1
|
Eyolfson E, Suesser KRB, Henry H, Bonilla-Del Río I, Grandes P, Mychasiuk R, Christie BR. The effect of traumatic brain injury on learning and memory: A synaptic focus. Neuroscientist 2025; 31:195-214. [PMID: 39316552 PMCID: PMC11909778 DOI: 10.1177/10738584241275583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Deficits in learning and memory are some of the most commonly reported symptoms following a traumatic brain injury (TBI). We will examine whether the neural basis of these deficits stems from alterations to bidirectional synaptic plasticity within the hippocampus. Although the CA1 subregion of the hippocampus has been a focus of TBI research, the dentate gyrus should also be given attention as it exhibits a unique ability for adult neurogenesis, a process highly susceptible to TBI-induced damage. This review examines our current understanding of how TBI results in deficits in synaptic plasticity, as well as how TBI-induced changes in endocannabinoid (eCB) systems may drive these changes. Through the synthesis and amalgamation of existing data, we propose a possible mechanism for eCB-mediated recovery in synaptic plasticity deficits. This hypothesis is based on the plausible roles of CB1 receptors in regulating inhibitory tone, influencing astrocytes and microglia, and modulating glutamate release. Dysregulation of the eCBs may be responsible for deficits in synaptic plasticity and learning following TBI. Taken together, the existing evidence indicates eCBs may contribute to TBI manifestation, pathogenesis, and recovery, but it also suggests there may be a therapeutic role for the eCB system in TBI.
Collapse
Affiliation(s)
- Eric Eyolfson
- Division of Medical Sciences and Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - Kirsten R. B. Suesser
- Division of Medical Sciences and Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - Holly Henry
- Division of Medical Sciences and Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - Itziar Bonilla-Del Río
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country, Leioa, Spain
| | - Pedro Grandes
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country, Leioa, Spain
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Brian R. Christie
- Division of Medical Sciences and Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
- Island Medical Program and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Psychology, San Diego State University, San Diego, CA, USA
| |
Collapse
|
2
|
Feng H, Zhang Z, Lyu W, Kong X, Li J, Zhou H, Wei P. The Effects of Appropriate Perioperative Exercise on Perioperative Neurocognitive Disorders: a Narrative Review. Mol Neurobiol 2024; 61:4663-4676. [PMID: 38110646 PMCID: PMC11236851 DOI: 10.1007/s12035-023-03864-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023]
Abstract
Perioperative neurocognitive disorders (PNDs) are now considered the most common neurological complication in older adult patients undergoing surgical procedures. A significant increase exists in the incidence of post-operative disability and mortality in patients with PNDs. However, no specific treatment is still available for PNDs. Recent studies have shown that exercise may improve cognitive dysfunction-related disorders, including PNDs. Neuroinflammation is a key mechanism underlying exercise-induced neuroprotection in PNDs; others include the regulation of gut microbiota and mitochondrial and synaptic function. Maintaining optimal skeletal muscle mass through preoperative exercise is important to prevent the occurrence of PNDs. This review summarizes current clinical and preclinical evidence and proposes potential molecular mechanisms by which perioperative exercise improves PNDs, providing a new direction for exploring exercise-mediated neuroprotective effects on PNDs. In addition, it intends to provide new strategies for the prevention and treatment of PNDs.
Collapse
Affiliation(s)
- Hao Feng
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, People's Republic of China
| | - Zheng Zhang
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, People's Republic of China
| | - Wenyuan Lyu
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, People's Republic of China
| | - Xiangyi Kong
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, People's Republic of China
| | - Jianjun Li
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, People's Republic of China
| | - Haipeng Zhou
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, People's Republic of China.
| | - Penghui Wei
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, People's Republic of China.
| |
Collapse
|
3
|
Marzola P, Melzer T, Pavesi E, Gil-Mohapel J, Brocardo PS. Exploring the Role of Neuroplasticity in Development, Aging, and Neurodegeneration. Brain Sci 2023; 13:1610. [PMID: 38137058 PMCID: PMC10741468 DOI: 10.3390/brainsci13121610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 12/24/2023] Open
Abstract
Neuroplasticity refers to the ability of the brain to reorganize and modify its neural connections in response to environmental stimuli, experience, learning, injury, and disease processes. It encompasses a range of mechanisms, including changes in synaptic strength and connectivity, the formation of new synapses, alterations in the structure and function of neurons, and the generation of new neurons. Neuroplasticity plays a crucial role in developing and maintaining brain function, including learning and memory, as well as in recovery from brain injury and adaptation to environmental changes. In this review, we explore the vast potential of neuroplasticity in various aspects of brain function across the lifespan and in the context of disease. Changes in the aging brain and the significance of neuroplasticity in maintaining cognitive function later in life will also be reviewed. Finally, we will discuss common mechanisms associated with age-related neurodegenerative processes (including protein aggregation and accumulation, mitochondrial dysfunction, oxidative stress, and neuroinflammation) and how these processes can be mitigated, at least partially, by non-invasive and non-pharmacologic lifestyle interventions aimed at promoting and harnessing neuroplasticity.
Collapse
Affiliation(s)
- Patrícia Marzola
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| | - Thayza Melzer
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| | - Eloisa Pavesi
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| | - Joana Gil-Mohapel
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada
| | - Patricia S. Brocardo
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| |
Collapse
|
4
|
Connor SA, Siddiqui TJ. Synapse organizers as molecular codes for synaptic plasticity. Trends Neurosci 2023; 46:971-985. [PMID: 37652840 DOI: 10.1016/j.tins.2023.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/13/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023]
Abstract
Synapse organizing proteins are multifaceted molecules that coordinate the complex processes of brain development and plasticity at the level of individual synapses. Their importance is demonstrated by the major brain disorders that emerge when their function is compromised. The mechanisms whereby the various families of organizers govern synapses are diverse, but converge on the structure, function, and plasticity of synapses. Therefore, synapse organizers regulate how synapses adapt to ongoing activity, a process central for determining the developmental trajectory of the brain and critical to all forms of cognition. Here, we explore how synapse organizers set the conditions for synaptic plasticity and the associated molecular events, which eventually link to behavioral features of neurodevelopmental and neuropsychiatric disorders. We also propose central questions on how synapse organizers influence network function through integrating nanoscale and circuit-level organization of the brain.
Collapse
Affiliation(s)
- Steven A Connor
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| | - Tabrez J Siddiqui
- PrairieNeuro Research Centre, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, MB R3E 0Z3, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; The Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada; Program in Biomedical Engineering, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
5
|
Song Y, Wang X, Ma W, Yang Y, Yan S, Sun J, Zhu X, Tang Y. Graves' disease as a driver of depression: a mechanistic insight. Front Endocrinol (Lausanne) 2023; 14:1162445. [PMID: 37152963 PMCID: PMC10157224 DOI: 10.3389/fendo.2023.1162445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/05/2023] [Indexed: 05/09/2023] Open
Abstract
Graves' disease (GD) is characterized by diffuse enlargement and overactivity of the thyroid gland, which may be accompanied by other physical symptoms. Among them, depression can dramatically damage patients' quality of life, yet its prevalence in GD has not received adequate attention. Some studies have established a strong correlation between GD and increased risk of depression, though the data from current study remains limited. The summary of mechanistic insights regarding GD and depression has underpinned possible pathways by which GD contributes to depression. In this review, we first summarized the clinical evidence that supported the increased prevalence of depression by GD. We then concentrated on the mechanistic findings related to the acceleration of depression in the context of GD, as mounting evidence has indicated that GD promotes the development of depression through various mechanisms, including triggering autoimmune responses, inducing hormonal disorders, and influencing the thyroid-gut-microbiome-brain axis. Finally, we briefly presented potential therapeutic approaches to decreasing the risk of depression among patients with GD.
