1
|
Yang M, Bai M, Zhuang Y, Lu S, Ge Q, Li H, Deng Y, Wu H, Xu X, Niu F, Dong X, Zhang B, Liu B. High-dose dexamethasone regulates microglial polarization via the GR/JAK1/STAT3 signaling pathway after traumatic brain injury. Neural Regen Res 2025; 20:2611-2623. [PMID: 39314167 PMCID: PMC11801282 DOI: 10.4103/nrr.nrr-d-23-01772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/18/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202509000-00023/figure1/v/2024-11-05T132919Z/r/image-tiff Although microglial polarization and neuroinflammation are crucial cellular responses after traumatic brain injury, the fundamental regulatory and functional mechanisms remain insufficiently understood. As potent anti-inflammatory agents, the use of glucocorticoids in traumatic brain injury is still controversial, and their regulatory effects on microglial polarization are not yet known. In the present study, we sought to determine whether exacerbation of traumatic brain injury caused by high-dose dexamethasone is related to its regulatory effects on microglial polarization and its mechanisms of action. In vitro cultured BV2 cells and primary microglia and a controlled cortical impact mouse model were used to investigate the effects of dexamethasone on microglial polarization. Lipopolysaccharide, dexamethasone, RU486 (a glucocorticoid receptor antagonist), and ruxolitinib (a Janus kinase 1 antagonist) were administered. RNA-sequencing data obtained from a C57BL/6 mouse model of traumatic brain injury were used to identify potential targets of dexamethasone. The Morris water maze, quantitative reverse transcription-polymerase chain reaction, western blotting, immunofluorescence and confocal microscopy analysis, and TUNEL, Nissl, and Golgi staining were performed to investigate our hypothesis. High-throughput sequencing results showed that arginase 1, a marker of M2 microglia, was significantly downregulated in the dexamethasone group compared with the traumatic brain injury group at 3 days post-traumatic brain injury. Thus dexamethasone inhibited M1 and M2 microglia, with a more pronounced inhibitory effect on M2 microglia in vitro and in vivo . Glucocorticoid receptor plays an indispensable role in microglial polarization after dexamethasone treatment following traumatic brain injury. Additionally, glucocorticoid receptor activation increased the number of apoptotic cells and neuronal death, and also decreased the density of dendritic spines. A possible downstream receptor signaling mechanism is the GR/JAK1/STAT3 pathway. Overactivation of glucocorticoid receptor by high-dose dexamethasone reduced the expression of M2 microglia, which plays an anti-inflammatory role. In contrast, inhibiting the activation of glucocorticoid receptor reduced the number of apoptotic glia and neurons and decreased the loss of dendritic spines after traumatic brain injury. Dexamethasone may exert its neurotoxic effects by inhibiting M2 microglia through the GR/JAK1/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Mengshi Yang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Miao Bai
- Department of Neurology, The First Hospital of Tsinghua University, Beijing, China
| | - Yuan Zhuang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shenghua Lu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qianqian Ge
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hao Li
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu Deng
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hongbin Wu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaojian Xu
- Department of Neurotrauma and Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Fei Niu
- Department of Neurotrauma and Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xinlong Dong
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurotrauma and Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Bin Zhang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Baiyun Liu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurotrauma and Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Center for Nerve Injury and Repair, Beijing Institute of Brain Disorders, China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
2
|
Nasir A, Afridi M, Afridi OK, Khan MA, Khan A, Zhang J, Qian B. The persistent pain enigma: Molecular drivers behind acute-to-chronic transition. Neurosci Biobehav Rev 2025; 173:106162. [PMID: 40239909 DOI: 10.1016/j.neubiorev.2025.106162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/20/2025] [Accepted: 04/14/2025] [Indexed: 04/18/2025]
Abstract
The transition from acute to chronic pain is a complex and multifactorial process that presents significant challenges in both diagnosis and treatment. Key mechanisms of peripheral and central sensitization, neuroinflammation, and altered synaptic plasticity contribute to the amplification of pain signals and the persistence of pain. Glial cell activation, particularly microglia and astrocytes, is pivotal in developing chronic pain by releasing pro-inflammatory cytokines that enhance pain sensitivity. This review explores the molecular, cellular, and systemic mechanisms underlying the transition from acute to chronic pain, offering new insights into the molecular and neurobiological mechanisms involved, which are often underexplored in existing literature. It also addresses emerging therapeutic strategies beyond traditional pain management, offering valuable perspectives for future research and clinical applications.
Collapse
Affiliation(s)
- Abdul Nasir
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China.
| | - Maryam Afridi
- Department of Pharmacy, Qurtuba University, Peshawar, KP, Pakistan
| | | | | | - Amir Khan
- Icahn School of Medicine at Mount Sinai, New York, USA
| | - Jun Zhang
- Department of Pain, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Bai Qian
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China.
| |
Collapse
|
3
|
Kuthati Y, Wong CS. The Melatonin Type 2 Receptor Agonist IIK7 Attenuates and Reverses Morphine Tolerance in Neuropathic Pain Rats Through the Suppression of Neuroinflammation in the Spinal Cord. Pharmaceuticals (Basel) 2024; 17:1638. [PMID: 39770480 PMCID: PMC11676719 DOI: 10.3390/ph17121638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Morphine analgesic tolerance (MAT) limits the clinical application of morphine in the management of chronic pain. IIK7 is a melatonin type 2 (MT2) receptor agonist known to have antioxidant properties. Oxidative stress is recognized as a critical factor in MAT. This study sought to assess the impact of IIK7 on the progression of MAT and its potential to reverse pre-existing MAT. METHODS Wistar rats underwent partial sciatic nerve transection (PSNT) surgery to induce neuropathic pain (NP). Seven days post nerve transection, we implanted an intrathecal (i.t.) catheter and linked it to an osmotic pump. Rats were randomly divided into the following groups: sham-operated/vehicle, PSNT/vehicle, PSNT/IIK7 50 ng/h, PSNT/MOR 15 g/h, and PSNT/MOR 15 g + IIK7 50 ng/h. We implanted two i.t. catheters for drug administration and the evaluation of the efficacy of IIK7 in reversing pre-established MAT. We linked one to an osmotic pump for MOR or saline continuous i.t. infusion. On the 7th day, the osmotic pump was disconnected, and 50 μg of IIK7 or the vehicle was administered through the second catheter. After 3 h, 15 μg of MOR or saline was administered, and the animal behavior tests were performed. We measured the levels of mRNA for Nrf2 and HO-1, pro-inflammatory cytokines (PICs), and the microglial and astrocyte activation in the spinal cord. RESULTS The co-administration of IIK7 with MOR delayed MAT development in PSNT rats by restoring Nrf2 and HO-1 while also inhibiting the microglial-cell and astrocyte activation, alongside the suppression of PICs. Additionally, a single injection of high-dose 50 μg IIK7 was efficient in restoring MOR's antinociception in MOR-tolerant rats. CONCLUSIONS Our results indicate that the co-infusion of ultra-low-dose IIK7 can delay MAT development and a high dose can reverse pre-existing MAT.
Collapse
Affiliation(s)
- Yaswanth Kuthati
- Department of Anesthesiology, Cathay General Hospital, Taipei 106, Taiwan;
| | - Chih-Shung Wong
- Department of Anesthesiology, Cathay General Hospital, Taipei 106, Taiwan;
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 280, Taiwan
| |
Collapse
|
4
|
Xie X, Yu X, Zhang H, Dai H, Huang Y, Wu F. Irisin alleviates chronic constriction injury-induced hyperalgesia and affective disorders in mice through NF-κB and Nrf2 signaling pathways. IBRO Neurosci Rep 2024; 17:280-289. [PMID: 39323766 PMCID: PMC11422585 DOI: 10.1016/j.ibneur.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/27/2024] Open
Abstract
This research is to explore the impacts of irisin on hyperalgesia and behavioral deficits caused by chronic constriction injury (CCI) and the underlying mechanisms. The CCI mice model was used in this study. The experimental mice were assigned into sham, sham + irisin (3 μg/kg), CCI, CCI + irisin (0.1, 1, and 3 μg/kg), and CCI + irisin (3 μg/kg) + ML385 (30 mg/kg) groups. The results showed that after CCI injury, the mice exhibited hyperalgesia, depression, and anxiety. In addition, the levels of inflammatory cytokines NF-κB, IL-1β, IL-6, TNF-α, and iNOS increased in the mice hippocampus, frontal cortex, and spinal cord. Moreover, oxidative stress relevant factor MDA increased, while GSH and SOD decreased in the mice hippocampus, frontal cortex, and spinal cord. However, irisin treatment ameliorated CCI-induced mechanical allodynia, thermal hyperalgesia, depressive, and anxiety behaviors, and reversed the abnormal expressions of inflammatory and oxidative stress relevant cytokines. Interestingly, these therapeutic effects of irisin were partly abolished by ML385, a specific Nrf2 antagonist. Taken together, irisin may be an effective therapeutic agent for CCI-induced neuralgia and the affective disorders, and the mechanisms may be associated with the anti-neuroinflammation mediated by NF-κB and the anti- oxidative stress function regulated by Nrf2.
Collapse
Affiliation(s)
- Xupei Xie
- Department of Pharmacy, Shaoxing Second Hospital, Shaoxing 312000, China
| | - Xuefeng Yu
- Department of Pharmacy, Zhejiang Pharmaceutical University, Ningbo 315000, China
| | - Hanqin Zhang
- Department of Pharmacy, Zhejiang Pharmaceutical University, Ningbo 315000, China
| | - Huidan Dai
- Department of Pharmacy, Zhejiang Pharmaceutical University, Ningbo 315000, China
| | - Yuyang Huang
- Department of Pharmacy, Zhejiang Pharmaceutical University, Ningbo 315000, China
| | - Fan Wu
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310000, China
| |
Collapse
|
5
|
Li J, Kang W, Wang X, Pan F. Progress in treatment of pathological neuropathic pain after spinal cord injury. Front Neurol 2024; 15:1430288. [PMID: 39606699 PMCID: PMC11600731 DOI: 10.3389/fneur.2024.1430288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Pathological neuropathic pain is a common complication following spinal cord injury. Due to its high incidence, prolonged duration, tenacity, and limited therapeutic efficacy, it has garnered increasing attention from both basic researchers and clinicians. The pathogenesis of neuropathic pain after spinal cord injury is multifaceted, involving factors such as structural and functional alterations of the central nervous system, pain signal transduction, and inflammatory effects, posing significant challenges to clinical management. Currently, drugs commonly employed in treating spinal cord injury induced neuropathic pain include analgesics, anticonvulsants, antidepressants, and antiepileptics. However, a subset of patients often experiences suboptimal therapeutic responses or severe adverse reactions. Therefore, emerging treatments are emphasizing a combination of pharmacological and non-pharmacological approaches to enhance neuropathic pain management. We provide a comprehensive review of past literature, which aims to aim both the mechanisms and clinical interventions for pathological neuropathic pain following spinal cord injury, offering novel insights for basic science research and clinical practice in spinal cord injury treatment.
Collapse
Affiliation(s)
- Jian Li
- Department of Orthopedics, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Xuanwu Jinan Hospital, Jinan, China
| | - Wenqing Kang
- Department of Neurology, Yidu Central Hospital of Weifang, Weifang, Shandong, China
| | - Xi Wang
- Department of Orthopedics, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Fang Pan
- Department of rehabilitation, Shandong Rehabilitation Hospital, Jinan, Shandong, China
| |
Collapse
|
6
|
Firdoos S, Dai R, Younas Z, Shah FA, Gul M, Rasheed M. Agomelatine-loaded nanostructured lipid carriers alleviate neuropathic pain in rats by Nrf2/HO-1 signalling pathway. Clin Exp Pharmacol Physiol 2024; 51:e13922. [PMID: 39348933 DOI: 10.1111/1440-1681.13922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/23/2024] [Accepted: 08/19/2024] [Indexed: 10/02/2024]
Abstract
Neuropathic pain arises from impairments or malfunctions within the nervous system, resulting in atypical transmission and interpretation of pain signals. In the present study, we examined the neuroprotective effects of agomelatine (AGM) and agomelatine-loaded nanostructured lipid carriers (AGM-NLCs) in neuropathic animal models induced by chronic constriction injury (CCI) of the sciatic nerve. Male Sprague Dawley rats were divided into seven experimental groups to compare the effects of AGM and AGM-NLCs, which were administered at 20 mg/kg for 14 consecutive days after CCI. Our finding demonstrated that CCI triggered the onset of analgesia in these animals, corroborated by mechanical allodynia and thermal hyperalgesia. Furthermore, CCI induced an elevation in inflammatory mediators such as interleukin (IL)-1β and inducible nitric oxide synthase (iNOS), and downregulated heme oxygenase-1 (HO-1) and nuclear factor E2-related factor (Nrf2). Treatment with AGM and AGM-NLCs reversed inflammatory cascades and elevated antioxidant enzyme levels, leading to a reduction in paw withdrawal latency and threshold in rats. To further investigate the effect of AGM and AGM-NLCs, all-trans retinoic acid (ATRA) was administered, which antagonizes Nrf2. ATRA substantially downregulated Nrf2 expression and exacerbated thermal hyperalgesia, whereas Nrf2 and HO-1 expressions were significantly upregulated after AGM-NLCs administration. Overall, the results demonstrated that AGM-NLCs offer promising antinociceptive and anti-inflammatory properties in alleviating neuropathic pain symptoms, which can be attributed to improved drug delivery and therapeutic outcomes compared with AGM alone.
