1
|
Wei Y, Zhao L, Wei J, Yu X, Wei L, Ni R, Li T. Hippocampal transcriptome analysis in ClockΔ19 mice identifies pathways associated with glial cell differentiation and myelination. J Affect Disord 2025; 376:280-293. [PMID: 39855567 DOI: 10.1016/j.jad.2025.01.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/30/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND ClockΔ19 mice demonstrate behavioral characteristics and neurobiological changes that closely resemble those observed in bipolar disorder (BD). Notably, abnormalities in the hippocampus have been observed in patients with BD, yet direct molecular investigation of human hippocampal tissue remains challenging due to its limited accessibility. METHODS To model BD, ClockΔ19 mice were employed. Weighted gene co-expression network analysis (WGCNA) was utilized to identify mutation-related modules, and changes in cell populations were determined using the computational deconvolution CIBERSORTx. Furthermore, GeneMANIA and protein-protein interactions (PPIs) were leveraged to construct a comprehensive interaction network. RESULTS 174 differentially expressed genes (DEGs) were identified, revealing abnormalities in rhythmic processes, mitochondrial metabolism, and various cell functions including morphology, differentiation, and receptor activity. Analysis identified 5 modules correlated with the mutation, with functional enrichment highlighting disturbances in rhythmic processes and neural cell differentiation due to the mutation. Furthermore, a decrease in neural stem cells (NSC), and an increase in astrocyte-restricted precursors (ARP), ependymocytes (EPC), and hemoglobin-expressing vascular cells (Hb-VC) in the mutant mice were observed. A network comprising 12 genes that link rhythmic processes to neural cell differentiation in the hippocampus was also identified. LIMITATIONS This study focused on the hippocampus of mice, hence the applicability of these findings to human patients warrants further exploration. CONCLUSION The ClockΔ19 mutation may disrupt circadian rhythm, myelination, and the differentiation of neural stem cells (NSCs) into glial cells. These abnormalities are linked to altered expression of key genes, including DPB, CIART, NR1D1, GFAP, SLC20A2, and KL. Furthermore, interactions between SLC20A2 and KL might provide a connection between circadian rhythm regulation and cell type transitions.
Collapse
Affiliation(s)
- Yingying Wei
- Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Mental Health Center and Institute of Psychiatry, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Liansheng Zhao
- Mental Health Center and Institute of Psychiatry, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jinxue Wei
- Mental Health Center and Institute of Psychiatry, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xueli Yu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Long Wei
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Rongjun Ni
- Mental Health Center and Institute of Psychiatry, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tao Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Huang T, Hua Q, Zhao X, Tian W, Cao H, Xu W, Sun J, Zhang L, Wang K, Ji GJ. Abnormal functional lateralization and cooperation in bipolar disorder are associated with neurotransmitter and cellular profiles. J Affect Disord 2025; 369:970-977. [PMID: 39447972 DOI: 10.1016/j.jad.2024.10.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Hemispheric lateralization and cooperation are essential for efficient brain function, and aberrations in both have been found in psychiatric disorders such as schizophrenia. This study investigated alterations in hemispheric lateralization and cooperation among patients with bipolar disorder (BD) and associations with neurotransmitter and cell-type density distributions to identify potential molecular and cellular pathomechanisms. METHODS Sixty-seven BD patients and 127 healthy controls (HCs) were examined by resting-state functional MRI (rs-fMRI). Whole-brain maps of the autonomy index (AI) and connectivity between functionally homotopic voxels (CFH) were constructed to reveal BD-specific changes in brain functional lateralization and interhemispheric cooperation, respectively. Spatial associations of regional AI and CFH abnormalities with neurotransmitter and cell-type density distributions were examined by correlation analyses. RESULTS Bipolar disorder patients exhibited higher AI values in left superior parietal gyrus, cerebellar right Crus I, and cerebellar right Crus II, and these regional abnormalities were associated with the relative densities (proportions) of oligodendrocyte precursor cells and microglia. Patients also exhibited lower CFH values in right inferior parietal gyrus, bilateral middle occipital gyrus, left postcentral gyrus, and bilateral cerebellar crus II, and these regional abnormalities were associated with the densities of serotonin 1A and dopamine D2 receptors, oligodendrocyte precursor cells, astrocytes, and neurons. CONCLUSIONS These findings indicate that abnormal functional lateralization and cooperation in BD with potential molecular and cellular basis.
Collapse
Affiliation(s)
- Tongqing Huang
- School of Mental Health and Psychological Sciences, Anhui Medical University, 81 Meishan Rd, Hefei 230032, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China
| | - Qiang Hua
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China
| | - Xiya Zhao
- School of Mental Health and Psychological Sciences, Anhui Medical University, 81 Meishan Rd, Hefei 230032, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China
| | - Weichao Tian
- School of Mental Health and Psychological Sciences, Anhui Medical University, 81 Meishan Rd, Hefei 230032, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China
| | - Hai Cao
- School of Mental Health and Psychological Sciences, Anhui Medical University, 81 Meishan Rd, Hefei 230032, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China
| | - Wenqiang Xu
- School of Mental Health and Psychological Sciences, Anhui Medical University, 81 Meishan Rd, Hefei 230032, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China
| | - Jinmei Sun
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China
| | - Li Zhang
- Department of Psychiatry, Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui Province, China.