Collapse
Affiliation(s)
- Yifei Song
- Beijing University of Chinese Medicine, Beijing, China
| | - Xinying Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Wenxin Ma
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Yang
- Tongling Municipal hospital, Anhui, China
| | - Shuxin Yan
- Beijing University of Chinese Medicine, Beijing, China
| | - Jiapan Sun
- Department of Geriatrics, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Xiaoyun Zhu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Tang
- Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
von Bohlen Und Halbach O. Neurotrophic Factors and Dendritic Spines. ADVANCES IN NEUROBIOLOGY 2023; 34:223-254. [PMID: 37962797 DOI: 10.1007/978-3-031-36159-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dendritic spines are highly dynamic structures that play important roles in neuronal plasticity. The morphologies and the numbers of dendritic spines are highly variable, and this diversity is correlated with the different morphological and physiological features of this neuronal compartment. Dendritic spines can change their morphology and number rapidly, allowing them to adapt to plastic changes. Neurotrophic factors play important roles in the brain during development. However, these factors are also necessary for a variety of processes in the postnatal brain. Neurotrophic factors, especially members of the neurotrophin family and the ephrin family, are involved in the modulation of long-lasting effects induced by neuronal plasticity by acting on dendritic spines, either directly or indirectly. Thereby, the neurotrophic factors play important roles in processes attributed, for example, to learning and memory.
Collapse
|
7
|
Tovar ÁE, Westermann G. No need to forget, just keep the balance: Hebbian neural networks for statistical learning. Cognition 2023; 230:105176. [PMID: 36442955 DOI: 10.1016/j.cognition.2022.105176] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/15/2022] [Accepted: 05/16/2022] [Indexed: 11/27/2022]
Abstract
Language processing in humans has long been proposed to rely on sophisticated learning abilities including statistical learning. Endress and Johnson (E&J, 2021) recently presented a neural network model for statistical learning based on Hebbian learning principles. This model accounts for word segmentation tasks, one primary paradigm in statistical learning. In this discussion paper we review this model and compare it with the Hebbian model previously presented by Tovar and Westermann (T&W, 2017a; 2017b; 2018) that has accounted for serial reaction time tasks, cross-situational learning, and categorization paradigms, all relevant in the study of statistical learning. We discuss the similarities and differences between both models, and their key findings. From our analysis, we question the concept of "forgetting" in the model of E&J and their suggestion of considering forgetting as the critical ingredient for successful statistical learning. We instead suggest that a set of simple but well-balanced mechanisms including spreading activation, activation persistence, and synaptic weight decay, all based on biologically grounded principles, allow modeling statistical learning in Hebbian neural networks, as demonstrated in the T&W model which successfully covers learning of nonadjacent dependencies and accounts for differences between typical and atypical populations, both aspects that have not been fully demonstrated in the E&J model. We outline the main computational and theoretical differences between the E&J and T&W approaches, present new simulation results, and discuss implications for the development of a computational cognitive theory of statistical learning.
Collapse
Affiliation(s)
- Ángel Eugenio Tovar
- Facultad de Psicología, Universidad Nacional Autónoma de México, Av. Universidad 3004, 04510 Coyoacán, Mexico.
| | - Gert Westermann
- Department of Psychology, Lancaster University, Lancaster LA1 4YF, United Kingdom
| |
Collapse
|
8
|
Alfonsetti M, d’Angelo M, Castelli V. Neurotrophic factor-based pharmacological approaches in neurological disorders. Neural Regen Res 2022; 18:1220-1228. [PMID: 36453397 PMCID: PMC9838155 DOI: 10.4103/1673-5374.358619] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aging is a physiological event dependent on multiple pathways that are linked to lifespan and processes leading to cognitive decline. This process represents the major risk factor for aging-related diseases such as Alzheimer's disease, Parkinson's disease, and ischemic stroke. The incidence of all these pathologies increases exponentially with age. Research on aging biology has currently focused on elucidating molecular mechanisms leading to the development of those pathologies. Cognitive deficit and neurodegeneration, common features of aging-related pathologies, are related to the alteration of the activity and levels of neurotrophic factors, such as brain-derived neurotrophic factor, nerve growth factor, and glial cell-derived neurotrophic factor. For this reason, treatments that modulate neurotrophin levels have acquired a great deal of interest in preventing neurodegeneration and promoting neural regeneration in several neurological diseases. Those treatments include both the direct administration of neurotrophic factors and the induced expression with viral vectors, neurotrophins' binding with biomaterials or other molecules to increase their bioavailability but also cell-based therapies. Considering neurotrophins' crucial role in aging pathologies, here we discuss the involvement of several neurotrophic factors in the most common brain aging-related diseases and the most recent therapeutic approaches that provide direct and sustained neurotrophic support.
Collapse
Affiliation(s)
- Margherita Alfonsetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy,Correspondence to: Vanessa Castelli, .
| |
Collapse
|
9
|
Esmaealzadeh N, Iranpanah A, Sarris J, Rahimi R. A literature review of the studies concerning selected plant-derived adaptogens and their general function in body with a focus on animal studies. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154354. [PMID: 35932607 DOI: 10.1016/j.phymed.2022.154354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/26/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Adaptogens are generally referred to the substances, mostly found in plants, which non-specifically increase resilience and chances of survival by activation of signaling pathways in affected cells. PURPOSE This literature review was conducted to summarize the investigation, until March 2021, on selected adaptogenic plants and plant-derived substances. STUDY DESIGN Electronic databases were searched (up to March 2021) for in vitro and animal studies, as well as clinical trials. Moreover, all modes of action connected with the adaptogenic effects of plants and phytochemicals were collected. METHODS The search of relevant studies was performed within electronic databases including Scopus, Science Direct, PubMed, and Cochrane library. The most important keywords were adaptogen, plant, phytochemical, and plant-derived. RESULTS The most investigated medicinal herbs for their adaptogenic activity are Eleutherococcus senticosus, Panax ginseng, Withania somnifera, Schisandra chinensis, and Rhodiola spp., salidroside, ginsenosides, andrographolide, methyl jasmonate, cucurbitacin R, dichotosin, and dichotosininare are phytochemicals that have shown a considerable adaptogenic activity. Phytochemicals that have been demonstrated adaptogenic properties mainly belong to flavonoids, terpenoids, and phenylpropanoid glycosides. CONCLUSION It is concluded that the main modes of action of the selected adaptogenic plants are stress modulatory, antioxidant, anti-fatigue, and physical endurance enhancement. Other properties were nootropic, immunomodulatory, cardiovascular, and radioprotective activities.
Collapse
Affiliation(s)
- Niusha Esmaealzadeh
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran P.O. Box 1417653761, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Kermanshah USERN Office, Universal Scientific Education and Research Network (USERN), Kermanshah, Iran
| | - Jerome Sarris
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia; The Florey Institute of Neuroscience and Mental Health & The Professorial Unit, The Melbourne Clinic, Department of Psychiatry, University of Melbourne, Melbourne, VIC, Australia
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran P.O. Box 1417653761, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
10
|
Marazziti D, Diep PT, Carter S, Carbone MG. Oxytocin: An Old Hormone, A Novel Psychotropic Drug And Possible Use In Treating Psychiatric Disorders. Curr Med Chem 2022; 29:5615-5687. [PMID: 35894453 DOI: 10.2174/0929867329666220727120646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/17/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Oxytocin is a nonapeptide synthesized in the paraventricular and supraoptic nuclei of the hypothalamus. Historically, this molecule has been involved as a key factor in the formation of infant attachment, maternal behavior and pair bonding and, more generally, in linking social signals with cognition, behaviors and reward. In the last decades, the whole oxytocin system has gained a growing interest as it was proposed to be implicated in etiopathogenesis of several neurodevelopmental and neuropsychiatric disorders. METHODS With the main goal of an in-depth understanding of the oxytocin role in the regulation of different functions and complex behaviors as well as its intriguing implications in different neuropsychiatric disorders, we performed a critical review of the current state of art. We carried out this work through PubMed database up to June 2021 with the search terms: 1) "oxytocin and neuropsychiatric disorders"; 2) "oxytocin and neurodevelopmental disorders"; 3) "oxytocin and anorexia"; 4) "oxytocin and eating disorders"; 5) "oxytocin and obsessive-compulsive disorder"; 6) "oxytocin and schizophrenia"; 7) "oxytocin and depression"; 8) "oxytocin and bipolar disorder"; 9) "oxytocin and psychosis"; 10) "oxytocin and anxiety"; 11) "oxytocin and personality disorder"; 12) "oxytocin and PTSD". RESULTS Biological, genetic, and epigenetic studies highlighted quality and quantity modifications in the expression of oxytocin peptide or in oxytocin receptor isoforms. These alterations would seem to be correlated with a higher risk of presenting several neuropsychiatric disorders belonging to different psychopathological spectra. Collaterally, the exogenous oxytocin administration has shown to ameliorate many neuropsychiatric clinical conditions. CONCLUSION Finally, we briefly analyzed the potential pharmacological use of oxytocin in patient with severe symptomatic SARS-CoV-2 infection due to its anti-inflammatory, anti-oxidative and immunoregulatory properties.