Collapse
Affiliation(s)
- Sundas Firdoos
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, Beijing Institute of Technology (BIT), Beijing, People's Republic of China
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Rongji Dai
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, Beijing Institute of Technology (BIT), Beijing, People's Republic of China
| | - Zahid Younas
- Department of Computer Science and IT, University of Azad Jammu & Kashmir, Muzaffarabad, Pakistan
| | - Fawad Ali Shah
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Maleeha Gul
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Madiha Rasheed
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, Beijing Institute of Technology (BIT), Beijing, People's Republic of China
| |
Collapse
|
7
|
Wang H, Chen L, Xing J, Shi X, Xu C. Reduction of TRPV1 expression on neurons due to downregulation of P2X7R in neonatal rat dorsal root ganglion satellite glial cells under co-culture conditions. Biol Cell 2024; 116:e2400021. [PMID: 39159475 DOI: 10.1111/boc.202400021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/03/2024] [Accepted: 07/19/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND INFORMATION The purinergic ligand-gated ion channel 7 receptor (P2X7R) is an ATP-gated ion channel that transmits extracellular signals and induces corresponding biological effects, transient receptor potential vanilloid type 1 (TRPV1) is a non-selective cation channel that maintains normal physiological functions; numerous studies showed that P2X7R and TRPV1 are associated with inflammatory reactions. RESULTS The effect of P2X7R knockdown in satellite glial cells (SGCs) on neuronal TRPV1 expression under high glucose and high free fat (HGHF) environment was investigated. P2X7 short hairpin RNA (shRNA) was utilized to downregulate P2X7R in SGCs, and treated and untreated SGCs were co-cultured with neuronal cell lines. The expression levels of inflammatory factors and signaling pathways in SGCs and neurons were measured using Western blot analysis, RT-qPCR, immunofluorescence, and enzyme-linked immunosorbent assays. Results suggested that P2X7 shRNA reduced the expression levels of P2X7R protein and mRNA in SGCs surrounding DRG neurons and downregulated the release of tumor necrosis factor-alpha and interleukin-1 beta via the Ca2+/p38 MAPK/NF-κB pathway. Additionally, the downregulation of P2X7R might decrease TRPV1 expression in neurons via the Ca2+/PKC-ɛ/p38 MAPK pathway. CONCLUSIONS Reducing P2X7R expression in SCGs in an HGHF environment could decrease neuronal TRPV1 expression via the Ca2+/PKC-ɛ/p38 MAPK pathway.
Collapse
Affiliation(s)
- Hongji Wang
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, P.R. China
- College of Economics and Management, Shanghai Ocean University, Shanghai, P.R. China
| | - Lisha Chen
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, P.R. China
| | - Juping Xing
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, P.R. China
| | - Xiangchao Shi
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, P.R. China
| | - Changshui Xu
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, P.R. China
- The Clinical Medical School, Jiangxi Medical College, Shangrao, P.R. China
| |
Collapse
|
8
|
Álvarez-Tosco K, González-Fernández R, González-Nicolás MÁ, Martín-Ramírez R, Morales M, Gutiérrez R, Díaz-Flores L, Arnau MR, Machín F, Ávila J, Lázaro A, Martín-Vasallo P. Dorsal root ganglion inflammation by oxaliplatin toxicity: DPEP1 as possible target for peripheral neuropathy prevention. BMC Neurosci 2024; 25:44. [PMID: 39278931 PMCID: PMC11403972 DOI: 10.1186/s12868-024-00891-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/05/2024] [Indexed: 09/18/2024] Open
Abstract
BACKGROUND Peripheral neuropathy (PN) constitutes a dose-limiting side effect of oxaliplatin chemotherapy that often compromises the efficacy of antineoplastic treatments. Sensory neurons damage in dorsal root ganglia (DRG) are the cellular substrate of PN complex molecular origin. Dehydropeptidase-1 (DPEP1) inhibitors have shown to avoid platin-induced nephrotoxicity without compromising its anticancer efficiency. The objective of this study was to describe DPEP1 expression in rat DRG in health and in early stages of oxaliplatin toxicity. To this end, we produced and characterized anti-DPEP1 polyclonal antibodies and used them to define the expression, and cellular and subcellular localization of DPEP1 by immunohistochemical confocal microscopy studies in healthy controls and short term (six days) oxaliplatin treated rats. RESULTS DPEP1 is expressed mostly in neurons and in glia, and to a lesser extent in endothelial cells. Rats undergoing oxaliplatin treatment developed allodynia. TNF-𝛼 expression in DRG revealed a pattern of focal and at different intensity levels of neural cell inflammatory damage, accompanied by slight variations in DPEP1 expression in endothelial cells and in nuclei of neurons. CONCLUSIONS DPEP1 is expressed in neurons, glia and endothelial cells of DRG. Oxaliplatin caused allodynia in rats and increased TNF-α expression in DRG neurons. The expression of DPEP1 in neurons and other cells of DRG suggest this protein as a novel strategic molecular target in the prevention of oxaliplatin-induced acute neurotoxicity.
Collapse
Affiliation(s)
- Karen Álvarez-Tosco
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Unidad de Investigación, Hospital Universitario Nuestra Señora de la Candelaria, Instituto de Investigación Sanitaria de Canarias (IISC), Santa Cruz de Tenerife, Spain
- Departamento de Farmacia Hospitalaria, Hospital Universitario Nuestra Señora de la Candelaria, Santa Cruz de Tenerife, Spain
| | - Rebeca González-Fernández
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - María Ángeles González-Nicolás
- Laboratorio de Fisiopatología Renal, Departamento de Nefrología, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Rita Martín-Ramírez
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Manuel Morales
- Departamento de Oncología Médica, Hospital Universitario Nuestra Señora de la Candelaria, Santa Cruz de Tenerife, Spain
| | - Ricardo Gutiérrez
- Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Lucio Díaz-Flores
- Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - María Rosa Arnau
- Servicio de Estabulario y Animalario del Servicio General de Apoyo a la Investigación (SEGAI), Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Félix Machín
- Unidad de Investigación, Hospital Universitario Nuestra Señora de la Candelaria, Instituto de Investigación Sanitaria de Canarias (IISC), Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Julio Ávila
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Alberto Lázaro
- Laboratorio de Fisiopatología Renal, Departamento de Nefrología, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.
| | - Pablo Martín-Vasallo
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular, Universidad de La Laguna, San Cristóbal de La Laguna, Spain.
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, San Cristóbal de La Laguna, Spain.
| |
Collapse
|
9
|
Xu S, Li H, Ai Z, Guo R, Cheng H, Wang Y. Exploring viral neuropathic pain: Molecular mechanisms and therapeutic implications. PLoS Pathog 2024; 20:e1012397. [PMID: 39116040 PMCID: PMC11309435 DOI: 10.1371/journal.ppat.1012397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
As the Coronavirus Disease 2019 (COVID-19) pandemic continues, there is a growing concern regarding the relationship between viral infections and neuropathic pain. Chronic neuropathic pain resulting from virus-induced neural dysfunction has emerged as a significant issue currently faced. However, the molecular mechanisms underlying this phenomenon remain unclear, and clinical treatment outcomes are often suboptimal. Therefore, delving into the relationship between viral infections and neuropathic pain, exploring the pathophysiological characteristics and molecular mechanisms of different viral pain models, can contribute to the discovery of potential therapeutic targets and methods, thereby enhancing pain relief and improving the quality of life for patients. This review focuses on HIV-related neuropathic pain (HNP), postherpetic neuralgia (PHN), and neuropathic pain caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infections, examining rodent models and relevant cellular molecular pathways. Through elucidating the connection between viral infections and neuropathic pain, it aims to delineate the current limitations and challenges faced by treatments, thereby providing insights and directions for future clinical practice and research.
Collapse
Affiliation(s)
- Songchao Xu
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Huili Li
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhangran Ai
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ruijuan Guo
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hao Cheng
- Department of Anesthesiology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yun Wang
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Liang JH, Yu H, Xia CP, Zheng YH, Zhang Z, Chen Y, Raza MA, Wu L, Yan H. Ginkgolide B effectively mitigates neuropathic pain by suppressing the activation of the NLRP3 inflammasome through the induction of mitophagy in rats. Biomed Pharmacother 2024; 177:117006. [PMID: 38908197 DOI: 10.1016/j.biopha.2024.117006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024] Open
Abstract
Neuropathic pain is a pathological state induced by the aberrant generation of pain signals within the nervous system. Ginkgolide B(GB), an active component found of Ginkgo. biloba leaves, has neuroprotective properties. This study aimed to explore the effects of GB on neuropathic pain and its underlying mechanisms. In the in vivo study, we adopted the rat chronic constriction injury model, and the results showed that GB(4 mg/kg) treatment effectively reduced pain sensation in rats and decreased the expressions of Iba-1 (a microglia marker), NLRP3 inflammasome, and inflammatory factors, such as interleukin (IL)-1β, in the spinal cord 7 days post-surgery. In the in vitro study, we induced microglial inflammation using lipopolysaccharide (500 ng/mL) / adenosine triphosphate (5 mM) and treated it with GB (10, 20, and 40 μM). GB upregulated the expression of mitophagy proteins, such as PINK1, Parkin, LC3 II/I, Tom20, and Beclin1, and decreased the cellular production of reactive oxygen species. Moreover, it lowered the expression of inflammation-related proteins, such as Caspase-1, IL-1β, and NLRP3 in microglia. However, this effect was reversed by Parkin shRNA/siRNA or the autophagy inhibitor 3-methyladenine (5 mM). These findings reveal that GB alleviates neuropathic pain by mitigating neuroinflammation through the activation of PINK1-Parkin-mediated mitophagy.
Collapse
Affiliation(s)
- Jing-Hao Liang
- Department of Orthopaedics (Hand microsurgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Heng Yu
- Department of Orthopaedics (Hand microsurgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chuan-Peng Xia
- Department of Orthopaedics (Hand microsurgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yue-Hui Zheng
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Department of Geriatry, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhe Zhang
- Department of Orthopaedics (Hand microsurgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yu Chen
- Department of Orthopaedics (Hand microsurgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Mazhar Ali Raza
- Department of Orthopaedics (Hand microsurgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Long Wu
- Department of Orthopaedics (Hand microsurgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Hede Yan
- Department of Orthopaedics (Hand microsurgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
11
|
Malek N, Gladysz R, Stelmach N, Drag M. Targeting Microglial Immunoproteasome: A Novel Approach in Neuroinflammatory-Related Disorders. ACS Chem Neurosci 2024; 15:2532-2544. [PMID: 38970802 PMCID: PMC11258690 DOI: 10.1021/acschemneuro.4c00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/08/2024] Open
Abstract
It is widely acknowledged that the aging process is linked to the accumulation of damaged and misfolded proteins. This phenomenon is accompanied by a decrease in proteasome (c20S) activity, concomitant with an increase in immunoproteasome (i20S) activity. These changes can be attributed, in part, to the chronic neuroinflammation that occurs in brain tissues. Neuroinflammation is a complex process characterized by the activation of immune cells in the central nervous system (CNS) in response to injury, infection, and other pathological stimuli. In certain cases, this immune response becomes chronic, contributing to the pathogenesis of various neurological disorders, including chronic pain, Alzheimer's disease, Parkinson's disease, brain traumatic injury, and others. Microglia, the resident immune cells in the brain, play a crucial role in the neuroinflammatory response. Recent research has highlighted the involvement of i20S in promoting neuroinflammation, increased activity of which may lead to the presentation of self-antigens, triggering an autoimmune response against the CNS, exacerbating inflammation, and contributing to neurodegeneration. Furthermore, since i20S plays a role in breaking down accumulated proteins during inflammation within the cell body, any disruption in its activity could lead to a prolonged state of inflammation and subsequent cell death. Given the pivotal role of i20S in neuroinflammation, targeting this proteasome subtype has emerged as a potential therapeutic approach for managing neuroinflammatory diseases. This review delves into the mechanisms of neuroinflammation and microglia activation, exploring the potential of i20S inhibitors as a promising therapeutic strategy for managing neuroinflammatory disorders.
Collapse
Affiliation(s)
- Natalia Malek
- Department
of Chemical Biology and Bioimaging, Wroclaw
University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Radoslaw Gladysz
- Department
of Chemical Biology and Bioimaging, Wroclaw
University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Natalia Stelmach
- Department
of Chemical Biology and Bioimaging, Wroclaw
University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Marcin Drag
- Department
of Chemical Biology and Bioimaging, Wroclaw
University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
12
|
Rong ZJ, Chen M, Cai HH, Liu GH, Chen JB, Wang H, Zhang ZW, Huang YL, Ni SF. Ursolic acid molecules dock MAPK1 to modulate gut microbiota diversity to reduce neuropathic pain. Neuropharmacology 2024; 252:109939. [PMID: 38570065 DOI: 10.1016/j.neuropharm.2024.109939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/07/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
To investigate the efficacy of Ursolic acid in alleviating neuropathic pain in rats with spinal nerve ligation (SNL), the SNL rat model was surgically induced. Different concentrations of Ursolic acid and manipulated target mitogen-activated protein kinase 1 (MAPK1) were administered to the SNL rats. Fecal samples were collected from each group of rats for 16S rDNA analysis to examine the impact of gut microbiota. Molecular docking experiments were conducted to assess the binding energy between Ursolic acid and MAPK1. In vivo studies were carried out to evaluate the expression of inflammatory factors and signaling pathways in spinal cord and colon tissues. Ursolic acid was found to have a beneficial effect on pain reduction in rats by increasing plantar withdrawal latency (PWL) and paw withdrawal threshold (PWT). Comparing the Ursolic acid group with the control group revealed notable differences in the distribution of Staphylococcus, Allobaculum, Clostridium, Blautia, Bifidobacterium, and Prevotella species. Network pharmacology analysis identified MAPK1 and intercellular adhesion molecule-1 (ICAM1) as common targets for Ursolic acid, SNL, and neuropathic pain. Binding sites between Ursolic acid and these targets were identified. Additionally, immunofluorescent staining showed a decrease in GFAP and IBA1 intensity in the spinal cord along with an increase in NeuN following Ursolic acid treatment. Overexpression of MAPK1 in SNL rats led to an increase in inflammatory factors and a decrease in PWL and PWT. Furthermore, MAPK1 counteracted the pain-relieving effects of Ursolic acid in SNL rats. Ursolic acid was found to alleviate neuropathic pain in SNL rats by targeting MAPK1 and influencing gut microbiota homeostasis.