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China; Anhui Institute of Translational Medicine, Hefei, China.
| | - Gong-Jun Ji
- School of Mental Health and Psychological Sciences, Anhui Medical University, 81 Meishan Rd, Hefei 230032, China; Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China; Anhui Institute of Translational Medicine, Hefei, China.
| |
Collapse
|
3
|
Snijders GJLJ, Gigase FAJ. Neuroglia in mood disorders. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:287-302. [PMID: 40148049 DOI: 10.1016/b978-0-443-19102-2.00010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Multiple lines of evidence indicate that mood disorders, such as major depressive and bipolar disorder, are associated with abnormalities in neuroglial cells. This chapter discusses the existing literature investigating the potential role of astrocytes, oligodendrocytes, and microglia in mood pathology. We will describe evidence from in vivo imaging, postmortem, animal models based on (stress) paradigms that mimic depressive-like behavior, and biomarker studies in blood and cerebrospinal fluid in patients with mood disorders. The effect of medication used in the treatment of mood disorders, such as antidepressants and lithium, on glial function is discussed. Lastly, we highlight the most relevant findings about potential deficiencies in glia-glia crosstalk in mood disorders. Overall, decreased astrocyte and oligodendrocyte density and expression and microglial changes in homeostatic functions have frequently been put forward in MDD pathology. Studies of BD report similar findings to some extent; however, the evidence is less well established. Together, these findings are suggestive of reduced glial cell function leading to potential white matter abnormalities, glutamate dysregulation, disrupted neuronal functioning, and neurotransmission. However, more research is required to better understand the exact mechanisms underlying glial cell contributions to mood disorder development.
Collapse
Affiliation(s)
- Gijsje J L J Snijders
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Frederieke A J Gigase
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
4
|
Delgado-Sequera A, Pérez-Revuelta JI, Caballero-García A, Durán-Ruiz M, Romero-Lopez-Alberca C, García-Mompó C, González-Saiz F, Rodríguez-Iglesias M, Sanchez-Morillo D, Robledo P, Perez V, Berrocoso E, Hidalgo-Figueroa M. Distinct patterns of cell adhesion, migration, and morphology in olfactory neuroepithelium cells of bipolar disorder patients. Mol Med 2024; 30:271. [PMID: 39716063 DOI: 10.1186/s10020-024-01039-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/09/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Bipolar disorder (BD) is a severe, chronic mental illness that remains difficult to diagnose due to the lack of specific biomarkers, relying primarily on clinical assessments. Early diagnosis and treatment are essential for improving prognosis and lowering suicide risk. This study aimed to identify biomarkers and therapeutic targets by utilizing olfactory neuroepithelium (ONE) cells from patients with BD and controls. METHODS Immunofluorescence of ONE cells, along with proteomic and RNA sequencing analyses, was performed to investigate cytoskeletal changes and pathways involved in cell adhesion, movement, and morphology. Additionally, potential biomarkers were investigated in blood samples to improve clinical accessibility. RESULTS Thus, according to functional assays, ONE cells derived from BD patients exhibited decreased substrate adhesion, reduced cell migration, and morphological changes compared to control cells. In addition, proteomic and RNAseq analyses in ONE cells and peripheral blood mononuclear cells (PBMCs) revealed alterations in pathways such as RhoA/PAK/Integrin and Actin Cytoskeleton Signaling, as well as significant changes in inflammatory and immunological pathways. AUROC analysis identified proteins like PTK2 as potential diagnostic biomarkers, showing altered expression in both ONE cells and PBMCs. PTK2 RNA expression correlated with distinct morphological traits in BD ONE cells. CONCLUSIONS In summary, this study identified cytoskeletal alterations, reduced adhesion, and disrupted migration patterns in BD ONE cells, highlighting molecular mechanisms underlying these changes and emphasizing PTK2's role as a potential diagnostic biomarker for BD.