Collapse
Affiliation(s)
- Donatella Marazziti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Italy.,Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Phuoc-Tan Diep
- Department of Histopathology, Royal Lancaster Infirmary, University Hospitals of Morecambe Bay NHS Foundation Trust, Lancaster, United Kingdom
| | - Sue Carter
- Director Kinsey Institute, Indiana University, Bloomington, IN, USA
| | - Manuel G Carbone
- Department of Medicine and Surgery, Division of Psychiatry, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
11
|
Naseri Kouzehgarani G, Kandel ME, Sakakura M, Dupaty JS, Popescu G, Gillette MU. Circadian Volume Changes in Hippocampal Glia Studied by Label-Free Interferometric Imaging. Cells 2022; 11:2073. [PMID: 35805157 PMCID: PMC9265588 DOI: 10.3390/cells11132073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/02/2022] [Accepted: 06/17/2022] [Indexed: 12/10/2022] Open
Abstract
Complex brain functions, including learning and memory, arise in part from the modulatory role of astrocytes on neuronal circuits. Functionally, the dentate gyrus (DG) exhibits differences in the acquisition of long-term potentiation (LTP) between day and night. We hypothesize that the dynamic nature of astrocyte morphology plays an important role in the functional circuitry of hippocampal learning and memory, specifically in the DG. Standard microscopy techniques, such as differential interference contrast (DIC), present insufficient contrast for detecting changes in astrocyte structure and function and are unable to inform on the intrinsic structure of the sample in a quantitative manner. Recently, gradient light interference microscopy (GLIM) has been developed to upgrade a DIC microscope with quantitative capabilities such as single-cell dry mass and volume characterization. Here, we present a methodology for combining GLIM and electrophysiology to quantify the astrocyte morphological behavior over the day-night cycle. Colocalized measurements of GLIM and fluorescence allowed us to quantify the dry masses and volumes of hundreds of astrocytes. Our results indicate that, on average, there is a 25% cell volume reduction during the nocturnal cycle. Remarkably, this cell volume change takes place at constant dry mass, which suggests that the volume regulation occurs primarily through aqueous medium exchange with the environment.
Collapse
Affiliation(s)
- Ghazal Naseri Kouzehgarani
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA;
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; (M.E.K.); (M.S.); (G.P.)
| | - Mikhail E. Kandel
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; (M.E.K.); (M.S.); (G.P.)
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Masayoshi Sakakura
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; (M.E.K.); (M.S.); (G.P.)
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Joshua S. Dupaty
- Department of Biomedical Engineering, Mercer University, Macon, GA 31207, USA;
| | - Gabriel Popescu
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; (M.E.K.); (M.S.); (G.P.)
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Martha U. Gillette
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA;
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; (M.E.K.); (M.S.); (G.P.)
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| |
Collapse
|
12
|
Sun J, Liu Y, Hao X, Lin W, Su W, Chiang E, Baudry M, Bi X. LAMTOR1 inhibition of TRPML1‐dependent lysosomal calcium release regulates dendritic lysosome trafficking and hippocampal neuronal function. EMBO J 2022; 41:e108119. [PMID: 35099830 PMCID: PMC8886530 DOI: 10.15252/embj.2021108119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 12/12/2021] [Accepted: 12/21/2021] [Indexed: 02/05/2023] Open
Abstract
Lysosomes function not only as degradatory compartments but also as dynamic intracellular calcium ion stores. The transient receptor potential mucolipin 1 (TRPML1) channel mediates lysosomal Ca2+ release, thereby participating in multiple cellular functions. The pentameric Ragulator complex, which plays a critical role in the activation of mTORC1, is also involved in lysosomal trafficking and is anchored to lysosomes through its LAMTOR1 subunit. Here, we report that the Ragulator restricts lysosomal trafficking in dendrites of hippocampal neurons via LAMTOR1‐mediated tonic inhibition of TRPML1 activity, independently of mTORC1. LAMTOR1 directly interacts with TRPML1 through its N‐terminal domain. Eliminating this inhibition in hippocampal neurons by LAMTOR1 deletion or by disrupting LAMTOR1‐TRPML1 binding increases TRPML1‐mediated Ca2+ release and facilitates dendritic lysosomal trafficking powered by dynein. LAMTOR1 deletion in the hippocampal CA1 region of adult mice results in alterations in synaptic plasticity, and in impaired object‐recognition memory and contextual fear conditioning, due to TRPML1 activation. Mechanistically, changes in synaptic plasticity are associated with increased GluA1 dephosphorylation by calcineurin and lysosomal degradation. Thus, LAMTOR1‐mediated inhibition of TRPML1 is critical for regulating dendritic lysosomal motility, synaptic plasticity, and learning.
Collapse
Affiliation(s)
- Jiandong Sun
- College of Osteopathic Medicine of the Pacific Western University of Health Sciences Pomona CA USA
| | - Yan Liu
- Graduate College of Biomedical Sciences Western University of Health Sciences Pomona CA USA
| | - Xiaoning Hao
- College of Osteopathic Medicine of the Pacific Western University of Health Sciences Pomona CA USA
| | - Weiju Lin
- Graduate College of Biomedical Sciences Western University of Health Sciences Pomona CA USA
| | - Wenyue Su
- Graduate College of Biomedical Sciences Western University of Health Sciences Pomona CA USA
| | - Emerald Chiang
- Graduate College of Biomedical Sciences Western University of Health Sciences Pomona CA USA
| | - Michel Baudry
- Graduate College of Biomedical Sciences Western University of Health Sciences Pomona CA USA
| | - Xiaoning Bi
- College of Osteopathic Medicine of the Pacific Western University of Health Sciences Pomona CA USA
| |
Collapse
|
13
|
Cepeda-Prado EA, Khodaie B, Quiceno GD, Beythien S, Edelmann E, Lessmann V. Calcium-Permeable AMPA Receptors Mediate Timing-Dependent LTP Elicited by Low Repeat Coincident Pre- and Postsynaptic Activity at Schaffer Collateral-CA1 Synapses. Cereb Cortex 2021; 32:1682-1703. [PMID: 34498663 DOI: 10.1093/cercor/bhab306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/26/2022] Open
Abstract
High-frequency stimulation induced long-term potentiation (LTP) and low-frequency stimulation induced LTD are considered as cellular models of memory formation. Interestingly, spike timing-dependent plasticity (STDP) can induce equally robust timing-dependent LTP (t-LTP) and t-LTD in response to low frequency repeats of coincident action potential (AP) firing in presynaptic and postsynaptic cells. Commonly, STDP paradigms relying on 25-100 repeats of coincident AP firing are used to elicit t-LTP or t-LTD, but the minimum number of repeats required for successful STDP is barely explored. However, systematic investigation of physiologically relevant low repeat STDP paradigms is of utmost importance to explain learning mechanisms in vivo. Here, we examined low repeat STDP at Schaffer collateral-CA1 synapses by pairing one presynaptic AP with either one postsynaptic AP (1:1 t-LTP), or a burst of 4 APs (1:4 t-LTP) and found 3-6 repeats to be sufficient to elicit t-LTP. 6× 1:1 t-LTP required postsynaptic Ca2+ influx via NMDARs and L-type VGCCs and was mediated by increased presynaptic glutamate release. In contrast, 1:4 t-LTP depended on postsynaptic metabotropic GluRs and ryanodine receptor signaling and was mediated by postsynaptic insertion of AMPA receptors. Unexpectedly, both 6× t-LTP variants were strictly dependent on activation of postsynaptic Ca2+-permeable AMPARs but were differentially regulated by dopamine receptor signaling. Our data show that synaptic changes induced by only 3-6 repeats of mild STDP stimulation occurring in ≤10 s can take place on time scales observed also during single trial learning.
