaster a model apt to study the role of the circadian clock in psychiatric disease. Despite differences in the organization of the clock system, the molecular architecture of the Drosophila and mammalian circadian oscillators are comparable and many components are evolutionarily related. In addition, Drosophila has a rather complex nervous system, which shares much at the cell and neurobiological level with humans, i.e., a tripartite brain, the main neurotransmitter systems, and behavioral traits: circadian behavior, learning and memory, motivation, addiction, social behavior. There is evidence that the Drosophila brain shares some homologies with the vertebrate cerebellum, basal ganglia, and hypothalamus-pituitary-adrenal axis, the dysfunctions of which have been tied to mental illness. We discuss Drosophila in comparison to mammals with reference to the: organization of the brain and neurotransmitter systems; architecture of the circadian clock; clock-controlled behaviors. We sum up current knowledge on behavioral endophenotypes, which are amenable to modeling in flies, such as defects involving sleep, cognition, or social interactions, and discuss the relationship of the circadian system to these traits. Finally, we consider if Drosophila could be a valuable asset to understand the relationship between circadian clock malfunction and psychiatric disease.
Collapse
Affiliation(s)
- Mauro Agostino Zordan
- Department of Biology, University of Padova, Padova, Italy
- Cognitive Neuroscience Center, University of Padova, Padova, Italy
| | | |
Collapse
|
47
|
Jimenez-Del-Rio M, Velez-Pardo C. Alzheimer’s Disease, Drosophila melanogaster and Polyphenols. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 863:21-53. [DOI: 10.1007/978-3-319-18365-7_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
48
|
Willsey AJ, State MW. Autism spectrum disorders: from genes to neurobiology. Curr Opin Neurobiol 2014; 30:92-9. [PMID: 25464374 DOI: 10.1016/j.conb.2014.10.015] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/30/2014] [Indexed: 01/01/2023]
Abstract
Advances in genome-wide technology, coupled with the availability of large cohorts, are finally yielding a steady stream of autism spectrum disorder (ASD) genes carrying mutations of large effect. These findings represent important molecular clues, but at the same time present notable challenges to traditional strategies for moving from genes to neurobiology. A remarkable degree of genetic heterogeneity, the biological pleiotropy of ASD genes, and the tremendous complexity of the human brain are prompting the development of new strategies for translating genetic discoveries into therapeutic targets. Recent developments in systems biology approaches that 'contextualize' these genetic findings along spatial, temporal, and cellular axes of human brain development are beginning to bridge the gap between high-throughput gene discovery and testable pathophysiological hypotheses.
Collapse
Affiliation(s)
- A Jeremy Willsey
- Department of Psychiatry, University of California, San Francisco, San Francisco, California 94158, United States; Institute for Human Genetics, University of California, San Francisco, San Francisco, California 94143, United States
| | - Matthew W State
- Department of Psychiatry, University of California, San Francisco, San Francisco, California 94158, United States; Institute for Human Genetics, University of California, San Francisco, San Francisco, California 94143, United States.
| |
Collapse
|
49
|
Máca J, Otranto D. Drosophilidae feeding on animals and the inherent mystery of their parasitism. Parasit Vectors 2014. [PMID: 25404259 DOI: 10.1186/s13071–014–0516–4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Insect evolution, from a free to a parasitic lifestyle, took eons under the pressure of a plethora of ecological and environmental drivers in different habitats, resulting in varying degrees of interactions with their hosts. Most Drosophilidae are known to be adapted to feeding on substrates rich in bacteria, yeasts and other microfungi. Some of them, mainly those in the Steganinae subfamily, display a singular behaviour, feeding on animal tissues or secretions. This behaviour may represent an evolving tendency towards parasitism. Indeed, while the predatory attitude is typical for the larval stages of a great proportion of flies within this subfamily, adult males of the genera Amiota, Apsiphortica and Phortica display a clearly zoophilic attitude, feeding on the lachrymal secretions of living mammals (also referred as to lachryphagy). Ultimately, some of these lachryphagous species act as vectors and intermediate hosts for the spirurid nematode Thelazia callipaeda, which parasitizes the eyes of domestic and wild carnivores and also humans. Here we review the scientific information available and provide an opinion on the roots of their evolution towards the parasitic behaviour. The distribution of T. callipaeda and its host affiliation is also discussed and future trends in the study of the ecology of Steganinae are outlined.
Collapse
Affiliation(s)
- Jan Máca
- Czech Entomological Society, Praha, Czech Republic.
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, 70010, Valenzano, Bari, Italy.
| |
Collapse
|
50
|
Máca J, Otranto D. Drosophilidae feeding on animals and the inherent mystery of their parasitism. Parasit Vectors 2014; 7:516. [PMID: 25404259 PMCID: PMC4243723 DOI: 10.1186/s13071-014-0516-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/02/2014] [Indexed: 11/24/2022] Open
Abstract
Insect evolution, from a free to a parasitic lifestyle, took eons under the pressure of a plethora of ecological and environmental drivers in different habitats, resulting in varying degrees of interactions with their hosts. Most Drosophilidae are known to be adapted to feeding on substrates rich in bacteria, yeasts and other microfungi. Some of them, mainly those in the Steganinae subfamily, display a singular behaviour, feeding on animal tissues or secretions. This behaviour may represent an evolving tendency towards parasitism. Indeed, while the predatory attitude is typical for the larval stages of a great proportion of flies within this subfamily, adult males of the genera Amiota, Apsiphortica and Phortica display a clearly zoophilic attitude, feeding on the lachrymal secretions of living mammals (also referred as to lachryphagy). Ultimately, some of these lachryphagous species act as vectors and intermediate hosts for the spirurid nematode Thelazia callipaeda, which parasitizes the eyes of domestic and wild carnivores and also humans. Here we review the scientific information available and provide an opinion on the roots of their evolution towards the parasitic behaviour. The distribution of T. callipaeda and its host affiliation is also discussed and future trends in the study of the ecology of Steganinae are outlined.
Collapse
Affiliation(s)
- Jan Máca
- Czech Entomological Society, Praha, Czech Republic.
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, 70010, Valenzano, Bari, Italy.
| |
Collapse
|