Collapse
Affiliation(s)
- Alejandra Delgado-Sequera
- Neuropsychopharmacology and Psychobiology Research Group, University of Cadiz, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cádiz, Spain
| | - Jose I Pérez-Revuelta
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cádiz, Spain
- Department of Mental Health, Jerez de la Frontera University Hospital, Cádiz, Spain
- Severe Mental Disorder Research Group, Department of Neuroscience, University of Cadiz, Cádiz, Spain
- Centre for Biomedical Research in Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Andres Caballero-García
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cádiz, Spain
- Department of Otolaryngology, Puerta del Mar University Hospital, Cádiz, Spain
| | - MªCarmen Durán-Ruiz
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cádiz, Spain
- Biomedicine, Biotechnology and Public Health Department, University of Cadiz, Cádiz, Spain
| | - Cristina Romero-Lopez-Alberca
- Neuropsychopharmacology and Psychobiology Research Group, University of Cadiz, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cádiz, Spain
- Centre for Biomedical Research in Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychology, University of Cadiz, 11510, Cádiz, Spain
| | - Clara García-Mompó
- Neuropsychopharmacology and Psychobiology Research Group, University of Cadiz, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cádiz, Spain
| | - Francisco González-Saiz
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cádiz, Spain
- Department of Mental Health, Jerez de la Frontera University Hospital, Cádiz, Spain
- Severe Mental Disorder Research Group, Department of Neuroscience, University of Cadiz, Cádiz, Spain
- Centre for Biomedical Research in Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Rodríguez-Iglesias
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cádiz, Spain
- Biomedicine, Biotechnology and Public Health Department, University of Cadiz, Cádiz, Spain
- Department of Microbiology, Puerta del Mar University Hospital, Cádiz, Spain
| | - Daniel Sanchez-Morillo
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cádiz, Spain
- Bioengineering, Automation, and Robotics Research Group, Department of Automation Engineering, Electronics and Computer Architecture and Networks, University of Cadiz, Cádiz, Spain
| | - Patricia Robledo
- Integrative Pharmacology and Systems Neuroscience Group, Hospital del Mar Research Institute, Barcelona, Spain
| | - Victor Perez
- Centre for Biomedical Research in Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Mental Health Research Group, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Esther Berrocoso
- Neuropsychopharmacology and Psychobiology Research Group, University of Cadiz, Cádiz, Spain.
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cádiz, Spain.
- Centre for Biomedical Research in Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
- Department of Neuroscience, University of Cadiz, 11003, Cadiz, Spain.
| | - Maria Hidalgo-Figueroa
- Neuropsychopharmacology and Psychobiology Research Group, University of Cadiz, Cádiz, Spain.
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cádiz, Spain.
- Centre for Biomedical Research in Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
- Department of Psychology, University of Cadiz, 11510, Cádiz, Spain.
| |
Collapse
|
5
|
Zhou Z, Xu Z, Lai W, Chen X, Zeng L, Qian L, Liu X, Jiang W, Zhang Y, Hou G. Reduced myelin content in bipolar disorder: A study of inhomogeneous magnetization transfer. J Affect Disord 2024; 356:363-370. [PMID: 38615848 DOI: 10.1016/j.jad.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/19/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Previous neuroimaging and pathological studies have found myelin-related abnormalities in bipolar disorder (BD), which prompted the use of magnetic resonance (MR) imaging technology sensitive to neuropathological changes to explore its neuropathological basis. We holistically investigated alterations in myelin within BD patients by inhomogeneous magnetization transfer (ihMT), which is sensitive and specific to myelin content. METHODS Thirty-one BD and 42 healthy controls (HC) were involved. Four MR metrics, i.e., ihMT ratio (ihMTR), pseudo-quantitative ihMT (qihMT), magnetization transfer ratio and pseudo-quantitative magnetization transfer (qMT), were compared between groups using analysis methods based on whole-brain voxel-level and white matter regions of interest (ROI), respectively. RESULTS The voxel-wise analysis showed significantly inter-group differences of ihMTR and qihMT in the corpus callosum. The ROI-wise analysis showed that ihMTR, qihMT, and qMT values in BD group were significantly lower than that in HC group in the genu and body of corpus callosum, left anterior limb of the internal capsule, left anterior corona radiate, and bilateral cingulum (p < 0.001). And the qihMT in genu of corpus callosum and right cingulum were negatively correlated with depressive symptoms in BD group. LIMITATIONS This study is based on cross-sectional data and the sample size is limited. CONCLUSION These findings suggest the reduced myelin content of anterior midline structure in the bipolar patients, which might be a critical pathophysiological feature of BD.
Collapse
Affiliation(s)
- Zhifeng Zhou
- Neuropsychiatry Imaging Center, Department of Radiology, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen 518118, China
| | - Ziyun Xu
- Neuropsychiatry Imaging Center, Department of Radiology, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen 518118, China
| | - Wentao Lai
- Neuropsychiatry Imaging Center, Department of Radiology, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen 518118, China
| | - Xiaoqiao Chen
- Neuropsychiatry Imaging Center, Department of Radiology, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen 518118, China
| | - Lin Zeng
- Neuropsychiatry Imaging Center, Department of Radiology, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen 518118, China
| | - Long Qian
- MR Research, GE Healthcare, Beijing 100176, China
| | - Xia Liu
- Neuropsychiatry Imaging Center, Department of Radiology, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen 518118, China
| | - Wentao Jiang
- Neuropsychiatry Imaging Center, Department of Radiology, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen 518118, China
| | - Yingli Zhang
- Department of Psychology, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen 518118, China.
| | - Gangqiang Hou
- Neuropsychiatry Imaging Center, Department of Radiology, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen 518118, China.