Collapse
Affiliation(s)
- Efrain A Cepeda-Prado
- Institut für Physiologie, Otto-von-Guericke-Universität (OVGU), Medizinische Fakultät, Magdeburg 39120, Germany
| | - Babak Khodaie
- Institut für Physiologie, Otto-von-Guericke-Universität (OVGU), Medizinische Fakultät, Magdeburg 39120, Germany.,OVGU International ESF-funded Graduate School ABINEP, Magdeburg 39104, Germany
| | - Gloria D Quiceno
- Institut für Physiologie, Otto-von-Guericke-Universität (OVGU), Medizinische Fakultät, Magdeburg 39120, Germany
| | - Swantje Beythien
- Institut für Physiologie, Otto-von-Guericke-Universität (OVGU), Medizinische Fakultät, Magdeburg 39120, Germany
| | - Elke Edelmann
- Institut für Physiologie, Otto-von-Guericke-Universität (OVGU), Medizinische Fakultät, Magdeburg 39120, Germany.,OVGU International ESF-funded Graduate School ABINEP, Magdeburg 39104, Germany.,Center for Behavioral Brain Sciences, Magdeburg 39104, Germany
| | - Volkmar Lessmann
- Institut für Physiologie, Otto-von-Guericke-Universität (OVGU), Medizinische Fakultät, Magdeburg 39120, Germany.,OVGU International ESF-funded Graduate School ABINEP, Magdeburg 39104, Germany.,Center for Behavioral Brain Sciences, Magdeburg 39104, Germany
| |
Collapse
|
14
|
The role of CaMKII autophosphorylation for NMDA receptor-dependent synaptic potentiation. Neuropharmacology 2021; 193:108616. [PMID: 34051268 DOI: 10.1016/j.neuropharm.2021.108616] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/01/2021] [Accepted: 05/13/2021] [Indexed: 11/24/2022]
Abstract
Potentiation of glutamatergic synaptic transmission is thought to underlie memory. The induction of this synaptic potentiation relies on activation of NMDA receptors which allows for calcium influx into the post-synapse. A key mechanistic question for the understanding of synaptic potentiation is what signaling is activated by the calcium influx. Here, I review evidences that at mature synapses the elevated calcium levels activate primarily calcium/calmodulin-dependent kinase II (CaMKII) and cause its autophophorylation. CaMKII autophosphorylation leads to calcium-independent activity of the kinase, so that kinase signaling can outlast NMDA receptor-dependent calcium influx. Prolonged CaMKII signaling induces downstream signaling for AMPA receptor trafficking into the post-synaptic density and causes structural enlargement of the synapse. Interestingly, however, CaMKII autophosphorylation does not have such an essential role in NMDA receptor-dependent synaptic potentiation in early postnatal development and in adult dentate gyrus, where neurogenesis occurs. Additionally, in old age memory-relevant NMDA receptor-dependent synaptic plasticity appears to be due to generation of multi-innervated dendritic spines, which does not require CaMKII autophosphorylation. In conclusion, CaMKII autophosphorylation has a conditional role in the induction of NMDA receptor-dependent synaptic potentiation.
Collapse
|
15
|
Chaichim C, Cannings MJ, Dumlao G, Power JM. Long-term depression of excitatory transmission in the lateral septum. J Neurophysiol 2021; 125:1825-1832. [PMID: 33852819 DOI: 10.1152/jn.00657.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/13/2021] [Indexed: 11/22/2022] Open
Abstract
Neurons in the lateral septum (LS) integrate glutamatergic synaptic inputs, primarily from hippocampus, and send inhibitory projections to brain regions involved in reward and the generation of motivated behavior. Motivated learning and drugs of abuse have been shown to induce long-term changes in the strength of glutamatergic synapses in the LS, but the cellular mechanisms underlying long-term synaptic modification in the LS are poorly understood. Here, we examined synaptic transmission and long-term depression (LTD) in brain slices prepared from male and female C57BL/6 mice. No sex differences were observed in whole cell patch-clamp recordings of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA-R)- and N-methyl-d-aspartate receptor (NMDA-R)-mediated currents. Low-frequency stimulation of the fimbria fiber bundle (1 Hz 15 min) induced LTD of the LS field excitatory postsynaptic potential (fEPSP). Induction of LTD was blocked by the NMDA-R antagonist (d)-2-amino-5-phosphonovaleric acid (APV), but not the selective antagonist of GluN2B-containing NMDA-Rs ifenprodil. These results demonstrate the NMDA-R dependence of LTD in the LS. The LS is a sexually dimorphic structure, and sex differences in glutamatergic transmission have been reported in vivo; our results suggest sex differences observed in vivo result from network activity rather than intrinsic differences in glutamatergic transmission.NEW & NOTEWORTHY The lateral septum (LS) integrates information from hippocampus and other regions to provide context-dependent (top down or higher order) regulation of mood and motivated behavior. Learning and drugs of abuse induce long-term changes in the strength of glutamatergic projections to the LS; however, the cellular mechanisms underlying such changes are poorly understood. Here, we demonstrate there are no apparent sex differences in fast excitatory transmission and that long-term synaptic depression in the LS is NMDA-R dependent.
Collapse
Affiliation(s)
- Chanchanok Chaichim
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Madeleine J Cannings
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Gadiel Dumlao
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - John M Power
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
16
|
Maltsev AV, Balaban PM. PP1/PP2A phosphatase inhibition-induced metaplasticity in protein synthesis blocker-treated hippocampal slices: LTP and LTD, or There and Back again. Biochem Biophys Res Commun 2021; 558:64-70. [PMID: 33901925 DOI: 10.1016/j.bbrc.2021.04.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/15/2021] [Indexed: 01/06/2023]
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) are key forms of synaptic plasticity in the hippocampus. LTP and LTD are believed to underlie the processes occurring during learning and memory. Search of mechanisms responsible for switching from LTP to LTD and vice versa is an important fundamental task. Protein synthesis blockers (PSB) are widely used in models of memory impairment and LTP suppression. Here, we found that blockade of serine/threonine phosphatases 1 (PP1) and 2A (PP2A) with the specific blockers, calyculin A (CalyA) or okadaic acid (OA), and simultaneous blockade of the protein translation by anisomycin or cycloheximide leads to a switch from PSB-impaired LTP to LTD. PP1/PP2A-dependent LTD was extremely sensitive to the intensity of the test stimuli, whose increase restored the field excitatory postsynaptic potentials (fEPSP) to the values corresponding to control LTP in the non-treated slices. PP1/PP2A blockade affected the basal synaptic transmission, increasing the paired-pulse facilitation (PPF) ratio, and restored the PSB-impaired PPF 3 h after tetanus. Prolonged exposure to anisomycin led to the NO synthesis increase (measured using fluorescent dye) both in the dendrites and somata of CA1, CA3, dentate gyrus (DG) hippocampal layers. OA partially prevented the NO production in the CA1 dendrites, as well in the CA3 and DG somas. Direct measurements of changes in serine/threonine phosphatase (STPP) activity revealed importance of the PP1/PP2A-dependent component in the late LTP phase (L-LTP) in anisomycin-treated slices. Thus, serine/threonine phosphatases PP1/PP2A influence both basal synaptic transmission and stimulation-induced synaptic plasticity.