Collapse
Affiliation(s)
- Zi-Jie Rong
- Department of Spine Surgery, Huizhou Municipal Central Hospital, Huizhou, 516001, China; Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - Min Chen
- Department of Spine Surgery, Huizhou Municipal Central Hospital, Huizhou, 516001, China; Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - Hong-Hua Cai
- Department of Spine Surgery, Huizhou Municipal Central Hospital, Huizhou, 516001, China; Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - Gui-Hua Liu
- Department of Spine Surgery, Huizhou Municipal Central Hospital, Huizhou, 516001, China; Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - Jin-Biao Chen
- Department of Spine Surgery, Huizhou Municipal Central Hospital, Huizhou, 516001, China; Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - Hao Wang
- Department of Spine Surgery, Huizhou Municipal Central Hospital, Huizhou, 516001, China; Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - Zhi-Wen Zhang
- Department of Orthopaedics, Huizhou Municipal Central Hospital, Huizhou, 516001, China; Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - Yu-Liang Huang
- Department of Orthopaedics, Huizhou Municipal Central Hospital, Huizhou, 516001, China; Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, 516001, China.
| | - Shuang-Fei Ni
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
13
|
Chen M, Yang Y, Cui J, Qiu L, Zou X, Zeng X. Upstream Stimulating Factor 2 Aggravates Spinal Nerve Ligation-Induced Neuropathic Pain in Mice via Regulating SNHG5/miR-181b-5p. Dev Neurosci 2024; 47:1-11. [PMID: 38471480 DOI: 10.1159/000538178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
INTRODUCTION Upstream stimulating factor 2 (USF2) belongs to basic Helix-Loop-Helix-Leucine zipper transcription factor family, regulating expression of genes involved in immune response or energy metabolism network. Role of USF2 in neuropathic pain was evaluated. METHODS Mice were intraspinally injected with adenovirus for knockdown of USF2 (Ad-shUSF2) and then subjected to spinal nerve ligation (SNL) to induce neuropathic pain. Distribution and expression of USF2 were detected by western blot and immunofluorescence. Mechanical and thermal pain sensitivity were examined by paw withdrawal thresholds (PWT) and paw withdrawal latency (PWL). Chromatin immunoprecipitation (ChIP) and luciferase activity assays were performed to detect binding ability between USF2 and SNHG5. RESULTS The expression of USF2 was elevated and colocalized with astrocytes and microglia in L5 dorsal root ganglion (DRG) of SNL-induced mice. Injection of Ad-shUSF2 attenuated SNL-induced decrease of PWT and PWL in mice. Knockdown of USF2 increased the level of IL-10 but decreased TNF-α, IL-1β, and IL-6 in SNL-induced mice. Silence of USF2 enhanced protein expression of CD206 while reducing expression of CD16 and CD32 in SNL-induced mice. USF2 binds to promoter of SNHG5 and weakens SNL-induced up-regulation of SNHG5. SNHG5 binds to miR-181b-5p, and miR-181b-5p to interact with CXCL5. CONCLUSION Silence of USF2 ameliorated neuropathic pain, suppressed activation of M1 microglia, and inhibited inflammation in SNL-induced mice through regulation of SNHG5/miR-181b-5p/CXCL5 axis. Therefore, USF2/SNHG5/miR-181b-5p/CXCL5 might be a promising target for neuropathic pain. However, the effect of USF2/SNHG5/miR-181b-5p/CXCL5 on neuropathic pain should also be investigated in further research.
Collapse
Affiliation(s)
- Mi Chen
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yang Yang
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jiatian Cui
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Li Qiu
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiaohua Zou
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xianggang Zeng
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
14
|
Mokhtari T, Uludag K. Role of NLRP3 Inflammasome in Post-Spinal-Cord-Injury Anxiety and Depression: Molecular Mechanisms and Therapeutic Implications. ACS Chem Neurosci 2024; 15:56-70. [PMID: 38109051 DOI: 10.1021/acschemneuro.3c00596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
The majority of research on the long-term effects of spinal cord injury (SCI) has primarily focused on neuropathic pain (NP), psychological issues, and sensorimotor impairments. Among SCI patients, mood disorders, such as anxiety and depression, have been extensively studied. It has been found that chronic stress and NP have negative consequences and reduce the quality of life for individuals living with SCI. Our review examined both human and experimental evidence to explore the connection between mood changes following SCI and inflammatory pathways, with a specific focus on NLRP3 inflammasome signaling. We observed increased proinflammatory factors in the blood, as well as in the brain and spinal cord tissues of SCI models. The NLRP3 inflammasome plays a crucial role in various diseases by controlling the release of proinflammatory molecules like interleukin 1β (IL-1β) and IL-18. Dysregulation of the NLRP3 inflammasome in key brain regions associated with pain processing, such as the prefrontal cortex and hippocampus, contributes to the development of mood disorders following SCI. In this review, we summarized recent research on the expression and regulation of components related to NLRP3 inflammasome signaling in mood disorders following SCI. Finally, we discussed potential therapeutic approaches that target the NLRP3 inflammasome and regulate proinflammatory cytokines as a way to treat mood disorders following SCI.
Collapse
Affiliation(s)
- Tahmineh Mokhtari
- Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, People's Republic of China
- Department of Histology and Embryology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, People's Republic of China
| | - Kadir Uludag
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, People's Republic of China
| |
Collapse
|
15
|
Echeverria-Villalobos M, Tortorici V, Brito BE, Ryskamp D, Uribe A, Weaver T. The role of neuroinflammation in the transition of acute to chronic pain and the opioid-induced hyperalgesia and tolerance. Front Pharmacol 2023; 14:1297931. [PMID: 38161698 PMCID: PMC10755684 DOI: 10.3389/fphar.2023.1297931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Current evidence suggests that activation of glial and immune cells leads to increased production of proinflammatory mediators, creating a neuroinflammatory state. Neuroinflammation has been proven to be a fundamental mechanism in the genesis of acute pain and its transition to neuropathic and chronic pain. A noxious event that stimulates peripheral afferent nerve fibers may also activate pronociceptive receptors situated at the dorsal root ganglion and dorsal horn of the spinal cord, as well as peripheral glial cells, setting off the so-called peripheral sensitization and spreading neuroinflammation to the brain. Once activated, microglia produce cytokines, chemokines, and neuropeptides that can increase the sensitivity and firing properties of second-order neurons, upregulating the signaling of nociceptive information to the cerebral cortex. This process, known as central sensitization, is crucial for chronification of acute pain. Immune-neuronal interactions are also implicated in the lesser-known complex regulatory relationship between pain and opioids. Current evidence suggests that activated immune and glial cells can alter neuronal function, induce, and maintain pathological pain, and disrupt the analgesic effects of opioid drugs by contributing to the development of tolerance and dependence, even causing paradoxical hyperalgesia. Such alterations may occur when the neuronal environment is impacted by trauma, inflammation, and immune-derived molecules, or when opioids induce proinflammatory glial activation. Hence, understanding these intricate interactions may help in managing pain signaling and opioid efficacy beyond the classical pharmacological approach.
Collapse
Affiliation(s)
| | - Victor Tortorici
- Neuroscience Laboratory, Faculty of Science, Department of Behavioral Sciences, Universidad Metropolitana, Caracas, Venezuela
- Neurophysiology Laboratory, Center of Biophysics and Biochemistry, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| | - Beatriz E. Brito
- Immunopathology Laboratory, Center of Experimental Medicine, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| | - David Ryskamp
- College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Alberto Uribe
- Anesthesiology Department, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Tristan Weaver
- Anesthesiology Department, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
16
|
Mokhtari T, Lu M, El-Kenawy AEM. Potential anxiolytic and antidepressant-like effects of luteolin in a chronic constriction injury rat model of neuropathic pain: Role of oxidative stress, neurotrophins, and inflammatory factors. Int Immunopharmacol 2023; 122:110520. [PMID: 37478667 DOI: 10.1016/j.intimp.2023.110520] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 07/23/2023]
Abstract
This study aimed to examine the effects of luteolin (LUT) on chronic neuropathic pain (NP)-induced mood disorders (i.e., anxiety and depression) by regulating oxidative stress, neurotrophic factors (NFs), and neuroinflammation. Chronic constrictive injury (CCI) was used to induce NP in the animals. Animals in the treatment groups received LUT in three doses of 10, 25, and 50 mg/kg for 21 days. The severity of pain and mood disorders were examined. Finally, animals were sacrificed, and their brain tissue was used for molecular and histopathological studies. CCI led to cold allodynia and thermal hyperalgesia. Mood alterations were proven in the CCI group, according to the behavioral tests. Levels of glial cell-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), B-cell lymphoma-2 (Bcl2), superoxide dismutase (SOD), catalase (CAT), and nuclear factor erythroid-2-related factor 2 (Nrf2) were reduced in the hippocampus (HPC) and prefrontal cortex (PFC). Furthermore, the levels of MDA, Bcl-2-associated X protein (Bax), and inflammatory markers, including nuclear factor kappa B (NF-κB), NLR family pyrin domain containing 3 (NLRP3), interleukin-1β (IL-1β), IL-18, IL-6, and tumor necrosis factor-α (TNF-α) significantly increased in the HPC and PFC following CCI induction. LUT treatment reversed the behavioral alterations via regulation of oxidative stress, neurotrophines, and inflammatory mediators in the HPC and PFC. Findings confirmed the potency of LUT in the improvement of chronic pain-induced anxiety- and depressive-like symptoms, probably through antioxidant, anti-inflammatory, and neuroprotective properties in the HPC and PFC.
Collapse
Affiliation(s)
- Tahmineh Mokhtari
- Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, People's Republic of China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, People's Republic of China.
| | - Min Lu
- Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, People's Republic of China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, People's Republic of China
| | | |
Collapse
|
17
|
Shoaib RM, Ahsan MZ, Akhtar U, Ahmad KA, Ali U, Deng MY, Li XY, Wang YX. Ginsenoside Rb1, a principal effective ingredient of Panax notoginseng, produces pain antihypersensitivity by spinal microglial dynorphin A expression. Neurosci Res 2023; 188:75-87. [PMID: 36368461 DOI: 10.1016/j.neures.2022.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022]
Abstract
Panax notoginseng (Chinese ginseng, Sanqi), one of the major ginseng species, has been traditionally used to alleviate different types of chronic pain. The raw P. notoginseng powder is commonly available in China as a non-prescription drug to treat various aliments including arthritic pain. However, strong scientific evidence is needed to illustrate its pain antihypersensitive effects, effective ingredients and mechanism of action. The oral P. notoginseng powder dose-dependently alleviated formalin-induced tonic hyperalgesia, and its total ginsenosides remarkably inhibited neuropathic pain hypersensitivity. Ginsenoside Rb1, the most abundant ginsenoside of P. notoginseng, dose-dependently produced neuropathic pain antihypersensitivity. Conversely, ginsenosides Rg1, Re and notoginseng R1, the other major saponins from P. notoginseng, failed to inhibit formalin-induced tonic pain or mechanical allodynia in neuropathic pain. Ginsenoside Rb1 metabolites ginsenosides Rg3, Compound-K and protopanaxadiol also had similar antineuropathic pain efficacy to ginsenoside Rb1. Additionally, intrathecal ginsenoside Rb1 specifically stimulated dynorphin A expression which was colocalized with microglia but not neurons or astrocytes in the spinal dorsal horn and primary cultured cells. Pretreatment with microglial metabolic inhibitor minocycline, dynorphin A antiserum and specific κ-opioid receptor antagonist GNTI completely blocked Rb1-induced mechanical antiallodynia in neuropathic pain. Furthermore, the specific glucocorticoid receptor (GR) antagonist Dex-21-mesylate (but not GPR30 estrogen receptor antagonist G15) also entirely attenuated ginsenoside Rb1-related antineuropathic pain effects. All these results, for the first time, show that P. notoginseng alleviates neuropathic pain and ginsenoside Rb1 is its principal effective ingredient. Furthermore, ginsenoside Rb1 inhibits neuropathic pain by stimulation of spinal microglial dynorphin A expression following GR activation.
Collapse
Affiliation(s)
- Rana Muhammad Shoaib
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | | | - Usman Akhtar
- Department of Pharmacy, Forman Christian College, A Chartered University, Zahoor Elahi Road, Gulberg III, Lahore, Punjab 54600, Pakistan
| | - Khalil Ali Ahmad
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Usman Ali
- Department of Pharmacology, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Men-Yan Deng
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Xin-Yan Li
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
18
|
Exogenous melatonin alleviates neuropathic pain-induced affective disorders by suppressing NF-κB/ NLRP3 pathway and apoptosis. Sci Rep 2023; 13:2111. [PMID: 36747075 PMCID: PMC9902529 DOI: 10.1038/s41598-023-28418-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/18/2023] [Indexed: 02/08/2023] Open
Abstract
In this study, we aimed to evaluate the anti-inflammatory and anti-apoptotic effects of melatonin (MLT) on neuropathic pain (NP)-induced anxiety and depression in a rat model. Adult male rats were separated into four groups, i.e., Sham-VEH: healthy animals received a vehicle, Sham-MLT (10 mg/kg), and chronic constrictive injury (CCI)-VEH: nerve ligation received the vehicle, and CCI-MLT. Next, we used behavioral tests to evaluate pain severity, anxiety, and depression. Finally, rats were sacrificed for molecular and histopathological studies. Behavioral tests showed that NP could induce depressive- and anxiety-like behaviors. NP activated NF-κB/NLRP3 inflammasome pathways by upregulating NF-κB, NLRP3, ASC, active Caspase-1, also enhancing the concentrations of cytokines (IL-1β and IL-18) in the prefrontal cortex (PFC) and hippocampus (HC). NP upregulated Bax, downregulated Bcl2, and increased cell apoptosis in the HC and PFC. The rats treated with MLT eliminated the effects of NP, as the reduced pain severity, improved anxiety- and depressive-like behaviors, ameliorated NF-κB/NLRP3 inflammasome pathways, and modulated levels of cytokines in the HC and PFC. MLT could promote cell survival from apoptosis by modulating Bax and Bcl2. Therefore, it might be inferred that its anti-inflammatory and anti-apoptotic properties mediate the beneficial effects of MLT in NP-induced affective disorders.
Collapse
|
19
|
Ferreyra S, González S. Therapeutic potential of progesterone in spinal cord injury-induced neuropathic pain: At the crossroads between neuroinflammation and N-methyl-D-aspartate receptor. J Neuroendocrinol 2023; 35:e13181. [PMID: 35924434 DOI: 10.1111/jne.13181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/13/2022] [Accepted: 06/19/2022] [Indexed: 10/17/2022]
Abstract
In recent decades, an area of active research has supported the notion that progesterone promotes a wide range of remarkable protective actions in experimental models of nervous system trauma or disease, and has also provided a strong basis for considering this steroid as a promising molecule for modulating the complex maladaptive changes that lead to neuropathic pain, especially after spinal cord injury. In this review, we intend to give the readers a brief appraisal of the main mechanisms underlying the increased excitability of the spinal circuit in the pain pathway after trauma, with particular emphasis on those mediated by the activation of resident glial cells, the subsequent release of proinflammatory cytokines and their impact on N-methyl-D-aspartate receptor function. We then summarize the available preclinical data pointing to progesterone as a valuable repurposing molecule for blocking critical cellular and molecular events that occur in the dorsal horn of the injured spinal cord and are related to the development of chronic pain. Since the treatment and management of neuropathic pain after spinal injury remains challenging, the potential therapeutic value of progesterone opens new traslational perspectives to prevent central pain.