| |
Collapse
|
6
|
Choi J, Kang J, Kim T, Nehs CJ. Sleep, mood disorders, and the ketogenic diet: potential therapeutic targets for bipolar disorder and schizophrenia. Front Psychiatry 2024; 15:1358578. [PMID: 38419903 PMCID: PMC10899493 DOI: 10.3389/fpsyt.2024.1358578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Bipolar disorder and schizophrenia are serious psychiatric conditions that cause a significant reduction in quality of life and shortened life expectancy. Treatments including medications and psychosocial support exist, but many people with these disorders still struggle to participate in society and some are resistant to current therapies. Although the exact pathophysiology of bipolar disorder and schizophrenia remains unclear, increasing evidence supports the role of oxidative stress and redox dysregulation as underlying mechanisms. Oxidative stress is an imbalance between the production of reactive oxygen species generated by metabolic processes and antioxidant systems that can cause damage to lipids, proteins, and DNA. Sleep is a critical regulator of metabolic homeostasis and oxidative stress. Disruption of sleep and circadian rhythms contribute to the onset and progression of bipolar disorder and schizophrenia and these disorders often coexist with sleep disorders. Furthermore, sleep deprivation has been associated with increased oxidative stress and worsening mood symptoms. Dysfunctional brain metabolism can be improved by fatty acid derived ketones as the brain readily uses both ketones and glucose as fuel. Ketones have been helpful in many neurological disorders including epilepsy and Alzheimer's disease. Recent clinical trials using the ketogenic diet suggest positive improvement in symptoms for bipolar disorder and schizophrenia as well. The improvement in psychiatric symptoms from the ketogenic diet is thought to be linked, in part, to restoration of mitochondrial function. These findings encourage further randomized controlled clinical trials, as well as biochemical and mechanistic investigation into the role of metabolism and sleep in psychiatric disorders. This narrative review seeks to clarify the intricate relationship between brain metabolism, sleep, and psychiatric disorders. The review will delve into the initial promising effects of the ketogenic diet on mood stability, examining evidence from both human and animal models of bipolar disorder and schizophrenia. The article concludes with a summary of the current state of affairs and encouragement for future research focused on the role of metabolism and sleep in mood disorders.
Collapse
Affiliation(s)
- Jinyoung Choi
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| | - Jiseung Kang
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| | - Tae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Christa J. Nehs
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
7
|
Yang H, Zhang C, Chao X, Zhao J, Liu M, Chen J, Liu S, Wang T, Muhammad A, Schinckel AP, Zhou B. A Functional Single Nucleotide Polymorphism in the 3' Untranslated Region of the Porcine JARID2 Gene Is Associated with Aggressive Behavior of Weaned Pigs after Mixing. Int J Mol Sci 2023; 25:27. [PMID: 38203196 PMCID: PMC10779117 DOI: 10.3390/ijms25010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
In pig production, pigs often show more aggressive behavior after mixing, which adversely affects animal welfare and growth performance. The Jumonji and structural domain-rich AT interaction domain 2 (JARID2) gene plays an important role in neurodevelopment in mice and various psychiatric disorders in humans. The JARID2 gene may impact the aggressive behavior of pigs. By observing the behavior of 500 weaned pigs during the first 72 h after mixing, the ear tissue samples of the 12 most aggressive and 12 least aggressive pigs were selected for DNA resequencing based on the intensity of their aggressive behavior. Large group correlation analysis indicated that the rs3262221458 site located in the 3'-UTR region of the porcine JARID2 gene has a strong relationship with the aggressive behavior of weaned pigs. Pigs with the mutant TT genotype of rs3262221458 have more aggressive behavior than those pigs with the GG and GT genotypes. The dual luciferase assay indicated that the luciferase activity of the plasmids containing the G allele of rs326221458 was significantly less than that of plasmids containing the T allele of rs326221458 and control groups. The binding ability of miR-9828-3p to sequences containing the T allele was less than that of sequences containing the G allele. The overexpression of miR-9828-3p in porcine neuroglial cells (PNGCs) and PK15 cells significantly decreased the mRNA and protein levels of the JARID2 gene. In addition, miR-9828-3p inhibited the proliferation of PNGCs. After inhibiting miR-9828-3p, the mRNA and protein expression levels of JARID2 increased, and the proliferation of PNGCs showed an opposite trend to the cells that forced the expression of miR-9828-3p. In addition, interference with the JARID2 gene by siRNA can effectively inhibit the proliferation of PNGCs. In summary, we found that the rs326221458 locus regulates the expression of the JARID2 gene by affecting the binding of miR-9828-3p and the JARID2 gene, thereby affecting the aggressive behavior of weaned pigs after mixing.
Collapse
Affiliation(s)
- Huan Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (C.Z.); (X.C.); (J.Z.); (M.L.); (J.C.); (S.L.); (T.W.); (A.M.)
| | - Chunlei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (C.Z.); (X.C.); (J.Z.); (M.L.); (J.C.); (S.L.); (T.W.); (A.M.)
| | - Xiaohuan Chao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (C.Z.); (X.C.); (J.Z.); (M.L.); (J.C.); (S.L.); (T.W.); (A.M.)
| | - Jing Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (C.Z.); (X.C.); (J.Z.); (M.L.); (J.C.); (S.L.); (T.W.); (A.M.)
| | - Mingzheng Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (C.Z.); (X.C.); (J.Z.); (M.L.); (J.C.); (S.L.); (T.W.); (A.M.)
| | - Jiahao Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (C.Z.); (X.C.); (J.Z.); (M.L.); (J.C.); (S.L.); (T.W.); (A.M.)