Collapse
Affiliation(s)
- Alexander V Maltsev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485, Butlerova 5A, Moscow, Russia.
| | - Pavel M Balaban
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485, Butlerova 5A, Moscow, Russia
| |
Collapse
|
17
|
Sawchuk SD, Reid HMO, Neale KJ, Shin J, Christie BR. Effects of Ethanol on Synaptic Plasticity and NMDA Currents in the Juvenile Rat Dentate Gyrus. Brain Plast 2020; 6:123-136. [PMID: 33680851 PMCID: PMC7903019 DOI: 10.3233/bpl-200110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background and Objectives: We examined how acute ethanol (EtOH) exposure affects long term depression (LTD) in the dentate gyrus (DG) of the hippocampus in juvenile rats. EtOH is thought to directly modulate n-methyl-D-aspartate receptor (NMDAr) currents, which are believed important for LTD induction. LTD in turn is believed to play an important developmental role in the hippocampus by facilitating synaptic pruning. Methods: Hippocampal slices (350μm) were obtained at post-natal day (PND) 14, 21, or 28. Field EPSPs (excitatory post-synaptic potential) or whole-cell EPSCs (excitatory post-synaptic conductance) were recorded from the DG (dentate gyrus) in response to medial perforant path activation. Low-frequency stimulation (LFS; 900 pulses; 120 s pulse) was used to induce LTD. Results: Whole-cell recordings indicated that EtOH exposure at 50mM did not significantly impact ensemble NMDAr EPSCs in slices obtained from animals in the PND14 or 21 groups, but it reliably produced a modest inhibition in the PND28 group. Increasing the concentration to 100 mM resulted in a modest inhibition of NMDAr EPSCs in all three groups. LTD induction and maintenance was equivalent in magnitude in all three age groups in control conditions, however, and surprisingly, NMDA antagonist AP5 only reliably blocked LTD in the PND21 and 28 age groups. The application of 50 mM EtOH attenuated LTD in all three age groups, however increasing the concentration to 100 mM did not reliably inhibit LTD. Conclusions: These results indicate that the effect of EtOH on NMDAr-EPSCs recorded from DGCs is both age and concentration dependent in juveniles. Low concentrations of EtOH can attenuate, but did not block LTD in the DG. The effects of EtOH on LTD do not align well with it’s effects on NNMDA receptors.
Collapse
Affiliation(s)
- Scott D Sawchuk
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Hannah M O Reid
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Katie J Neale
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - James Shin
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Brian R Christie
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Department of Psychology, University of British Columbia, Vancouver, BC, Canada.,Island Medical Program and Department of Cellular and Physiological Sciences, University of British Columbia, Victoria, BC, Canada
| |
Collapse
|
18
|
Guo L, Hou L, Wu Y, Lv H, Yu H. Encoding specificity of scale-free spiking neural network under different external stimulations. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.07.111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
19
|
Bertrand C, Deschamps C, Rabiant K, Peineau S, Antol J, Martinetti M, Naassila M, Vilpoux C, Pierrefiche O. Patch-Clamp Recording of Low Frequency Stimulation-induced Long-Term Synaptic Depression in Rat Hippocampus Slices During Early and Late Neurodevelopment. Alcohol Clin Exp Res 2020; 45:351-364. [PMID: 33196109 DOI: 10.1111/acer.14516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/05/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Studying synaptic plasticity in the rat hippocampus slice is a well-established way to analyze cellular mechanisms related to learning and memory. Different modes of recording can be used, such as extracellular field excitatory post-synaptic potential (EPSP) and diverse patch-clamp methods. However, most studies using these methods have examined only up to the juvenile stage of brain maturation, which is known to terminate during late adolescence/early adulthood. Moreover, several animal models of human diseases have been developed at this late stage of brain development. To study the vulnerability of adolescent rat to the cognitive impairment of alcohol, we developed a model of binge-like exposure in which ethanol selectively abolishes low frequency stimulation (LFS)-induced, field EPSP long-term depression (LTD) in the rat hippocampus slice. METHODS In the present study, we sought to use whole-cell patch-clamp recording in the voltage-clamp mode to further investigate the mechanisms involved in the abolition of LFS-induced LTD in our model of binge-like exposure in adolescent rat hippocampus slices. In addition, we investigated LFS-induced NMDAR-LTD and mGluR-LTD at different ages and changed several parameters to improve the recordings. RESULTS Using patch-clamp recording, LFS-induced NMDAR-LTD and mGluR-LTD could be measured until 4 weeks of age, but not in older animals. Similarly, chemical mGluR-LTD and a combined LFS-LTD involving both N-Methyl-D-Aspartate Receptor (NMDAR) and mGluR were not measured in older animals. The absence of LFS-LTD was not due to the loss of a diffusible intracellular agent nor the voltage mode of recording or intracellular blockade of either sodium or potassium currents. In contrast to voltage-clamp recordings, LFS-induced LTD tested with field recordings was measured at all ages and the effects of EtOH were visible in all cases. CONCLUSIONS We concluded that whole-cell patch-clamp recordings are not suitable for studying synaptic LFS-induced LTD in rats older than 4 weeks of age and therefore cannot be used to explore electrophysiological disturbances, such as those induced by alcohol binge drinking during adolescence, which constitutes a late period of brain maturation.
Collapse
Affiliation(s)
- Cédric Bertrand
- UMR1247 INSERM, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Chloé Deschamps
- UMR1247 INSERM, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Kevin Rabiant
- UMR1247 INSERM, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Stéphane Peineau
- UMR1247 INSERM, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Johann Antol
- UMR1247 INSERM, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | | | - Mickael Naassila
- UMR1247 INSERM, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Catherine Vilpoux
- UMR1247 INSERM, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Olivier Pierrefiche
- UMR1247 INSERM, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| |
Collapse
|
20
|
Fontaine CJ, Gräfe EL, Pinar C, Bonilla-Del Río I, Grandes P, Christie BR. Endocannabinoid receptors contribute significantly to multiple forms of long-term depression in the rat dentate gyrus. LEARNING & MEMORY (COLD SPRING HARBOR, N.Y.) 2020; 27:380-389. [PMID: 32817304 PMCID: PMC7433656 DOI: 10.1101/lm.050666.119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022]
Abstract
Cannabinoid receptors are widely expressed throughout the hippocampal formation, but are particularly dense in the dentate gyrus (DG) subregion. We, and others, have shown in mice that cannabinoid type 1 receptors (CB1Rs) are involved in a long-term depression (LTD) that can be induced by prolonged 10 Hz stimulation of the medial perforant path (MPP)-granule cell synaptic input to the DG. Here, we extend this work to examine the involvement of CB1Rs in other common forms of LTD in the hippocampus of juvenile male and female Sprague–Dawley rats (Rattus norvegicus). We found, as in mice, that prolonged 10 Hz stimulation (6000 pulses) could reliably induce a form of LTD that was dependent upon CB1R activation. In addition, we also discovered a role for both CB1R and mGluR proteins in LTD induced with 1 Hz low-frequency stimulation (1 Hz-LTD; 900 pulses) and in LTD induced by bath application of the group I mGluR agonist (RS)-3,5-Dihydroxyphenylglycine (DHPG; DHPG-LTD). This study elucidates an essential role for endocannabinoid receptors in a number of forms of LTD in the rat DG, and identifies a novel role for CB1Rs as potential therapeutic targets for conditions that involve impaired LTD in the DG.