Collapse
Affiliation(s)
- Sol Ferreyra
- Instituto de Biología y Medicina Experimental, Laboratorio de Nocicepción y Dolor Neuropático, CONICET, Buenos Aires, Argentina
| | - Susana González
- Instituto de Biología y Medicina Experimental, Laboratorio de Nocicepción y Dolor Neuropático, CONICET, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
| |
Collapse
|
20
|
Mei Y, Mu Y, Wang W, Tan BT, Chen YH, Li YP, Zhu D, Li W, Cui J, Yu LH. Effect of AMPK Subunit Alpha 2 Polymorphisms on Postherpetic Pain Susceptibility in Southwestern Han Chinese. J Pain Res 2022; 15:3319-3326. [PMID: 36304487 PMCID: PMC9595063 DOI: 10.2147/jpr.s385913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/05/2022] [Indexed: 11/04/2022] Open
Abstract
Introduction Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) can influence energy metabolism. Energy metabolism imbalance is closely associated with the occurrence of neuropathic pain (NeP). Rs10789038 and rs2796498 are genetic polymorphisms of PRKAA2, the gene encoding AMPK, which is closely related to energy metabolism imbalance. This study aimed to explore the relationship between PRKAA2 and postherpetic neuralgia (PHN) in the southwestern Chinese Han population. Methods This study enrolled 132 PHN patients and 118 healthy subjects. The rs10789038 and rs2796498 PRKAA2 genotypes were identified in all participants. The association between these single nucleotide polymorphisms and PHN susceptibility was evaluated in the dominant and recessive models. Haplotype analysis of patients with PHN and healthy controls was performed. Results The PHN patients were older than the healthy subjects (P < 0.05); however, the other clinical characteristics between two groups were not significantly different (all P >0.05). Genotypes and allele frequencies differed significantly between PHN patients and healthy subjects in the rs10789038 polymorphism (P < 0.05), but not in rs2796498 (P > 0.05). In addition, the GG haplotype of rs10789038-rs2796498 correlated negatively with PHN occurrence in haplotype analysis (P < 0.05). Conclusion PHN occurrence may be related to the PRKAA2 rs10789038 A>G genetic polymorphism in the southwestern Chinese Han population.
Collapse
Affiliation(s)
- Yang Mei
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China,Department of Pain Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, People’s Republic of China
| | - Yang Mu
- Department of Rehabilitation Medicine, Chongqing University Fuling Hospital, Chongqing, People’s Republic of China
| | - Win Wang
- Department of Pain Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, People’s Republic of China
| | - Bo-Tao Tan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yao-Hua Chen
- Department of Pain Medicine, Southwest Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Yu-Ping Li
- Department of Pain Medicine, Southwest Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Dan Zhu
- Department of Pain Medicine, Southwest Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Wei Li
- Department of Pain Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, People’s Republic of China
| | - Jian Cui
- Department of Pain Medicine, Southwest Hospital, Army Medical University, Chongqing, People’s Republic of China,Correspondence: Jian Cui; Le-Hua Yu, Email ;
| | - Le-Hua Yu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
21
|
Yao C, Ren J, Huang R, Tang C, Cheng Y, Lv Z, Kong L, Fang S, Tao J, Fu Y, Zhu Q, Fang M. Transcriptome profiling of microRNAs reveals potential mechanisms of manual therapy alleviating neuropathic pain through microRNA-547-3p-mediated Map4k4/NF-κb signaling pathway. J Neuroinflammation 2022; 19:211. [PMID: 36045396 PMCID: PMC9434879 DOI: 10.1186/s12974-022-02568-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Local neuroinflammation secondary to spinal nerve compression in lumbar disk herniation (LDH) is a key driver contributing to neuropathic pain. Manual therapy (MT), a widely used nonsurgical therapy, can relieve LDH-mediated pain by reducing inflammation. MT has attracted extensive attention; however, its mechanism remains poorly understood. MicroRNAs (miRNAs) are important regulators of pain signaling transduction, but are rarely reported in the chronic compression of dorsal root ganglia (CCD) model, and further investigation is needed to decipher whether they mediate anti-inflammatory and analgesic effects of MT. METHODS We used a combination of in vivo behavioral and molecular techniques to study MT intervention mechanisms. Neuropathic pain was induced in a CCD rat model and MT intervention was performed according to standard procedures. Enzyme-linked immunosorbent assay (ELISA) was used to detect inflammatory cytokine levels in dorsal root ganglia (DRG). Small RNA sequencing, immunofluorescence, Western blot, and qRT-PCR were performed to screen miRNAs and their target genes and determine core factors in the pathway possibly regulated by miRNA-mediated target gene in DRG of MT-treated CCD rats. RESULTS Compared with naive rats, small RNA sequencing detected 22 differentially expressed miRNAs in DRG of CCD rats, and compared with CCD rats, MT-treated rats presented 19 differentially expressed miRNAs, which were functionally associated with nerve injury and inflammation. Among these, miR-547-3p was screened as a key miRNA mediating neuroinflammation and participating in neuropathic pain. We confirmed in vitro that its function is achieved by directly regulating its target gene Map4k4. Intrathecal injection of miR-547-3p agomir or MT intervention significantly reduced Map4k4 expression and the expression and phosphorylation of IκBα and p65 in the NF-κB pathway, thus reducing the inflammatory cytokine levels and exerting an analgesic effect, whereas intrathecal injection of miR-547-3p antagomir led to opposite effects. CONCLUSIONS In rats, CCD-induced neuropathic pain leads to variation in miRNA expression in DRG, and MT can intervene the transcription and translation of inflammation-related genes through miRNAs to improve neuroinflammation and alleviate neuropathic pain. MiR-547-3p may be a key target of MT for anti-inflammatory and analgesia effects, which is achieved by mediating the Map4k4/NF-κB pathway to regulate downstream inflammatory cytokines.
Collapse
Affiliation(s)
- Chongjie Yao
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 People’s Republic of China
| | - Jun Ren
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
| | - Ruixin Huang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
| | - Cheng Tang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
| | - Yanbin Cheng
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
- Research Institute of Tuina, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
| | - Zhizhen Lv
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053 People’s Republic of China
| | - Lingjun Kong
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
- Research Institute of Tuina, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
| | - Sitong Fang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
| | - Jiming Tao
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
| | - Yangyang Fu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
| | - Qingguang Zhu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
- Research Institute of Tuina, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
| | - Min Fang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
- Research Institute of Tuina, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 People’s Republic of China
| |
Collapse
|
22
|
Zhang ZR, Wu Y, Wang WJ, Wang FY. The Effect of GABAergic Cells Transplantation on Allodynia and Hyperalgesia in Neuropathic Animals: A Systematic Review With Meta-Analysis. Front Neurol 2022; 13:900436. [PMID: 35860495 PMCID: PMC9289294 DOI: 10.3389/fneur.2022.900436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/13/2022] [Indexed: 12/09/2022] Open
Abstract
The role of GABAergic cell transplantation in improving neuropathic pain is controversial. We comprehensively searched the relevant literature to identify animal studies of GABAergic cell transplantation that recorded pain behaviors as an outcome according to the Cochrane Handbook 5.0.2. Controlled studies assessing the administration of GABAergic neurons or GABAergic neuronal progenitor cells to rat or mouse neuropathic pain animal models were included. Basic design information and mechanical allodynia thresholds and heat hyperalgesia thresholds data were collected. The risk of bias for the animal experiments was assessed according to the SYRCLE's tool. This study included 10 full-text articles. GABAergic cells transplantation leads to a statistically significant improvement of allodynia (SMD = 5.26; 95% confidence interval: 3.02-7.51; P < 0.001) and hyperalgesia (SMD: 4.10; 95% confidence interval: 1.84-6.35; P < 0.001). Differentiated GABAergic cells and without antibiotics using may have a better effect for improving neuropathic pain. GABAergic cell transplantation is a promising treatment for improving neuropathic pain. This systematic review and meta-analysis evaluated the effects of GABAergic cell transplantation on neuropathic pain, which can guide future clinical trials and possible clinical treatments, and better attenuate neuropathic pain caused by abnormal circuit hyperexcitability.
Collapse
Affiliation(s)
- Zhen-Rong Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spine Surgery, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Yao Wu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spine Surgery, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Wen-Jing Wang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Occupational Therapy, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Fang-Yong Wang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spine Surgery, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| |
Collapse
|
23
|
Liu C, Sun Q, Xu J, Shen W, Li H, Yang L. The Role of Bone Morphogenetic Protein 4 in Microglial Polarization in the Process of Neuropathic Pain. J Inflamm Res 2022; 15:2803-2817. [PMID: 35535051 PMCID: PMC9078433 DOI: 10.2147/jir.s356531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/27/2022] [Indexed: 12/11/2022] Open
Abstract
Background Neuropathic pain (NP) is known to be highly correlated with microglial polarization, of which the regulatory mechanism remains to be elucidated. Here, the aim of this study is to further investigate the relationship between bone morphogenetic protein 4 (BMP4) and microglial polarization in the process of NP. Methods Firstly, normal adult rats received intrathecal BMP4 administration to assess BMP4ʹs effect on microglial polarization. Secondly, a BMP4 antagonist – Noggin – was applied to a rat NP model achieved by L5 spinal nerve ligation (SNL) to investigate whether antagonizing BMP4 signaling could alleviate allodynia by reversing the imbalance of the M1/M2 polarization ratio. In both experiments, Von-Frey filaments were used to test the changes in the paw withdrawal threshold (PWT), and Western blotting, immuno-fluorescence, PCR and flow cytometry were further performed to investigate microglial activity and the expression patterns of M1 and M2 markers, respectively. Results Firstly, BMP4 administration induced a significant PWT decrease and microglial activation in normal rats; Western blotting, PCR and flow cytometry further revealed that M1 markers including CD16, MHCII, and TNF-α showed a marked elevation after BMP4 application; while M2 markers, such as Arg-1, CD204 and IL-4, peaked at an early stage (P1 or P4) and then fell to the Sham level on P7, leading to a persistent imbalance of the M1/M2 ratio throughout the 1st week. Secondly, Noggin treatment significantly relieved allodynia and microglial activation in SNL rats. Moreover, Noggin persistently downregulated the M1 marker levels and simultaneously induced a late-stage elevation of M2 markers expressions, thereby reversing the imbalance of the M1/M2 polarization ratio. Conclusion Our results indicate that BMP4 has the ability to induce microglial polarization. Antagonizing BMP4 signaling can relieve pain behavior via mitigating microglial activation and reversing the imbalance of the M1/M2 polarization ratio in the process of NP.
Collapse
Affiliation(s)
- Changqing Liu
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
- Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, People’s Republic of China
| | - Qi Sun
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
- Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, People’s Republic of China
| | - Junmei Xu
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
- Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, People’s Republic of China
| | - Weiyun Shen
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
- Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, People’s Republic of China
| | - Hui Li
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
- Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, People’s Republic of China
- Correspondence: Hui Li, Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China, Fax +86 85295970, Email
| | - Lin Yang
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
- Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, People’s Republic of China
- Lin Yang, Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China, Fax +86 85295970, Email
| |
Collapse
|
24
|
Li MX, Wei QQ, Lu HJ. Progress on the Elucidation of the Antinociceptive Effect of Ginseng and Ginsenosides in Chronic Pain. Front Pharmacol 2022; 13:821940. [PMID: 35264958 PMCID: PMC8899510 DOI: 10.3389/fphar.2022.821940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/26/2022] [Indexed: 12/20/2022] Open
Abstract
Ginseng (Panax ginseng C.A. Meyer) is a traditional Oriental herbal drug widely used in East Asia. Its main active ingredients are ginsenosides whose constituents are known to have various pharmacological activities such as anticancer, antinociception, and neuroprotection. The analgesic effects of ginsenosides, such as Rg1, Rg2, and Rb1, as well as compound K, are well known and the analgesic mechanism of action in inflammatory pain models is thought to be the down regulation of pro-inflammatory cytokine expression (TNF-α IL-1β, and IL-6). Several studies have also demonstrated that ginsenosides regulate neuropathic pain through the modulation of estrogen receptors. Recently, an increasing number of pathways have emerged in relation to the antinociceptive effect of ginseng and ginsenosides. Therefore, this review presents our current understanding of the effectiveness of ginseng in chronic pain and how its active constituents regulate nociceptive responses and their mechanisms of action.
Collapse
Affiliation(s)
- Mei-Xian Li
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong University, Nantong, China
| | - Qian-Qi Wei
- Department of Infectious Diseases, General Hospital of Tibet Military Command, Xizang, China
| | - Huan-Jun Lu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
| |
Collapse
|
25
|
ALIXANDRE TAMNATAF, SOUSA RENATOP, GOMES BRUNOS, SILVA ARÊTHAH, SOUSA NETO BENEDITOP, SOUSA ELCILENEA, LIMA MARLUCEP, LOPES EVERTONM, PIAUILINO CELYANEA, NASCIMENTO REJANET, REIS FILHO ANTÔNIOC, ALMEIDA FERNANDAR, OLIVEIRA FRANCISCOA, CHAVES MARIANAH, COSTA LUCIANAM, ALVES MICHELMMORAES, COSTA AMILTONP. Samanea tubulosa Benth. (Fabaceae): Antinociceptive effect on acute pain in mice: K+ATP channel and opioid activity. AN ACAD BRAS CIENC 2022. [DOI: 10.1590/0001-3765202220210175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
26
|
Guo S, Song Z, He J, Yin G, Zhu J, Liu H, Yang L, Ji X, Xu X, Liu Z, Liu J. Akt/Aquaporin-4 Signaling Aggravates Neuropathic Pain by Activating Astrocytes after Spinal Nerve Ligation in Rats. Neuroscience 2021; 482:116-131. [PMID: 34942314 DOI: 10.1016/j.neuroscience.2021.12.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022]
Abstract
Aquaporins (AQPs) play critical physiological roles in water balance in the central nervous system (CNS). Aquaporin-4 (AQP4), the principal aquaporin expressed in the CNS, has been implicated in the processing of sensory and pain transmission. Akt signaling is also involved in pain mediation, such as neuroinflammatory pain and bone cancer pain. Previously, we found that expression of AQP4 and p-Akt was altered in the rat spinal cord after spinal nerve ligation (SNL). Here, we further investigated the effects of the AQP4 and Akt pathways in the spinal dorsal horn (SDH) on the pathogenesis of neuropathic pain (NP). Spinal AQP4 was significantly upregulated after SNL and was primarily expressed in astrocytes in the SDH. Inhibition of AQP4 with TGN-020 attenuated the development and maintenance of NP by inhibiting glial activation and anti-neuroinflammatory mechanisms. Moreover, inhibition of AQP4 suppressed astrocyte activation both in the SDH and in primary cultures. Similar to AQP4, we found that p-Akt was also significantly elevated after SNL. Inhibition of Akt with MK2206 suppressed AQP4 upregulation and astrocyte activation both in vivo and in vitro. Furthermore, Akt blockade with MK2206 alleviated NP in the early and late phases after SNL. These results elucidate the mechanisms involved in the roles of Akt/AQP4 signaling in the development and maintenance of NP. AQP4 is likely to be a novel therapeutic target for NP management.