| | - Shuhan Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (C.Z.); (X.C.); (J.Z.); (M.L.); (J.C.); (S.L.); (T.W.); (A.M.)
| | - Tianshuo Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (C.Z.); (X.C.); (J.Z.); (M.L.); (J.C.); (S.L.); (T.W.); (A.M.)
| | - Asim Muhammad
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (C.Z.); (X.C.); (J.Z.); (M.L.); (J.C.); (S.L.); (T.W.); (A.M.)
| | - Allan P. Schinckel
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA;
| | - Bo Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (C.Z.); (X.C.); (J.Z.); (M.L.); (J.C.); (S.L.); (T.W.); (A.M.)
| |
Collapse
|
8
|
Abi-Dargham A, Moeller SJ, Ali F, DeLorenzo C, Domschke K, Horga G, Jutla A, Kotov R, Paulus MP, Rubio JM, Sanacora G, Veenstra-VanderWeele J, Krystal JH. Candidate biomarkers in psychiatric disorders: state of the field. World Psychiatry 2023; 22:236-262. [PMID: 37159365 PMCID: PMC10168176 DOI: 10.1002/wps.21078] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2023] [Indexed: 05/11/2023] Open
Abstract
The field of psychiatry is hampered by a lack of robust, reliable and valid biomarkers that can aid in objectively diagnosing patients and providing individualized treatment recommendations. Here we review and critically evaluate the evidence for the most promising biomarkers in the psychiatric neuroscience literature for autism spectrum disorder, schizophrenia, anxiety disorders and post-traumatic stress disorder, major depression and bipolar disorder, and substance use disorders. Candidate biomarkers reviewed include various neuroimaging, genetic, molecular and peripheral assays, for the purposes of determining susceptibility or presence of illness, and predicting treatment response or safety. This review highlights a critical gap in the biomarker validation process. An enormous societal investment over the past 50 years has identified numerous candidate biomarkers. However, to date, the overwhelming majority of these measures have not been proven sufficiently reliable, valid and useful to be adopted clinically. It is time to consider whether strategic investments might break this impasse, focusing on a limited number of promising candidates to advance through a process of definitive testing for a specific indication. Some promising candidates for definitive testing include the N170 signal, an event-related brain potential measured using electroencephalography, for subgroup identification within autism spectrum disorder; striatal resting-state functional magnetic resonance imaging (fMRI) measures, such as the striatal connectivity index (SCI) and the functional striatal abnormalities (FSA) index, for prediction of treatment response in schizophrenia; error-related negativity (ERN), an electrophysiological index, for prediction of first onset of generalized anxiety disorder, and resting-state and structural brain connectomic measures for prediction of treatment response in social anxiety disorder. Alternate forms of classification may be useful for conceptualizing and testing potential biomarkers. Collaborative efforts allowing the inclusion of biosystems beyond genetics and neuroimaging are needed, and online remote acquisition of selected measures in a naturalistic setting using mobile health tools may significantly advance the field. Setting specific benchmarks for well-defined target application, along with development of appropriate funding and partnership mechanisms, would also be crucial. Finally, it should never be forgotten that, for a biomarker to be actionable, it will need to be clinically predictive at the individual level and viable in clinical settings.
Collapse
Affiliation(s)
- Anissa Abi-Dargham
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Scott J Moeller
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Farzana Ali
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Christine DeLorenzo
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Guillermo Horga
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Amandeep Jutla
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Roman Kotov
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | | | - Jose M Rubio
- Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, USA
- Feinstein Institute for Medical Research - Northwell, Manhasset, NY, USA
- Zucker Hillside Hospital - Northwell Health, Glen Oaks, NY, USA
| | - Gerard Sanacora
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
9
|
Li Y, Zhang L, Mao M, He L, Wang T, Pan Y, Zhao X, Li Z, Mu X, Qian Y, Qiu J. Multi-omics analysis of a drug-induced model of bipolar disorder in zebrafish. iScience 2023; 26:106744. [PMID: 37207274 PMCID: PMC10189518 DOI: 10.1016/j.isci.2023.106744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/16/2023] [Accepted: 04/21/2023] [Indexed: 05/21/2023] Open
Abstract
Emerging studies demonstrate that inflammation plays a crucial role in the pathogenesis of bipolar disorder (BD), but the underlying mechanism remains largely unclear. Given the complexity of BD pathogenesis, we performed high-throughput multi-omic profiling (metabolomics, lipidomics, and transcriptomics) of the BD zebrafish brain to comprehensively unravel the molecular mechanism. Our research proved that in BD zebrafish, JNK-mediated neuroinflammation altered metabolic pathways involved in neurotransmission. On one hand, disturbed metabolism of tryptophan and tyrosine limited the participation of the monoamine neurotransmitters serotonin and dopamine in synaptic vesicle recycling. On the other hand, dysregulated metabolism of the membrane lipids sphingomyelin and glycerophospholipids altered the synaptic membrane structure and neurotransmitter receptors (chrnα7, htr1b, drd5b, and gabra1) activity. Our findings revealed that disturbance of serotonergic and dopaminergic synaptic transmission mediated by the JNK inflammatory cascade was the key pathogenic mechanism in a zebrafish model of BD, provides critical biological insights into the pathogenesis of BD.