Collapse
Affiliation(s)
- Christine J Fontaine
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Erin L Gräfe
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Cristina Pinar
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Itziar Bonilla-Del Río
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, E-48940 Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, E-48940 Leioa, Spain
| | - Pedro Grandes
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada.,Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, E-48940 Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, E-48940 Leioa, Spain
| | - Brian R Christie
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada.,Island Medical Program and Department of Cellular and Physiological Sciences, University of British Columbia, Victoria, British Columbia, USA
| |
Collapse
|
21
|
Mazurek KA, Schieber MH. Injecting Information into the Mammalian Cortex: Progress, Challenges, and Promise. Neuroscientist 2020; 27:129-142. [PMID: 32648527 DOI: 10.1177/1073858420936253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
For 150 years artificial stimulation has been used to study the function of the nervous system. Such stimulation-whether electrical or optogenetic-eventually may be used in neuroprosthetic devices to replace lost sensory inputs and to otherwise introduce information into the nervous system. Efforts toward this goal can be classified broadly as either biomimetic or arbitrary. Biomimetic stimulation aims to mimic patterns of natural neural activity, so that the subject immediately experiences the artificial stimulation as if it were natural sensation. Arbitrary stimulation, in contrast, makes no attempt to mimic natural patterns of neural activity. Instead, different stimuli-at different locations and/or in different patterns-are assigned different meanings randomly. The subject's time and effort then are required to learn to interpret different stimuli, a process that engages the brain's inherent plasticity. Here we will examine progress in using artificial stimulation to inject information into the cerebral cortex and discuss the challenges for and the promise of future development.
Collapse
Affiliation(s)
- Kevin A Mazurek
- Department of Neuroscience, University of Rochester, Rochester, NY, USA.,Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY, USA
| | - Marc H Schieber
- Department of Neuroscience, University of Rochester, Rochester, NY, USA.,Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY, USA.,Department of Neurology, University of Rochester, Rochester, NY, USA.,Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| |
Collapse
|
22
|
Caruana DA, Dudek SM. Adenosine A 1 Receptor-Mediated Synaptic Depression in the Developing Hippocampal Area CA2. Front Synaptic Neurosci 2020; 12:21. [PMID: 32612520 PMCID: PMC7307308 DOI: 10.3389/fnsyn.2020.00021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/04/2020] [Indexed: 12/22/2022] Open
Abstract
Immunolabeling for adenosine A1 receptors (A1Rs) is high in hippocampal area CA2 in adult rats, and the potentiating effects of caffeine or other A1R-selective antagonists on synaptic responses are particularly robust at Schaffer collateral synapses in CA2. Interestingly, the pronounced staining for A1Rs in CA2 is not apparent until rats are 4 weeks old, suggesting that developmental changes other than receptor distribution underlie the sensitivity of CA2 synapses to A1R antagonists in young animals. To evaluate the role of A1R-mediated postsynaptic signals at these synapses, we tested whether A1R agonists regulate synaptic transmission at Schaffer collateral inputs to CA2 and CA1. We found that the selective A1R agonist CCPA caused a lasting depression of synaptic responses in both CA2 and CA1 neurons in slices obtained from juvenile rats (P14), but that the effect was observed only in CA2 in slices prepared from adult animals (~P70). Interestingly, blocking phosphodiesterase activity with rolipram inhibited the CCPA-induced depression in CA1, but not in CA2, indicative of robust phosphodiesterase activity in CA1 neurons. Likewise, synaptic responses in CA2 and CA1 differed in their sensitivity to the adenylyl cyclase activator, forskolin, in that it increased synaptic transmission in CA2, but had little effect in CA1. These findings suggest that the A1R-mediated synaptic depression tracks the postnatal development of immunolabeling for A1Rs and that the enhanced sensitivity to antagonists in CA2 at young ages is likely due to robust adenylyl cyclase activity and weak phosphodiesterase activity rather than to enrichment of A1Rs.
Collapse
Affiliation(s)
- Douglas A. Caruana
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
- Neurobiology Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health, Research Triangle Park, NC, United States
| | - Serena M. Dudek
- Neurobiology Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health, Research Triangle Park, NC, United States
| |
Collapse
|
23
|
Linking Nanoscale Dynamics of AMPA Receptor Organization to Plasticity of Excitatory Synapses and Learning. J Neurosci 2019; 38:9318-9329. [PMID: 30381423 DOI: 10.1523/jneurosci.2119-18.2018] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/21/2018] [Accepted: 09/21/2018] [Indexed: 11/21/2022] Open
Abstract
The spatiotemporal organization of neurotransmitter receptors in the postsynaptic membrane is a fundamental determinant of synaptic transmission and thus of information processing by the brain. The ionotropic AMPA subtype of glutamate receptors (AMPARs) mediate fast excitatory synaptic transmission in the CNS. The number of AMPARs located en face presynaptic glutamate release sites sets the efficacy of synaptic transmission. Understanding how this number is set and regulated has been the topic of intense research in the last two decades. We showed that AMPARs are not stable in the synapse as initially thought. They continuously enter and exit the postsynaptic density by lateral diffusion, and they exchange between the neuronal surface and intracellular compartments by endocytosis and exocytosis at extrasynaptic sites. Regulation of these various trafficking pathways has emerged as a key mechanism for activity-dependent plasticity of synaptic transmission, a process important for learning and memory. I here present my view of these findings. In particular, the advent of super-resolution microscopy and single-molecule tracking has helped to uncover the intricacy of AMPARs' dynamic organization at the nanoscale. In addition, AMPAR surface diffusion is highly regulated by a variety of factors, including neuronal activity, stress hormones, and neurodegeneration, suggesting that AMPAR diffusion-trapping may play a central role in synapse function. Using innovative tools to understand further the link between receptor dynamics and synapse plasticity is now unveiling new molecular mechanisms of learning. Modifying AMPAR dynamics may emerge as a new target to correct synapse dysfunction in the diseased brain.
Collapse
|
24
|
Fontaine CJ, Pinar C, Yang W, Pang AF, Suesser KE, Choi JSJ, Christie BR. Impaired Bidirectional Synaptic Plasticity in Juvenile Offspring Following Prenatal Ethanol Exposure. Alcohol Clin Exp Res 2019; 43:2153-2166. [PMID: 31386206 DOI: 10.1111/acer.14170] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 07/24/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND The hippocampus is particularly vulnerable to the teratogenic effects of prenatal ethanol exposure (PNEE), and hippocampal structural and functional deficits are thought to contribute to the learning and memory deficits that are a hallmark feature of fetal alcohol spectrum disorders. METHODS Sprague Dawley dams were exposed to a liquid diet that contained EtOH (35.5% EtOH-derived calories) throughout gestation, and then, PNEE juvenile (P21-28) male and female offspring were used for in vitro electrophysiological recordings. We examined long-term potentiation (LTP), long-term depression (LTD), and depotentiation in the medial perforant path input to the dentate gyrus (DG) to determine the impact of PNEE on the dynamic range of bidirectional synaptic plasticity in both sexes. RESULTS PNEE reduced the responsiveness of the DGs of male but not in female offspring, and this effect was no longer apparent when GABAergic signaling was inhibited. There was also a sex-specific LTD impairment in males, but increasing the duration of the conditioning stimulus could overcome this deficit. The magnitude of LTP was also reduced, but in both sexes following PNEE. This appears to be an increase in the threshold for induction, not in capacity, as the level of LTP induced in PNEE animals was increased to control levels when additional conditioning stimuli were administered. CONCLUSIONS These data are the first to describe, in a single study, the impact of PNEE on the dynamic range of bidirectional synaptic plasticity in the juvenile DG in both males and in females. The data suggest that PNEE increases the threshold for LTP in the DG in both sexes, but produces a sex-specific increase in the threshold for LTD in males These alterations reduce the dynamic range for synaptic plasticity in both sexes.