Collapse
Affiliation(s)
- Shiwu Guo
- Department of Spinal Surgery, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Zhiwen Song
- Department of Spinal Surgery, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Junsheng He
- Department of Spinal Surgery, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Gang Yin
- Department of Orthopedics, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213003, China
| | - Jianguo Zhu
- Department of Orthopedics, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213003, China
| | - Haifeng Liu
- Department of Orthopedics, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213003, China
| | - Lei Yang
- Department of Orthopedics, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213003, China
| | - Xubiao Ji
- Department of Orthopedics, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213003, China
| | - Xu Xu
- Department of Spinal Surgery, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Zhiyuan Liu
- Department of Orthopedics, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213003, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China.
| | - Jinbo Liu
- Department of Spinal Surgery, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China.
| |
Collapse
|
27
|
Jiang Q, Wei D, He X, Gan C, Long X, Zhang H. Phillyrin Prevents Neuroinflammation-Induced Blood-Brain Barrier Damage Following Traumatic Brain Injury via Altering Microglial Polarization. Front Pharmacol 2021; 12:719823. [PMID: 34744713 PMCID: PMC8565465 DOI: 10.3389/fphar.2021.719823] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Phillyrin (Phi) is the main polyphenolic compound found in Forsythia suspensa. Recent studies have revealed that Phi has potent antioxidative and anti-inflammatory effects. However, whether Phi could relieve blood-brain barrier (BBB) damage following traumatic brain injury (TBI) remains unknown. Materials and Methods: Lipopolysaccharide (LPS) was used to activate primary microglia, which were then treated with different doses of Phi or the peroxisome proliferator-activated receptor-gamma (PPARγ) antagonist (GW9662). CCK-8 assay was used for evaluating cell viability, and the cytokines (including IL-1β, IL-6, TNFα, IL-4, IL-10, and TGFβ), microglial phenotypic markers (iNOS, COX2, and CD86 for "M1" polarization; Arg1, Ym1, and CD206 for "M2" polarization), PPARγ, and NF-κB were determined by RT-PCR, Western blot, or cellular immunofluorescence. Primary cultured mouse brain microvascular endothelial cells (BMECs) were stimulated by the condition medium (CM) from microglia. The cell viability, angiogenesis, and tight junction of BMECs were determined via CCK-8 assay, tube formation assay, and Western blot (for detecting MMP3, MMP9, ZO1, claudin-5, and occludin). Furthermore, the mouse TBI model was constructed and treated with Phi and/or GW9662. The BBB integrity was evaluated by H&E staining, Evans blue staining, and tissue immunofluorescence. Results: Phi markedly restrained the pro-inflammatory ("M1" state) cytokines and promoted anti-inflammatory ("M2" polarization) cytokines in LPS-mediated microglia. Phi mitigated "M1" polarization and promoted "M2" polarization of microglia via enhancing PPARγ and inhibiting the NF-κB pathway. The PPARγ antagonist GW9662 significantly repressed Phi-mediated anti-inflammatory effects. Meanwhile, Phi enhanced the viability, tube formation ability, and cell junction of BMECs. In the TBI mouse model, Phi promoted "M2" polarization, whereas it repressed the "M1" polarization of microglia. In addition, Phi reduced TBI-mediated BBB damage. However, the protective effects of Phi were reversed mainly by GW9662 treatment. Conclusion: Phi prevents BBB damage via inhibiting the neuroinflammation of microglia through the PPARγ/NF-κB pathway, which provides a potential therapeutic drug against TBI.
Collapse
Affiliation(s)
- Qian Jiang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Wei
- Department of Neurosurgery, Tianyou Hospital Affiliated to Wuhan University of Science & Technology, Wuhan, China
| | - Xuejun He
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Gan
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobing Long
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huaqiu Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
28
|
Ahmad KA, Shoaib RM, Ahsan MZ, Deng MY, Ma L, Apryani E, Li XY, Wang YX. Microglial IL-10 and β-endorphin expression mediates gabapentinoids antineuropathic pain. Brain Behav Immun 2021; 95:344-361. [PMID: 33862171 DOI: 10.1016/j.bbi.2021.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/24/2022] Open
Abstract
Gabapentinoids are recommended first-line treatments for neuropathic pain. They are neuronal voltage-dependent calcium channel α2δ-1 subunit ligands and have been suggested to attenuate neuropathic pain via interaction with neuronal α2δ-1 subunit. However, the current study revealed their microglial mechanisms underlying antineuropathic pain. Intrathecal injection of gabapentin, pregabalin and mirogabalin rapidly inhibited mechanical allodynia and thermal hyperalgesia, with projected ED50 values of 30.3, 6.2 and 1.5 µg (or 176.9, 38.9 and 7.2 nmol) and Emax values of 66%, 61% and 65% MPE respectively for mechanical allodynia. Intrathecal gabapentinoids stimulated spinal mRNA and protein expression of IL-10 and β-endorphin (but not dynorphin A) in neuropathic rats with the time point parallel to their inhibition of allodynia, which was observed in microglia but not astrocytes or neurons in spinal dorsal horns by using double immunofluorescence staining. Intrathecal gabapentin alleviated pain hypersensitivity in male/female neuropathic but not male sham rats, whereas it increased expression of spinal IL-10 and β-endorphin in male/female neuropathic and male sham rats. Treatment with gabapentin, pregabalin and mirogabalin specifically upregulated IL-10 and β-endorphin mRNA and protein expression in primary spinal microglial but not astrocytic or neuronal cells, with EC50 values of 41.3, 11.5 and 2.5 µM and 34.7, 13.3 and 2.8 µM respectively. Pretreatment with intrathecal microglial metabolic inhibitor minocycline, IL-10 antibody, β-endorphin antiserum or μ-opioid receptor antagonist CTAP (but not κ- or δ-opioid receptor antagonists) suppressed spinal gabapentinoids-inhibited mechanical allodynia. Immunofluorescence staining exhibited specific α2δ-1 expression in neurons but not microglia or astrocytes in the spinal dorsal horns or cultured primary spinal cells. Thus the results illustrate that gabapentinoids alleviate neuropathic pain through stimulating expression of spinal microglial IL-10 and consequent β-endorphin.
Collapse
Affiliation(s)
- Khalil Ali Ahmad
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Rana Muhammad Shoaib
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Muhammad Zaeem Ahsan
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Meng-Yan Deng
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Le Ma
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Evhy Apryani
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Xin-Yan Li
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
29
|
Zhang D, Zhao W, Liu J, Ou M, Liang P, Li J, Chen Y, Liao D, Bai S, Shen J, Chen X, Huang H, Zhou C. Sodium leak channel contributes to neuronal sensitization in neuropathic pain. Prog Neurobiol 2021; 202:102041. [PMID: 33766679 DOI: 10.1016/j.pneurobio.2021.102041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/08/2021] [Accepted: 03/18/2021] [Indexed: 02/08/2023]
Abstract
Neuropathic pain affects up to 10 % of the total population and no specific target is ideal for therapeutic need. The sodium leak channel (NALCN), a non-selective cation channel, mediates the background Na+ leak conductance and controls neuronal excitability and rhythmic behaviors. Here, we show that increases of NALCN expression and function in dorsal root ganglion (DRG) and dorsal spinal cord contribute to chronic constriction injury (CCI)-induced neuropathic pain in rodents. NALCN current and neuronal excitability in acutely isolated DRG neurons and spinal cord slices of rats were increased after CCI which were decreased to normal levels by NALCN-siRNA. Accordingly, pain-related symptoms were significantly alleviated by NALCN-siRNA-mediated NALCN knockdown and completely prevented by NALCN-shRNA-mediated NALCN knockdown in rats or by conditional NALCN knockout in mice. Our results indicate that increases in NALCN expression and function contribute to CCI-induced neuronal sensitization; therefore, NALCN may be a novel molecular target for control of neuropathic pain.
Collapse
Affiliation(s)
- Donghang Zhang
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Wenling Zhao
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Jin Liu
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Mengchan Ou
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Peng Liang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Jia Li
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Yali Chen
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Daqing Liao
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Siqi Bai
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiefei Shen
- Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases and Department of Prosthodontics, West China Stomatology Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Han Huang
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Department of Anesthesiology & Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital of Sichuan University, Chengdu 610041, Sichuan, China.
| | - Cheng Zhou
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
30
|
Sánchez-Salcedo JA, Cabrera MME, Molina-Jiménez T, Cortes-Altamirano JL, Alfaro-Rodríguez A, Bonilla-Jaime H. Depression and Pain: use of antidepressant. Curr Neuropharmacol 2021; 20:384-402. [PMID: 34151765 PMCID: PMC9413796 DOI: 10.2174/1570159x19666210609161447] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/03/2021] [Accepted: 04/03/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Emotional disorders are common comorbid affectations that exacerbate the severity and persistence of chronic pain. Specifically, depressive symptoms can lead to an excessive duration and intensity of pain. Clinical and preclinical studies have been focused on the underlying mechanisms of chronic pain and depression comorbidity and the use of antidepressants to reduce pain. Aim: This review provides an overview of the comorbid relationship of chronic pain and depression, the clinical and pre-clinical studies performed on the neurobiological aspects of pain and depression, and the use of antidepressants as analgesics. Methods: A systematic search of literature databases was conducted according to pre-defined criteria. The authors independently conducted a focused analysis of the full-text articles. Results: Studies suggest that pain and depression are highly intertwined and may co-exacerbate physical and psychological symptoms. One important biochemical basis for pain and depression focuses on the serotonergic and norepinephrine system, which have been shown to play an important role in this comorbidity. Brain structures that codify pain are also involved in mood. It is evident that using serotonergic and norepinephrine antidepressants are strategies commonly employed to mitigate pain Conclusion: Literature indicates that pain and depression impact each other and play a prominent role in the development and maintenance of other chronic symptoms. Antidepressants continue to be a major therapeutic tool for managing chronic pain. Tricyclic antidepressants (TCAs) are more effective in reducing pain than Selective Serotonin Reuptake Inhibitors (SSRIs) and Serotonin-Noradrenaline Reuptake Inhibitors (SNRIs).
Collapse
Affiliation(s)
- José Armando Sánchez-Salcedo
- Doctorado en Ciencias Biológicas y de la Salud. Universidad Autónoma Metropolitana-Iztapalapa, UAM-I, Apartado Postal 55 535, C.P. 09340, Ciudad de México, Mexico
| | - Maribel Maetizi Estevez Cabrera
- Doctorado en Ciencias Biológicas y de la Salud. Universidad Autónoma Metropolitana-Iztapalapa, UAM-I, Apartado Postal 55 535, C.P. 09340, Ciudad de México, Mexico
| | - Tania Molina-Jiménez
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana. Circuito Gonzálo Aguirre Beltrán Sn, Zona Universitaria. C.P. 91090 Xalapa-Enríquez
| | - José Luis Cortes-Altamirano
- División de Neurociencias, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Secretaría de Salud, Ciudad de México, Mexico
| | - Alfonso Alfaro-Rodríguez
- División de Neurociencias, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Secretaría de Salud, Ciudad de México, Mexico
| | - Herlinda Bonilla-Jaime
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa. Apartado Postal 55 535, C.P. 09340, Ciudad de México, Mexico
| |
Collapse
|
31
|
Li J, Dai X, Zhou L, Li X, Pan D. Edaravone Plays Protective Effects on LPS-Induced Microglia by Switching M1/M2 Phenotypes and Regulating NLRP3 Inflammasome Activation. Front Pharmacol 2021; 12:691773. [PMID: 34135761 PMCID: PMC8201503 DOI: 10.3389/fphar.2021.691773] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/17/2021] [Indexed: 11/17/2022] Open
Abstract
Parkinson’s disease is a neurodegenerative disorder in which activated microglia may appear prior to motor symptoms, but the specific therapeutic mechanisms remain unclear. This study investigated the potential effects of Edaravone (EDA) on M1/M2 polarization of microglia in rats with dopaminergic neurons damage induced by lipopolysaccharide (LPS) and its mechanism. Rats were randomly grouped as the following (n = 10): Control, EDA alone (10 mg/kg), LPS-model (LPS 5 μg), LPS + EDA (5 mg/kg) and LPS + EDA (10 mg/kg). After intragastric administration of EDA once a day for seven consecutive days, LPS was injected into SN pars unilaterally. Rotarod test, pole test, and traction test were used to analyze the intervention effect of EDA on neurobehavioral function in rats. Protein expression levels of TH, TNF-α, Arg-1, Iba-1, NLRP3 and caspase-1 were measured by immunofluorescence staining and western blot. In vitro, BV-2 cells were treated with LPS (100 ng/ml) before adding different doses of EDA. Levels of inflammatory cytokines in culture medium were detected by ELISA. Western blot and immunofluorescence were used to evaluate microglial activation and polarization. First, rotarod test, pole test, and traction test all showed that EDA mitigated motor dysfunction of PD rats. Second, pathological analysis suggested that EDA inhibited LPS-induced microglial activation and remitted declines of dopaminergic neurons. In addition, EDA shifted M1 pro-inflammatory phenotype of microglia to M2 anti-inflammatory state, while decreased expression of M1 markers (TNF-α and IL-1β) and facilitated expression of M2 markers (Arg-1 and IL-10). EDA suppressed inflammatory responses through inhibiting the expression of pro-inflammatory factors (IL-1β, IL-18 and NO), but the neuroprotective effects were invalid while siRNA NLRP3 existed. In conclusion, these results indicated that EDA could improve neurobehavioral functions and play anti-neuroinflammatory roles in PD rats, possibly by inhibiting NLPR3 inflammasome activation and regulating microglia M1/M2 polarization.