Collapse
Affiliation(s)
- Yameng Li
- Key Laboratory of Agri-food Quality and Safety of Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lin Zhang
- Key Laboratory of Agri-food Quality and Safety of Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mingcai Mao
- Key Laboratory of Agri-food Quality and Safety of Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Linjuan He
- Key Laboratory of Agri-food Quality and Safety of Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tiancai Wang
- Key Laboratory of Agri-food Quality and Safety of Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yecan Pan
- Key Laboratory of Agri-food Quality and Safety of Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoyu Zhao
- Key Laboratory of Agri-food Quality and Safety of Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zishu Li
- Key Laboratory of Agri-food Quality and Safety of Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiyan Mu
- Key Laboratory of Agri-food Quality and Safety of Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongzhong Qian
- Key Laboratory of Agri-food Quality and Safety of Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Corresponding author
| | - Jing Qiu
- Key Laboratory of Agri-food Quality and Safety of Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Corresponding author
| |
Collapse
|
10
|
Fessel J. Formulating treatment of major psychiatric disorders: algorithm targets the dominantly affected brain cell-types. DISCOVER MENTAL HEALTH 2023; 3:3. [PMID: 37861813 PMCID: PMC10501034 DOI: 10.1007/s44192-022-00029-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/21/2022] [Indexed: 10/21/2023]
Abstract
BACKGROUND Pharmacotherapy for most psychiatric conditions was developed from serendipitous observations of benefit from drugs prescribed for different reasons. An algorithmic approach to formulating pharmacotherapy is proposed, based upon which combination of changed activities by brain cell-types is dominant for any particular condition, because those cell-types contain and surrogate for genetic, metabolic and environmental information, that has affected their function. The algorithm performs because functions of some or all the affected cell-types benefit from several available drugs: clemastine, dantrolene, erythropoietin, fingolimod, fluoxetine, lithium, memantine, minocycline, pioglitazone, piracetam, and riluzole PROCEDURES/FINDINGS: Bipolar disorder, major depressive disorder, schizophrenia, Alzheimer's disease, and post-traumatic stress disorder, illustrate the algorithm; for them, literature reviews show that no single combination of altered cell-types accounts for all cases; but they identify, for each condition, which combination occurs most frequently, i.e., dominates, as compared with other possible combinations. Knowing the dominant combination of altered cell-types in a particular condition, permits formulation of therapy with combinations of drugs taken from the above list. The percentage of patients who might benefit from that therapy, depends upon the frequency with which the dominant combination occurs in patients with that particular condition. CONCLUSIONS Knowing the dominant combination of changed cell types in psychiatric conditions, permits an algorithmically formulated, rationally-based treatment. Different studies of the same condition often produce discrepant results; all might be correct, because identical clinical phenotypes result from different combinations of impaired cell-types, thus producing different results. Clinical trials would validate both the proposed concept and choice of drugs.
Collapse
Affiliation(s)
- Jeffrey Fessel
- Department of Medicine, University of California, 2069 Filbert Street, San Francisco, CA, 94123, USA.
| |
Collapse
|
11
|
Dion-Albert L, Bandeira Binder L, Daigle B, Hong-Minh A, Lebel M, Menard C. Sex differences in the blood-brain barrier: Implications for mental health. Front Neuroendocrinol 2022; 65:100989. [PMID: 35271863 DOI: 10.1016/j.yfrne.2022.100989] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/07/2022] [Accepted: 02/19/2022] [Indexed: 12/13/2022]
Abstract
Prevalence of mental disorders, including major depressive disorder (MDD), bipolar disorder (BD) and schizophrenia (SZ) are increasing at alarming rates in our societies. Growing evidence points toward major sex differences in these conditions, and high rates of treatment resistance support the need to consider novel biological mechanisms outside of neuronal function to gain mechanistic insights that could lead to innovative therapies. Blood-brain barrier alterations have been reported in MDD, BD and SZ. Here, we provide an overview of sex-specific immune, endocrine, vascular and transcriptional-mediated changes that could affect neurovascular integrity and possibly contribute to the pathogenesis of mental disorders. We also identify pitfalls in current literature and highlight promising vascular biomarkers. Better understanding of how these adaptations can contribute to mental health status is essential not only in the context of MDD, BD and SZ but also cardiovascular diseases and stroke which are associated with higher prevalence of these conditions.