Collapse
Affiliation(s)
| | - Cristina Pinar
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Waisley Yang
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Angela F Pang
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Konrad E Suesser
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - James S J Choi
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Brian R Christie
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Island Medical Program, Department of Cellular and Physiological Sciences, University of British Columbia, Victoria, BC, Canada
| |
Collapse
|
25
|
Zhang RJ, Li Y, Liu Q, Gao YJ, Du J, Ma J, Sun SG, Wang L. Differential Expression Profiles and Functional Prediction of Circular RNAs and Long Non-coding RNAs in the Hippocampus of Nrf2-Knockout Mice. Front Mol Neurosci 2019; 12:196. [PMID: 31447646 PMCID: PMC6697070 DOI: 10.3389/fnmol.2019.00196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/30/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Nrf2 (nuclear factor, erythroid 2 like 2) is believed to play a major role in neurodegenerative diseases. The present study attempts to investigate the hippocampal circRNA and lncRNA expression profiles associated with Nrf2-mediated neuroprotection. METHODS The hippocampal mRNA, circRNA and lncRNA expression profiles of Nrf2 (-/-) mice were determined by a microarray analysis. Bioinformatics analyses, including identification of differentially expressed mRNAs (DEmRNAs), circRNAs (DEcircRNAs) and lncRNAs (DElncRNAs), DEcircRNA-miRNA-DEmRNA interaction network construction, DElncRNA-DEmRNA co-expression network construction, and biological function annotation, were conducted. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to validate the dysregulated expression of circRNAs and lncRNAs derived from the microarray data of the hippocampus of Nrf2 (-/-) mice. RESULTS Compared to wild-type Nrf2 (+/+) mice, 412 DEmRNAs (109 up- and 303 down-regulated mRNAs), 1279 DEcircRNAs (632 up- and 647 down-regulated circRNAs), and 303 DElncRNAs (50 up- and 253 down-regulated lncRNAs) were identified in the hippocampus of Nrf2 (-/-) mice. Additionally, in the qRT-PCR validation results, the expression patterns of selected DEcircRNAs and DElncRNAs were generally consistent with results in the microarray data. The DEcircRNA-miRNA-DEmRNA interaction networks revealed that mmu_circRNA_44531, mmu_circRNA_34132, mmu_circRNA_000903, mmu_circRNA_018676, mmu_circRNA_45901, mmu_circRNA_33836, mmu_circRNA_ 34137, mmu_circRNA_34106, mmu_circRNA_008691, and mmu_circRNA_003237 were predicted to compete with 47, 54, 45, 57, 63, 81, 121, 85, 181, and 43 DEmRNAs, respectively. ENSMUST00000125413, NR_028123, uc008nfy.1, AK076764, AK142725, AK080547, and AK035903 were co-expressed with 178, 89, 149, 179, 142, 55, and 112 DEmRNAs in the Nrf2 (-/-) hippocampus, respectively. CONCLUSION Our study might contribute to exploring the key circRNAs and lncRNAs associated with Nrf2-mediated neuroprotection.
Collapse
Affiliation(s)
- Run-Jiao Zhang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Yan Li
- School of Nursing, Hebei Medical University, Shijiazhuang, China
| | - Qing Liu
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Yan-Jing Gao
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Juan Du
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Jun Ma
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Shao-Guang Sun
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Lei Wang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
26
|
Trivino-Paredes JS, Nahirney PC, Pinar C, Grandes P, Christie BR. Acute slice preparation for electrophysiology increases spine numbers equivalently in the male and female juvenile hippocampus: a DiI labeling study. J Neurophysiol 2019; 122:958-969. [PMID: 31268808 DOI: 10.1152/jn.00332.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hippocampal slices are widely used for in vitro electrophysiological experiments to study underlying mechanisms for synaptic transmission and plasticity, and there is a growing appreciation for sex differences in synaptic plasticity. To date, several studies have shown that the process of making slices from male animals can induce synaptogenesis in cornu ammonis area 1 (CA1) pyramidal cells, but there is a paucity of data for females and other brain regions. In the current study we use microcrystals of the lipophilic carbocyanine dye DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate) to stain individual neurons in the CA1 and dentate gyrus (DG) hippocampal subfields of postnatal day 21 male and female rats. We show that the preparation of sections for electrophysiology produces significant increases in spines in sections obtained from females, similar to that observed in males. We also show that the procedures used for in vitro electrophysiology also result in significant spine increases in the DG and CA1 subfields. These results demonstrate the utility of this refined DiI procedure for staining neuronal dendrites and spines. They also show, for the first time, that in vitro electrophysiology slice preparations enhance spine numbers on hippocampal cells equivalently in both juvenile females and males.NEW & NOTEWORTHY This study introduces a new DiI technique that elucidates differences in spine numbers in juvenile female and male hippocampus, and shows that slice preparations for hippocampal electrophysiology in vitro may mask these differences.
Collapse
Affiliation(s)
- J S Trivino-Paredes
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - P C Nahirney
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada.,Island Medical Program, University of British Columbia, Victoria, British Columbia, Canada.,Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - C Pinar
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - P Grandes
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada.,Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Vizcaya, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Vizcaya, Spain
| | - B R Christie
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada.,Island Medical Program, University of British Columbia, Victoria, British Columbia, Canada.,Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
27
|
Guo L, Lv H, Huang F, Shi H. Research on Neural Information Coding of Spiking Neural Network Based on Synaptic Plasticity Under AC Electric Field Stimulation. INT J PATTERN RECOGN 2019. [DOI: 10.1142/s0218001419590213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Neural information coding is helpful in understanding the working mechanism of the nervous system. Currently, most of the studies are based on the neural network which is based on excitatory synaptic plasticity. However, the inhibitory synaptic plasticity also plays an important role in the regulation of neural network. For presenting better biological authenticity, a spiking neural network was constructed based on the synaptic plasticity regulation mechanism in this study. The synaptic plasticity regulation mechanism contains excitatory and inhibitory synapses. The characteristics of neural information coding under AC electric field stimulation were studied from the perspective of time coding (inter-spike interval coding) and rate coding (average rate coding). The experimental results indicate that inter-spike intervals decrease and the firing rate of neurons increases under AC electric field stimulation. With the increase of the stimulation intensity, inter-spike intervals are decreased and the firing rate of neurons is increased. The neurons whose average firing rate increases can be raised as a neuron cluster to express the information. The results of this paper help us to understand the mechanism of information processing of the brain, and bring new ideas to the engineering applications such as neural computation and artificial intelligence.
Collapse
Affiliation(s)
- Lei Guo
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
- Key Laboratory of Electromagnetic Field and Electrical, Apparatus Reliability of Hebei Province, School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Huan Lv
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
- Key Laboratory of Electromagnetic Field and Electrical, Apparatus Reliability of Hebei Province, School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Fengrong Huang
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Hongyi Shi
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
- Key Laboratory of Electromagnetic Field and Electrical, Apparatus Reliability of Hebei Province, School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|
28
|
Khoo GH, Lin YT, Tsai TC, Hsu KS. Perineuronal Nets Restrict the Induction of Long-Term Depression in the Mouse Hippocampal CA1 Region. Mol Neurobiol 2019; 56:6436-6450. [PMID: 30826967 DOI: 10.1007/s12035-019-1526-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/08/2019] [Indexed: 10/27/2022]
Abstract
Long-term depression (LTD) of synaptic efficacy is widely regarded as a cellular basis of learning and memory. The magnitude of hippocampal CA1 LTD induced by low-frequency stimulation (LFS) declines with age, but the mechanisms involved remain poorly understood. Perineuronal nets (PNNs) are specialized extracellular matrix structures that function in dampening synaptic plasticity during postnatal development, suggesting that PNN formation may restrict LTD induction in the adult hippocampus. Here, we show that PNNs tightly enwrap a subpopulation of parvalbumin (PV) interneurons in the hippocampal CA1 region and enzymatic removal of PNNs with the chondroitinase ABC alters the excitatory/inhibitory synaptic balance toward more excitation and restores the ability of LFS to induce an N-methyl-D-aspartate receptor-dependent LTD at Schaffer collateral-CA1 synapses in slices from male adult mice. Early interference with depolarizing GABA with Na+-K+-2Cl- cotransporter inhibitor bumetanide impairs the maturation of PNNs and enhances LTD induction. These results provide novel insights into a previously unrecognized role for PNNs around PV interneurons in restricting long-term synaptic plasticity at excitatory synapses on hippocampal CA1 neurons in adulthood.