Collapse
Affiliation(s)
- Jiping Li
- Department of Neurosurgery, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Xinping Dai
- Department of Emergency, Ningbo Yinzhou No.2 Hospital, Ningbo, China
| | - Liuyi Zhou
- Operating Room, Ningbo Yinzhou No.2 Hospital, Ningbo, China
| | - Xinxiu Li
- Department of Experimental Medical Science, Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Dongxiao Pan
- Department of Neurosurgery, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
32
|
Gazerani P. Satellite Glial Cells in Pain Research: A Targeted Viewpoint of Potential and Future Directions. FRONTIERS IN PAIN RESEARCH 2021; 2:646068. [PMID: 35295432 PMCID: PMC8915641 DOI: 10.3389/fpain.2021.646068] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/26/2021] [Indexed: 12/16/2022] Open
Abstract
Chronic pain is known to be caused by sensitization within the pain circuits. An imbalance occurs between excitatory and inhibitory transmission that enables this sensitization to form. In addition to neurons, the contribution of central glia, especially astrocytes and microglia, to the pathogenesis of pain induction and maintenance has been identified. This has led to the targeting of astrogliosis and microgliosis to restore the normal functions of astrocytes and microglia to help reverse chronic pain. Gliosis is broadly defined as a reactive response of glial cells in response to insults to the central nervous system (CNS). The role of glia in the peripheral nervous system (PNS) has been less investigated. Accumulating evidence, however, points to the contribution of satellite glial cells (SGCs) to chronic pain. Hence, understanding the potential role of these cells and their interaction with sensory neurons has become important for identifying the mechanisms underlying pain signaling. This would, in turn, provide future therapeutic options to target pain. Here, a viewpoint will be presented regarding potential future directions in pain research, with a focus on SGCs to trigger further research. Promising avenues and new directions include the potential use of cell lines, cell live imaging, computational analysis, 3D tissue prints and new markers, investigation of glia–glia and macrophage–glia interactions, the time course of glial activation under acute and chronic pathological pain compared with spontaneous pain, pharmacological and non-pharmacological responses of glia, and potential restoration of normal function of glia considering sex-related differences.
Collapse
Affiliation(s)
- Parisa Gazerani
- Laboratory of Molecular Pharmacology, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
- Pharmacy, Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet, Oslo, Norway
- *Correspondence: Parisa Gazerani
| |
Collapse
|
33
|
Fumagalli G, Monza L, Cavaletti G, Rigolio R, Meregalli C. Neuroinflammatory Process Involved in Different Preclinical Models of Chemotherapy-Induced Peripheral Neuropathy. Front Immunol 2021; 11:626687. [PMID: 33613570 PMCID: PMC7890072 DOI: 10.3389/fimmu.2020.626687] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Peripheral neuropathies are characterized by nerves damage and axonal loss, and they could be classified in hereditary or acquired forms. Acquired peripheral neuropathies are associated with several causes, including toxic agent exposure, among which the antineoplastic compounds are responsible for the so called Chemotherapy-Induced Peripheral Neuropathy (CIPN). Several clinical features are related to the use of anticancer drugs which exert their action by affecting different mechanisms and structures of the peripheral nervous system: the axons (axonopathy) or the dorsal root ganglia (DRG) neurons cell body (neuronopathy/ganglionopathy). In addition, antineoplastic treatments may affect the blood brain barrier integrity, leading to cognitive impairment that may be severe and long-lasting. CIPN may affect patient quality of life leading to modification or discontinuation of the anticancer therapy. Although the mechanisms of the damage are not completely understood, several hypotheses have been proposed, among which neuroinflammation is now emerging to be relevant in CIPN pathophysiology. In this review, we consider different aspects of neuro-immune interactions in several CIPN preclinical studies which suggest a critical connection between chemotherapeutic agents and neurotoxicity. The features of the neuroinflammatory processes may be different depending on the type of drug (platinum derivatives, taxanes, vinca alkaloids and proteasome inhibitors). In particular, recent studies have demonstrated an involvement of the immune response (both innate and adaptive) and the stimulation and secretion of mediators (cytokines and chemokines) that may be responsible for the painful symptoms, whereas glial cells such as satellite and Schwann cells might contribute to the maintenance of the neuroinflammatory process in DRG and axons respectively. Moreover, neuroinflammatory components have also been shown in the spinal cord with microglia and astrocytes playing an important role in CIPN development. Taking together, better understanding of these aspects would permit the development of possible strategies in order to improve the management of CIPN.
Collapse
Affiliation(s)
- Giulia Fumagalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| | - Laura Monza
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| | - Roberta Rigolio
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| | - Cristina Meregalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
34
|
Wang YH, Tang YR, Gao X, Liu J, Zhang NN, Liang ZJ, Li Y, Pan LX. The anti-inflammatory and analgesic effects of intraperitoneal melatonin after spinal nerve ligation are mediated by inhibition of the NF-κB/NLRP3 inflammasome signaling pathway. Brain Res Bull 2021; 169:156-166. [PMID: 33508403 DOI: 10.1016/j.brainresbull.2021.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To explore the potential analgesic effect of melatonin and its underlying molecular mechanisms in a neuropathic pain model induced by spinal nerve ligation (SNL). METHODS The experimental animals were divided into different groups including sham, vehicle, melatonin (MT) treatment, caspase-1 inhibitor (VX-765) treatment and MT2 antagonist (4P-PDOT) treatment. On the first three successive postoperative days, rats were intraperitoneally administered with MT, VX-765 or combination of MT and 4P-PDOT. Hyperalgesic behavior after SNL was evaluated using the paw withdrawal threshold (PWT). We then assessed expression of tumor necrosis factor-α (TNF-α), IL-18, interleukin-1β (IL-1β), NLRP3 inflammasome components, and nuclear factor-κB (NF-κB) activation using enzyme-linked immunosorbent assay kits (ELISA), real-time PCR, immunohistochemistry, and western blot, respectively, in spinal cord horn tissues extracted on postoperative day 7. RESULTS The results showed that melatonin treatment alleviated SNL-induced allodynia. We observed an SNL-induced upregulation of TNF-α, IL-18, IL-1β, NLRP3, ASC, cleaved caspase-1, and NF-κB in the lumbar spinal cord horn of rats, which was significantly attenuated by intraperitoneal injection of melatonin or VX-765. Additionally, co-treatment of melatonin and 4P-PDOT abrogated the analgesic and anti-inflammatory effect of melatonin. CONCLUSION Melatonin had potent analgesic and anti-inflammatory effects in SNL-induced neuropathic pain via NF-κB/NLRP3 inflammasome signaling pathway. Our results therefore suggested that this pathway could represent a novel therapeutic target for the management of neuropathic pain.
Collapse
Affiliation(s)
- Yi-Hao Wang
- Department of Pain Management, Qingdao Municipal Hospital, Shandong Province, 266011, China
| | - Yu-Ru Tang
- Qingdao Mental Health Center, Qingdao University, Shandong Province, 266034, China
| | - Xiao Gao
- Qingdao Mental Health Center, Qingdao University, Shandong Province, 266034, China
| | - Juan Liu
- Department of Anesthesiology, Maternity and Child Hospital of Shandong Province, Shandong Province, 250014, China
| | - Nan-Nan Zhang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Shandong Province, 266003, China
| | - Zhao-Jun Liang
- Department of Anesthesiology, Qingdao Municipal Hospital, Shandong Province, 266011, China
| | - Yan Li
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Shandong Province, 266003, China
| | - Li-Xiao Pan
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Shandong Province, 266003, China.
| |
Collapse
|
35
|
Bakare AO, Owoyele BV. Bromelain reduced pro-inflammatory mediators as a common pathway that mediate antinociceptive and anti-anxiety effects in sciatic nerve ligated Wistar rats. Sci Rep 2021; 11:289. [PMID: 33432004 PMCID: PMC7801445 DOI: 10.1038/s41598-020-79421-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/08/2020] [Indexed: 02/02/2023] Open
Abstract
The involvement of pro-inflammatory mediators complicates the complex mechanism in neuropathic pain (NP). This study investigated the roles of bromelain against pro-inflammatory mediators as a mechanism that underpins its antinociceptive and anti-anxiety effects in the peripheral model of NP. Sixty-four male Wistar rats randomly divided into eight groups, were used for the study. A chronic constriction injury model of peripheral neuropathy was used to induce NP. Tail-immersion and von Frey filaments tests were used to assess hyperalgesia while open field and elevated plus mazes were used to assess anxiety-like behaviour. NF-кB, iNOS, nitrate, and pro-inflammatory cytokines were investigated in the plasma, sciatic nerve, and brain tissues using ELISA, spectrophotometer, and immunohistochemistry techniques after twenty-one days of treatment. Bromelain significantly (p < 0.05) improved the cardinal signs of NP and inhibited anxiety-like behaviours in ligated Wistar rats. It mitigated the increases in cerebral cortex interleukin (IL) -1β, IL-6, and PGE2 levels. Bromelain reduced NF-кB, IL-1β, IL-6, TNF-α, PGE2, and nitrate concentrations as well as the expression of iNOS in the sciatic nerve. Hence, the antinociceptive and anxiolytic effects of bromelain in the sciatic nerve ligation model of NP is in part due to its ability to reduce nitrosative and inflammatory activities.
Collapse
Affiliation(s)
- Ahmed O Bakare
- Department of Physiology, Neuroscience and Inflammation Unit, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Bamidele V Owoyele
- Department of Physiology, Neuroscience and Inflammation Unit, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria.
| |
Collapse
|
36
|
Owoyele BV, Bakare AO, Ayinla MT, Adeshina KA, Onietan D, Azeez SO. Antinociceptive effects of lead acetate in sciatic nerve chronic constriction injury model of peripheral neuropathy in male Wistar rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:117-125. [PMID: 32857181 DOI: 10.1007/s00210-020-01951-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/20/2020] [Indexed: 01/03/2023]
Abstract
The toxicological effects of lead and its compounds have overshadowed its possible health beneficial effects. Currently, the success rate for treating neuropathic pain has been very low. This study investigated the antinociceptive effects of orally administered low dose lead acetate in sciatic nerve ligated Wistar rats. Thirty Wistar rats randomly divided into five groups were used for this study. Chronic constriction injury (CCI) was used to induce neuropathic pain in Wistar rats. Allodynic and hyperalgesic signs were investigated using von Frey filaments and hotplate, respectively. Morris water maze test was used to assess the memory functions of the rats. The study revealed that oral administration of low-dose lead acetate significantly (p < 0.05) increased pain thresholds of ligated rats. CCI enhanced memory function in Wistar rats which was significantly decreased following lead acetate administration. The findings suggest that lead acetate possesses antinociceptive effects in peripherally induced neuropathic pain model in Wistar rats.
Collapse
Affiliation(s)
- Bamidele Victor Owoyele
- Neuroscience and Inflammation Unit, Department of Physiology, Faculty of Basic Medical Science, University of Ilorin, Ilorin, Kwara State, Nigeria.
| | - Ahmed Olalekan Bakare
- Neuroscience and Inflammation Unit, Department of Physiology, Faculty of Basic Medical Science, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Maryam Tayo Ayinla
- Neuroscience and Inflammation Unit, Department of Physiology, Faculty of Basic Medical Science, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Kehinde Ahmed Adeshina
- Neuroscience and Inflammation Unit, Department of Physiology, Faculty of Basic Medical Science, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Damilola Onietan
- Neuroscience and Inflammation Unit, Department of Physiology, Faculty of Basic Medical Science, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Saheed O Azeez
- Neuroscience and Inflammation Unit, Department of Physiology, Faculty of Basic Medical Science, University of Ilorin, Ilorin, Kwara State, Nigeria
| |
Collapse
|
37
|
Tsymbalyuk O, Gerzanich V, Mumtaz A, Andhavarapu S, Ivanova S, Makar TK, Sansur CA, Keller A, Nakamura Y, Bryan J, Simard JM. SUR1, newly expressed in astrocytes, mediates neuropathic pain in a mouse model of peripheral nerve injury. Mol Pain 2021; 17:17448069211006603. [PMID: 33788643 PMCID: PMC8020112 DOI: 10.1177/17448069211006603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/02/2021] [Accepted: 03/08/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Neuropathic pain following peripheral nerve injury (PNI) is linked to neuroinflammation in the spinal cord marked by astrocyte activation and upregulation of interleukin 6 (IL-6), chemokine (C-C motif) ligand 2 (CCL2) and chemokine (C-X-C motif) ligand 1 (CXCL1), with inhibition of each individually being beneficial in pain models. METHODS Wild type (WT) mice and mice with global or pGfap-cre- or pGFAP-cre/ERT2-driven Abcc8/SUR1 deletion or global Trpm4 deletion underwent unilateral sciatic nerve cuffing. WT mice received prophylactic (starting on post-operative day [pod]-0) or therapeutic (starting on pod-21) administration of the SUR1 antagonist, glibenclamide (10 µg IP) daily. We measured mechanical and thermal sensitivity using von Frey filaments and an automated Hargreaves method. Spinal cord tissues were evaluated for SUR1-TRPM4, IL-6, CCL2 and CXCL1. RESULTS Sciatic nerve cuffing in WT mice resulted in pain behaviors (mechanical allodynia, thermal hyperalgesia) and newly upregulated SUR1-TRPM4 in dorsal horn astrocytes. Global and pGfap-cre-driven Abcc8 deletion and global Trpm4 deletion prevented development of pain behaviors. In mice with Abcc8 deletion regulated by pGFAP-cre/ERT2, after pain behaviors were established, delayed silencing of Abcc8 by tamoxifen resulted in gradual improvement over the next 14 days. After PNI, leakage of the blood-spinal barrier allowed entry of glibenclamide into the affected dorsal horn. Daily repeated administration of glibenclamide, both prophylactically and after allodynia was established, prevented or reduced allodynia. The salutary effects of glibenclamide on pain behaviors correlated with reduced expression of IL-6, CCL2 and CXCL1 by dorsal horn astrocytes. CONCLUSION SUR1-TRPM4 may represent a novel non-addicting target for neuropathic pain.