Collapse
Affiliation(s)
- Laurence Dion-Albert
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | - Luisa Bandeira Binder
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | - Beatrice Daigle
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | - Amandine Hong-Minh
- Smurfit Institute of Genetics, Trinity College Dublin, Lincoln Place Gate, Dublin 2, Ireland
| | - Manon Lebel
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | - Caroline Menard
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada.
| |
Collapse
|
12
|
Valdés-Tovar M, Rodríguez-Ramírez AM, Rodríguez-Cárdenas L, Sotelo-Ramírez CE, Camarena B, Sanabrais-Jiménez MA, Solís-Chagoyán H, Argueta J, López-Riquelme GO. Insights into myelin dysfunction in schizophrenia and bipolar disorder. World J Psychiatry 2022; 12:264-285. [PMID: 35317338 PMCID: PMC8900585 DOI: 10.5498/wjp.v12.i2.264] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/10/2021] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia and bipolar disorder are disabling psychiatric disorders with a worldwide prevalence of approximately 1%. Both disorders present chronic and deteriorating prognoses that impose a large burden, not only on patients but also on society and health systems. These mental illnesses share several clinical and neurobiological traits; of these traits, oligodendroglial dysfunction and alterations to white matter (WM) tracts could underlie the disconnection between brain regions related to their symptomatic domains. WM is mainly composed of heavily myelinated axons and glial cells. Myelin internodes are discrete axon-wrapping membrane sheaths formed by oligodendrocyte processes. Myelin ensheathment allows fast and efficient conduction of nerve impulses through the nodes of Ranvier, improving the overall function of neuronal circuits. Rapid and precisely synchronized nerve impulse conduction through fibers that connect distant brain structures is crucial for higher-level functions, such as cognition, memory, mood, and language. Several cellular and subcellular anomalies related to myelin and oligodendrocytes have been found in postmortem samples from patients with schizophrenia or bipolar disorder, and neuroimaging techniques have revealed consistent alterations at the macroscale connectomic level in both disorders. In this work, evidence regarding these multilevel alterations in oligodendrocytes and myelinated tracts is discussed, and the involvement of proteins in key functions of the oligodendroglial lineage, such as oligodendrogenesis and myelination, is highlighted. The molecular components of the axo-myelin unit could be important targets for novel therapeutic approaches to schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Marcela Valdés-Tovar
- Departamento de Farmacogenética, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | | | - Leslye Rodríguez-Cárdenas
- Departamento de Farmacogenética, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Carlo E Sotelo-Ramírez
- Departamento de Farmacogenética, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
- Doctorado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
| | - Beatriz Camarena
- Departamento de Farmacogenética, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | | | - Héctor Solís-Chagoyán
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Jesús Argueta
- Doctorado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Germán Octavio López-Riquelme
- Laboratorio de Socioneurobiología, Centro de Investigación en Ciencias Cognitivas, Universidad del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico
| |
Collapse
|
13
|
Glial Cell Abnormalities in Major Psychiatric Diseases: A Systematic Review of Postmortem Brain Studies. Mol Neurobiol 2022; 59:1665-1692. [PMID: 35013935 DOI: 10.1007/s12035-021-02672-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/25/2021] [Indexed: 10/19/2022]
Abstract
There have been a large number of reports about glial cell dysfunction being related to major psychiatric diseases such as schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD). In this review, we provide an overview of postmortem studies analyzing the structural changes of glial cells in these three major psychiatric diseases, including the density, number and size of glial cells, and the expression of related markers. Up to May 1, 2021, 108 articles that met the inclusion criteria were identified by searching PubMed and Web of Science. Although most studies evaluating total glial cells did not show abnormalities in the brains of postmortem patients, astrocytes, microglial cells, and oligodendrocytes seem to have specific patterns of changes in each disease. For example, out of 20 studies that evaluated astrocyte markers in MDD, 11 studies found decreased astrocyte marker expression in MDD patients. Similarly, out of 25 studies evaluating oligodendrocyte markers in SCZ, 15 studies showed decreased expression of oligodendrocyte markers in different brain regions of SCZ patients. In addition, activated microglial cells were observed in patients with SCZ, BD, and MDD, but suicide may be a confounding factor for the observed effects. Although the data from the included studies were heterogeneous and this cannot be fully explained at present, it is likely that there are a variety of contributing factors, including the measured brain regions, methods of measurement, gender, age at time of death, and medications.
Collapse
|
14
|
Kverno K. Lithium: Current Clinical Guidelines for Nurse Practitioners. J Psychosoc Nurs Ment Health Serv 2022; 60:6-9. [PMID: 34978941 DOI: 10.3928/02793695-20211207-02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bipolar disorder is a serious neuroprogressive disorder associated with structural and functional brain changes, multiple comorbidities, and heightened risk for suicide. Lithium has been a first-line treatment for bipolar disorder for more than 50 years and recent research suggests that early identification and treatment of bipolar disorder with lithium can alter the progression of the illness. The purpose of the current article is to review evidence for lithium's neurotrophic and neuroprotective actions and clinical guidelines for safe and effective use. [Journal of Psychosocial Nursing and Mental Health Services, 60(1), 6-9.].
Collapse
|
15
|
Abstract
Bipolar disorder (BD) is a complex group of neuropsychiatric disorders, typically comprising both manic and depressive episodes. The underlying neuropathology of BD is not established, but a consistent feature is progressive thinning of cortical grey matter (GM) and white matter (WM) in specific pathways, due to loss of subpopulations of neurons and astrocytes, with accompanying disturbance of connectivity. Dysregulation of astrocyte homeostatic functions are implicated in BD, notably regulation of glutamate, calcium signalling, circadian rhythms and metabolism. Furthermore, the beneficial therapeutic effects of the frontline treatments for BD are due at least in part to their positive actions on astrocytes, notably lithium, valproic acid (VPA) and carbamazepine (CBZ), as well as antidepressants and antipsychotics that are used in the management of this disorder. Treatments for BD are ineffective in a large proportion of cases, and astrocytes represent new therapeutic targets that can also serve as biomarkers of illness progression and treatment responsiveness in BD.