Collapse
Affiliation(s)
- Guan Hock Khoo
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No. 1, University Rd., Tainan City, 70101, Taiwan
| | - Yu-Ting Lin
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No. 1, University Rd., Tainan City, 70101, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Tsung-Chih Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Kuei-Sen Hsu
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No. 1, University Rd., Tainan City, 70101, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
29
|
Bettio L, Thacker JS, Hutton C, Christie BR. Modulation of synaptic plasticity by exercise. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 147:295-322. [DOI: 10.1016/bs.irn.2019.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Concerto C, Infortuna C, Muscatello MRA, Bruno A, Zoccali R, Chusid E, Aguglia E, Battaglia F. Exploring the effect of adaptogenic Rhodiola Rosea extract on neuroplasticity in humans. Complement Ther Med 2018; 41:141-146. [DOI: 10.1016/j.ctim.2018.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 01/02/2023] Open
|
31
|
Lin YT, Hsu KS. Oxytocin receptor signaling in the hippocampus: Role in regulating neuronal excitability, network oscillatory activity, synaptic plasticity and social memory. Prog Neurobiol 2018; 171:1-14. [DOI: 10.1016/j.pneurobio.2018.10.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/28/2018] [Accepted: 10/20/2018] [Indexed: 12/23/2022]
|
32
|
Kilinc M, Creson T, Rojas C, Aceti M, Ellegood J, Vaissiere T, Lerch JP, Rumbaugh G. Species-conserved SYNGAP1 phenotypes associated with neurodevelopmental disorders. Mol Cell Neurosci 2018; 91:140-150. [PMID: 29580901 DOI: 10.1016/j.mcn.2018.03.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 01/22/2023] Open
Abstract
SYNGAP1 loss-of-function variants are causally associated with intellectual disability, severe epilepsy, autism spectrum disorder and schizophrenia. While there are hundreds of genetic risk factors for neurodevelopmental disorders (NDDs), this gene is somewhat unique because of the frequency and penetrance of loss-of-function variants found in patients combined with the range of brain disorders associated with SYNGAP1 pathogenicity. These clinical findings indicate that SYNGAP1 regulates fundamental neurodevelopmental processes that are necessary for brain development. Here, we describe four phenotypic domains that are controlled by Syngap1 expression across vertebrate species. Two domains, the maturation of cognitive functions and maintenance of excitatory-inhibitory balance, are defined exclusively through a review of the current literature. Two additional domains are defined by integrating the current literature with new data indicating that SYNGAP1/Syngap1 regulates innate survival behaviors and brain structure. These four phenotypic domains are commonly disrupted in NDDs, suggesting that a deeper understanding of developmental Syngap1 functions will be generalizable to other NDDs of known or unknown etiology. Therefore, we discuss the known molecular and cellular functions of Syngap1 and consider how these functions may contribute to the emergence of disease-relevant phenotypes. Finally, we identify major unexplored areas of Syngap1 neurobiology and discuss how a deeper understanding of this gene may uncover general principles of NDD pathobiology.
Collapse
Affiliation(s)
- Murat Kilinc
- Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, United States
| | - Thomas Creson
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, United States
| | - Camilo Rojas
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, United States
| | - Massimiliano Aceti
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, United States
| | - Jacob Ellegood
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ONT, Canada
| | - Thomas Vaissiere
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, United States
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ONT, Canada; Medical Biophysics, University of Toronto, Toronto, ONT, Canada
| | - Gavin Rumbaugh
- Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, United States.
| |
Collapse
|
33
|
Jiang H, Liu S, Geng X, Caccavano A, Conant K, Vicini S, Wu J. Pacing Hippocampal Sharp-Wave Ripples With Weak Electric Stimulation. Front Neurosci 2018; 12:164. [PMID: 29599704 PMCID: PMC5862867 DOI: 10.3389/fnins.2018.00164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/28/2018] [Indexed: 11/13/2022] Open
Abstract
Sharp-wave ripples (SWRs) are spontaneous neuronal population events that occur in the hippocampus during sleep and quiet restfulness, and are thought to play a critical role in the consolidation of episodic memory. SWRs occur at a rate of 30-200 events per minute. Their overall abundance may, however, be reduced with aging and neurodegenerative disease. Here we report that the abundance of SWR within murine hippocampal slices can be increased by paced administration of a weak electrical stimulus, especially when the spontaneously occurring rate is low or compromised. Resultant SWRs have large variations in amplitude and ripple patterns, which are morphologically indistinguishable from those of spontaneous SWRs, despite identical stimulus parameters which presumably activate the same CA3 neurons surrounding the electrode. The stimulus intensity for reliably pacing SWRs is weaker than that required for inducing detectable evoked field potentials in CA1. Moreover, repetitive ~1 Hz stimuli with low intensity can reliably evoke thousands of SWRs without detectable LTD or "habituation." Our results suggest that weak stimuli may facilitate the spontaneous emergence of SWRs without significantly altering their characteristics. Pacing SWRs with weak electric stimuli could potentially be useful for restoring their abundance in the damaged hippocampus.
Collapse
Affiliation(s)
- Huiyi Jiang
- Department of Pediatrics, The First Hospital of Jilin University, Chang Chun, China
- Department of Neuroscience, Georgetown University Medical Center, Georgetown University, Washington, DC, United States
| | - Shicheng Liu
- Department of Pediatrics, The First Hospital of Jilin University, Chang Chun, China
- Department of Neuroscience, Georgetown University Medical Center, Georgetown University, Washington, DC, United States
| | - Xinling Geng
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Adam Caccavano
- Department of Pharmacology, Georgetown University Medical Center, Georgetown University, Washington, DC, United States
| | - Katherine Conant
- Department of Neuroscience, Georgetown University Medical Center, Georgetown University, Washington, DC, United States
| | - Stefano Vicini
- Department of Pharmacology, Georgetown University Medical Center, Georgetown University, Washington, DC, United States
| | - Jianyoung Wu
- Department of Neuroscience, Georgetown University Medical Center, Georgetown University, Washington, DC, United States
| |
Collapse
|
34
|
Edelmann E, Lessmann V. Dopaminergic innervation and modulation of hippocampal networks. Cell Tissue Res 2018; 373:711-727. [PMID: 29470647 DOI: 10.1007/s00441-018-2800-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/17/2018] [Indexed: 02/06/2023]
Abstract
The catecholamine dopamine plays an important role in hippocampus-dependent plasticity and related learning and memory processes. Dopamine secretion in the hippocampus is activated by, e.g., salient or novel stimuli, thereby helping to establish and to stabilize hippocampus-dependent memories. Disturbed dopaminergic function in the hippocampus leads to severe pathophysiological conditions. While the role and importance of dopaminergic modulation of hippocampal networks have been unequivocally proven, there is still a lack of detailed molecular and cellular mechanistic understanding of how dopamine orchestrates these hippocampal processes. In this chapter of the special issue "Hippocampal structure and function," we will discuss the current understanding of dopaminergic modulation of basal synaptic transmission and long-lasting, activity-dependent potentiation or depression.
Collapse
Affiliation(s)
- Elke Edelmann
- Institut für Physiologie, Otto-von-Guericke-Universität, Medizinische Fakultät, Leipziger Str. 44, 39120, Magdeburg, Germany. .,Center for Behavioral Brain Sciences, Otto-von-Guericke University, Universitätsplatz 2, 39106, Magdeburg, Germany.
| | - Volkmar Lessmann
- Institut für Physiologie, Otto-von-Guericke-Universität, Medizinische Fakultät, Leipziger Str. 44, 39120, Magdeburg, Germany. .,Center for Behavioral Brain Sciences, Otto-von-Guericke University, Universitätsplatz 2, 39106, Magdeburg, Germany.
| |
Collapse
|
35
|
BDNF effects on dendritic spine morphology and hippocampal function. Cell Tissue Res 2018; 373:729-741. [DOI: 10.1007/s00441-017-2782-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/22/2017] [Indexed: 12/22/2022]
|