Collapse
Affiliation(s)
- Orest Tsymbalyuk
- Department of Neurosurgery, University of Maryland School of
Medicine, Baltimore, MD, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of
Medicine, Baltimore, MD, USA
| | - Aaida Mumtaz
- Department of Neurosurgery, University of Maryland School of
Medicine, Baltimore, MD, USA
| | - Sanketh Andhavarapu
- Department of Neurosurgery, University of Maryland School of
Medicine, Baltimore, MD, USA
| | - Svetlana Ivanova
- Department of Neurosurgery, University of Maryland School of
Medicine, Baltimore, MD, USA
| | - Tapas K Makar
- Research Service, Veterans Affairs Maryland Health Care System,
Baltimore, MD, USA
| | - Charles A Sansur
- Department of Neurosurgery, University of Maryland School of
Medicine, Baltimore, MD, USA
| | - Asaf Keller
- Department of Anatomy & Neurobiology, University of Maryland
School of Medicine, Baltimore, MD, USA
| | - Yumiko Nakamura
- Pacific Northwest Diabetes Research Institute, Seattle, WA,
USA
| | - Joseph Bryan
- Pacific Northwest Diabetes Research Institute, Seattle, WA,
USA
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of
Medicine, Baltimore, MD, USA
- Research Service, Veterans Affairs Maryland Health Care System,
Baltimore, MD, USA
- Department of Pathology, University of Maryland School of
Medicine, Baltimore, MD, USA
- Department of Physiology, University of Maryland School of
Medicine, Baltimore, MD, USA
| |
Collapse
|
38
|
Pulsed radiofrequency alleviated neuropathic pain by down-regulating the expression of substance P in chronic constriction injury rat model. Chin Med J (Engl) 2020; 133:190-197. [PMID: 31929370 PMCID: PMC7028183 DOI: 10.1097/cm9.0000000000000619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Pulsed radiofrequency (PRF), as a non-invasive treatment of neuropathic pain (NP), has been widely administered clinically. Previous studies have shown that PRF has the potential to improve hyperalgesia in animal models of NP. However, there have been few reports to clarify whether the mechanism of PRF treatment of NP involves intervention in the expression of substance P (SP). Therefore, this study administered PRF treatment to chronic constriction injury (CCI) model rats and observed the sciatic nerve mechanical pain threshold and SP expression in the spinal cord to explore the mechanism of PRF treatment. Methods A total of 96 Sprague-Dawley rats were randomly divided into the sham-surgery-sham-treatment group (S-S group), the sham-surgery-PRF group (S-P group), the CCI-sham-treatment group (C-S group), and the CCI-PRF group (C-P group). The C-S group and the C-P group underwent sciatic nerve CCI, while the other groups received a sham operation. At 14 days after the operation, the C-P group and the S-P group were treated with PRF for 300 s. We recorded the hindpaw withdrawal threshold (HWT) and the thermal withdrawal latency (TWL) of rats in the various groups at baseline, before treatment (0 days), and at 1, 7, 14, and 28 days after treatment. L4 to L6 spinal cord tissues were taken before treatment (0 days) and 1, 7, 14, and 28 days after treatment. The transcription and translation of SP were measured by quantitative polymerase chain reaction and Western blotting, respectively. Results The HWT and the TWL in the C-P group 28 days after PRF treatment were significantly higher than those in the C-S group (95% confidence interval [CI]: 5.84–19.50, P < 0.01; 95% CI: 2.58–8.69, P = 0.01). The expression of SP in the C-P group 28 days after PRF treatment was significantly lower than that in the C-S group (95% CI: 1.17–2.48, P < 0.01). Conclusions PRF may alleviate CCI-induced NP by down-regulating the expression of SP in the spinal cord of CCI model rats.
Collapse
|
39
|
McCarberg B, Peppin J. Pain Pathways and Nervous System Plasticity: Learning and Memory in Pain. PAIN MEDICINE 2020; 20:2421-2437. [PMID: 30865778 DOI: 10.1093/pm/pnz017] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Objective This article reviews the structural and functional changes in pain chronification and explores the association between memory and the development of chronic pain. Methods PubMed was searched using the terms "chronic pain," "central sensitization," "learning," "memory," "long-term potentiation," "long-term depression," and "pain memory." Relevant findings were synthesized into a narrative of the processes affecting pain chronification. Results Pain pathways represent a complex sensory system with cognitive, emotional, and behavioral influences. Anatomically, the hippocampus, amygdala, and anterior cortex-central to the encoding and consolidation of memory-are also implicated in experiential aspects of pain. Common neurotransmitters and similar mechanisms of neural plasticity (eg, central sensitization, long-term potentiation) suggest a mechanistic overlap between chronic pain and memory. These anatomic and mechanistic correlates indicate that chronic pain and memory intimately interact on several levels. Longitudinal imaging studies suggest that spatiotemporal reorganization of brain activity accompanies the transition to chronic pain, during which the representation of pain gradually shifts from sensory to emotional and limbic structures. Conclusions The chronification of pain can be conceptualized as activity-induced plasticity of the limbic-cortical circuitry resulting in reorganization of the neocortex. The state of the limbic-cortical network determines whether nociceptive signals are transient or chronic by extinguishing pathways or amplifying signals that intensify the emotional component of nociceptive inputs. Thus, chronic pain can be seen as the persistence of the memory of pain and/or the inability to extinguish painful memories. Ideally, pharmacologic, physical, and/or psychological approaches should reverse the reorganization accompanying chronic pain.
Collapse
Affiliation(s)
- Bill McCarberg
- Chronic Pain Management Program, Kaiser Permanente, San Diego, California; †University of California, San Diego, California; ‡Neighborhood Health, San Diego, California; §College of Osteopathic Medicine, Marian University, Indianapolis, Indiana; ¶John F. Peppin, DO, LLC, Hamden, Connecticut
| | - John Peppin
- Chronic Pain Management Program, Kaiser Permanente, San Diego, California; †University of California, San Diego, California; ‡Neighborhood Health, San Diego, California; §College of Osteopathic Medicine, Marian University, Indianapolis, Indiana; ¶John F. Peppin, DO, LLC, Hamden, Connecticut
| |
Collapse
|
40
|
Caraci F, Coluzzi F, Marinangeli F, Mercadante S, Rinonapoli G, Romualdi P, Nicora M, Dickenson AH. Modulation of sensitization processes in the management of pain and the importance of descending pathways: a role for tapentadol? Curr Med Res Opin 2020; 36:1015-1024. [PMID: 32216591 DOI: 10.1080/03007995.2020.1748876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objective: This paper presents and discusses recent evidence on the pathophysiological mechanisms of pain. The role of tapentadol - an opioid characterized by an innovative mechanism of action (i.e. µ-opioid receptor [MOR] agonism and inhibition of noradrenaline [NA] reuptake [NRI]) - in the modulation of pain, and the most recent pharmacological evidence on this molecule (e.g. the µ-load concept) are also presented and commented upon.Methods: Narrative review.Results: Solid evidence has highlighted the importance of central sensitization in the transition from acute to chronic pain. In particular, the noradrenergic system holds a major role in limiting central sensitization and the progression to chronic pain. Therefore, pharmacological modulation of the noradrenergic system appears to be a well-grounded strategy for the control of chronic pain. Tapentadol is characterized by a to-date-unique mechanism of action, since it acts both as a MOR agonist and as an inhibitor of NA reuptake. The synergistic interaction of these two mechanisms allows a strong analgesic effect by acting on both ascending and descending pathways. Of note, the reduced µ-load of tapentadol limits the risk of opioid-related adverse events, such as gastrointestinal disturbances. Moreover, the NA component becomes predominant, at least, in some types of pain, with consequent specific clinical efficacy in the treatment of neuropathic and chronic pain.Conclusions: According to these characteristics, tapentadol appears suitable in the treatment of severe uncontrolled chronic pain characterized by both a nociceptive and a neuropathic component, such as osteoarthritis or back pain.
Collapse
Affiliation(s)
- Filippo Caraci
- Department of Drug Sciences, University of Catania, Catania, Italy
- Oasi Research Institute - IRCCS, Troina, Italy
| | - Flaminia Coluzzi
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Franco Marinangeli
- Anesthesiology and Intensive Care, University of L'Aquila, L'Aquila, Italy
| | - Sebastiano Mercadante
- Supportive Care Center, MD Anderson Cancer Center, University of Texas, Houston, Texas, USA
- Main Regional Center for Pain Relief and Supportive/Palliative Care, La Maddalena Cancer Center, Palermo, Italy
| | | | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | | | | |
Collapse
|
41
|
Caraci F, Coluzzi F, Marinangeli F, Mercadante S, Rinonapoli G, Romualdi P, Nicora M, Dickenson AH. Modulation of sensitization processes in the management of pain and the importance of descending pathways: a role for tapentadol? Curr Med Res Opin 2020; 36:I-XVII. [PMID: 31822137 DOI: 10.1080/03007995.2019.1703664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objective: This paper presents and discusses recent evidence on the pathophysiological mechanisms of pain. The role of tapentadol - an analgesic molecule characterized by an innovative mechanism of action (i.e. µ-opioid receptor [MOR] agonism and inhibition of noradrenaline [NA] reuptake [NRI]) - in the modulation of pain, and the most recent pharmacological evidence on this molecule (e.g. the µ-load concept) are also presented and commented upon.Methods: Narrative review.Results: Solid evidence has highlighted the importance of central sensitization in the transition from acute to chronic pain. In particular, the noradrenergic system holds a major role in limiting central sensitization and the progression to chronic pain. Therefore, pharmacological modulation of the noradrenergic system appears to be a well-grounded strategy for the control of chronic pain. Tapentadol is characterized by a to-date-unique mechanism of action since it acts both as a MOR agonist and as an inhibitor of NA reuptake. The synergistic interaction of these two mechanisms allows a strong analgesic effect by acting on both ascending and descending pathways. Of note, the reduced µ-load of tapentadol has two important consequences: first, it limits the risk of opioid-related adverse events, as well as the risk of dependence; second, the NA component becomes predominant at least in some types of pain with consequent specific clinical efficacy in the treatment of neuropathic and chronic pain.Conclusions: According to these characteristics, tapentadol appears suitable in the treatment of chronic pain conditions characterized by both a nociceptive and a neuropathic component, such as osteoarthritis or back pain.
Collapse
Affiliation(s)
- Filippo Caraci
- Department of Drug Sciences, University of Catania, Catania, Italy
- Oasi Research Institute - IRCCS, Troina, Italy
| | - Flaminia Coluzzi
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Franco Marinangeli
- Anesthesiology and Intensive Care, University of L'Aquila, L'Aquila, Italy
| | - Sebastiano Mercadante
- Supportive Care Center, MD Anderson Cancer Center, University of Texas, Houston, Texas, USA
- Main Regional Center for Pain Relief and Supportive/Palliative Care, La Maddalena Cancer Center, Palermo, Italy
| | | | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | | | | |
Collapse
|
42
|
Wang J, Zhao M, Jia P, Liu FF, Chen K, Meng FY, Hong JH, Zhang T, Jin XH, Shi J. The analgesic action of larixyl acetate, a potent TRPC6 inhibitor, in rat neuropathic pain model induced by spared nerve injury. J Neuroinflammation 2020; 17:118. [PMID: 32299452 PMCID: PMC7164269 DOI: 10.1186/s12974-020-01767-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 03/05/2020] [Indexed: 01/01/2023] Open
Abstract
Background Neuropathic pain is a debilitating status that is insusceptible to the existing analgesics. It is important to explore the underlying pathophysiological changes and search for new pharmacological approaches. Transient receptor potential canonical 6 (TRPC6) is a mechanosensitive channel that is expressed by dorsal root ganglia and glial cells. It has been demonstrated that this channel in dorsal root ganglia plays essential roles in the formation of mechanical hyperalgesia in neuropathic pain. Recent pharmacological screening suggests that larixyl acetate (LA), a main constituent of larch resin, is able to selectively inhibit TRPC6 function. But whether LA is effective in treating neuropathic pain remains unknown. We investigated the efficacy of LA in rat neuropathic pain model, examined its effects on central neuroinflammation, and explored the possible molecular mechanisms by targeting the spinal dorsal horn. Methods Spared nerve injury (SNI) was conducted in Sprague-Dawley rats. Mechanical hypersensitivity and cold allodynia before and after single and multiple i.t. applications of LA at the dose of 3, 10, and 30 μM were evaluated by von Frey filament and acetone tests, respectively. Western blot, immunohistochemical, and immunocytochemical stainings were employed to examine the level and expression feature of ionized calcium-binding adaptor molecule 1 (Iba-1), glial fibrillary acidic protein (GFAP), TRPC6, and phosphorylated p38 kinase. The changes of cytokine concentrations, including that of TNF-α, IL-1β, IL-6, and IL-10, were also assessed by multiplex analysis. TRPC6 antisense strategy was finally adopted to investigate the action mechanisms of LA. Results Single application of LA on day 5 post injury caused dose-dependent inhibition of mechanical allodynia with the ED50 value of 13.43 μM. Multiple applications of LA at 30 μM not only enhanced the analgesic efficacy but also elongated the effective duration without obvious influences on animal locomotor activities. Single and multiple administrations of LA at 30 μM played similar but weaker inhibitory effects on cold allodynia. In addition to behavioral improvements, multiple applications of LA for 6 days dose-dependently inhibited the upregulation of Iba-1, TNF-α, IL-1β, and IL-6, whereas had no obvious effects on the levels of GFAP and IL-10. Combined Western blot and immunostaining assays revealed that the expression of TRPC6 was significantly increased in both spinal dorsal horn after nerve injury and the cultured microglia challenged by LPS, which was however suppressed by the addition of LA at 30 μM or 10 μM, respectively. Further knockdown of TRPC6 with antisense oligodeoxynucleotide produced prominent analgesic effects in rats with SNI, accompanied by the reduced phosphorylation level of p38 in the microglia. Conclusions These data demonstrate that i.t. applied LA exhibits analgesic and anti-inflammatory action in neuropathic pain. The action of LA involves the suppression of TRPC6 and p38 signaling in the microglia. LA may be thus a promising pharmacological candidate for the treatment of intractable chronic pain.