Collapse
|
16
|
Astrocyte specific proteins content in the different parts of the rat and mongolian gerbil brain during ontogenesis. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
17
|
Rajewska-Rager A, Dmitrzak-Weglarz M, Kapelski P, Lepczynska N, Pawlak J, Twarowska-Hauser J, Skibinska M. Longitudinal assessment of S100B serum levels and clinical factors in youth patients with mood disorders. Sci Rep 2021; 11:11973. [PMID: 34099858 PMCID: PMC8184924 DOI: 10.1038/s41598-021-91577-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/25/2021] [Indexed: 11/25/2022] Open
Abstract
Mood disorders have been discussed as being in relation to glial pathology. S100B is a calcium-binding protein, and a marker of glial dysfunctions. Although alterations in the S100B expression may play a role in various central nervous system diseases, there are no studies on the potential role of S100B in mood disorders in adolescents and young adults . In a prospective two-year follow-up study, peripheral levels of S100B were investigated in 79 adolescent/young adult patients (aged 14–24 years), diagnosed with mood disorders and compared with 31 healthy control subjects. A comprehensive clinical interview was conducted which focused on clinical symptoms and diagnosis change. The diagnosis was established and verified at each control visit. Serum S100B concentrations were determined. We detected: lower S100B levels in medicated patients, compared with those who were drug-free, and healthy controls; higher S100B levels in a depressed group with a family history of affective disorder; correlations between age and medication status; sex-dependent differences in S100B levels; and lack a of correlation between the severity of depressive or hypo/manic symptoms. The results of our study indicate that S100B might be a trait-dependent rather than a state-dependent marker. Due to the lack of such studies in the youth population, further research should be performed. A relatively small sample size, a lack of exact age-matched control group, a high drop-out rate.
Collapse
Affiliation(s)
- Aleksandra Rajewska-Rager
- Department of Psychiatric Genetics, Chair of Psychiatry, Poznan University of Medical Sciences, Rokietnicka 8, 60-806, Poznan, Poland
| | - Monika Dmitrzak-Weglarz
- Department of Psychiatric Genetics, Chair of Psychiatry, Poznan University of Medical Sciences, Rokietnicka 8, 60-806, Poznan, Poland
| | - Pawel Kapelski
- Department of Psychiatric Genetics, Chair of Psychiatry, Poznan University of Medical Sciences, Rokietnicka 8, 60-806, Poznan, Poland
| | - Natalia Lepczynska
- Department of Child and Adolescent Psychiatry, Karol Jonscher Clinical Hospital, Poznan University of Medical Sciences, Szpitalna 27/33 St, 60-572, Poznań, Poland
| | - Joanna Pawlak
- Department of Psychiatric Genetics, Chair of Psychiatry, Poznan University of Medical Sciences, Rokietnicka 8, 60-806, Poznan, Poland
| | - Joanna Twarowska-Hauser
- Department of Psychiatric Genetics, Chair of Psychiatry, Poznan University of Medical Sciences, Rokietnicka 8, 60-806, Poznan, Poland
| | - Maria Skibinska
- Department of Psychiatric Genetics, Chair of Psychiatry, Poznan University of Medical Sciences, Rokietnicka 8, 60-806, Poznan, Poland.
| |
Collapse
|
18
|
Na +, K +-ATPase α Isoforms and Endogenous Cardiac Steroids in Prefrontal Cortex of Bipolar Patients and Controls. Int J Mol Sci 2020; 21:ijms21165912. [PMID: 32824628 PMCID: PMC7460572 DOI: 10.3390/ijms21165912] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/05/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023] Open
Abstract
Bipolar disorder is a chronic multifactorial psychiatric illness that affects the mood, cognition, and functioning of about 1–2% of the world’s population. Its biological basis is unknown, and its treatment is unsatisfactory. The α1, α2, and α3 isoforms of the Na+, K+-ATPase, an essential membrane transporter, are vital for neuronal and glial function. The enzyme and its regulators, endogenous cardiac steroids like ouabain and marinobufagenin, are implicated in neuropsychiatric disorders, bipolar disorder in particular. Here, we address the hypothesis that the α isoforms of the Na+, K+-ATPase and its regulators are altered in the prefrontal cortex of bipolar disease patients. The α isoforms were determined by Western blot and ouabain and marinobufagenin by specific and sensitive immunoassays. We found that the α2 and α3 isoforms were significantly higher and marinobufagenin levels were significantly lower in the prefrontal cortex of the bipolar disease patients compared with those in the control. A positive correlation was found between the levels of the three α isoforms in all samples and between the α1 isoform and ouabain levels in the controls. These results are in accordance with the notion that the Na+, K+-ATPase-endogenous cardiac steroids system is involved in bipolar disease and suggest that it may be used as a target for drug development.
Collapse
|