Collapse
Affiliation(s)
- Jing Wang
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China.,Student Brigade, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China
| | - Ming Zhao
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China.,Student Brigade, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China
| | - Peng Jia
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China.,Student Brigade, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China
| | - Fang-Fang Liu
- Department of Neurobiology, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China
| | - Kun Chen
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China
| | - Fei-Yang Meng
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China.,Student Brigade, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jiang-Hao Hong
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China.,Student Brigade, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China
| | - Ting Zhang
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xiao-Hang Jin
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China. .,Department of Basic Medical Morphology, Medical College, Xijing University, Xi' an, 710123, China.
| | - Juan Shi
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
43
|
Blockade of peripheral nociceptive signal input relieves the formation of spinal central sensitization and retains morphine efficacy in a neuropathic pain rat model. Neurosci Lett 2020; 716:134643. [PMID: 31760085 DOI: 10.1016/j.neulet.2019.134643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/11/2019] [Accepted: 11/20/2019] [Indexed: 12/22/2022]
|
44
|
The gap junction inhibitor INI-0602 attenuates mechanical allodynia and depression-like behaviors induced by spared nerve injury in rats. Neuroreport 2019; 30:369-377. [PMID: 30741784 DOI: 10.1097/wnr.0000000000001209] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Gap junctions (GJs) are novel molecular targets for pain therapeutics due to their pain-promoting function. INI-0602, a new GJ inhibitor, exerts a neuroprotective role, while its role in neuropathic pain is unclear. The objective was to investigate the analgesic role and mechanisms of INI-0602 in neuropathic pain induced by spared nerve injury (SNI), and whether INI-0602 attenuated pain-induced depression-like behaviors. Rats were randomly assigned to saline treatment groups (sham+NS and SNI+NS) or INI-0602 treatment groups (sham+INI-0602 and SNI+INI-0602). The von Frey test was used to assess pain behavior, and the sucrose preference test, the forced swimming test, and the tail suspension test were used to assess depression-like behaviors. Gap junction intercellular communication (GJIC) was measured by parachute assay. Western blots were used to determine the protein expression. In vitro, INI-0602 significantly suppressed GJIC by decreasing connexin43 and connexin32 expression. In vivo, INI-0602 significantly suppressed mechanical allodynia during initiation (7 days after SNI) and the maintenance phase (21 days after SNI) and simultaneously attenuated accompanying depression-like behaviors. Furthermore, INI-0602 markedly suppressed the activation of astrocytes and microglia on days 7 and 21 by reducing GJIC. Finally, INI-0602 reversed the changes in the brain-derived neurotrophic factor and Nr2b subunits of the N-methyl-D-aspartate receptor in SNI rats, suggesting that these effects of INI-0602 were related to its analgesic effect. Our findings demonstrated that blocking GJs with INI-0602 attenuated mechanical pain hypersensitivity and related depression-like behaviors in SNI rats by reducing glial activation.
Collapse
|
45
|
Teng Y, Zhang Y, Yue S, Chen H, Qu Y, Wei H, Jia X. Intrathecal injection of bone marrow stromal cells attenuates neuropathic pain via inhibition of P2X 4R in spinal cord microglia. J Neuroinflammation 2019; 16:271. [PMID: 31847848 PMCID: PMC6918679 DOI: 10.1186/s12974-019-1631-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/05/2019] [Indexed: 01/23/2023] Open
Abstract
Background Neuropathic pain is one of the most debilitating of all chronic pain syndromes. Intrathecal (i.t.) bone marrow stromal cell (BMSC) injections have a favorable safety profile; however, results have been inconsistent, and complete understanding of how BMSCs affect neuropathic pain remains elusive. Methods We evaluated the analgesic effect of BMSCs on neuropathic pain in a chronic compression of the dorsal root ganglion (CCD) model. We analyzed the effect of BMSCs on microglia reactivity and expression of purinergic receptor P2X4 (P2X4R). Furthermore, we assessed the effect of BMSCs on the expression of transient receptor potential vanilloid 4 (TRPV4), a key molecule in the pathogenesis of neuropathic pain, in dorsal root ganglion (DRG) neurons. Results I.t. BMSC transiently but significantly ameliorated neuropathic pain behavior (37.6% reduction for 2 days). We found no evidence of BMSC infiltration into the spinal cord parenchyma or DRGs, and we also demonstrated that intrathecal injection of BMSC-lysates provides similar relief. These findings suggest that the analgesic effects of i.t. BMSC were largely due to the release of BMSC-derived factors into the intrathecal space. Mechanistically, we found that while i.t. BMSCs did not change TRPV4 expression in DRG neurons, there was a significant reduction of P2X4R expression in the spinal cord microglia. BMSC-lysate also reduced P2X4R expression in activated microglia in vitro. Coadministration of additional pharmacological interventions targeting P2X4R confirmed that modulation of P2X4R might be a key mechanism for the analgesic effects of i.t. BMSC. Conclusion Altogether, our results suggest that i.t. BMSC is an effective and safe treatment of neuropathic pain and provides novel evidence that BMSC’s analgesic effects are largely mediated by the release of BMSC-derived factors resulting in microglial P2X4R downregulation.
Collapse
Affiliation(s)
- Yongbo Teng
- Department of Physical Medicine & Rehabilitation, Qilu Hospital, Medical School of Shandong University, Jinan, China
| | - Yang Zhang
- Department of Physical Medicine & Rehabilitation, Qilu Hospital, Medical School of Shandong University, Jinan, China.,Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Shouwei Yue
- Department of Physical Medicine & Rehabilitation, Qilu Hospital, Medical School of Shandong University, Jinan, China.
| | - Huanwen Chen
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Yujuan Qu
- Department of Physical Medicine & Rehabilitation, Qilu Hospital, Medical School of Shandong University, Jinan, China
| | - Hui Wei
- Department of Physical Medicine & Rehabilitation, Qilu Hospital, Medical School of Shandong University, Jinan, China
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
46
|
Yang S, Chang MC. Chronic Pain: Structural and Functional Changes in Brain Structures and Associated Negative Affective States. Int J Mol Sci 2019; 20:3130. [PMID: 31248061 PMCID: PMC6650904 DOI: 10.3390/ijms20133130] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 12/22/2022] Open
Abstract
Chronic pain is a condition in which pain progresses from an acute to chronic state and persists beyond the healing process. Chronic pain impairs function and decreases patients' quality of life. In recent years, efforts have been made to deepen our understanding of chronic pain and to develop better treatments to alleviate chronic pain. In this review, we summarize the results of previous studies, focusing on the mechanisms underlying chronic pain development and the identification of neural areas related to chronic pain. We review the association between chronic pain and negative affective states. Further, we describe the structural and functional changes in brain structures that accompany the chronification of pain and discuss various neurotransmitter families involved. Our review aims to provide guidance for the development of future therapeutic approaches that could be used in the management of chronic pain.
Collapse
Affiliation(s)
- Seoyon Yang
- Department of Rehabilitation Medicine, Ewha Woman's University Seoul Hospital, School of Medicine, Ewha Woman's University, Seoul 07804, Korea
| | - Min Cheol Chang
- Department of Rehabilitation Medicine, College of Medicine, Yeungnam University, Daegu 42415, Korea.
| |
Collapse
|
47
|
Liu ZY, Song ZW, Guo SW, He JS, Wang SY, Zhu JG, Yang HL, Liu JB. CXCL12/CXCR4 signaling contributes to neuropathic pain via central sensitization mechanisms in a rat spinal nerve ligation model. CNS Neurosci Ther 2019; 25:922-936. [PMID: 30955244 PMCID: PMC6698967 DOI: 10.1111/cns.13128] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 12/20/2022] Open
Abstract
Background Previous studies have demonstrated that the CXCL12/CXCR4 signaling axis is involved in the regulation of neuropathic pain (NP). Here, we performed experiments to test whether the CXCL12/CXCR4 signaling pathway contributes to the pathogenesis of neuropathic pain after spinal nerve ligation (SNL) via central sensitization mechanisms. Methods Neuropathic pain was induced and assessed in a SNL rat model. The expression and distribution of CXCL12 or CXCR4 were examined by immunofluorescence staining and western blot. The effects of CXCL12 rat peptide, CXCL12 neutralizing antibody, CXCR4 antagonist, and astrocyte metabolic inhibitor on pain hypersensitivity were explored by behavioral tests in naive or SNL rats. We measured the expression level of c‐Fos and CGRP to evaluate the sensitization of neurons by RT‐PCR. The activation of astrocyte and microglia was analyzed by measuring the level of GFAP and iba‐1. The mRNA levels of the pro‐inflammatory cytokines such as TNF‐α, IL‐1β, and IL‐6 and Connexin 30, Connexin 43, EAAT 1, EAAT 2 were also detected by RT‐PCR. Results First, we found that the expression of CXCL12 and CXCR4 was upregulated after SNL. CXCL12 was mainly expressed in the neurons while CXCR4 was expressed both in astrocytes and neurons in the spinal dorsal horn after SNL. Moreover, intrathecal administration of rat peptide, CXCL12, induced hypersensitivity in naive rats, which was partly reversed by fluorocitrate. In addition, the CXCL12 rat peptide increased mRNA levels of c‐Fos, GFAP, and iba‐1. A single intrathecal injection of CXCL12 neutralizing antibody transiently reversed neuropathic pain in the SNL rat model. Consecutive use of CXCL12 neutralizing antibody led to significant delay in the induction of neuropathic pain, and reduced the expression of GFAP and iba‐1 in the spinal dorsal horn. Finally, repeated intrathecal administration of the CXCR4 antagonist, AMD3100, significantly suppressed the initiation and duration of neuropathic pain. The mRNA levels of c‐Fos, CGRP, GFAP, iba‐1, and pro‐inflammatory cytokines, also including Connexin 30 and Connexin 43 were decreased after injection of AMD3100, while EAAT 1 and EAAT 2 mRNAs were increased. Conclusion We demonstrate that the CXCL12/CXCR4 signaling pathway contributes to the development and maintenance of neuropathic pain via central sensitization mechanisms. Importantly, intervening with CXCL12/CXCR4 presents an effective therapeutic approach to treat the neuropathic pain.
Collapse
Affiliation(s)
- Zhi-Yuan Liu
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Department of Orthopedics, The Affiliated Wujin Hospital of Jiangsu University, Changzhou, China
| | - Zhi-Wen Song
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Shi-Wu Guo
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jun-Sheng He
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Shen-Yu Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian-Guo Zhu
- Department of Orthopedics, The Affiliated Wujin Hospital of Jiangsu University, Changzhou, China
| | - Hui-Lin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jin-Bo Liu
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
48
|
Trofimovitch D, Baumrucker SJ. Pharmacology Update: Low-Dose Naltrexone as a Possible Nonopioid Modality for Some Chronic, Nonmalignant Pain Syndromes. Am J Hosp Palliat Care 2019; 36:907-912. [PMID: 30917675 DOI: 10.1177/1049909119838974] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Pain can have a devastating effect on the quality of life of patients in palliative medicine. Thus far, majority of research has been centered on opioid-based pain management, with a limited empirical evidence for the use of nonopioid medications in palliative care. However, opioid and nonopioid medications such as nonsteroidal anti-inflammatory drugs have their limitations in the clinical use due to risk of adverse effects, therefore, there is a need for more research to be directed to finding an alternative approach to pain management in comfort care setting. The purpose of this article is to discuss a potential new drug that would adequately alleviate pain and enhance quality of life without significant risks of adverse effects that would limit its use. Naltrexone is a reversible competitive antagonist at μ-opioid and κ-opioid receptors, which when used at standard doses of 50 to 150 mg was initially intended for use in opioid and alcohol use disorders. However, it was discovered that its use in low doses follows alternate pharmacodynamic pathways with various effects. When used in doses of 1 to 5 mg it acts as a glial modulator with a neuroprotective effect via inhibition of microglial activation. It binds to Toll-like receptor 4 and acts as an antagonist, therefore inhibiting the downstream cellular signaling pathways that ultimately lead to pro-inflammatory cytokines, therefore reducing inflammatory response. Its other mode of action involves transient opioid receptor blockade ensuing from low-dose use which upregulates opioid signaling resulting in increased levels of endogenous opioid production, known as opioid rebound effect. Low dose naltrexone has gained popularity as an off-label treatment of several autoimmune diseases including multiple sclerosis and inflammatory bowel disease, as well as chronic pain disorders including fibromyalgia, complex regional pain syndrome, and diabetic neuropathy. Low-dose naltrexone (LDN) may also have utility in improving mood disorders and the potential to enhance the quality of life. This article will therefore propose the potential off-label use of LDN in management of nonmalignant pain in the palliative medicine setting.
Collapse
Affiliation(s)
- Diana Trofimovitch
- 1 Department of Internal Medicine, East Tennessee State University James H Quillen College of Medicine, Johnson City, TN, USA
| | | |
Collapse
|
49
|
Zhang LY, Jia MR, Sun T. The roles of special proresolving mediators in pain relief. Rev Neurosci 2018; 29:645-660. [DOI: 10.1515/revneuro-2017-0074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/17/2017] [Indexed: 12/17/2022]
Abstract
Abstract
The resolution of acute inflammation, once thought to be a passive process, is now recognized as an active one. The productions of endogenous special proresolving mediators (SPMs) are involved in this process. SPMs, including lipoxins, resolvins, protectins, and maresins, are endogenous lipid mediators generated from ω-6 arachidonic acid or ω-3 poly-unsaturated fatty acids during the resolution phase of acute inflammation. They have potent anti-inflammatory and proresolving actions in various inflammatory disorders. Due to the potent proresolving and anti-inflammatory effects, SPMs are also used for pain relief. This review focuses on the mechanisms by which SPMs act on their respective G-protein-coupled receptors in immune cells and nerve cells to normalize pain via regulating inflammatory mediators, transient receptor potential ion channels, and central sensitization. SPMs may offer novel therapeutic approaches for preventing and treating pain conditions associated with inflammation.
Collapse
|
50
|
High levels of cerebrospinal fluid chemokines point to the presence of neuroinflammation in peripheral neuropathic pain: a cross-sectional study of 2 cohorts of patients compared with healthy controls. Pain 2018; 158:2487-2495. [PMID: 28930774 PMCID: PMC5690569 DOI: 10.1097/j.pain.0000000000001061] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
According to animal models, neuroinflammation is a major feature of neuropathic pain. The present findings confirm that this hypothesis is of relevance to humans. Animal models suggest that chemokines are important mediators in the pathophysiology of neuropathic pain. Indeed, these substances have been called “gliotransmitters,” a term that illustrates the close interplay between glial cells and neurons in the context of neuroinflammation and pain. However, evidence in humans is scarce. The aim of the study was to determine a comprehensive cerebrospinal fluid (CSF) inflammatory profile of patients with neuropathic pain. Our hypothesis was that we would thereby find indications of a postulated on-going process of central neuroinflammation. Samples of CSF were collected from 2 cohorts of patients with neuropathic pain (n = 11 and n = 16, respectively) and healthy control subjects (n = 11). The samples were analyzed with a multiplex proximity extension assay in which 92 inflammation-related proteins were measured simultaneously (Proseek Multiplex Inflammation I; Olink Bioscience, Uppsala, Sweden). Univariate testing with control of false discovery rate, as well as orthogonal partial least squares discriminant analysis, were used for statistical analyses. Levels of chemokines CXCL6, CXCL10, CCL8, CCL11, CCL23 in CSF, as well as protein LAPTGF-beta-1, were significantly higher in both neuropathic pain cohorts compared with healthy controls, pointing to neuroinflammation in patients. These 6 proteins were also major results in a recent similar study in patients with fibromyalgia. The findings need to be confirmed in larger cohorts, and the question of causality remains to be settled. Because it has been suggested that prevalent comorbidities to chronic pain (eg, depression, anxiety, poor sleep, and tiredness) also are associated with neuroinflammation, it will be important to determine whether neuroinflammation is a common mediator.
Collapse
|